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Preface

Currently, there are three volumes of the BASS Book Series, spanning 45 chapters.
Chapters in this book are contributed by invited speakers at the annual meetings
of the Biopharmaceutical Applied Statistics Symposium (BASS). Volume 1 is titled
Design of Clinical Trials and consists of 15 chapters; Volume 2 is titled
Biostatistical Analysis of Clinical Trials and consists of 12 chapters; and Volume 3
is titled Pharmaceutical Applications and consists of 18 chapters. The three volumes
include the works of 70 authors or co-authors.

History of BASS: BASS was founded in 1994, by Dr. Karl E. Peace. Dr. Peace
is the Georgia Cancer Coalition Distinguished Scholar/Scientist, Professor of
Biostatistics, Founding Director of the Center for Biostatistics, and Senior Research
Scientist in the Jiann-Ping College of Public Health at Georgia Southern University.

Originally, there were three objectives of BASS. Since the first editor founded
the Journal of Biopharmaceutical Statistics (JBS) 3 years before founding BASS,
one of the original objectives was to invite BASS Speakers to create papers from
their BASS presentations and submit to JBS for review and publication. Ergo,
BASS was to be a source of papers submitted to JBS to assist in the growth of the
new journal JBS. The additional two objectives were:

• to provide a forum for pharmaceutical and medical researchers and regulators to
share timely and pertinent information concerning the application of biostatistics
in pharmaceutical environments; and most importantly,

• to provide revenues to support graduate fellowships in biostatistics at the
Medical College of Virginia (MCV) and at the Jiann-Ping Hsu College of Public
Health at Georgia Southern University (GSU).

After the JBS was on firm footing, the first objective was formally dropped. In
addition, the third objective was expanded to include potentially any graduate
program in biostatistics in the USA.

BASS I (1994) was held at the Hyatt Regency in Orlando, FL; BASS II–III were
held at the Hilton Beach Resort, Inner Harbor, in San Diego, CA; BASS IV–VII
were held at the Hilton Oceanfront Resort Hotel, Palmetto Dunes, in Hilton Head
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Island, SC; BASS VIII–XII were held at the Desoto Hilton; and BASS XIII–XVI
were held at the Mulberry Inn, both located in the Historic District of Savannah,
GA. BASS XVII was held at the Hilton Resort Hotel at Palmetto Dunes, Hilton
Head Island, SC. BASS XVIII–XIX were held at the Mulberry Inn in Savannah. To
mark the twentieth Anniversary BASS meeting, BASS XX was held in Orlando at
the Hilton Downtown Orlando Hotel. BASS XXI was held at the Holiday Inn
Crowne Plaza in Rockville, MD; whereas BASS XXII and XXIII were held at the
Radisson Hotel in Rockville, Maryland.

BASS XXIV (www.bassconference.org) was held at the Hotel Indigo in the
charming historic Georgia city of Savannah. More than 360 tutorials and 57 1-day
or 2-day short courses have been presented at BASS, by the world’s leading
authorities on applications of biostatistical methods attendant to the research,
clinical development, and regulation of biopharmaceutical products. Presenters
represent the biopharmaceutical industry, academia, and government, particularly
the NIH and FDA.

BASS is regarded as one of the premier conferences in the world. It has served
the statistical, biopharmaceutical, and medical research communities for the past 24
years by providing a forum for distinguished researchers and scholars in academia,
government agencies, and industries to conduct knowledge sharing, idea exchange,
and creative discussions of the most up-to-date innovative research and applications
to medical and health care to enhance the health of general public, in addition to
providing support for graduate students in their biostatistics studies. Toward this
latter end, BASS has provided financial support for 75 students in completing their
master’s or doctorate degree in Biostatistics. In addition, BASS has provided
numerous travel grants to doctorate-seeking students in Biostatistics to attend the
annual BASS meeting. This provides a unique opportunity for students to broaden
their education, particularly in the application of biostatistical design and analysis
methods, as well as networking opportunities with biostatisticians from Academia,
the Pharmaceutical Industry, and governmental agencies such as the FDA.

Volume 1 of the BASS Book Series, entitled Design of Clinical Trials,
consists of 15 chapters. Chapter 1 presents statistical approaches to clinical trial
simulations. Chapter 2 presents methods helpful in choosing the best function of
baseline run-in data for use as a covariate in the analysis of treatment data from
Phase III clinical trials in hypertension. Chapter 3 provides methods in designing
adaptive trials in clinical research. Chapter 4 then provides best practices and
recommendations for clinical trial simulations for adaptive designs. Chapter 5
discusses the design and analysis of clinical trials that collect recurrent event data.

Chapter 6 presents methods for response-adaptive allocation for binary outcomes
in clinical trials from a Bayesian perspective. Chapter 7 addresses the important
topic of high placebo response in neuroscience clinical trials. Chapter 8 presents
methods for designing Phase I cancer clinical trials, for both single and combination
agents. Chapter 9 discusses the structure for clinical trials that include sequential
data monitoring procedures. Chapter 10 addresses both theory and practice in the
design and data analysis of multiregional clinical trials. Chapter 11 continues
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discussion of multiregional clinical trials with particular emphasis on ICH-E17 and
subpopulations.

Chapter 12 also discusses multiregional clinical trials in the development of
vaccines that are designed as adaptive group-sequential outcome studies. Chapter
13 deals with the development and validation of procedures for collecting
patient-reported outcomes. Chapter 14 presents group-sequential and interim
analysis and conditional power methods for survival trials from the nonproportional
hazards perspective. Finally, Chap. 15 discusses the design and analysis of dose–
response trials for early clinical development.

We are indebted to all the presenters, program committee, attendees, and vol-
unteers who have contributed to the phenomenal success of BASS over its first 24
years, and to the publisher for expressing interest in and publishing the Series.

Statesboro, USA Karl E. Peace, Ph.D.
Jiann-Ping Hsu College

of Public Health
Georgia Southern Univesity

Chapel Hill, USA/Pretoria, South Africa Ding-Geng Chen, Ph.D.
Professor, University

of North Carolina
Extraordinary Professor
University of Pretoria

Cambridge, USA Sandeep Menon
Vice President and Head

of Early Clinical Development
Biostatistics
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Chapter 1
A Statistical Approach to Clinical Trial
Simulations

Stephan Ogenstad

1.1 Introduction

Drug development is not for the fainthearted.We have heard repeatedly over the years
regarding the process of bringing a new compound to themarket, that every delaywill
add millions of dollars in added expenses and lost revenues. In order to address some
of the concerns in this development process is to simulate the potential outcomes of
the clinical study. Simulations of clinical trials go by different names, such as clinical
trial simulations (CTS), modeling and simulation (M&S), computer-assisted trial
design (CATD), model-based drug development (MBDD), andmodel-informed drug
discovery and development (MID3). CTS is being increasingly viewed as an integral
part of clinical development programs and can be used to improve the understanding
and decision making at every stage of drug development. These simulations help to
develop better insight into the operating characteristic of a specific trial design. CTS
provides the ability to test multiple scenarios, predict the potential study outcomes
for each scenario and select the most advantageous study design. Hence, before
conducting a study, examining various trial designs through computer simulations
can help improve the likelihood of a successful study.

In the field of airplane development, already from the beginning of manned flight,
there has been a symbiotic relationshipbetween the airplane and simulation in all of its
different forms. The role of simulation and flight simulators in airplane development,
training and evaluation have evolved significantly over the past 80 years, often in
response to technical innovations in both the airplane and ground support systems.
In the same spirit, CTS ought to be an integral part of clinical development, in the
design of the clinical protocol and in training of staff and investigators.

