
Chapter 11
Sandwich Assay for Pathogen
and Cells Detection

Shaoguang Li, Hui Li and Fan Xia

Abstract Sandwich assay biosensors make it possible to detect bacterial pathogens
and cancer cells at extremely low level. In this chapter, we have summarized the
recent developments of sandwich assay for pathogen and whole-cell detection using
a variety of techniques. In particular, we highlighted some of the most common
techniques in sandwich assay biosensors such as optics-based detection,
electrochemistry-based detection, and mechanics-based detection.
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11.1 Introduction

In the past several years, there are significant developments of diagnostic tech-
niques for public health, food and water safety, and homeland security [1, 2]. In
particular, plenty of methods and techniques have vastly advanced the detection of
pathogens, cancer cells, and other disorders, namely phenotypic, immunological,
molecular, and genotypic protocols [3–5]. Nevertheless, many of these techniques
are conventional, laboratory-based diagnostic methods, which require long
processing time, specialized equipment and are tedious to perform. As such, the
demand for sensitive, selective, rapid, and cost-effective detection of bacterial
pathogens and cancer cells is highly increasing [6–8].

The sandwich assay biosensors can fill this role because they are highly specific
and reproducible to a variety of biological structures, organisms, and processes
[9–11]. Moreover, easy signal amplification of sandwich assay promotes them to be
with great sensitivity compared with other platforms. As such, this assay has been
extensively applied to a variety of analytes, such as metal ions, small molecules,
nucleic acids, proteins, and bacterial pathogens and cells [12, 13].

In terms of pathogen and cancer cell sensing, one of the well-established
strategies is the detection of their biomolecule components. These components,
including DNA [14, 15], RNA [16, 17], proteins [18], and exotoxins [19], have
been successfully detected at exceedingly low levels by sandwich assay using
polymerase chain reaction (PCR) or immunoassays techniques. The major disad-
vantage of this component-detecting strategy is the requirement for sample
pre-enrichment, sample processing, expensive instruments, and commercial
reagents. To solve this issue, sandwich assay biosensors for whole-cell detection,
again, without any sample processing, are much more desirable for accurate, rapid,
and cost-effective testing especially for the point-of-care detection. Additionally,
whole-cell detection approach also provides the possibility of real-time monitoring
of the activities of living pathogens and cancerous cells, which helps in elucidation
of their functions in a developmental manner [20].

Significant efforts have been devoted in the development of whole-cell detection
based on sandwich assay. In a typical sandwich assay, such as the enzyme-linked
immunosorbent assay (ELISA) [21], two antibodies bind to one single target at two
distinct sites to form a sandwich complex, which leads to highly specific recog-
nition. Upon the sandwich formation, depending on the enzyme catalytic or
amplified signaling mechanism, a measurable change in signals is produced and
thus the target whole cell can be detected. The utilization of molecular recognition
agents such as antibody, aptamer, polypeptide, and bacteriophage has been
employed successfully for specifical detection of whole cells [22]. Likewise, some
small molecular compounds, such as antibiotics and carbohydrates have been
employed as recognition receptor for whole cells [23, 24]. The signaling mecha-
nism has also been extensively expanded along with the development of nano-
materials. In recent years, many promising techniques have been developed and
applied to nondestructive whole-cell sensing, such as optical techniques [including
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colorimetric analysis, fluorescence, surface plasma resonance (SPR)], electro-
chemical and mechanical techniques. As the sandwich assays for whole-cell sensing
is vast and new works generate constantly, here, we intend to summarize com-
prehensively the latest advances of this field in general, in support to spur additional
ideas in this area.

11.2 Optical Detection

As one of the most popular protocols, the optical whole-cell biosensor combining
the nondestructive recognition event with optical measurements is of particular
interests due to the highly specific bonding, profound signal amplification, visible
radiation, and low detection limit. As such, it has been developed vastly based on a
variety of spectroscopic techniques. Herein we discuss the colorimetric analysis,
fluorescence, and SPR, which are most commonly used for whole-cell detections.

