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Abstract. In deep learning, convolutional neural network (CNN) is
quite representative. The convolutional operation of CNN is the focus
of hardware acceleration research. Because of CNN’s memory-intensive
and compute-intensive features, increasing size of network poses a greater
challenge on the design of the hardware accelerator. We need to deter-
mine the parameters of the accelerator at the early stages of the accel-
erator design.

This paper presents a design space exploration framework for CNN
accelerator: ACCDSE, for determining the parameters of convolutional
accelerator in FPGA. Simulation method and theoritical computation
method are both used to find the optimal parameter. Experiment on
LeNet shows that 16-bit fixed point is the most economical data preci-
sion for inference of LeNet. By theoritical analysis, the ACCDSE frame-
work can obtain optimal matrix tiling parameters. Without decreasing
the classification accuracy, the power consumption can be reduced by
33.57% and the storage can be reduced by 41.47% after weight pruning.

Keywords: CNN · Design space exploration · Data precision
Accelerator · Weight pruning

1 Introduction

In recent years, deep learning has subverted the algorithm design ideas in many
areas, such as speech recognition and image classification. Since AlexNet wons
the 2012 ImageNet large-scale image recognition competition (ILSVRC2012)
with 83.6% top-5 accuracy, CNNs have become well-known. Nowadays, artifi-
cial intelligence is commonly applied to industrial manufacture. Because CNN’s
convolutional layers have a significant effect in extracting image features, CNN is
widely used in practical applications. It makes the requirements for CNN’s infer-
ence phase are increasing. However, CNN has the property of memory-intensive
and compute-intensive. In addition, the scale of CNN continues to increase.
These two facts make the hardware acceleration for CNN a urgent issue. Since
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the convolutional layers of CNN takes about 90% of the execution time [11], it
is the focus of hardware acceleration. At present, there are a lot of accelerations
for CNN. GPU, FPGA [10,13,16] and ASIC [3] are commonly used acceleration
platform.

To meet various design target, accelerator design parameters need to be deter-
mined at early stages. Many aspects of CNN optimization and acceleration need
to be considered, such as the design of the architecture [14], the parameter for
matrix tiling [10,13,16], whether or not using low-precision operands [6].

However, previous research work focuses on a single aspect parameter setting.
But these parameters are interactional and accelerator design is a system design
process. In order to receive more systematic solution, we need a design space
exploration framework to find the best parameters combination according to
performance requirements.

This paper presents a design space exploration framework: ACCDSE. This
framework is based on a in-house simulator that supports CNN’s inference and
three design space exploration modules. The three modules can find optimal
configuration parameters that meet the performance requirements for data pre-
cision, matrix tiling, and weight pruning, respectively. The main contributions
of this paper are as follows:

1. Proposed a design space exploration framework that supports CNN’s infer-
ence engine’s DSE;

2. Explored the impact of various data precision on the accuracy of prediction,
selecting the most economical data precision;

3. Based on the roofline model and the matrix tiling strategy, the parallel param-
eters are selected under the given hardware constraint;

4. Explored the relationship among classification accuracy, power and weight
pruning.

Through experiment with LeNet and Caffe’s performance as benchmark, the
design space exploration result shows that 16-bit fixed point operand data pre-
cision will not have an impact on performance. The matrix tiling module in the
framework can calculate the optimal parameter configuration according to the
convolutional layer parameters and the resource limit of the acceleration plat-
form to achieve the maximum throughput. Without decreasing the classification
performance priority, the storage can be reduced by 33.57% after weight prun-
ing. When we concerned more about power, classification accuracy decreases by
4.0%, the storage can be reduced by 78.03% after weight pruning. If we con-
cerned more about cost, the storage can be reduced by 49.89% after weight
pruning without sacrificing classification accuracy.

