
Chapter 6
Response-Adaptive Allocation
for Binary Outcomes: Bayesian Methods
from the BASS Conference

Roy T. Sabo

6.1 Introduction

Outcome- or response-adaptive allocation methods are used to adjust randomization
probabilities in clinical trials based on observations frompreviously accrued patients.
These methods aim to achieve one of several allocation goals, which have included
maximizing statistical power, balancing for covariates, and maximizing treatment
benefit. In the latter case, adaptive allocation strategies aim to treat patients as eth-
ically as possible, often by minimizing the expected number of treatment failures.
These “optimal designs” achieve this minimization through algorithms and functions
of success probabilities in each group of subjects.

Though much of the conceptual and theoretical work in adaptive allocation meth-
ods has been conducted in the frequentist framework, Bayesianmethods are a natural
fit for conducting outcome-adaptive allocation in practice. These methods are more
easily adaptable to small sample cases and are generally more flexible than are fre-
quentist alternatives. For instance, frequentist allocation approaches generally require
an initial lead-in period where allocation probabilities are held constant in order
to overcome small-sample irregularities in proportion estimates. Some researchers
have introduced scaling parameters into allocation algorithms that restrict allocation
in early phases of a trial and gradually allow increasing adaptation, but even these
approaches cannot account for situations where a treatment group has no observed
successes, which would result in no allocation to that group. Bayesian methods can
overcome these difficulties in several ways, most notably through informative prior
specification or through replacing success proportion estimates with posterior or
predictive probabilities of treatment superiority. Bayesian methods are also more
readily adapted to account for situations where allocation ratios are desired to adapt
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based on information from multiple outcomes, as joint distributions between multi-
ple outcomes can be estimated through a posterior distribution in a straightforward
manner.

In this Chapter we provide two examples of Bayesian approaches to outcome-
adaptive allocation. The first overcomes the necessity of a lead-in by eliciting an
informative yet skeptical prior that exhibits decreasing influence on the posterior as
more patients enter a trial. This approach – dubbed the Decreasingly Informative
Prior approach – was the subject of a 2013 presentation at the Biopharmaceutical
and Applied Statistics Symposium (BASS) as well as a subsequent publication Sabo
(2014). The second method presents an approach to base allocation upon two out-
comes simultaneously, such as in trials where both treatment efficacy and toxicity are
important. This approach was the subject of a 2012 BASS presentation and subse-
quent publication Sabo et al. (2013). In both cases we focus on two- and three-group
clinical trials with binary outcomes. A general review of response-adaptive allocation
will be provided in the next section, while the Bayesian approach will be covered in
Sect. 6.3. The decreasingly informative prior approach will be discussed in Sect. 6.4,
while the two-outcome approach will be presented in Sect. 6.5.

6.2 Response-Adaptive Allocation

6.2.1 Optimal Allocation

Rosenberger et al. (2001) derived optimal allocation weights for two-group trials
with binary outcomes, with the goal to minimize the expected number of treatment
failures. These weights are given below in Eq.6.1.

w1 =
√
p1√

p1 + √
p2

, (6.1)

w2 = 1 − w1,

where p j is the proportion of successfully treated patients in group j ( j = 1, 2),
and where weight w j is the probability the next patient will be allocated into the j th
treatment group. In practice the unknown estimates p1 and p2 are replaced with the
current sample proportions p̂1 and p̂2, which could lead to the awkward scenario in
early phases of a trial where the weights given in Eq.6.1 are incalculable due to no
events being observed in either of the two groups.

Optimal allocation ratios for three-group trials were established numerically by
Tymofyeyev et al. (2007) and in closed-form by Jeon and Hu (2010). These optimal
allocation ratios depend upon the relative magnitudes of the success proportions in
each group and a constant B ∈ (0, 1/3), which is a lower allocation bound selected
by the investigator (Jeon and Hu recommend selecting 0 < B ≤ 1/3 to prevent sit-
uations where a treatment ends up with no patients). We present them here with
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minor corrections due to typos in the original manuscript. Let p1, p2 and p3 be the
true efficacy rates of treatments 1, 2 and 3, and let w∗ = (w∗

1, w
∗
2, w

∗
3)

T denote the
vector of optimal allocation proportions. Then for p1 > p2 > p3, B ∈ (0, 1/3), and
q j = 1 − p j , j = 1, 2, 3, the allocation rates are

w∗
1 = l−1

2 (l1 + l3B) (6.2)

w∗
2 = B

w∗
3 = 1 − B − w∗

1,

where,

l1 = a(p1 − p3) + b(p2 − p3) + d

p3q3
,

l2 = b(p1 − p2) + c(p1 − p3) − d

p1q1
+ l1,

l3 = a(p1 − p2) − c(p2 − p3) + d

p2q2
− l1,

a = − Bq2 − (B − 1)q3
p1q1

b = − B(q3 − q1)

p2q2

c = Bq2 − (B − 1)q1
p3q3

d =
√

−ab(p1 − p2)2 − ac(p1 − p3)2 − bc(p2 − p3)2.