S. Ogenstad (B)
Statogen Consulting LLC, 1600 Woodfield Creek Drive, #215, Wake
Forest, NC 27587, USA
e-mail: sogenstad@statogen.com

© Springer Nature Singapore Pte Ltd. 2018
K. E. Peace et al. (eds.), Biopharmaceutical Applied Statistics Symposium, ICSA
Book Series in Statistics, https://doi.org/10.1007/978-981-10-7829-3_1
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2 S. Ogenstad

In clinical drug development, the process of development is classified into the four
Phases I to IV. Phase I studies are frequently conducted in normal healthy subjects
(except for the field of cancer where it is usually done in patients), where focus
is on identifying tolerable doses, and on learning about what the body does to the
drug (pharmacokinetics) and what the drug does to the body (pharmacodynamics),
as well as examining if there are potential interactions with other classes of drugs.
In Phase IIA the main objective is to evaluate whether or not the drug has initial
encouraging efficacy in a small group of patients (‘proof of principle’ or ‘proof of
concept’). The goal of Phase IIB is to learn how to use the drug in a larger group of
patients for the indication under consideration. This is usually achieved by applying
dose ranging, with or without simultaneous measurements of systemic exposure.
In Phase III the efficacy and safety of the novel drug should be confirmed against
an established treatment. Sometimes Phase IIIB outcome studies are conducted to
learn if, for instance, a type-2 diabetes medication has cardiovascular benefits over
other type-2 diabetes medications already on the market. In Phase IV the purpose
is to accumulate more information on safety and efficacy from several thousands of
volunteers who have the disease. Sheiner has viewed clinical development as two
major learn-confirm cycles, the Phase I-IIA and the Phase IIB-III cycles (Sheiner
1997; Sheiner and Ludden 1992).

Nevertheless, even if the main objective of a clinical study is confirming, there are
several opportunities to learn about variation in pharmacokinetics and pharmacody-
namics in patient groups to increase the likelihood of identifying dosing strategies
that will result in safe and effective treatment for the individual patient. Clinical
trial simulations can be a valuable tool for decision making in drug development
by applying diverse types of models. It then consists of three main components: a
disease-placebo model, a drug model, and a trial design model. The disease-placebo
model is concerned with the time course of the disease, relative risks with respect
to morbidities and mortality. The drug model describes the relationship between
therapeutic efficacy, toxicities, and doses. The clinical trial design model deals with
components such as baseline characteristics (e.g. inclusion/exclusion, actual values
the subjects have at baseline), compliance, missing values, endpoints, and statistical
methods of analysis. The use of CTS for drug development has been shown to be
a cost-effective approach, for instance, the exploration of multiple dosing regimens
and their likely pharmacodynamic effects over diverse patient populations (Huang
and Li 2007; Ette et al. 2003; Riggs et al. 2007; Holford and Ploeger 2010). Here,
simulations provide a means to assess the effects of various loading and maintenance
dosing parameters on steady-state concentrations; effects of dosing holidays (period
when a patient is not taking the drug) on pharmacodynamics response; etc.

Without thorough planning, pretesting, and execution, the clinical trial imple-
mentation risks are high. Thus, optimization of the clinical trial design should be
the main focus before starting the study. In the past, clinical trials were designed
using ad hoc empirical approaches, where the ‘organization’ impatiently desired the
clinical trial to commence under the pretense not to lose any valuable time. Because
data resulting from the clinical trial is often too complex to allow simple conclusions
of what the outcome of the study is, the interest in CTS has been ongoing for the
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past two decades (although there have been earlier success stories recounting the
value of simulation for design of clinical trials), and has today become a frequently
used tool in quantitative pharmacology investigations in academia, regulatory and the
biopharmaceutical industry. Current trends within the pharmaceutical industry and
within the offices of some regulatory agencies have suggested a reassuring future for
clinical trial simulations (Chang 2010, 2014; Kimko and Peck 2010; Westfall et al.
2008; Duffull and Kimko 2002; Holford et al. 2000; Sheiner and Steimer 2000). If
CTS is done thoughtfully, Peck et al. (2003) outline an ambitious but possible future
that CTS might sometimes replace the second Phase III trial, and therefore only a
single trial is needed.

CTS is the generation of biomarker or clinical responses in virtual subjects that
take into account (a) the trial design and execution, (b) pathophysiological changes
in subjects during the trial (disease-progress model), and (c) pharmacology (drug-
interventionmodel), usingmathematical, statistical and numericalmethods andmod-
els. CTS can be applied in the design, analysis, and interpretation of human clinical
drug trials in order to promote key decisions in drug development management
and regulatory approval (Kimko and Peck 2010; Holford et al. 2000). The Euro-
pean Medicines Agency (EMA) and the Center for Drug Evaluation and Research
(CDER) in the U.S. Food and Drug Administration (FDA) have each issued a num-
ber of guidances for drug developers that pertain to the role of CTS in development
and regulation. The FDA’s 2009 Guidance for Industry: End-of-Phase 2A Meetings
urges sponsors to seek regulatory meetings to discuss quantitative modeling and trial
simulations to improve dose selection and clinical trial design. Although not solely
focused on CTS, these guidances describe standards and expectations concerning
regulatory submission (Kimko and Peck 2010). CTS is included in the FDA’s pub-
lished strategic priorities and is expected to be incorporated in the 2017 PDUFA
reauthorization.

Hence, CTS supports the project team to minimize risks and guide decision mak-
ing by formalizing assumptions, quantifying and testing uncertainties. The simula-
tions can be used for defining and testing analysis models, exploring study design
properties, and performing analyses about precision and accuracy of potential end-
point estimates. The simulations can incorporate available scientific information to
help the entire project team communicate and test ideas, and to plan significant,
effective trials for every phase of clinical development. The CTS helps the team
anticipate risks and preview the range of expected results before huge investments
are allocated. Thus, CTS has the ability to transform drug development by mak-
ing better use of prior data and information and to explore important clinical trial
designs. As a result, the project team can receive swift feedback on the impact on
trial outcomes that alternative designs and analysis methods could have presented
in the future. CTS can gain credibility with the ‘nonscientists’ as the trial design
can be made understandable without technical terms and a different kind of reason-
ing, and can give clearness to otherwise difficult principles influencing opinion and
behavior. The statistician has an imperative role to play within their organization and
that by using professionally developed trial design software, such as EAST (Cytel
Corporation), or if the organization has invested in the writing of their own computer
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programs in, for instance, SAS (SAS Institute) or R. With the help of such software
they can rapidly generate many alternative design scenarios that accurately address
the questions at hand and the goals of the project team, freeing up time for vital
discussions about the choice of endpoints, populations, and treatment regimens.

1.2 Protocol Deviations

Before undertaking any clinical research project, a fully developed and vetted study
protocol is critical. In the field of clinical development, having a well written and
thought out protocolmeans thatwe have a detailed plan that is available and consulted
frequently during the conduct of the clinical research project and that the investigators
and staff are well trained on at following the protocol. Before the clinical trial starts,
it is critical that an efficient statistical methodology is selected and implemented in
order to effectively analyze the data after database lock where no data is any longer
allowed to be altered. The statistician is critical in conceptualizing the analytical
methodology that should be used. Ideally, the statistician needs in a blinded fashion to
continue to follow the study as the data is being collected and prior to final analysis of
the data. It is not uncommon that the data thatwas planned to be collected, changes for
pragmatic and to some unforeseen reasons. This means that the thoughts that go into
the statistical analysis plan should if possible have considered the prospect of such
changes could become a reality. Protocol deviations should be rare or unexpected if
an intense effort has gone into writing the protocol, though unfortunately many times
amendments need to modify the protocols. Consequences of protocol deviations on
clinical trial outcomes depend on their qualitative and quantitative characteristics.
Thus,while the consequence of one type of protocol deviation can be easily evaluated,
some are more difficult to discern than others (e.g. noncompliance to treatment). It
follows that the combination of several deviations of varying degrees may lead to
unexpected consequences on study outcomes. Protocol deviations can result from
many different circumstances, where the most critical deviations are noncompliance
and missing data and dropped out subjects.