11.2.1 Colorimetric Analysis

The colorimetric analysis has attracted a lot of interest due to its visible radiation,
low cost, quick feedback, and the possibility of avoiding any expensive instrument.
Current studies on pathogens, cancer cells sensing by colorimetric methods aim for
achieving a more specific, easy to use, more portable, and low-cost analytical
system.

Toward this goal, many research works focused on sandwich assay-based
biosensor coupled with nanomaterials for signal amplification [25]. For example,
Zhang et al. have developed a nanoparticle cluster (NPC)-based amplification
biosensor for the detection of Listeria monocytogenes, which is a highly pathogenic
foodborne bacterial (Fig. 11.1) [26]. Specifically, they used a glycopeptide
antibiotic, vancomycin (Van) as the first recognition agent to capture the cell wall of
the pathogen. The aptamer-labeled Fe3O4 NPC was used as the signal amplification
probe, which was also recognized to the pathogen. The sandwich recognition
showed high specificity, in which the NPC-based method displayed higher sensi-
tivity than the NP-based method due to its improved catalytic activity [27, 28].
Using this new method, the L. monocytogenes cells could be detected within a
linear range of 5.4 × 103 to 108 CFU/mL and a visual limit of detection (LOD) of
5.4 × 103 CFU/mL [26]. Likewise, Jain et al. have recently demonstrated a surface
aminated polycarbonate membrane (PC)-enhanced sandwich assay for Salmonella
typhi detection. A detection limit of 2 × 103 cells/ml of bacteria has been achieved
with high immobilization efficiency [29].

Gold nanoparticles (AuNPs) have been applied as color developing moiety in
numerous colorimetric bioassays [30, 31]. The aggregation of AuNPs usually lead
to a distinct color change from red to blue and thus promise for target detection
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including whole cells [32]. Lu and coworkers have developed a modified AuNPs
nanoprobe for colorimetric signal amplification in the detection of Salmonella
enterica. The optimized LOD is 103 CFU/mL, and their technique has been
demonstrated the success of target detection in milk samples with high degree of
accuracy (>90%) [33]. Xiong and coworkers have recently established an improved
sandwich plasmonic ELISA (pELISA) for determination of L. monocytogenes by
combining the sandwich ELISA technique with a novel signal-generation mecha-
nism, the catalase (CAT)-mediated growth of plasmonic AuNPs [34], exhibiting an
ultralow LOD value at 8 × 100 CFU/mL (Fig. 11.2) [35].

11.2.2 Fluorescence

Fluorescence detection, in contrast to colorimetric assay, is particularly attractive
for bacterial pathogens and cancer cells sensing, due to their high-to-signal ratio and
improved sensitivity. The commonly used signal transducers are organic dyes (see
Fig. 11.3) [36–38] and fluorescent nanoparticles [39].

One of the objective in this area is to develop high-specific, easily imple-
mentable bioassay that can be applied to detection and identification of whole

Fig. 11.1 Schematic representation for the preparation of Fe3O4 NPC by cross-linking the
individual mother nanoparticle with poly-L-lysine (a), the principle of the Fe3O4 NP-based
biosensor (b), and the Fe3O4 NPC-catalyzed signal amplification biosensor (c) (Reprinted with the
permission from Ref. [26]. Copyright 2016 Elsevier)
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Fig. 11.2 Schematic of the proposed quantitative immunoassay based on SiO2@PAA
@CAT-catalyzed growth of AuNPs. Specifically, the synthetic SiO2@PAA@CAT complexes
coupled with the biotin–streptavidin system were used to construct a sandwich assay for naked-eye
determination of L. monocytogenes (Reprinted with the permission from Ref. [35]. Copyright 2015
American Chemical Society)