Ifw∗
1 > B andw∗

3 > B then (Eq.6.2) is the optimal solution. Ifw∗
1 ≤ B, the solution

is w∗ = (B, B, 1 − 2B)T . If w∗
3 ≤ B, the solution is w∗ = (1 − 2B, B, B)T . When

p1 = p2 > p3 the solution is:

w∗
1 = w∗

2 =
√
p1

2(
√
p1 + √

p3)
, w∗

3 =
√
p3√

p1 + √
p3

,

provided w∗
j ≥ B ∀ j . If B >

√
p1

2(
√
p1+√

p3)
, the solution is w∗ = (B, B, 1 − 2B)T . If

B >
√
p3√

p1+√
p3
, the solution is w∗ = ((1 − B)/2, (1 − B)/2, B)T . When p1 > p2 =

p3 the solution is:

w∗
1 =

√
p1√

p1 + √
p3

, w∗
2 = w∗

3 =
√
p3

2(
√
p1 + √

p3)
,

provided w∗
j ≥ B ∀ j . If B >

√
p3

2(
√
p1+√

p3)
, the solution is w∗ = (1 − 2B, B, B)T .
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6.2.2 Natural Lead-In

Thall andWathen (2007)model the root for the two-group case as an increasing func-
tion of the observed sample size (n/2N ), where n is the number of observed patients
and N is the planned total sample size. Here, the weighting algorithm becomes

w1 = pn/2N
1

pn/2N
1 + pn/2N

2

, (6.3)

w2 = 1 − w1.

This approach has the effect of acting as a natural lead-in, since it forces equal
weights at the beginning of a trial and gradually allows more adaptation as the trial
continues. In addition, as n → N the weights in Eq.6.3 approach the same structural
form as those given in Eq.6.1.

In the three-group case Hu and Zhang (2004) introduced an allocation function
based on the doubly adaptive biased coin design (Eisele 1994), which is given as
follows

w j =
w∗

j

(
(w∗

j

∑3
i=1 ni )/n j

)γ

∑3
k=1 w∗

k

(
(w∗

k

∑3
i=1 ni )/nk

)γ (6.4)

j = 1, 2, 3,

where n j is the current observed sample size in group j , w∗
j is the current optimal

allocation weight (Eq. 6.2) in group j , and γ is a tuning parameter for calibrating
the degree of randomness of the allocation probability function. By setting γ =
(N − (n + 1))/n we again achieve a natural lead-in that forces equal allocation
early in the trial, and approaches the optimum allocation rates found in Eq.6.2 as
n → N − 1 (Bello and Sabo 2016).

6.3 General Bayesian Approach

In the Bayesian framework proportions p j for treatment groups j = 1, . . . , k, are
assigned a common prior distribution π(θ0), where π(.) is some distributional form
and θ0 is some fixed value. The prior distributions are combined with likelihood
distributions p(y j |p j , n j ) for each treatment group, where p(.) is some distribu-
tional form, n j is the number of observed patients in treatment group j , and y j is
the number of “successful” events observed in n j subjects. The specific choice of
prior and likelihood are then synthesized into a posterior distribution for parameter p j
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P(p j |y j , n j , θ0) ∝ p(y j |p j , n j )π(θ0), j = 1, . . . , k. (6.5)

We can slightly generalize this framework by establishing a hierarchical posterior
distribution for any parameter θ as follows

θ ∼ P(θ |y) = p(y|θ, n)π(θ |θ0, n, N )g(θ0|λ)
∫

p(y|θ, n)π(θ |θ0, n, N )g(θ0|λ)
, (6.6)

where y are the observed data, p(.) is the likelihood function, π(.|θ0, n, N ) is the
prior information on θ , and g(.) is a hyperprior on θ0 with hyperparameter λ. This
posterior can be used to estimate the mean or mode success rate in each group, which
can then be used in Eqs. 6.1 or 6.2.

6.3.1 Posterior Estimates and Probabilities

As an alternative to posterior means or modes, Huang et al. (2007) and Thall and
Wathen (2007) replaced success probabilities with probabilities of greater treatment
response. Here we calculate the posterior probability that p1 is greater than p2, so
that allocation weights increase in favor of treatment 1 as evidence of its superiority
accumulates. While similar to using success rates directly, these probabilities tend
to provide quicker and greater adaptation. In two-arm trials (Thompson 1933; Thall
and Wathen 2007) we need only calculate one probability

P1 = P(p1 > p2|y, n, θ0) (6.7)

P2 = 1 − P1,

where y = (y1, y2) and n = (n1, n2). In three-arm trials (Bello and Sabo 2016; Sabo
and Bello 2017) we calculate three probabilities

P1 = [(p1 > p2) ∩ (p1 > p3)|y, n, θ0] , (6.8)

P2 = [(p2 > p1) ∩ (p2 > p3)|y, n, θ0] ,

P3 = [(p3 > p1) ∩ (p3 > p2)|y, n, θ0]

where y = (y1, y2, y3) and n = (n1, n2, n3). In practice, these posterior probabilities
can be used in place of the unknown population success rate for the corresponding
group.

Predictive probabilities could also be used in adaptive allocation (Sabo and Bello
2017). Many predictive probability approaches in clinical trials use the current pos-
terior probability distribution (as given in Eq.6.6) as the new prior, and combine
this information with some likelihood for the patients who have yet to accrue or
whose outcomes are currently unobserved, and the resulting predictive distributions
are used to calculate the probability of interest. Using the standard formulation of the
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predictive distribution produces similar mean or mode estimates to those obtained
from simulating from the posterior distribution, since both the posterior and pre-
dictive posterior distributions have the same center. An alternative approach, as
outlined in Sabo and Bello (2017), relies upon the re-use of skeptical prior infor-
mation to calculate predictive probabilities. Rather than assume that future patients
will behave similarly to patients already accrued into the trial, we return to our
skeptical assumptions expressed in the prior distribution π(θ0) to conservatively
account for uncertainty in the non-accrued patients. The rationale for using this
skeptically predictive approach is to avoid the assumption that there are no time-
based biases in patient accrual or treatment effectiveness, an issue raised by
Korn and Freidlin (2011) in their critique of outcome-adaptive allocation. In essence,
the predictive probability distribution is used to simulate responses y∗

j for the remain-
ing n∗

j subjects in treatment j . Direct sampling ormarkov-chainmonte carlomethods
(with T iterations) can be used to estimate predictive probabilities for between-
treatment comparisons as