The rest of this paper is organized as follows: The Sect. 2 introduces the
background and the related research work. The Sect. 3 analyzes the parallel char-
acteristics of the convolutional operation. The Sect. 4 introduces the proposed
ACCDSE in this paper. The Sect. 5, shows the experiments and performance
analysis. The Sect. 6 is the work related to this research. The Sect. 7 is the
conclusion.
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Table 1. LeNet parameters

LeNet parameters

Layer type Input Weights Stride Output

CONV1 1*28*28 20*1*5*5 1 20*24*24

Pooling1 20*24*24 2 20*12*12

CONV2 20*12*12 50*20*5*5 1 50*8*8

Pooling2 50*8*8 2 50*4*4

FC1 800*1 800*500 500*1

ReLU 500*1 500*1

FC2 500*1 500*10 10*1

Soft-Max 10*1 10*1

2 Background

There are many algorithms for convolutional neural networks, but the main
components are the same. In this paper, we use LeNet as a research neural
network.

2.1 LeNet

LeNet is the most basic network of CNN, mainly used in handwritten number
recognition. As is shown in Fig. 1, it is divided into eight layers, including tow
convolutional layers, two pooling layers, two fully-connected layers, one ReLU
layer and one SoftMax layer [6]. The Table 1 shows the parameter for the LeNet.

Fig. 1. LeNet structure

2.2 Convolutional Operation

As is shown in Fig. 2, the convolutional operation is the point product of a three-
dimensional matrix and a four-dimensional matrix. In the process of operation,
the convolutional kernel performs the point product in the order of the corre-
sponding data of the input matrix, the result is summed to obtain a point of the
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Fig. 2. Convolutional layer diagram

output matrix finally. Different groups of convolutional kernel repeat the same
operation. When all the kernels and the input matrix complete the operation
after the corresponding output matrix, a convolutional operation is completed.
Figure 4 shows the pseudo-code of the convolutional operation.

2.3 Roofline Model

Using the FPGA platform to accelerate the CNN, two major problems need to
be solved. First, improve the utilization of resources. Second, meet the FPGA
bandwidth requirements [16]. In order to solve these two problems, this paper
takes the Roofline Model [9].

Figure 3 shows the Roofline Model. As is shown in the figure, the slash repre-
sents the bandwidth of the platform. The line paralleled to the X axis represents
the resource limit of the platform. It can be seen that the area among the slash,
the line and the X axis is achievable. For point in the slash above, the limiting
factor is the bandwidth. For point in the straight line above, the limiting factor
is the resources. Two algorithms are shown in the figure. Obviously, in Fig. 3
the throughput of algorithm 1 is smaller than that of algorithm 2. When the
throughput is the same, the computation to communication ratio (CTC) high
point’s performance is better [16].

3 Convolutional Operation Parallelism Analysis

As is shown in Fig. 4(a), the convolutional operation is a multiple nested loop.
The same loop internal data is independent of each other and can be executed
in parallel. The research of this paper is mainly for the following three parallel
characteristics.

As is shown in Fig. 4(a), the 5th and 6th loop represent the convolutional
kernel. The data inside the convolutional kernel is independent of each other
and can be executed in parallel. We denote Tk as the number of data, which
within the same convolutional kernel, executed at the same time (Tk <= K∗K).
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Fig. 3. Roofline model

(a) Pseudo code of a convolutional layer (b) Pseudo code of a tiled convolutional layer

Fig. 4. Convolutional pseudocode

The 4th loop represents the data between the convolutional kernels. The
data between the convolutional kernels are independent of each other and can
be executed in parallel. We denote Tn as the number of convolutional kernel
executed at the same time (Tn <= N).

Similarly, the 3th loop is among the different outputs. The data are also
independent of each other, which can be executed in parallel. We denote Tm as
the number of output executed at the same time (Tm <= M).

The convolutional code for adding the parallel parameters is shown in
Fig. 4(b).