Fig. 11.3 Principle of S. sonnei detection using an aptamer-based fluorescent sandwich-type
biosensor platform [Reprinted with the permission from Ref. [38]. Copyright 2017
Multidisciplinary Digital Publishing Institute (MDPI)]
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pathogens and cancer cells in complex matrices. Li and coworkers have recently
demonstrated a technique for quantitative detection of the Escherichia coli O157:
H7 (E. coli O157:H7) in complex media, which is one of the highly pathogenic
agents. Hollow silica nanospheres loading with fluorescein (FHSNs) have been
applied to the signal amplification in the sandwich-type immunoassays. Under
optimized conditions, this platform provided a sensitive detection of E. coli O157:
H7 cells with a linear range of 4 to 4 × 108 CFU/mL and a LOD of 3 CFU/mL.
Likewise, this architecture has shown high robustness and high sensitivity for
whole-cell sensing in complex sample matrices, such as milk, orange juice, and
river water [40]. In another study, Dogan et al. have developed a chitosan-coated
CdTe quantum dots (CdTe QDs) as the fluorescence label in the sandwich
immunoassays for E. coli detection. They achieved a sensitive detection of target in
urine matrix and high selectivity over the other four pathogens [41].

Fu and coworkers have recently developed an antibiotic-affinity strategy for
fluorimetric detection of Staphylococcus aureus (S. aureus) cell (Fig. 11.4) [42].
Specifically, the targeted cell was sandwiched by vancocin-modified BSA and
fluorescein isothiocyanate (FITC)-labeled antibody. They observed a linear detec-
tion from 1.0 × 103 to 1.0 × 109 CFU/mL with a LOD of 2.9 × 102 CFU/mL.
Their method exhibited 85–130% of recoveries when applied in spiked apple juice
for S. aureus detection.

Fig. 11.4 Principle of sandwich fluorimetric detection of S. aureus based on antibiotic-affinity
strategy. The target pathogen was captured by vancocin through five-point hydrogen bonds and
was further sandwiched by the fluorescein labeled lgG (Reprinted with the permission from Ref.
[42]. Copyright 2015 American Chemical Society)
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11.2.3 Surface Plasmon Resonance

During the past two decades, surface plasma resonance (SPR) techniques have been
extensively explored for biosensor platforms targeting pathogens and cells detec-
tions, because they are sensitive, label-free and particularly enable the real-time
detections of biological targets [43].

Pathogen diagnostics using SPR techniques typically involve signal amplifica-
tion in order to improve the sensitivity. For example, Eum et al. have developed a
SPR-sensing platform for E. coli O157:H7 detection. In this study, they immobi-
lized the antibodies onto gold nanorods (GNRs) to enhance the sensitivity of the
biosensor. The SPR response with the GNRs labeled antibody was around fourfold
improvement of the response than that of from the unlabeled antibody [45]. In
another study, Santos et al. have demonstrated the use of SPR to monitor the
antibody immobilization protocol for E. coli O157:H7 detection [46]. Recently, Liu
et al. proposed a SPR immunosensor coupled with antibody-functionalized mag-
netic nanoparticles (MNPs) for Salmonella enteritidis detection (see Fig. 11.5) [44].
Specifically, they immobilized capture antibody via EDC/NHS chemistry onto Au
chips and anchored the secondary antibody onto Fe3O4 MNPs using the same
chemistry. This antibody-functionalized MNPs allowed the selective recognition
and separation of S. enteritidis from the sample matrix under an external magnetic
field. This MNPs-enhanced sandwich assay exhibited a large improvement in
sensitivity as well as the detection range. Charlermroj et al. compared the sensor
performance of a direct, sandwich, or subtractive immunoassay for the detection of

Fig. 11.5 Schematic representation for the detection of S. enteritidis by MNPs-enhanced SPR
sandwich assay. The antibody-functionalized MNP acts as both the enrichment reagent of the
target and the amplification reagent of SPR immunosensor (Reprinted with the permission from
Ref. [44]. Copyright 2016 Elsevier)
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bacteria Acidovorax avenae subsp. citrulli (Aac) and discovered that the direct
assay format exhibited the best sensitivity, while, the sandwich assay provided the
best signal enhancement [47].