1.2.1 Noncompliance

Noncompliance or non-adherence to treatment protocol occurs when a patient does
not carry out the clinical recommendations of a treating physician. In other words, it
is the failure of the patient to follow the prescribed treatment regimen and procedures.
Important questions are: What are the consequences if patients take fewer or extra
doses of treatment medication than prescribed, but the remaining doses are taken on
time, or if patients stop taking the treatment but remain on the study? Noncompliance
is a significant problem in all patient populations, from children to the elderly. It
applies to nearly all chronic disease states and settings and tends to worsen the
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longer a patient continues on drug therapy (Spagnoli et al. 1989; Mardonde et al.
1989;Lacombe et al. 1996).Noncompliance rateswith schizophrenia treatment could
be as high as 40%, with partial noncompliance as high as 75% (Moore et al. 2000).

Noncompliance can result from a denial of the problem.Many diseases and condi-
tions are easy to ignore, evenwhen they have been diagnosed. This is particularly true
for diseases that are asymptomatic and so does not bother the patient. For instance,
patients with diabetes, or hypertension may not have symptoms that get in the way
of everyday life. They may not even have known that they had the condition until it
showed up on a routine examination, which can make it easy for patients to ignore
the prescribed treatment regimens. The patients may have difficulty with the regi-
men and may have trouble following the directions. For instance, taking a pill in the
middle of the night, or simply opening the ‘child safe’ container may create a barrier
to compliance for a patient with rheumatoid arthritis.

Bothersome previous experienceswithmedications prescribed by their physicians
may lead the patients not to take their medication. As a consequence, some patients
may not take the medication or may take another medication that they have at home
for the same diagnosis. Whether the patients tell the investigators or not will cause
difficulties interpreting the results and will bias the study results. Reasons for not
disclosing to the investigator that the patient is not taking the medication could be
that the patient does not want to affect their relationship with the investigator.

1.2.2 Dropouts and Missing Data

A common problem in clinical trials is the missing data that occurs when patients do
not complete the study and drop outwithout furthermeasurements are taken. Possible
reasons for patients dropping out of the study could include death, adverse reactions,
unpleasant study procedures, lack of improvement, early recovery, and other factors
related or unrelated to trial procedure and treatments. Clinical trials that require
adherence that is difficult to follow or have an extensive number of endpoints often
suffer from missing data or even subject dropouts. The dropout and missing data
mechanisms are often complex, and generally, cannot be assumed to be missing at
random or missing completely at random (MCAR). More realistically, the missing
values depend on patient experience in the trial. In some cases patient dropouts are
infrequent with MCARmechanism; in other cases, dropouts may be related to a lack
of safety or efficacy of the patient’s experience. There are several possible ways to
model the dropout mechanism; some examples and further references are contained
in O’Brien et al. (2005). Patient dropout is a real concern for clinical trials and
one of the most problematic protocol deviations. Two types of dropouts exist, non-
informative and informative dropouts. Non-informative dropouts simply mean that
some patients may randomly stop to be reported in the study, this independently from
the treatment they received, and thus independently of efficacy or side effects. Non-
informative dropout will simply decrease the statistical study power which is easier
to control. On the contrary, disease progress can be perceived by the patient in many
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ways not measured in the study but, however, correlate with the endpoint that is being
followed. In this case, the dropout is informative to the disease progress, andmodeling
the disease progress separately from the dropout process may be inefficient and may
even produce biased estimates. The bias can be particularly notable if one wants to
use the model to predict actually observed features, e.g., observed average disease
progress. Imputing unobserved data, e.g., last value carried forward is commonly
used as a conservative approach to demonstrate treatment differences, though last
value carried forward is, however, inferior from a modeling standpoint as the pseudo
data are treated as observed data, creating biases (Westfall et al. 2008).

1.3 Methods

Clinical trial simulations can produce a number of advantages that will help us
predict likely outcomes for a range of assumptions about trial size, dose selection
and operational considerations, such as:Study specific aspects

Study specific aspects

• Comparisons of different trial designs where we can evaluate what we might be
losing in one aspect of one design in return for gaining another aspect with another
design.

• Optimal dosing for each treatment arm to minimize overlap in exposures and
subsequent responses.

• Anticipated patient exposures and responses for each treatment.

Improved specification of inclusion/exclusion criteria

• Optimizing inclusion/exclusion criteria to capture the desired subject population
that is influencing the response.

• Potential effects of changes in recruitment rates and criteria on study timelines
and results.

Safety and efficacy

• Effects of protocol deviations and treatment compliance on safety and efficacy.

Study results

• Placebo effects on patients over time.
• How the investigational treatment compares to the competitors’ treatments.

Statistical analysis

• Whether planned study analysis can detect statistical significance.
• Since conventional statistical tests may be insensitive to a wide range of situations
occurring commonly in practice, particularly when the effect of the factor under
study is heterogeneous, an evaluation of the test can bemadewhere approximations
of the test statistic’s distribution have been used in the past.
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The computer models that simulate real scenarios are generally developed from
previous datasets that may include preclinical data, as well as previous phases of
real trials. As clearly stated in Burman et al. (2005) the CTS methodology can be
summarized in four steps:

1. Utilizing relevant information.
2. Building a mathematical model (usually for the effect of a drug or device).
3. Predicting the outcome of potential clinical trials.
4. Optimizing the clinical trial program.

Before applying the four steps, the aims of the modeling effort must be defined.
What is relevant information, what is a good statistical model, and what is an opti-
mal clinical program depends on the aims we have with the model. The modeling
is an interactive process between the formulation of the inputs to the model and the
actual outcomes from the simulations. Themodels should include terms for covariate
effects, asmodels used for simulation studiesmust deal with the variability from indi-
vidual to individual. Covariate distribution models describe the relevant information
that goes into the simulation, on the basis of preceding trials or clinical experience.
The variability of patients’ demographic and physiological characteristics in the pop-
ulation of interest that might affect the response. Data in clinical trials are naturally
correlated and this should be considered. A number of things about the correlation
structures can be learned from previous clinical trials. Baseline measurements are
typically correlated with the response. Incorporation of them in the analysis will
therefore often considerably improve the trial’s effectiveness to show potential ther-
apeutic effects. A baseline response model can help to select the target population
or to interpret the trial data. Increasing the number of repeated measurements at
baseline and at the end of the treatment period for each subject in a clinical trial will
obviously increase the available information on treatment effects and could increase
the statistical efficiency of the analysis (Frison and Pocock 1992; Ogenstad 1997).
The most efficient way to allocate visits over time at the design stage (e.g., before or
after randomization), and the best way to utilize the additional measurements from
these visits at the analysis stage is not evident but could be explored via simulations.
A model of the baseline response and the variability in the measurements can predict
how much the gain would be in terms of efficiency, and could for instance influence
the decision on whether the inclusion/exclusion criteria should be modified or not.
The impact of the different covariate distributions on the expected outcome of a sim-
ulated trial can be assessed, which makes it possible to explore conditions that have
been ruled out in the inclusion/exclusion procedures of the actual trial.

As Burman et al. (2005) point out, what information is relevant for the CTS
largely depends on what the aims of the modeling are. It also depends on how much
information is already available. The best information is perhaps hard endpoint data
for the drug in question from a large, randomized, placebo-controlled clinical trial.
Unfortunately, this kind of data is seldom available before the end of the clinical
program, at the earliest. Hence,whatwe are concernedwith is combining information
from diverse sources and incorporating expert judgment in a nonbinding way, and
remembering that not all experts are right all the time.
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The goal ofmodel building is to establish amodel that is fit for the purpose, and not
made too involved in order to fulfill the purpose of the design of the clinical study.We
need to unify the thinking about the study design and inference. TheCTS shouldmake
the design and future conduct of the study easier to understand.When a clinical trial is
planned, it is supposed that the trial will be executed according to a specific protocol
that defines all aspects of the study design, from its beginning to its completion. For
instance, characteristics that should be precisely defined in any clinical protocol are
whether the subjects are patients or healthy volunteers, inclusion/exclusion criteria,
number of subjects to be accrued, treatments and allocation mechanism, blinding of
investigators or subjects to the allocated treatment, dosage regimen (dose and timing
of doses), endpoints, frequency of follow-up evaluations, and the length of the study.