The matrix tiling calculation model is based on the method of work [10,16].
Figure 2 shows the meaning of the relevant parameters. The Eq. (1) shows the
number of cycles for the convolutional layer:
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M
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×

⌈
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×
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Where P is the number of pipelines, Tr, Tc, Ti, and Tj are the dimensions of
the data to be prepared in one operation. The total number of operations for
calculating a convolutional layer is shown in Eq. (2):

total number of operations = 2 × R × C × M × N × K × K (2)
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Equation (3) represents the upper limit of the calculation under parallel
parameters:

computational roof =
2 × M × N × K × K⌈

M
Tm

⌉ × ⌈
N
Tn

⌉ × ⌈
K
Ti

⌉ ×
⌈

K
Tj

⌉
×

⌈
TiTj
Tk

⌉ (3)

The purpose of optimizing acceleration is to maximize the computational roof.
All operations are required for data support. The amount of data set must

be less than the bandwidth of the platform.
The data involved in the operation is divided into three parts: input, weights

and output. Hence, different buffer are required to hold the necessary data. The
data required for the three-part data are shown in (4) (5) (6):

βin = Tn × (S × Tr + Ti − S)(S × Tc + Tj − S) × 2Bytes (4)

βweights = Tm × Tn × Ti × Tj × 2Bytes (5)

βout = Tm × Tr × Tc × 2Bytes (6)

Similarly, the number of loads and stores can be calculated using (7) (8) (9):

αin =
M

Tm
× N

Tn
× R

Tr
× C

Tc
× K

Ti
× K

Tj
(7)

αweights =
M

Tm
× N

Tn
× R

Tr
× C

Tc
× K

Ti
× K

Tj
(8)

αout = 2 × M × R × C (9)

The amount of memory and the buffer size can be calculated by calculating the
communication ratio. Calculating the communication ratio is a measure of the
degree of reuse of the on-chip storage data.

CTC =
Total required computation

Total requried communication

=
2 × M × N × R × C × K × K

αin × βin + αweights × βweightsαout × βout

(10)

CTC as the horizontal axis, the throughput of the vertical axis, all the circum-
stances listed. According to rooflin model theory, we select the highest through-
put point as the design point.

4 ACCDSE Framework

The objective of this paper is to determine the parameters of the design space
exploration based on the metric such as performance, power and energy effi-
ciency, so that the accelerator can meet the design requirements. Figure 5 shows
the framework for design space exploration. The design parameters that can
be selected in this framework, including the data precision, the parameters of
matrix tiling and whether or not performing the pruning operation.
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Fig. 5. Design space exploration framework

4.1 Data Precision Selection

High data precision can lead to stable performance. Low data precision will save
hardware costs. Appropriate data precision is a trade-off between performance
and hardware costs.

Weights of trained Caffe Model are extracted and fed into the simulator.
We observed that the absolute value of the extracted weights is between 0 and
1. Through the method of enlarging the data, we convert float point data to
fixed point data. The data after processing is involved in the operation. The
result of the calculation needs to be reduced to the original size. In the process
of operation, inappropriate data precision may lead to data overflow. The data
overflow will cause the result of inference to be invalid. There are three data
precisions in the framework: float point, 32-bit fixed point and 16-bit fixed point.
Through the experimental analysis, we select the most suitable data precision.

4.2 Matrix Tiling Parameters

In Sect. 3, three parallel parameters (Tk, Tn, Tm) have been proposed. In the
process of hardware acceleration, the utilization of hardware resources and band-
width must be considered. Inappropriate parallel parameters, always leading to
reduction in resource utilization, and failing to achieve good performance.
The choice of parallel parameters must follow three principles:

(1) the design of the buffers size must not exceed the on-chip memory,
(2) the design of the bandwidth must not exceed the maximum bandwidth,
(3) the computing unit must not exceed the on-chip resources.

In this calculation module, entering the resource constraint and convolutional
layer parameters, the output is matrix tiling parameters.

As the work in [16], there are 3 steps to select parameters.

(1) According to resource constraints, the theoretical maximum throughput is
obtained.

(2) According to the convolutional layer parameters and Roofline Model calcu-
lated computational roof and CTC.
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(3) After listing all possible parameter configurations, we select the best point
as the design point.

Assuming our implementation is built on the VC707 board which has a Xil-
inx FPGA chip Virtex7 485t, we optimize CONV2 which in Table 1. The data
precision is 16-bit fixed point. By calculation, the theoretical maximum through-
put is 140 GFLOPS. By calculating the model, CTC and computational roof
are obtained. With the bandwidth limit, the maximum throughput point is the
design point. At this time the parameters (Tk, Tm, Tn) are (25, 5, 5). At this
point, the throughput is 125 GOPS.