P1 = P(p1 > p2|θ0, y, y∗, n, n∗) =
T∑

t=1

I (p1 > p2)/T (6.9)

P2 = 1 − P1,

in two-group studies, and as

P1 = P
[
(p1 > p2) ∩ (p1 > p3)|θ0, y, y∗, n, n∗] =

T∑

t=1

I

⎡

⎣
3⋂

i=2

(p1 > pi )

⎤

⎦ /T, (6.10)

P2 = P
[
(p2 > p1) ∩ (p2 > p3)|θ0, y, y∗, n, n∗] =

T∑

t=1

I

⎡

⎣
3⋂

i=1,�=2

(p2 > pi )

⎤

⎦ /T,

P3 = P
[
(p3 > p1) ∩ (p3 > p2)|θ0, y, y∗, n, n∗] =

T∑

t=1

I

⎡

⎣
2⋂

i=1

(p3 > pi )

⎤

⎦ /T,

in three-group studies. The predictive probabilities given in Eqs. 6.9 and 6.10 can
then be incorporated in two- and three-group optimal designs in the same manner as
the posterior efficacy comparisons.

6.4 Example 1: The Decreasingly Informative
Prior Approach

This method was presented at BASS in 2013 and much of the following passages
originally appeared in Sabo (2014). Lead-in and natural lead-inmethods are designed
to prohibit or constrain adaptation of allocationweights in early stages of a trial, when
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estimates may be unreliable due to small sample sizes. Alternatively, one could use
a posterior distribution to provide estimators that do not change much in early parts
of a trial. Under the Bayesian framework, we could elicit decreasingly informative
priors (DIP) which are mass or density functions that are functions of observed (n)

and planned (N ) sample sizes. These functions would also serve as skeptical priors in
that they would be centered around some value θ0 indicative of treatment equivalence
when sample sizes are small. However, information is incrementally transferred to
likelihood as n increases, making the prior decreasingly informative.

6.4.1 Decreasingly-Informative Prior Model

An alternative to the natural lead-in approach discussed in Thall and Wathen (2007)
is the concept of a built-in lead-in component achieved by making the prior dis-
tributions functions of non-accrued patients. We first assume skeptical prior distri-
butions for each treatment group by centering the efficacy rates around the same
value p0. To simultaneously keep the mode of the prior distribution at p0 while also
accounting for the accruing data, where π() is the common distributional form of
the priors for parameters p j , j = 1, . . . , k, we make these priors to be functions of
the hypothesized value p0 and the unobserved non-accrued subjects N − n such that
π() = π(p0, n, N ), where N is the total planned sample size, and n = ∑k

j=1 n j is
the total number of accrued patients.

Say we have binary outcomes in k groups and that we want to model those
outcomes using the beta-binomial conjugate pair. Based on the general Bayesian
set-up in Eq.6.6, we could model outcomes in group j as y j ∼ f (n j , p j ) =
binomial(n j , p j ). The DIP for the group j success rate could be modeled as
p j ∼ π(p0, n, N ) = beta [1 + p0(N − n), 1 + (1 − p0)(N − n)], where the skep-
tical value pθ is chosen as a single value or given its own hyperprior. This hyper-
prior could take any number of suitable forms, including p0 ∼ U [δ1, δ2], where
0 ≤ δ1 < δ2 ≤ 1 are suitably chosen upper and lower bounds for p0, or even
p0 ∼ beta [1 + δ1, 1 + δ2] where δ1 and δ2 are chosen to elicit diffuse support
for p0. In either case, by parameterizing the priors with a = 1 + p0(N − n) and
b = 1 + (1 − p0)(N − n), the desired mode is achieved

mode = a − 1

a + b − 2
= p0(N − n)

p0(N − n) + (1 − p0)(N − n)
= p0.

These prior distributions can be combined with likelihood functions for each
treatment group to obtain posterior distributions for each parameter or a joint distri-
bution of all parameters may be obtained. While using a hyperprior for p0 may lead
to a non-closed-form posterior, selecting a particular value for pθ combined with
beta priors and binomial(ni , pi ) likelihoods will lead to closed-form posterior
distribution for the group j success rate p j ∼ beta [1 + yk + p0(N − n), 1+
(n j − y j ) + (1 − p0)(N − n)

]
. Regardless of the choices of prior and likelihood
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and also between using posterior means, modes or efficacy comparisons, allocation
weights are calculated using the optimal formulations found in Eqs. 6.1 and 6.2, not
with Eqs. 6.3 and 6.4 since we are attempting to mimic the effect of a natural lead-in.
At the beginning of a trial, the posterior estimates and probabilities depend only
upon the skeptical prior information and are centered at the same value p0, meaning
that the allocation weights are equal. As more patients accrue into the trial, the prior
information becomes increasingly less important relative to the accrued data. Thus,
like the natural lead-in approach, the use of decreasingly-informative prior distribu-
tions forces the adaptation to move slowly during early parts of a trial and allows for
more sensitive adaptation during latter parts of a trial.

6.4.2 Simulation Study for DIP Model

We performed a simulation study to compare the relative performance of Thall and
Wathen’s natural lead-in (TW) method with that of the decreasingly-informative
prior (DIP) method of adaptive allocation in both two- and three-group trials. For
the two-group case we assume that the first treatment has some superior true level
of efficacy to the second treatment (i.e. p1 > p2), while in the three-group case we
assume that p1 > p2 > p3. In both cases we expect the first group of simulated
patients to outperform those from the other groups, and thus expect both procedures
to randomize more patients into the first treatment. For each new patient we simulate
a random number u ∼ U [0, 1] to allocate between groups using Eqs. 6.1 (DIP) or
6.3 (TW) in the two-group case or Eqs. 6.2 (DIP) or 6.4 (TW) in the three-group case.
The binary outcome for each patient is then probabilistically simulated based on a
treatment-specific Bernouli distribution with success rate p1, p2 or p3. The TW or
DIP allocation ratios are then recalculated based on all currently available outcomes,
and the process is repeated until the total number of patients is achieved, which is
selected to attain at least 80% power in the balanced case.