Complete adherence to the study protocol will permit unbiased estimation of the
treatment effects in terms of safety and efficacy with adequate statistical power if the
assumptions at the planning stagewere correct.Deviations from theprotocolmay lead
to failure of the study to attain its declared purposes. It can be difficult at the planning
stage to evaluate what the consequences are of a single protocol deviation, and almost
impossible to do it for a combination of protocol deviations. One way to quantify the
consequences of those deviations is by usingmodels, describing individual behaviors
and responses, combinedwith trial simulations that include these protocol deviations.
When the results of the trial can be envisaged it is sometimes possible to choose, in a
methodical and cogentway, between different possible trial designs. The features that
are included in themodel will unveil what design features can be compared using that
model. Missing data cause the usual statistical analysis of complete or all available
data to be subject to bias and will diminish the power of the study. Although there
are a number of imputation methods, there are no universally applicable methods for
handling missing data that will restore the dataset to what it could have been if no
data had been missing. As has been noted in the ICH-E9 guideline, ‘no universally
applicable methods of handling missing values can be recommended’. The issue of
managing missing data is intrinsically difficult because it requires a large proportion
of missing data to investigate a method. Moreover, a large proportion of absent data
would make a clinical study less credible. The best suggestion is to minimize the
chance of dropouts at the design stage and during trial monitoring. It should be
reiterated that although an increase in a number of patients to the study will decrease
the standard errors, but will not correct the bias that could have been caused due to
the missingness of data.

Examples of other features that can be compared are study designs (e.g. sequen-
tial, adaptive, crossover, parallel), doses, dosing schedules, study duration, different
endpoints, multiple endpoints and timing when the endpoints are measured. The data
that is generated from the simulations, together with different statistical methods of
analysis of the data may lead to an optimization of the whole study process.

When the purpose of the simulation is to estimate the powers of the statistical tests
by the relative number of statistical significances it produces, it is important to use an
adequate number of simulations. With 1000 simulations and a power around 90%,
the estimation error is approximately 3.7% using a 95% confidence interval. Due
to the propagation of uncertainty in the square of a quotient, the uncertainty in the
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power estimates translates to an uncertainty in the relative efficiency of the tests in
the order of 13–16%. With 10,000 simulations the estimation error is approximately
1.2% and the uncertainty in the relative efficiency of the order of 5%. In pursuance
of getting reliable estimates of the true significance level, we recommend simulation
sizes around 25,000.

1.4 The Clinical Trial Simulation System

We argue that the CTS system should be flexible, preserving the realism of
the doubly-multivariate endpoint/timepoint correlation structures, the informative
dropout mechanisms, non-normal distributions, non-monotonic hazard rate func-
tions, survival endpoints, and noncompliance effects (Westfall et al. 2008). The
assumptions should be a trade-off between ease of use of the system and realism
and flexibility of its outputs. This type of framework for multivariate simulation is
usually reasonably simple to program where a variety of software can be used, e.g.
SAS (SAS Institute), R (R Foundation for Statistical Computing), SPLUS (TIBCO
Software Inc.),Mathematica (WolframResearch), andMATLAB (MathWorks, Inc.).

From literature, the goal with CTS is often to build a complete model. In Holford
et al. (2000) their review on simulations in clinical trials, they state that the model
should incorporate all scientific knowledge about the disease and drug. Burman
et al. (2005) take a more modest view, where model components should be chosen
according to the fit-for-purpose principle. We are convinced that simpler models can
sometimes be very useful. Decisions where it may be useful cover a wide range of
aspects, including choice of the drug candidate, stop/go for the further development
of a compound, choice of patient population, and decisions regarding the positioning
versus marketed competitor compounds.

In the PK/PD-phase of drug development, the introduction of population mod-
eling has made it possible through the application of statistical non-linear mixed-
effects models to data obtained from relatively few samples in many individuals to
discern a genuine insight into the mechanistic aspects (Sheiner and Ludden 1992).
More specifically, populationmodels allow characterization of (a)mean pharmacoki-
netic/pharmacodynamic parameters, (b) extent of variability in these parameters and
the sources thereof (e.g. gender, age, disease, comedication), and (c) relationships
between pharmacokinetic (e.g. exposure) or pharmacodynamic (e.g. a biomarker)
variables and clinical efficacy and safety endpoints. These models can then be used
to simulate the outcomes of various trial designs under different assumptions. The
usefulness of modeling and simulation in the PK/PD-phase of drug development and
regulatory decision-making has been recognized (Holford 1990; Sheiner and Steimer
2000; Holford et al. 2000; Nestorov et al. 2001; Gobburu and Marroum 2001; Gob-
buru and Sekar 2002; Bhattaram et al. 2005; Burman et al. 2005). Exposure-response
models may, for example, be used to support the use of a drug in new target popula-
tions through bridging, dose adjustment or no need for dose adjustment in subpopu-
lations, new dose regimens, dosage forms and formulations, routes of administration,
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and minor product changes (FDA Guidance for Industry 2003). A biological marker
(biomarker) has been defined as a characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention (Biomarkers DefinitionWork-
ing Group 2001). The most reliable way to assess the benefit and risk of a drug ther-
apy is through its effect on well-defined clinical endpoints. However, this approach
is sometimes impractical for the evaluation of long-term disease therapies and tri-
als that require a large number of patients. A biomarker may then be substituted
for clinical response, provided that it is reasonably likely to predict clinical benefit
(FDA 1997). However, the single most important use of biomarkers is the selection
of the dose range and doses for further investigation in the pivotal trials (Jadhav et al.
2004). To further facilitate the identification of optimal dosing regimens, the use of
clinical utility functions has been proposed (Sheiner and Melmon 1978; Eriksen and
Keller 1993; Graham et al. 2002; Jonsson and Karlsson 2005). Such functions serve
to evaluate important desirable and undesirable effects of a drug on the same scale,
under different assumptions of the relative severity of each outcome. In this way,
the observed or predicted clinical outcome of different drug therapies, or different
dosing regimens of the same drug, may be compared.

An appealing approach to building a statistical CTS system is found in (Westfall
et al. 2008). Their approach starts with a model with a rich probabilistic structure to
account for typical scenarios, using historical data where it is possible to validate the
inputs and outputs, with specific emphasis on the economical yet flexible input of
correlation structures. Here, patient responses are functions of underlying correlated
N(0, 1) clinical quantities; all distributional forms and dropout effects are determined
from these underlying values. Evaluation of trial success then follows from the analy-
sis of the simulated datasets. The goal is to generate realistic datasets having typical
correlation structures for multiple endpoint/timepoint data with, say p, endpoints
(safety, efficacy or both) indexed by j �1, …, p, and T +1 timepoints indexed by t
�0, …, T , where t �0 can be the time of randomization of the patient. For patient i
a p(T +1)-vector of correlated N(0, 1) variates Zijt , each of which may be thought of
as a latent indicator of the patient’s health relative to a population of similar patients,
for endpoint j and timepoint t. Observations will be considered to be independent
for different patients. Though, it is possible to include correlations, for instance, for
random center effects. Obviously, for each specific patient the timepoint data Zijo,…,
ZijT are correlated. For instance, the compound symmetry covariance structuremodel
can be expanded easily to accommodate time-series carryover effects in addition to
patient effects as Zi jt � √