4.3 Weight Pruning

In the work [12], the contribution of different weights to the final prediction
results is different. A small part of the weight can determine the final perfor-
mance. In the process of optimizing the CNN, the weight that makes a great
contribution to the result, is preserved. The weight that has smaller contribu-
tion is selectively removed. Through the pruning operation, power and storage
can be reduced at the same time, and meanwhile having no significant impact
on performance.

The strategy in this framework is to set a value appropriate threshold. The
weight which does not exceed the threshold, will be set to zero. Threshold size of
the selection, can only affect little to final results, but also as much as possible
to reduce the amount of computing, power and storage. It can be found that a
suitable threshold is critical to optimization.

5 Experimental Evaluation

5.1 Experimental Environment

Caffe is the classical framework of convolutional neural networks. In this paper we
use Caffe as the training framework and inference reference model. Caffe trained
the LeNet network with the MNIST training set. The weight of the simulator
comes from the trained Caffe Model. Caffe’s output is used as the baseline. The
ACCDSE framework is running on ubuntu 16.04 system. The processor is Intel
Core i5-6600.

5.2 Implementation

The ACCDSE framework proposed in this paper is implemented in C. The key
component of the ACCDSE framework is a CNN inference engine simulator.
Figure 6 presents the structure of the ACCDSE framework implementation. Caffe
uses the training set in MNIST to train and get the weights. The simulator
that obtained the weight is evaluated with the MNIST test set. The results are
compared with Caffe’s test performance and analysis. The simulator can perform
data precision, matrix tiling and weight pruning selection. As mentioned in the
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Fig. 6. Diagram of the experimental process

Sect. 4, the options for selecting data precision are float point, 16-bit fixed point
and 32-bit fixed point. Matrix tiling with (Tk, Tm, Tn) three parameters. Weight
pruning has a choice of thresholds.

5.3 Experimental Result

5.3.1 Data Precision
Our simulator can select the data precision. In Sect. 4, we have proposed a
method of data type selection. Caffe’s classification accuracy as the baseline.
10,000 pictures of Mnist test set as benchmark. Float point, 32-bit fixed point
and 16-bit fixed point three data precision experiment for performance com-
parison respectively. By using the Sect. 4.1’s method, we transform the weight
into fixed point. The middle value is saved with double bit width. When the
median value participates in the next operation, the value is scaled and round-
ing. When the number of significant digits is 1 and the error rate is high, there
is no representation in the figure. The overflow situation is also not shown in the
figure.

First, the simulator analyzes the weights (absolute value), and the weight
distribution is shown in Fig. 7. The results show that the weights are mostly
between 0.01 and 0.1. So, when the weights are converted to integers and mag-
nified by a factor of 1,000, the vast majority of the weights are covered.

The experimental results are shown in Fig. 8. The horizontal axis is the data
precision, and the number of significant digits of the weight is marked in paren-
theses. The red dotted line indicates the performance of Caffe.

Through the experimental results, high data precision will lead to stable
performance (compare with baseline) and not easy to overflow. When the data
precision is 16-bit fixed point and 32-bit fixed point, the more the effective
bit of the weight, the better the performance. According to the comparison
among all of the performances of data under precision, int and 16-bit fixed
point have the best performance, which is better than baseline. At this time,
the weight of the amplification parameter of 1000, confirms the conclusions of
Fig. 7. The principle of selecting data precision: performance priority, hardware
costs secondly. According to the principle, we select 16-bit fixed point as the
data precision.
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Fig. 7. The distribution of weights (absolute value)

Fig. 8. Performance under three data precision (Color figure online)

5.3.2 Weight Pruning
The simulator can research the relationship among threshold, calculation and
accuracy. The steps are as follows. When the simulator reads the weights, the
total number of weights and the number of pruning are counted. When the
parameters of the convolutional layer are determined, the total amount can be
calculated according to the parameters. Similarly, according to the number of
pruning weights, we can also get the amount of weight after the calculation. Here,
we calculate the amount as a criterion for power consumption. The experiment
was conducted with the MNIST 10000 test set as a benchmark. The experiment
uses 16-bit fixed point as the data precision.