For the TW procedure we have assumed a non-informative beta(1, 1) prior distri-
bution on the efficacy proportion in each group. For the DIP procedure we examine
situations where we select a particular prior value for p0 and also where we select a
non-informative hyperprior on that value. In the former case three values of p0 are
used to represent different realistic scenarios: one where we correctly guess the null
hypothesized value, a second where we guess the null hypothesized value incorrectly
by understating its value, and a third where we overstate its value. For the hyperprior
case we select a diffuse and non-informative U [0, 1] hyperprior in order to mimic
the situation where we make no assumptions about the underlying efficacy about
either group. We also investigate the use of either posterior means or posterior effi-
cacy comparisons to calculate the allocation probabilities. Each trial was simulated
1000 times for each set of parameter values, from which we measure end-of-trial
treatment-specific sample sizes (with standard deviations), empirical power, error
rates, and allocation probabilities.
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In Table6.1 we see the results from two-group trials with a true effect-size of
δ = 0.2. In this case – which reflects overwhelming evidence of superiority for the
first treatment – we see that the TW procedure maintains the highest power, though
the DIP procedure is close when the pre-selected skeptical value p0 is near the
actual success rate in the second group. We also see that the methods provide similar
allocation (in terms of final sample size), though the DIP method often does so
with less variability than the natural lead-in approach. Figure6.1 shows the average
allocation probabilities for both groups throughout the trial. Here we see that the
adaptation gradually increases with sample size, which is similar though not identical
between the different approaches.

In Tables6.2 and 6.3 we see comparisons in the two group case with a smaller
effect size (δ = 0.15) and where we now formulate the DIP procedure with a diffuse
hyperprior. For both the TW and DIP methods we present the use of posterior means
to calculate allocation weights in Table6.2, and the use of efficacy comparisons in

Table 6.1 Simulation summaries for two group case (DIP with point mass). ∗ indicates correct
choice of prior

True efficacy p1 = 0.5 p2 = 0.3 N = 200

DIP

TW p0 = 0.2 p0 = 0.3∗ p0 = 0.4

%(n1 > n2) 99.7% 98.4% 99.4% 99.6%

Power 80.9% 71.8% 78.6% 79.7%

n̂1 144.7 153.8 148.3 143.0

n̂2 55.3 46.2 51.7 57.0

(SD) (16.37) (20.07) (16.60) (14.16)

True efficacy p1 = 0.7 p2 = 0.5 N = 200

DIP

TW p0 = 0.4 p0 = 0.5∗ p0 = 0.6

%(n1 > n2) 98.9% 98.2% 98.5% 98.6%

Power 79.1% 75.8% 79.8% 77.5%

n̂1 143.6 150.0 146.8 142.9

n̂2 56.4 50.0 53.2 57.1

(SD) (17.80) (19.08) (17.14) (15.32)

True efficacy p1 = 0.9 p2 = 0.7 N = 200

DIP

TW p0 = 0.6 p0 = 0.7∗ p0 = 0.8

%(n1 > n2) 99.9% 99.3% 99.8% 99.9%

Power 95.3% 92.2% 94.7% 93.8%

n̂1 153.0 154.0 153.0 151.5

n̂2 47.0 46.0 47.0 48.5

(SD) (15.76) (15.70) (14.09) (13.34)
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(a) TW (b) DIP p0 = 0.2

(c) DIP p0 = 0.3∗ (d) DIP p0 = 0.4

Fig. 6.1 Allocation probabilities for two group case (DIP with point mass). ∗ indicates correct
choice of prior

Table6.3. In the posterior mean case (Table6.2) we see that though both methods
provide some adaptation, neither meaningfully increases the expected number of
successes from that achieved using balanced allocation. However, when posterior
efficacy comparisons are used (Table6.3), we see that in addition to providing more
adaptation, both methods increase the expected number of treatment successes rela-
tive that achieved using balanced allocation.

Tables6.4 and 6.5 present results from three-group trials using either posterior
means and efficacy. In this case both posterior formulations provide increased treat-
ment successes relative to balanced allocation. While the natural lead-in approach
provides greater adaptation and more treatment successes, the DIP procedure has
less variability in these measures.
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Table 6.2 Simulation summaries for two group case (DIP with hyperprior; posterior mean)

True efficacy p1 = 0.25 p2 = 0.1 N = 200

Bal. TW DIP

Exp. Succ. 35.1 (3.85) 36.5 (4.28) 36.1 (4.00)

n̂1 100.2 (7.13) 110.6 (7.81) 105.3 (6.89)

n̂2 99.8 (7.13) 89.4 (7.81) 94.7 (6.89)

Power 80.0% 81.2% 80.3%

Error 0.0% 0.0% 0.0%

R50 – 1.24 (0.15) 1.06 (0.04)

R75 – 1.40 (0.22) 1.14 (0.07)

R100 – 1.58 (0.30) 1.53 (0.25)

True efficacy p1 = 0.55 p2 = 0.4 N = 352

Bal. TW DIP

Exp. Succ. 167.2 (7.86) 167.9 (8.92) 167.8 (8.57)

n̂1 175.7 (9.47) 183.1 (10.23) 181.4 (9.65)

n̂2 176.3 (9.47) 168.9 (10.23) 170.6 (9.65)

Power 80.0% 81.3% 80.1%

Error 0.0% 0.0% 0.0%

R50 – 1.08 (0.04) 1.05 (0.03)

R75 – 1.13 (0.06) 1.10 (0.04)

R100 – 1.17 (0.07) 1.17 (0.07)

6.5 Example 2: Accounting for Multiple Outcomes

There may be occasions when both the efficacy and toxicity of a novel treatment
are under investigation, or where there are two important measures of efficacy. In
such situations the meaning of a successful treatment could be defined as being
one that is effective while not inducing toxicity, or is effective in more than one
way. Investigators of such treatments may then want to utilize both outcomes in an
outcome-adpative allocation process. One such method was presented at BASS in
2012, and much of the following passages appeared in Sabo et al. (2013).