θS+
√
1 − θεi j t , where S~N(0, 1) is the patient effect and

εi j0, . . . , εi jT is a realization of a unit variance AR(l) process with parameter p. For
simulation purposes, the parameters θ and pmust be specified. For multiple endpoint
data for patient and timepoint, it is suggested that the correlation between endpoints
is best left as unstructured. For each patient, the observations between endpoints at
different timepoints are correlated. There are a number of possibilities for defining
this structure, the most convenient and well-known is the Kronecker product model
used in multivariate longitudinal models (Westfall et al. 2008).
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Most commercially available clinical trial software systems use parametric input
into the systems. For instance, the exponential survival model is often used as input
model. Though, the exponential survival model is a rather unrealistic model since
it is assumed that the hazard rate function is constant over the entire observational
study period. The Weibull model is many times a better choice than the exponential,
but this model still has a monotonic hazard rate function, which might not be realis-
tic either. A more flexible approach is to use Royston-Parmar models (Royston and
Parmar 2002) that have great flexibility. Even better at times is to use mean structures
as input for the different endpoint*timepoint*treatment combinations. Such struc-
tures can be determined purely a priori from earlier phase data, suggested by PK/PD
models, or from studies on similar interventions. Survival analyses pose additional
questions. Standard methods such as the log-rank test and Cox models are efficient
when the hazards are proportional. This assumption is not always reasonable. The
non-proportional hazards assumption that is a potential difficultywith theCoxmodel,
could sometimes be handled in a simpler way, and the visualization of the hazard
rate function could be made easier, using the Royston–Parmar framework. In West-
fall et al. (2008), any types of distributions could be applied to the mean structures,
and there they effectively made use of a missing value, dropout and noncompliance
mechanism to generate ‘real world datasets’. Girard et al. (1998) developed a hierar-
chical Markov model for patient compliance with oral medications conditional upon
a set of individual-specific nominal daily dose times and individual random effects
that are assumed to be multivariate normally distributed. This model also has great
flexibility and allows descriptions of almost all possible compliance profiles.

1.5 Some Published Clinical Trial Simulations

Wathen andThall (2008) presented a newapproach to the problemof deriving an opti-
mal design for a randomized group sequential clinical trial based on right-censored
event times. Theyweremotivated by the fact that, if the proportional hazards assump-
tion is notmet, then a conventional design’s actual power can differ substantially from
its nominal value, and combined Bayesian decision theory, Bayesian model selec-
tion, and simulation to obtain a group sequential procedure that maintains targeted
false-positive rate and power, under a wide range of true event time distributions. At
each interim analysis, the method adaptively chooses the most likely model and then
applies the decision bounds that are optimal under the chosen model. A simulation
study comparing this design with three conventional designs showed that, over a
wide range of distributions, their proposed methods perform at least as well as each
conventional designs, and in many cases, it provides a much smaller trial.

Dragalin et al. (2010) presented a simulation study to compare new adaptive
dose-ranging design. The main goals in an adaptive dose-ranging study are to detect
dose-response, to determine if any dosesmeet clinical relevance, to estimate the dose-
response, and then to decide on the dose(s) (if any) to take into the confirmatory Phase
III. Adaptive dose-ranging study designs may result in power gains to detect dose-
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response and higher precision in estimating the target dose and the dose response
curve.

Kimko et al. (2000) simulated the anticipated results of a Phase III clinical trial
of the antischizophrenic drug, quetiapine, based on input-output and covariate dis-
tribution models developed using data collected in earlier Phase I and II trials. The
model development was performed using the NONMEM program with first order
conditional estimation (Beal and Sheiner 1992). The proposed trial design was a
double-blind, placebo-controlled, randomized, parallel group study of fixed-dose of
quetiapine in hospitalized schizophrenic patients, who received one of five doses of
quetiapine or placebo for a period of four weeks. The treatment was initiated after a
placebo run-in period followed by a two week step-wise dose titration period. The
executed study design was replicated by excluding individuals wrongly included
in the study, as they failed to meet the entry criteria. In addition, placebo respon-
ders identified during the placebo run-in period were replaced. A random dropout
algorithm using a multiplicative congruential method (such that the random number
generated is the remainder of a linear transformation of the previous number divided
by an integer) was used to simulate the high dropout rate observed in the earlier
Phase II study. Based on the Phase II study result, 70% of the patients assigned to the
placebo group, 60% assigned to the lowest dose group and 50% assigned to all other
dose groups were withdrawn from the study. Simulations were performed for 100
sets of 50 patients per treatment group. Adequacy of the model to describe the orig-
inal data was tested using sensitivity analysis and by comparing posterior parameter
distributions and posterior predictions from the simulated trial design to parameters
of the prior distribution and observed data. Dropout rates in the simulation and in
the Phase III trial were comparable. Comparison of the simulated results with actual
results obtained in the Phase III trial showed that the model adequately predicted
responses to quetiapine. However, it was found to be inadequate in predicting the
placebo response.

Clinical trial simulation for docetaxel was performed using pharmacoki-
netic/pharmacodynamic models previously developed from data obtained in earlier
open-label, non-randomized, Phase II clinical trials of docetaxel in subjects with
small cell lung cancer. The purpose of the simulation was to predict the influence of
dose on survival time and time to disease progression in a high-risk group in a planned
Phase III trial comparing doses of docetaxel of 100–125 mg/m2 every three weeks.
Input-output and covariate distribution models were developed using the NONMEM
program. Hazard models were used to simulate the primary and secondary clinical
endpoints, death and disease progression, respectively. In addition, the execution
model included a separate hazard model for patient dropout. Different models were
tested and theWeibull distribution was selected based on the goodness of fit assessed
in the model-building phase of the analysis. A dose titration algorithm allowed for
a 25% dosage reduction in the event of severe toxicity for each treatment cycle. To
maintain consistency with study implementation, after two dosage reductions or if
disease progression occurred, the patient was withdrawn from the study. Simulations
were performed for 100 sets of subjects and the results were analyzed using SAS.
Adequacy of the model to describe the Phase II data was tested using a posterior
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predictive check of the following test quantities: number of deaths and progressions,
median survival time, I year survival, median time to progression, patient charac-
teristics at baseline, number of side-effects at the end of the first cycle, number of
treatment cycles per patient and total dose. Tabulated median and 95% confidence
intervals of simulated test quantities agreed well with those obtained from the orig-
inal data. In addition, 100 sets of 200 subjects per treatment group were simulated
under the Phase III trial design and test quantities were calculated. The results of the
Phase III trial simulation showed no clinical advantage of the higher docetaxel dose
on survival or time to disease progression in high-risk subjects with small cell lung
cancer. As a consequence of this analysis, it was determined that there would be no
further clinical studies to evaluate the effect of dose intensification in subjects with
small cell lung cancer.

1.6 Commercially Available Trial Design Software
Packages

Performing simulations with most currently available simulation tools is an invest-
ment of time, requiring custom programming and at times moving between one
software application to perform simulations and another application to visualize
simulations. There is a great need for even more efficient simulation systems that
facilitate interactive, real-time evaluation and iteration on simulation scenarios.

As indicated earlier, more adaptations give the investigator more flexibility in
identifying best clinical benefits of the test treatment under investigation. However,
multiple adaptive designs with more adaptations could be very complicated and
consequently, appropriate statistical methods for assessment of the treatment effect
may not be available and are difficult, if not impossible, to obtain. Thus, one of the
major obstacles for implementing adaptive design methods in clinical trials is that
the appropriate statistical methods are not well established with respect to various
adaptations. Though, some practical methods in this field are emerging (Gao et al.
2013; Pong et al. 2010). Current software packages such as SAS cannot be applied
directly and hence are not helpful here. Although there are some software available in
the marketplace such as ExpDesign Studio (http://www.ctrisoft.net), EastSurvAdapt
(CytelCorporation), andADDPLAN(http://www.addplan.com),which cover certain
types of adaptive trial designs, new software packages for adaptive designmethods in
clinical trials are necessary to assist in implementing adaptive trial designs in clinical
trials (Wassmer and Vandemeulebroecke 2006). An overview of software available
for group sequential and adaptive designs can also be found in Herson (2009).

Some software (e.g., Certara, https://www.certara.com/software/; Lixoft, http://l
ixoft.com/) require PK/PD input as drivers for the simulation output. A well devel-
oped system is found with EAST 6 from Cytel Corporation that has a large variety
of parametric design choices. Another software that produces data with ‘flexible’

http://www.ctrisoft.net
http://www.addplan.com
https://www.certara.com/software/
http://lixoft.com/
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statistical characteristics, which helps the decision making that statisticians typically
must make is developed by Westfall et al. (2010).