We denote P as the number of correct samples, P′ as the total number of
samples, M as the storage after the pruning of the weights, M′ as the storage
before pruning, Q as the calculated amount after the pruning of the weights, Q′

as the amount of computation before pruning, E as the power efficiency, and C
as the cost-effective.

The relationship shown as follows: accuracy = P/P ′, storage = M/M ′,
power = Q/Q′, E = P/Q, C = E/(1 − accuracy).
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Fig. 9. The relationship between threshold and performance index

The experimental results are shown in Fig. 9. The abscissa is the threshold.
In the figure, the power efficiency and cost-effective are the trend lines.

As the threshold increases, power and performance are reduced. However, in
a particular area, the performance degradation can be ignored, but the power
will be drastically reduced. When the threshold increases to a certain value, the
performance will be significantly reduced. If practical applications is concerned
about the performance, we can select a threshold of 0.03. The error rate is only
0.81%, the power reduced to 66.43%, and the storage reduced to 58.57%. If the
performance requirements of the application are very strict, we do not have to
take pruning.

If the actual application is more concerned about power, we select the highest
power efficiency point. When the threshold is 0.09, the power efficiency is the
highest. But at this time, the error rate is 10%. The performance is unbearable
obviously. The final selection threshold is 0.085 as the design point. At this time,
the error rate is 4.86%, the power is only 21.97%, the storage reduced to 6.58%.

If the actual application is more concerned about the cost-effective, we can
select threshold of 0.045, which is the best cost-effective point obviously. In this
time, power and performance achieve the best match. At this point, the error
rate is 0.84%, the storage reduced to 38.42%, and the power reduced to 50.11%.

6 Related Work

CNN accelerator design work has been carried out for several years. ASIC, FPGA
and GPU are the main acceleration platforms. Among them the most famous
ASIC is DianNao series of accelerators. Work [3] introduced the first acceler-
ator. The acceleration strategy is to separate the operations in the network,
then calculate each neuron, finally get the results. The nearest accelerator is
ShiDianDao [4]. Obtaining the data in the terminal directly, this could avoid
some of the memory consumption. In addition, IBM developed the TureNorth
chip [1]. The data is transmitted using spiking. The advantages of FPGAs are
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flexibility and low power consumption. The acceleration work is mainly applied
to the inference. GPU is generally used for training.

In the chip design, the key problem is solving resources and bandwidth, so
design space exploration is very important. In work [10,16], the Roofline Model
is used to solve the problem of resource and bandwidth in FPGA. In view of the
problem of resource utilization is not well, the work [13], put forward the idea of
hardware resource block, making the use of resources more fine-grained. There is
still a lot of work designed for the computing unit. For example, the work [5,14].
In addition, work [12] is referred to the weight pruning operation. This is also the
future direction of CNN accelerator design. The corresponding work [7] proposed
an effective compression engine. In work [6], we study the problem of finite
numerical precision, and also provide a very bright direction for the acceleration
work. Work [15] also design and implement Caffeine, a hardware/software co-
designed library to efficiently accelerate the entire CNN on FPGAs.

The method proposed in work [2] uses the data correlation among the multi-
layer convolutional layers to improve the data reuse and reduce the pressure of
the bandwidth. In work [8], the neural network compilation method is proposed,
which can match the network and hardware.

7 Conclusion

This paper presents ACCDSE, a design space exploration framework for convo-
lutional neural network accelerator. Taking LeNet as an example, the FPGA is
used to accelerate the platform. The framework has been used for data precision,
matrix tiling and weight pruning selection.

Experiment result shows that ACCDSE can achieve the most economical pre-
cision selection for convolutional neural network to achieve maximum through-
put. It can make full use of the acceleration platform hardware resources. The
weight pruning enables a combination of power and performance. Through this
framework optimization, the accelerator can achieve trade-offs among through-
put, performance, and power. Under a variety of performance requirements, the
accelerator can achieve optimal parameter configuration.
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