As it is commonly seen for SPR-based pathogen detections, nanoparticle ampli-
fication is widely employed for cancer cell detections using SPR technique. For
example, Chen et al. reported a sensitive SPR biosensor coupled with MNPs for the
determination of breast cancer cell MCF-7 [48]. The target cancer cells were firstly
captured by the aptamer on the surface, followed by the binding event of
antibody-labeled MNP to form a sandwich assay. As such, the SPR signal enhanced
significantly by MNP immobilization due to the large mass effect and high refractive
index of the assays. With such signal enhancement, this platform exhibited a detection
limit of 500 cells/mL. In a more recent study, Mousavi et al. have developed a
microfluidic chip combined with gold nanoslit SPR for cancer cells detections in
human blood [49]. They coupled this platform with magnetic nanoparticles in support
for efficient immunomagnetic capturing and separation. At last, a LOD of 13 cells/mL
and real-time monitoring of the whole process were achieved (Fig. 11.6).

Fig. 11.6 A schematic of the double capturing method. a The first step includes: (i) function-
alizing the MNPs with antibody I; (ii) mixing the functionalized MNPs (carrying antibody I) with
the sample to capture the target cells. b The second step includes introducing the mixture of blood
sample and MNPs to the microfluidic chip and capturing the MNPs-cells to bind to the antibody II
on the gold nanoslits. The cell binding on the gold nanoslits was monitored by the wavelength shift
of the SPR spectrum [Reprinted with the permission from Ref. [49]. Copyright 2015
Multidisciplinary Digital Publishing Institute (MDPI)]
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11.3 Electrochemical Detection

The signaling mechanism of electrochemical sandwich assays is based on the
electronic communication between the transducer and biomolecules. Because of
this unique signaling mechanism, the electrochemical sandwich assays are sensi-
tive, selective, rapid, miniaturizable, and cost-effective, which make them to be of
particular interests. They are, for most of cases, more practical for the development
of point-of-care devices, especially for the pathogen and cell detections [50].

Electrochemical sandwich-type biosensors for whole-cell detections are typically
composed of three components: capture element, target cells, and signal transducer
elements. Capture elements are usually DNA/RNA aptamers or antibodies, which
are used for anchoring the sandwich scaffold onto electrodes. Meanwhile, trans-
ducer elements, which can be small redox labels, metal ion, or other redox-active
species, could report the signal change from target cell binding-induction. In order
to achieve high sensitivity and selectivity for cell detection, two mainly signal
amplification strategies have been explored. One is based on redox tags such as
enzymatic catalyst and metal nanoparticles, and the other is adoption of loading
substrate where the graphene and carbon nanotube would be widely employed due
to their large surface areas.

Conventional culture plating methods for E. coli O157:H7 detection take several
days to obtain results, while electrochemical sandwich-type biosensor could pro-
vide rapid and sensitive detection [51, 52]. Li et al. have developed a sensitive and
efficient electrochemical sandwich assay for detection of E. coli (see Fig. 11.7)
[51]. Specifically, they immobilized the capture antibodies, which was
pre-assembled onto a SiO2-coated AuNPs via a biotin-avidin interaction, onto
chitosan-fullerene (C60) composite nanolayer, and then labeled probe antibodies
with glucose oxidase (GOD)-loaded Pt nanochains (PtNCs) which served as tracing
tag. With such an immunoreaction, they observed a linear detection from 30 to
106 CFU/mL and a LOD of 15 CFU/mL.

Likewise, in another electrochemical immunosensor study, the polypyrrole
(PPy)/AuNP/multi-wall carbon nanotube/chitosan hybrid bionanocomposite was
employed to modify pencil graphite electrode (PGE) for signal amplification. As
such, this platform exhibited a detection linear range from 10 to 107 CFU/mL and
detection limit of 30 CFU/mL in PBS buffer [53]. Dos Santos et al. have developed
a label-free immunoassay using electrochemical impedance spectroscopy (EIS).
They studied the surface antibody functionalization and morphological features by
fluorescence and atomic force microscopy. This label-free platform exhibited a
detection limit of 2 CFU/mL and a linear range from 30 to 104 CFU/mL [46].
Wang et al. reported a magnetoimmunoassay for rapid separation and sensitive
detection of target cells from broth samples [52]. The electrochemical detection of
other foodborne pathogens such as L. monocytogenes, Salmonella pullorum,
S. aureus, and Salmonella gallinarum has been also reported [54–58].