6.5.1 Models for Dual Outcomes

We assume that the dual primary outcomes in the trial are dichotomous in nature
(e.g. success or failure). The outcomes are not required to be immediately observable
(though that definitely helps), provided that such delays are not too great with respect
to the pace of patient enrollment and the planned duration of the trial Zelen (1969).
At best, such delays merely prolong the period during which the original allocation



160 R. T. Sabo

Table 6.3 Simulation summaries for two group case (DIP with hyperprior; posterior efficacy)

True efficacy p1 = 0.25 p2 = 0.1 N = 200

Bal. TW DIP

Exp. Succ. 35.1 (3.85) 40.6 (5.12) 38.5 (4.56)

n̂1 100.2 (7.13) 138.6 (12.85) 122.7 (7.60)

n̂2 99.8 (7.13) 61.4 (12.85) 77.3 (7.60)

Power 80.0% 77.8% 83.1%

Error 0.0% 0.0% 0.0%

R50 – 2.56 (1.11) 1.44 (0.29)

R75 – 5.51 (3.12) 2.24 (0.73)

R100 – 12.2 (8.22) 12.3 (7.78)

True efficacy p1 = 0.55 p2 = 0.4 N = 352

Bal. TW DIP

Exp. Succ. 167.2 (7.86) 178.0 (15.11) 175.1 (12.79)

n̂1 175.7 (9.47) 244.1 (22.60) 226.9 (17.08)

n̂2 176.3 (9.47) 107.9 (22.60) 125.1 (17.08)

Power 80.0% 76.5% 81.5%

Error 0.0% 0.0% 0.0%

R50 – 2.63 (1.12) 1.69 (0.46)

R75 – 5.55 (3.14) 3.24 (1.57)

R100 – 12.3 (8.44) 12.4 (8.13)

Table 6.4 Simulation summaries for three group case (DIP with hyperprior, true efficacy: p1 =
0.25, p2 = 0.15, p3 = 0.1, N = 345, and B = 0.2)

Posterior mean

Bal. Natural lead-in DIP

E(S) 57.2 (4.2) 62.6 (6.1) 59.0 (4.6)

Power 79.5% 81.1% 78.5%

Error 0.0% 1.1% 1.3%

R50 – 2.93 (2.17) 2.36 (1.79) 1.39 (0.75) 1.29 (0.69)

R75 – 2.30 (1.05) 1.96 (0.98) 1.53 (0.77) 1.32 (0.70)

R100 – 2.18 (0.75) 1.87 (0.73) 2.18 (0.74) 1.83 (0.72)

Posterior efficacy

Bal. Natural lead-in DIP

E(S) 57.2 (4.2) 67.2 (6.5) 62.5 (5.6)

Power 79.5% 77.0% 76.9%

Error 0.0% 0.7% 0.9%

R50 – 3.68 (2.46) 3.32 (1.44) 1.88 (0.89) 1.81 (0.79)

R75 – 3.07 (0.82) 2.99 (0.61) 2.43 (0.79) 2.37 (0.73)

R100 – 2.93 (0.40) 2.94 (0.32) 2.91 (0.44) 2.93 (0.35)



6 Response-Adaptive Allocation for Binary Outcomes: Bayesian Methods … 161

Table 6.5 Simulation summaries for three group case (DIP with hyperprior, true efficacy: p1 =
0.55, p2 = 0.45, p3 = 0.4, N = 618, and B = 0.2)

Posterior mean

Bal. BS DIP

E(S) 288.4 (8.9) 294.4 (14.9) 290.2 (11.6)

Power 78.8% 81.3% 80.1%

Error 0.0% 0.7% 1.3%

R50 – 2.34 (1.50) 2.00 (1.58) 1.44 (0.70) 1.31 (0.67)

R75 – 2.00 (0.84) 1.61 (0.87) 1.66 (0.67) 1.36 (0.65)

R100 – 1.89 (0.61) 1.50 (0.63) 1.90 (0.58) 1.46 (0.61)

Posterior efficacy

Bal. BS DIP

E(S) 288.4 (8.9) 305.6 (21.0) 302.4 (19.3)

Power 78.8% 80.2% 80.3%

Error 0.0% 0.5% 0.8%

R50 – 3.54 (2.26) 3.20 (1.39) 2.57 (0.76) 2.52 (0.72)

R75 – 3.03 (0.68) 2.99 (0.51) 2.85 (0.52) 2.84 (0.47)

R100 – 2.93 (0.38) 2.95 (0.29) 2.93 (0.40) 2.94 (0.32)

proportions are held constant, and at worst prohibit adaptation until latter stages of
the trial, possibly even excluding changes all together (Berry and Eick 1995). The
two outcomes do not need to be observed simultaneously in each patient; however, it
must be noted that the algorithmwould be biased in favor of the observed outcome in
such cases. Further, we assume that the total sample size is fixed at some n, and that
patients are randomized into one of k treatment groups or arms. This data will then be
used to estimate θ j and λ j , j = 1, . . . , k, where these parameters represent the mean
of the first and second outcomes in each of the k treatments, respectively. Since we
are assuming that our observations are dichotomous, these parameters would most
likely represent proportions, but could be arranged to represent odds ratios or relative
risks.