Concerning the description of virtual patients, i.e. the distribution of covariates in
a target population, general-purpose statistical packages can be employed. Note that,
since IO models usually include terms for covariate effects, the choice of methodol-
ogy for generating virtual subjects is often dependent on the software for IO model-
ing. Mouksassi et al. (2009) use the R package library GAMLSS, which facilitates
the simulation of demographic covariates specific to the targeted patient popula-
tions. Other authors (Chabaud et al. 2002) prefer to resample patients from existing
epidemiological databases rather than creating realistic virtual subjects.

The R software environment (by R Core Team 2014) has an excellent set of
tools for analyzing and visualizing simulation results in real time. The new RxODE
package facilitates quick and efficient simulations of ordinary differential equation
(ODE) models in R. RxODE provides an elegant, efficient, and versatile way to
specify dosing scenarios, includingmultiple routes of administrations within a single
regimen, sampling schedules, etc. It also enables simulations with between-patient
variability andminimizes the amount of customcoding required for pharmacometrics
simulations (Wang et al. 2015).

A system specifically designed for IO-modeling of data in this context are the
non-linear mixed-effect model program NONMEM (developed by Stuart L. Beal
and Lewis B. Sheiner in the late 1970s at UCSF for population pharmacokinetic
modeling). It is still widely used.

ADAPT (Biomedical Simulations Resource (BMSR) in the Department of
Biomedical Engineering at the University of Southern California) is a computa-
tional modeling platform developed for PK/PD applications. It is intended for basic
and clinical research scientists and is designed to facilitate the discovery, exploration
and application of the underlying pharmacokinetic and pharmacodynamic properties
of drugs, which includes an extensive library of models to choose from.

MATLAB (MathWorks) is a multi-paradigm numerical computing environment
and fourth-generation programming language. MATLAB allows matrix manipula-
tions, plotting of functions and data, implementation of algorithms, creation of user
interfaces, and interfacing with programs written in other languages, including C,
C++, C#, Java, Fortran and Python. MATLAB provides a software tool, the so-
called SimBiology, for the complete PK/PD workflow. Since Sim-Biology is based
on MATLAB, users can employ MATLAB in order to program their simulations.

Mathematica (Wolfram Research) is a quality symbolic computation system.
For clinical trial simulations SystemModeler is excellent for modeling and anal-
ysis throughout drug discovery, development, clinical trials, and manufacturing. The
flexible environment supports application areas such as systems biology, bioinfor-
matics, and more.

Mathematica and MATLAB are very different products. Mathematica focuses
on quality symbolic computation and features like unlimited precision arithmetic.
MATLAB focuses on high speed algorithms for numerical computation.
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1.7 Discussion

In the past few years, scientific journals covering clinical pharmacology and phar-
macokinetics and trials in later phases have published a large number of papers
related to CTS. The interest in CTS in statistical literature within statistical univer-
sity departments has been much lower. Still, statistics and statisticians are needed in
CTS activities. By writing this paper, we would like to stimulate more statisticians
to take an active part in applied modeling work and research related to CTS.

Someof the examples givenhave hopefully shown that evenquite simplemodeling
exercises can prove very useful. One task for the modeler is precisely that of finding
those questions where a limited amount of work is likely to give significant benefits.
It might be hard for some statistical scientists to accept that being too rigorous may
be harmful. The model need not be perfect. What matters is that the work is good
enough to help make the right decisions.

Even though practical modeling work may sometimes be “quick and dirty”, rigor-
ous statistical research is needed in the CTS area. We would especially like to point
out the need to apply and integrate different areas within statistics and to integrate
statistical results into other disciplines, such as pharmacometrics and pharmacoeco-
nomics.

CTS integrates expert knowledge in the relevant fields (primarily pharmacology
and medicine in the clinical phase) with new data in a structured process to create
quantitative models. The cooperation between different skills is thus essential. Some
modeling work can, of course, be done by a single individual. In many situations,
however, the greatest benefits are likely to result from a joint collaboration with
several skills working in concert (e.g., Biomarkers DefinitionWorking Group).What
skills to include in the modeling team is, of course, depending on the modeling
questions. Good organization is critical both internally in the modeling team and
for the team’s relations with decision makers and experts from different parts of the
research organization.

CTS aims at optimizing a clinical development program. This program, however,
is not totally isolated from the rest of drug development and commercialization.
What is ‘optimal’ in clinical development depends on factors such as the medical
need for a new treatment, its commercial value, the regulatory requirements, and
the ability to find patients and produce tablets in time for the clinical trials etc.
CTS should therefore not be seen as separate from other modeling activities. Pre-
clinical, epidemiological and commercial models could provide useful input to CTS.
The results of CTS, on the other hand, may be of great value for predicting market
penetration and sales.

Execution models are used to examine the influences of protocol deviations on
study outcomes.When implemented as a part of a clinical trial simulation, they allow
“virtual” clinical trials to the run under varying conditions, from simple errors in data
gathering to complex combinations of protocol deviations that emulate real-world
situations. Thus, execution models arc powerful tools for identifying weaknesses or
limitations in a proposed study design, whichmay be anticipated, avoided or resolved
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in order to increase the robustness of the study design prior to implementation of the
actual clinical study. As such, they are an integral component of clinical trial sim-
ulation and essential tools for identifying weaknesses or limitations in a proposed
study design, which may be anticipated, avoided or resolved in order to increase the
robustness of the study design prior to implementation of the actual clinical study.
As such, they are an integral component of clinical trial simulation and an essential
tool in clinical trial design. Execution models for protocol departures do not neces-
sarily require data to be identified, except for dropout. Many trials can be performed
in simulators that are just too risky in real life and they can be repeated multiple
times. Simulators tend to prevent trial failures or overpowered studies by their abil-
ity to point what part of the experiment is the most sensitive to protocol departures.
Indeed clinical trial simulation provides an invaluable tool to prospectively force
experimental study designs to the point of failure.
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Chapter 2
Choosing the Function of Baseline
Run-in Data for Use as a Covariate
in the Analysis of Treatment Data
from Phase III Clinical Trials
in Hypertension

Yi Hao and Karl E. Peace

2.1 Introduction

High Blood pressure or hypertension is a common chronic disease among all ages
of populations. An individual who has high blood pressure usually has some other
concurrent disease, such as diabetes, renal disease, cancer or other cardiovascular
disease (Nussbaumerov and Rosolov 2013). Controlling blood pressure in such indi-
viduals is a key issue in their clinical management. In clinical trials of hypertension,
for example, blood pressure is measured just prior to randomization (baseline) to
ensure that the volunteer is eligible for entry into the trial.

Eligible patients are then randomized to the clinical trial treatment groups and
followed over the length of the treatment period as specified by the trial protocol.
Blood pressure is measured after randomization when patients return to the clinic at
scheduled visits. Although both systolic and diastolic blood pressure are measured,
diastolic blood pressure (DBP) at post randomization visits or change from baseline
is analyzed to assess the antihypertensive efficacy of treatment interventions using
baseline diastolic blood pressure as a covariate (Blood Pressure Lowering Treatment
Trialists’ Collaboration 2003).

In terms of diastolic blood pressure, there are different stages of hypertension.
Prehypertension is a diastolic pressure ranging from 80 to 89 mmHg. Stage 1 hyper-

Y. Hao
Frontier Science and Technology Research, 440 Science Drive suite 401, Madison,
WI 53711, USA

K. E. Peace (B)
Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro,
GA 30461, USA
e-mail: Peacekarl@frontier.com

© Springer Nature Singapore Pte Ltd. 2018
K. E. Peace et al. (eds.), Biopharmaceutical Applied Statistics Symposium, ICSA
Book Series in Statistics, https://doi.org/10.1007/978-981-10-7829-3_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7829-3_2&domain=pdf


20 Y. Hao and K. E. Peace

tension is a diastolic pressure ranging from 90 to 99 mm Hg. Stage 2 hypertension
is a diastolic pressure of 100 mmHg or higher.1

There are many trial designs that could be used for different testing purposes.
Prospective, randomized, double-blind, placebo controlled design is most commonly
used in phase III clinical trials. In addition, adaptive designs and sequential designs
are two very popular trial designs in the pharmaceutical industry. In this paper, we
use the typical prospective, randomized, double-blind, placebo-controlled design to
simulate diastolic blood pressure in previously untreated patients newly diagnosed
with prehypertension (80 < DBP < 90), stage 1 hypertension (90 ≤ DBP < 100) or
stage 2 hypertension (100 ≤ DBP < 120), where DBP is measured in mmHG.