Recently, Zhu et al. have developed an aptamer-cell-aptamer assay for MCF-7
cancer cell detection, employing enzyme label HRP as signal amplification [59].
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Specifically, they fabricated the sensing platform by firstly immobilizing the capture
aptamer on Au electrode surface and then capturing target cells followed by an
HRP-labeled aptamer. This platform exhibited a detection range from 100 to
1 × 107 cells/mL, and the detection limit was as low as 100 cells/mL. Likewise, for
the detection of the same target cell MCF-7, another study has demonstrated a
specific recognition between the aptamer and MUC1 protein that overexpressed on
the out surface of the cells [60]. This sensing platform employed aptamer-anchored
magnetic beads for cell separations and capture with high selectivity and employed
Ag-coated AuNPs as signal amplification. This architecture has achieved a linear
detection range between 103 and 105 cells/mL, and the LOD for MCF-7 cell was
estimated to be 500 cells/mL. Ge et al. have demonstrated a detection method for
the determination of K-562 cells, chronic myelogenous leukemia cells, based on
intrinsic peroxidase-like catalytic activity of trimetallic dendritic Au@PdPt
nanoparticles, achieving a detection range from 1.0 × 102 to 2.0 × 107 cells/mL
and a LOD of 31 cells/mL (see Fig. 11.8) [61].

As it is commonly seen for aptamer-based sandwich assay, nanoparticles have
been reported for cancer cell detection in electrochemical antibody-based sandwich
assay. Chandra et al. developed an electrochemical-sensing platform for
drug-resistant cancer cells detection based on Permeability glycoprotein (P-gp)
antigen–antibody interaction [62]. Employing Au nanoparticles for loading
monoclonal P-gp antibody and hydrazine-labeled carbon nanotube as reduction
catalyst, this assay exhibited a linear range from 50 to 1.0 × 105 cells/mL with the

Fig. 11.7 Schematic description of electrochemical immunoassay for E. coli O157:H7 detection.
The procedure of the electrode preparation includes five assembling processes, i.e., immobilization
of C60, Fc, CHI–SH, Au–SiO2, SA, and bio-Ab1 on the electrode surface. For pathogen detection
and signal amplification, the PtNCs-GOD-Ab2 complex was used (Reprinted with the permission
from Ref. [51]. Copyright 2013 Elsevier)
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detection limit of 2000 cells/mL. In a more recent study, the same research group
has further developed a similar platform, again, via employing AuNP as loading
support and hydrazine as reduction catalyst, for the determination of metastatic
cancer cells. This platform, likewise, achieved a wide linear range between 45 and
1.0 × 105 cells/mL [63].

11.4 Mechanical Biosensors

Sandwich assay-based mechanical biosensors are currently underdeveloped area, in
contrast to the optical and electrochemical approaches, for the detection of pathogen
and whole cell. Quartz crystal microbalance (QCM), a mechanical technique, relies
on a mass variation per unit area by measuring the change in frequency of a quartz
crystal resonator. Tothill’s group has recently demonstrated a QCM approach based
on AuNPs amplified sandwich-type assays for the rapid and real-time detection of
bacterial pathogens [64, 65]. For the detection of Salmonella, they observed a LOD
value at 10 to 20 CFU/mL, while sensing Campylobacter jejuni, the sensitivity was
150 CFU/mL.

Fig. 11.8 Schematic representation of electrochemical sensor of cancer cells by using folic acid
functionalized Au@PtPd NPs on paper device. A LOD value of 31 cell/mL has been achieved
(Reprinted with the permission from Ref. [61]. Copyright 2013 Elsevier)
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11.5 Conclusion

The applications of sandwich assay biosensors for whole-cell detection are growing
rapidly and, as described throughout this chapter, they have been incorporated with
different recognition agents and signal transducers. Further improvement of the
architecture design, increase bio-receptor selectivity and stability of the assay, and
enhancement of transducer sensitivity will pave way for selective, sensitive, rapid,
and cost-effective detection of bacterial pathogens and cancer cells at complex
sample matrix.
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