Bayesian methods can be used to turn the observed data and any beliefs concern-
ing the two outcomes for each treatment into posterior probabilities on the k pairs
of parameters in which we are interested. Regardless of how we calculate the pos-
terior probabilities, or of what combinations we use for the two outcomes, we want
the allocation weight for treatment j to be proportional to posterior probabilities of
“positive” outcomes (e.g. efficacy), and proportional to the complements of “neg-
ative” outcomes (e.g. toxicity, futility). In the following subsections, we illustrate
three different approaches for estimating allocation proportions. These approaches
differ in how the posterior probabilities are calculated, based on whether we compare
the outcome parameters directly between treatments or to hypothesized values.
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6.5.1.1 Comparisons Between Treatment Arms

We first outline the case where we compare the “success” rates for both the first and
second outcomes (θ j and λ j , respectively) for treatment j to the corresponding rates
in all other treatments. The result of these comparisons are the posterior probabilities
Pθ
j� = P(θ j > θ�) for the first outcome and Pλ

j� = P(λ j > λ�) for the second out-
come, where these comparisons are made for � = 1, . . . , k, where Pθ

j j = Pλ
j j = 1. If

the θ j and λ j represent“positive” events (implying that larger values of Pθ
j� and Pλ

j�
indicate greater likelihoods of positive responses), then the allocation weight for the
j th of k treatment arms is defined as

w j =
(
�k

�=1P
θ
j�P

λ
j�

)c(n)

∑k
i=1

(
�k

�=1P
θ
i�P

λ
i�

)c(n)
,

where c(n) is a suitably chosen tuning parameter that can adjust the pace of adaptation
(Thall and Wathen 2007; Bello and Sabo 2016). Note that the allocation weight w j

for treatment j is proportional to the product of the posterior probabilities that the
success rates for outcomes θ and λ in treatment j are greater than the success rates in
every other treatment. Thus, the weight w j can increase (or decrease) in a number of
ways. For example, the allocation weight can increase if the success rate for just one
of the outcomes in treatment j is larger than the corresponding rate in just one other
treatment (assuming the probabilities for all other comparisons stay constant), or it
could increase if treatment j has a higher outcome-one (or outcome-two) success
rate than all other treatments; in this latter case the weight may increase more than
in the former case. Conversely, w j can decrease if treatment j is outperformed by
another or several other treatments, with respect to outcome one, outcome two, or
both.

Note that if one of the outcomes (say the second) were to represent a “negative”
outcome (implying that higher rates for the λ j represented undesirable outcomes,
and that larger values of Pλ

j� indicate a greater likelihood of that undesirable outcome
happening), then we could simply focus on the“positive” complement 1 − Pλ

j� for
each outcome in the allocation weight for the j th of k treatment arms.

6.5.1.2 Comparisons to Hypothesized Values

As mentioned in Huang et al. (2007), we could compare the “success” rates for each
outcome in each treatment to hypothesized values (say pθ

o and pλ
o ), should such values

exist. For instance, we could compare the efficacy rates for a set of new treatments to
a rate of 30% established by a “gold-standard” treatment, or physicians may wish to
keep the toxicity rates below a 10% threshold. If such values are available, then the
posterior probabilities Pθ

j = P(θ j > pθ
o) and Pλ

j = P(λ j > pλ
o ) can be calculated

from the posterior distributions for each outcome in each treatment group. If we
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assume that the two outcomes are “positively” valued, then the allocation weight for
the j th of k treatment arms is defined as

w j =
(
Pθ
j P

λ
j

)c(n)

∑k
i=1

(
Pθ
i P

λ
i

)c(n)
(6.11)

The weights described in Eq.6.11 are proportional to the likelihood of positive out-
comes in single treatments. While the treatments in this case are not directly com-
pared with one another, the two outcomes in each group are compared to the same
values. Treatments are thus indirectly compared, and superiority of one treatment
over the hypothesized value will lead to an increased allocation weight for that treat-
ment when either: such superiority is not as strong or lacking for other treatments,
or those treatments are showing inferiority to the hypothesized values. The behavior
of allocation weights for ambiguous scenarios would by their nature be difficult to
predict.

6.5.1.3 Hybrid Approach

A likely scenario is the case where we want to compare one outcome between treat-
ments and the other outcome within each treatment to a hypothetical standard. This
could be the case if we wanted to determine the treatment with the greatest effi-
cacy, provided that it kept toxicity below an allowable threshold. We assume that
the first outcome is compared between treatments and the second is compared to a
hypothesized value, so for each treatment j we will have k − 1 posterior probabili-
ties Pθ

j� = P(θ j > θ�), � = 1, . . . , k for the first outcome (recall Pθ
j j = 1), and one

posterior probability Pλ
j = P(λ j > pλ

o ) for the second outcome. If we assume that
both outcomes represent “positive” outcomes, then the allocation weight for the j th
of k treatment arms is defined as

w j =
(
Pλ
j �

k
�=1P

θ
j�

)c(n)

∑k
i=1

[
Pλ
i

(
�k

�=1P
θ
i�

)]c(n)
. (6.12)

6.5.2 Simulation Study for Dual Objective Model

We calculate weights w j for the j = 1, . . . , k treatment arms based assuming that
posterior probabilities are raised to the power (n/2N ) as described in Eq.6.3. By
simulating u ∼ U [0, 1], we allocate the simulated patient to the j th treatment arm
if

∑ j−1
i=0 wi < u <

∑ j
i=1 wi , where w0 = 0. At this point we simulate the efficacy

and toxicity outcome for the new patient by generating a random outcome from a
Bernoulli trial with efficacy probability (pe + δ j ), where δ j is the amount by which
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the probability of a successful outcome in the j th treatment arm differs from pe, and
by also generating a random outcome from a second Bernoulli trial with toxicity
probability (pt + τ j ), where τ j is the amount by which the probability of a toxic
outcome in the j th treatment armdiffers from pt . These newvalues are combinedwith
the existing data to calculate posterior probabilities of both efficacious outcomes and
toxic outcomes, which are in turn used to update the allocation weights, the method
of which depends upon whether the performance of the treatment arms are being
compared to hypothesized values, each other or both. One simulated clinical trial
ends when the maximum sample size of n = 200 patients has been fully allocated.
This process is repeatedm = 1000 times for each set of assumed efficacy and toxicity
rates.