A concern in clinical trials of hypertension is that a single baseline value may
not adequately reflect the true severity of the disease prior to randomization, and
hence may not be the best choice of a covariate. However, a single baseline value (or
the average of three consecutive measurements a few minutes apart in hypertension
studies) is what usually available (Winkens et al. 2007) is. It is therefore compelling
to have measurements of disease severity over a baseline run-in period to better
characterize the natural progress of the disease.

Therefore, an open question is: What is the best function of the baseline run-
in data to use as a covariate in the assessment of treatment group differences post
randomization? In this paper, we assume that the length of the baseline run-in period
is 8 days (approximately aweek-sufficient to establish the blood pressure profile prior
to treatment) and that diastolic blood pressure, the primary measure of hypertension,
is measured on each eligible patient on each of the 8 days. We then explore several
functions of the baseline run-in data for use as a covariate in the analysis of post
randomization data in order to determining which covariate is optimal (maximum
power or minimum MSE).

To address the above two questions, we simulate diastolic blood pressure data
reflecting patients newly diagnosed with hypertension, followed over 8 consecutive
days of baseline run-in (essentially on placebo for 8 days) and then monthly for six
months of treatment with either placebo or a drug being developed for the treatment
of hypertension. At the end of the baseline run-in period, patients are randomized
in balanced fashion to placebo or drug, provided medication for one month and
instructed to return to the clinic everymonth for clinical evaluation and remedication.
Both patients and investigational site personnel are assumed to be blinded as to
identity of intervention received during the 6 months of treatment. This mimics a
Phase III pivotal proof of efficacy trial in hypertension. We assume that the attendant
protocol has been approved by an IRB. Here our objective is to determine what
function of 8 days of baseline run-in data is best to use as a covariate in the analysis
of post-randomization treatment group data.

1High blood pressure (hypertension), Mayo Clinic.
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2.2 Literature Review

In blood pressure trials, examples of covariates are sex, age and weight (or body
surface area), but so is diastolic blood pressure measured at baseline just prior to
randomization. Some authors have discussed whether the value of blood pressure at
baseline should be used as a covariate or as a dependent variable? Liu et al. (2009)
used two statistical methods: the first was to provide a point estimate and a 95%
confidence interval for the mean change from baseline at time T for each treatment
group; the second was to provide a p-value and a 95% confidence interval for the
between-group difference in the mean changes from baseline. In Liu’s paper, post-
randomization measures were repeated, while baselines were not repeated measures.
Assmann et al. (2000), Pocock et al. (2002) reported use of baseline data for (i) sub-
group analyses which explore whether there is evidence of a treatment difference; (ii)
Covariate-adjusted analyses which aim to refine the analysis of the overall treatment
difference with the fact that some baseline characteristics are related to outcome
and may be unbalanced between treatment groups; and (iii) baseline comparisons
which compare the baseline characteristics of patients in each treatment group for
any possible difference. Not all baseline variates may be used directly, especial in
non-linear dose-response models. Box-Cox transformation (Chen and Pounds 1998)
would be a reasonable method for rendering such variates to a proper form, i.e. log
transformation.

Alternatively, if the baseline variate reflects a repeated measures structure, for
example, blood pressure trials, it is very common that investigators would collect
more than one baseline blood pressure measurement. The length of the baseline
period may vary from case to case. However, the last measurement of the last base-
line period is typically thefirst choice as a covariate.David (Bristol 2007) talked about
the choice of two baselines (X1, X2) as a covariate in performing between-treatment
comparisons. He assumed (X1, X2, Y) followed a trivariate normal distribution with
EX1 �EX2 �0, heterogeneous variances and different correlations. His results show
that using both baseline measurements as covariates increased the power of the anal-
ysis of treatment group difference. Zhang et al. (2010) also talked about the choice
of two baseline measurements in his paper. By using ANCOVA, under a simulation
study, he assumed there are two baseline measurements and one post-baseline mea-
surement (response in the ANCOVA). Four functions of baseline as covariates were
used in this simulation to determine which one gave the largest power. Five models
were investigated either by classical ANCOVA or logistic regression. They were no
covariate, first baseline as covariate, second baseline as covariate, both baselines as
covariates, and average of the baselines as covariate. Simulations were performed
using themultivariate normal distribution under specified variance-covariance matri-
ces. He also gave an example to showhow to computemeans and variance-covariance
matrices under specified correlations.He concluded that including both baselinemea-
surements were consistently best in increasing power and reducingmean square error
(MSE) in the Covariance analysis of an efficacy response variable.
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Other papers discussed using ANCOVA and ANOVA to analyze treatment group
differences and testing for treatment efficacy. Many papers discussed the use of
covariates in data analyses, but few if any, have addressed the choice of covariates as
functions of repeated measurements over a baseline run-in period. Our research goal
is to fill this gap by finding the best covariate as a function of the repeated baseline
measurements to improve clinical trial testing of drug effectiveness.

2.3 Theory

In clinical trials, variables or data taken at baseline are often used as covariates in
statistically analyzing post-randomization treatment group data. Sex, age, weight or
other demographic factors such as disease severity on trial subjects are often used as
covariates. After identifying the covariates, the analysis of covariance (ANCOVA)
is used as the analysis method to test differences between the target treatment and
the comparator.

There are two main purposes for covariate adjustment in statistical analyses: (1)
To improve the credibility of the trial results by demonstrating that any observed
treatment effect is not accounted for by an imbalance in patient characteristics; and
(2) To improve statistical efficiency (Tu et al. 2000).

Covariates play a very important role in the design and analysis of clinical trials.
In the estimation of a treatment effect in a randomized trial, the role of covariates is
to adjust for any bias associated with covariate imbalance at baseline and to improve
the precision of the estimated treatment effect, independent of the nature of themodel
being fit to the data (Ford and Norrie 2002).

In this paper, we will discuss various functions of repeated baseline measure-
ments taken prior to randomization to be used as covariates in the analysis of treat-
ment group differences of post randomization data. When there are more than two
baseline measurements there can be multiple functions of them that may be used
as covariates. Some functions are: mean, median, maximum, minimum, area under
the curve (AUC) and so on. Once the functions of the baseline measurements have
been calculated, each individually may be added to the ANOVA model, to produce
ANCOVA models. The post randomization data is then analyzed using both the
ANOVA and ANCOVA models to assess treatment group differences and mean-
square-error compared between the ANOVA and each of the ANCOVAmodels. The
covariate leading to the smallest MSE would be considered the best among all the
baseline covariates. We consider a hypertension clinical trial with diastolic blood
pressure as the continuous (dependent) response variable. We simulate DBP data on
subjects to reflect that of patients who have hypertension. Baseline diastolic blood
pressure is measured once a day for 8 consecutive days.
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2.4 Patterns of Data

We identify two classes of data patterns over the baseline run-in period. The patterns
may be linear or non-linear. For each class, we have three cases, respectively, for a
total of 6 cases. We design the clinical trial, baseline, post-baseline, and discuss how
to simulate data sets for the 6 cases.

We simulate a clinical trial in hypertension that has three phases: (1) A baseline
run- in period of 8 days in length; (2) Then randomization of patients into a drug group
and a placebo group; and (3) Then a treatment period of 6 months. We assume that
diastolic blood pressure is measured on each patient once on each day of baseline,
and then monthly, up to six-months during the treatment period. DBP measured
during the baseline run-in period provides data for possible covariates, whereas DBP
measured during the treatment period provides response data that may be analyzed
for assessing treatment differences.