Here we focus solely upon three-arm studies where efficacy is compared between
arms and toxicity is compared to a hypothesized value. We assume informative and
skeptical beta prior distributions for the Pe

j and P
t
j (beta(1.3, 1.7) and beta(1.1, 1.9),

respectively). While the probability that a given treatment is less toxic than a hypoth-
esized value (Pt = 0.1) can again be calculated using the posterior distribution of Pt

j ,
we use direct sampling to calculate Pe

jk = P(Pe
j > Pe

k ). Assuming treatment groups
are independent, we simulate m = 1000 values each from the posterior distribu-
tions of the Pe

j , j = 1, . . . , k, to obtain (Pe
1, j , . . . , P

e
1000, j ) and estimate the posterior

probability that treatment arm j is more successful than treatment arm k as

Pjk = P(Pe
j > Pe

k ) =
∑m

i=1 I (P
e
i, j > Pe

i,k)

1000
,

where I () is an indicator function.
The average behaviors of allocation weights under various scenarios are found in

Fig. 6.2. The first three panels show relatively straightforward scenarios, where (i)
there is no efficacy or toxicity differences between the three treatments, (ii) the first
treatment ismore efficacious than the other two treatments, and (iii) the first treatment
is more toxic than the other two treatments. The allocation weights do not change
in the first case, skew in favor of the first treatment in the second case, and skew
away from the first treatment in the third case. The average sample sizes presented in
Table6.6 for these three cases corroborate the visual results. In the ambiguous case
where the first treatment is simultaneously more efficacious (pe1 = 0.5) and toxic
(pt1 = 0.2) than the second and third treatments, Fig. 6.2 shows that the allocation
weights change little during the trial, and the average numbers of subjects (Table6.2)
allocated between the three treatments (78.1, 60.1 and 61.7, respectively) are not
as different as in first three cases. Here efficacy is slightly more meaningful than
toxicity because in each treatment there are two inter-arm efficacy comparisons for
every toxicity comparison. In the case where the first treatment is more efficacious
(pe1 = 0.4) than the second treatment (pe2 = 0.3), which in turn is more efficacious
than the third treatment (pe3 = 0.2), more patients (101.0) are allocated to the first
treatment than to the second (61.0) and third (38.0), with heavy favoring of treatment
one resulting predominantly from the large efficacy difference between the first and
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(a) pe1 = pe2 = pe3 = 0.3, pt1 = pt2 = pt3 = 0.1 (b) pe1 = 0.5, pe2 = pe3 = 0.3; pt1 = pt2 = pt3 =
0.1

(c) pe1 = pe2 = pe3 = 0.3; pt1 = 0.25, pt2 = pt3 =
0.1

(d) pe1 = 0.5, pe2 = pe3 = 0.3; pt1 = 0.2, pt2 =
pt3 = 0.1

(e) pe1 = 0.4, pe2 = 0.3, pe3 = 0.2; pt1 = pt2 =
pt3 = 0.1

(f) pe1 = 0.4, pe2 = 0.3, pe3 = 0.2; pt1 =
0.15, pt2 = 0.1, pt3 = 0.05

Fig. 6.2 Average allocation weights based on number of accrued patients in 3 treatment arms for
given efficacy and toxicity probabilities
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Table 6.6 Average sample size (with standard deviation) for 3–arm trials: results from simulation
study withm = 1000 repetitions with treatment comparisons made between treatments for efficacy
and to hypothesized values for toxicity (pto = 0.1)

Parameters Sample size Standard
deviation

Parameters Sample size Standard
deviation

pe1 = 0.3 pe1 = 0.5

pe2 = 0.3 n̂1 = 66.0 SD1 = 23.1 pe2 = 0.3 n̂1 = 78.1 SD1 = 28.4

pe3 = 0.3 n̂2 = 66.2 SD2 = 23.0 pe3 = 0.3 n̂2 = 60.1 SD2 = 24.4

pt1 = 0.1 n̂3 = 67.8 SD3 = 22.5 pt1 = 0.2 n̂3 = 61.7 SD3 = 25.5

pt2 = 0.1 pt2 = 0.1

pt3 = 0.1 pt3 = 0.1

pe1 = 0.5 pe1 = 0.4

pe2 = 0.3 n̂1 = 113.0 SD1 = 21.9 pe2 = 0.3 n̂1 = 101.0 SD1 = 23.4

pe3 = 0.3 n̂2 = 42.9 SD2 = 17.1 pe3 = 0.2 n̂2 = 61.0 SD2 = 21.8

pt1 = 0.1 n̂3 = 44.1 SD3 = 17.3 pt1 = 0.1 n̂3 = 38.0 SD3 = 15.0

pt2 = 0.1 pt2 = 0.1

pt3 = 0.1 pt3 = 0.1

pe1 = 0.3 pe1 = 0.4

pe2 = 0.3 n̂1 = 37.2 SD1 = 14.7 pe2 = 0.3 n̂1 = 82.7 SD1 = 26.0

pe3 = 0.3 n̂2 = 81.2 SD2 = 25.7 pe3 = 0.2 n̂2 = 72.3 SD2 = 24.0

pt1 = 0.25 n̂3 = 81.6 SD3 = 26.4 pt1 = 0.15 n̂3 = 45.1 SD3 = 18.7

pt2 = 0.1 pt2 = 0.1

pt3 = 0.1 pt3 = 0.05

third treatments. For the other ambiguous case, where treatments one and two are
sequentially more efficacious and toxic than treatment three, Fig. 6.2 shows that the
weights turn against the third treatment in favor of the first and second (even though
it is less toxic, it is also less efficacious than the other two). The weights for the
first treatment are slightly higher than those for the second, and both are larger than
the weights for the third treatment. The average number of total patients allocated
to the first and second treatments (82.7 and 72.3, respectively) are also higher than
the average number allocated to the third treatment (45.1). This is again due to the
fact that while treatment two is less toxic than treatment one, treatment one is much
more efficacious than treatment three. This might be a scenario where we consider
different radical exponents for the two outcomes.

Using the same simulations from which the previous results were obtained, we
have also calculated the percentage of simulations for which each of the three treat-
ment arms had the highest number of allocated patients. These results are found
in Table6.7 and show that the most efficacious and least toxic treatments routinely
receive the most patients. Also reported is the proportion of simulated trials (for
both the adaptive and balanced allocation procedures) for which the various efficacy
and toxicity rates were deemed significantly different between the three possible
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Table 6.7 Percentage of larger samples and decisions in favor in 3–arm trials: results from simula-
tion study withm = 1000 repetitions with treatment comparisons made between treatments for effi-
cacy and to hypothesized values for toxicity (pto = 0.1). Case 1: pe1 = pe2 = pe3 = 0.3, pt1 = pt2 =
pt3 = 0.1. Case 2: pe1 = 0.5, pe2 = pe3 = 0.3, pt1 = pt2 = pt3 = 0.1. Case 3: pe1 = pe2 = pe3 = 0.3,
pt1 = 0.25, pt2 = pt3 = 0.1. Case 4: pe1 = 0.5, pe2 = pe3 = 0.3, pt1 = 0.2, pt2 = pt3 = 0.1. Case
5: pe1 = 0.4, pe2 = 0.3, pe3 = 0.2, pt1 = pt2 = pt3 = 0.1. Case 6: pe1 = 0.4, pe2 = 0.3, pe3 = 0.2,
pt1 = 0.15, pt2 = 0.1, pt3 = 0.05

Case
comparison

Reject in Favor of % of Reject in Favor of % of

(Adapt) (%) (Equal) (%) Samples (Adapt) (%) (Equal) (%) Samples

Case 1 Case4

Eff: 1v2 6.8 4.7 n1 > n2, n3 77.2 76.6 n1 > n2, n3
Eff: 1v3 6.1 5.1 31.2% 78.9 79.9 49.2%

Eff: 2v3 6.6 5.4 n2 > n1, n3 8.0 4.7 n2 > n1, n3
Tox: 1v2 7.1 4.4 33.9% 50.8 54.2 22.7%

Tox: 1v3 7.2 5.4 n3 > n1, n2 52.7 49.9 n3 > n1, n2
Tox: 2v3 7.3 6.4 33.8% 9.2 5.3 27.1%

Case 2 Case5

Eff 1v2 77.3 77.8 n1 > n2, n3 32.7 32.4 n1 > n2, n3
Eff 1v3 75.4 78.2 93.2% 74.7 82.0 79.7%

Eff 2v3 11.6 6.3 n2 > n1, n3 36.7 40.2 n2 > n1, n3
Tox: 1v2 4.3 5.8 3.2% 6.0 6.2 17.7%

Tox: 1v3 4.4 6.2 n3 > n1, n2 7.5 6.7 n3 > n1, n2
Tox: 2v3 11.6 5.6 3.3% 12.0 5.1 1.9%

Case 3 Case6

Eff 1v2 8.9 5.1 n1 > n2, n3 35.3 34.7 n1 > n2, n3
Eff 1v3 9.3 4.5 1.5% 81.8 82.9 55.0%

Eff 2v3 5.3 6.3 n2 > n1, n3 38.2 43.0 n2 > n1, n3
Tox: 1v2 75.3 78.0 48.7% 23.3 20.8 37.3%

Tox: 1v3 75.2 74.3 n3 > n1, n2 58.6 61.8 n3 > n1, n2
Tox: 2v3 4.9 4.8 48.8% 29.4 31.0 6.9%

treatment pairings (1 vs. 2, 1 vs. 3, and 2 vs. 3) using chi-square tests. The estimated
proportions for the adaptive and fixed allocation methods are similar for Cases 1, 2,
3, 4 and 6, and the adaptive allocation method features a slight loss of power com-
pared to the fixed allocation method in Case 5. These Cases show that the benefit of
allocating subjects away from less efficacious or more toxic treatments may come at
the cost of slightly lower power as compared to the fixed allocation method.
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6.6 Discussion

Presented here are examples of adaptive allocation algorithms conducted under the
Bayesian analytic framework. These methods – an adaptive allocation algorithm for
dual outcomes, and the decreasingly informative prior approach – were originally
presented at the BASS conference in 2012 and 2013, respectively. While these are
emblematic of Bayesian techniques, they are by no means the only examples in the
adaptive allocation literature. One particularly active research area is in covariate-
adjusted response-adaptive allocation designs (Bandyopadhyay et al. 2007; Thall
and Wathen 2007), where allocation algorithms can be balanced for patient charac-
teristics, or where particular sub-groups can be given separate allocation weights.
Another example is adaptive allocation designs for clinical trials with continuous
Biswas and Bhattacharya (2016) our survival outcomes Zhang and Rosenberger
(2007), which in general require entirely different algorithms and concepts of what
constitutes “optimal” treatment outcomes.
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