We describe below the patterns of baseline run-in data and patterns of treatment
period data we simulate and analyze to address the objectives of this study.

2.4.1 Baseline Run-in, Pre-randomization Period

In general, data over the baseline run-in period may exhibit linearity or non-linearity
over the number of days. Then linearity or non-linearity may reflect different forms.
Linearity could reflect constancy, strictly increasing or strictly decreasing over the
baseline run-in period. Non-linearity could manifest in an oscillatory manner, or
as a mixture of linear and non- linear components or in a random-walk fashion.
These cases cover practically all baseline run-in data behavior in clinical trials in
hypertension.

2.4.1.1 Linear Cases

For the linear patterns we consider three cases: (1) the mean of the data on patients
on each day is constant over the number of days; (2) the mean of the data on patients
on each day reflects an upward trend over the number of days; and (3) the mean of
the data on patients on each day reflects a downward trend over the number of days.

Case 1: The Data Are Constant Over the Number of Days

When plotting the baseline run-in data by day, although the data per day reflects
inter- subject variation, the means of the data across days are constant (slope of least
squares line is not significantly different from 0).
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Case 2: The Data Reflect an Upward Trend Over the Number of Days

When plotting the baseline run-in data by day, although the data per day reflects
inter- subject variation, the means of the data across days reflects an upward trend
(slope of least squares line is positive and significantly different from 0).

Case 3: The Data Reflect a Downward Trend Over the Number of Days

When plotting the baseline run-in data by day, although the data per day reflects
inter- subject variation, the means of the data across days reflects a downward trend
(slope of least squares line is negative and significantly different from 0).

2.4.1.2 Non-linear Cases

We also consider three non-linear cases: (1) the mean of data on each baseline run-in
day is periodic as described by the sine function; (2) a mixture of all linear cases
and the periodic non-linear case as one data set; and (3) the mean of data on each
baseline run-in day acts as a random walk, with no specific trend.

Case 4: The Data Are Periodic as Reflected by the Sine Function

When plotting the baseline run-in data by day, although the data per day reflects
inter-subject variation, the means of the data across days reflects periodicity, for
example X�Sin(D), where X is the baseline data and D is the day of the baseline
run-in period when measurements are made.

Case 5: The Data Reflect Mixed Linear and Non-linear Data

Based on the data sets generated before reflecting constant, linear increase, linear
decrease and oscillatory as per the Sine function, we randomly select 20–25% sub-
jects from these four baseline data sets separately, and combine them into onemixture
data set. This is a nonparametric data set with mean and variance computed using
the existing simulated data.

Case 6: The Data Derive from a Random Walk

When plotting the baseline run-in data by day, although the data per day reflects
inter- subject variation, the means of the data across days have no specific or obvious
trend and move as a random walk.
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2.4.2 Post Randomization Treatment Period

At the end of the baseline run-in period, for all cases (three linear and three non-
linear), we randomize all subjects into a pseudo-placebo group (referred to as
Placebo) and a pseudo-treatment group (referred to as Treatment) in balanced fashion
(50 per arm). Data are then simulated over a six-month period that mimics subjects in
the Treatment group receiving an anti-hypertensive drug and subjects in the Placebo
group receiving a matching placebo. There will be 100 post-baselines at each month-
for a total of 600 post-baseline DBP measurements over the six months treatment
period.

We assume that there is a gradual decrease over the six months treatment period in
both the Placebo andTreatment groups. For the Placebo group,we assumemeanDBP
to be 90 mmHg at the end of the treatment period-an average decrease of 5 mmHg
in DBP over the six months treatment period. For the Treatment group, we assume
mean DBP to be 80 mmHg at the end of the treatment period-an average decrease
of 15 mmHg in DBP over the six months treatment period. Note that in Sect. 2.5.4,
the mean of the distribution of DBP just prior to randomization (after measurement
on baseline run-in day 8), is above or around 95 mmhg, for the three linear and three
non-linear cases considered over the baseline run-in period.

2.5 Simulation

2.5.1 Ranges and Size of the Cohort Over Baseline Run-in

The size of the cohort over the baseline run-in period is chosen to be 100 patients.
These patients will be randomized to two groups in balanced fashion at the end of
the baseline run-in period and treated for 6 months. Patients in one group will be
assumed to receive an antihypertensive drug; whereas patients in the other group
will be assumed to receive a placebo. Fifty patients per group will provide a power
of approximately 99% to detect 10 mmHg greater reduction in the treatment group
than in the placebo group by the end of six months of treatment. So 100 patients
participating in the baseline run-in period should provide sufficient power to detect a
clinicallymeaningful difference between an antihypertensivemedication andplacebo
over 6 months of treatment.

We assume that the screening range of DBP on each subject is (80,120]. As pre-
viously mentioned this allows patients with pre-hypertension, stage 1 hypertension
or stage 2 hypertension to be studied. Under the baseline period, no matter what the
DPB a subject has during the baseline time, as long as the DBP is above 80 mHg
and below 120 mmHg at the last day of baseline period, we recruit the subject into
the six-month treatment phase of the trial.

In the whole simulation, we assume homogeneous variance, with a standard devi-
ation�8.7. The literature review showed that the standard deviation (SD) of DBP
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varies from 3 to 17, with most SDs are around 7–10. So we choose 8.7 in order to
make sure the SD is in the median range (Van der Lee et al. 1999; Ukena et al. 2011;
Tu et al. 2000; Ford and Norrie 2002; Appel et al. 1997, 2010; Mizuno and Mon-
teiro 2013; Nussbaumerov and Rosolov 2013; Bakx et al. 1999; Weber et al. 2013;
ACCORD Study Group 2010; Hansson et al. 1998; Rdzanek et al. 2006; Kramoh
et al. 2011).

2.5.2 Baseline Run-in, Pre-randomization Period

2.5.2.1 Linear Cases

We simulate baseline run-in data (prior to randomization and treatment intervention
onset) that would be representative of a hypertensive cohort of patients before begin-
ning treatment with an anti-hypertensive medication. The size of the cohort is 100
patients. We assume that their diastolic blood pressure is measured once (in practice
this may be the average of 3 consecutive measurements 5 min apart) each day for 8
consecutive days at around the same time each day (say around 10:00 AM). We fur-
ther assume that the DBP at the time of measurement ranges from 80 to 120 mmHg,
the mean of each baseline day follows the three linear cases scenario and SD =8.7.
For simulation purposes, we assume the DBP distribution is normal.

Specifically, let Xi j denote the random variable baseline run-in DBP on the ith
day of the jth patient. The baseline run-in data reflecting linearity can be simulated
by assuming that means over patients follow a straight line over the baseline run-in
days. That is, DBP, Xi j , of the jth patient on the ith day, is of the form:

Xi j � αi + βi Di + i j (2.1)

where i=1, 2,…,8; j=1, 2,…100;αi is the intercept at dayDi,β i is slopeparameter at
dayDi, and where ij follow a normal distribution with mean 0 and standard deviation
σ i. The intercepts and slope are chosen to reflect the three cases of linearity such that
the Xij s are constrained to the (80; 120] interval.

Case 1: The Data Are Constant Over the Number of Days

Here we assume the mean to be 95 with the standard deviation 8.7 on days�1, 2,
…, 8; Xij ∼N (95, σ 2

i ) and SD =8.7.

Case 2: The Data Reflect an Upward Trend Over the Number of Days

Here we assume the mean E(X) is determined from E(X)�80+slope ∗ (Day − 1)
for Day�1, 2, …, 8; where slope =(95 − 80)/7, Xij ∼N (E(X), σ 2

i ) and SD =8.7.
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Based on the different means across days, we have 8 normal distributions for
observations on those days such that, for each day, themean is increasing as compared
to previous days, and starts at 80 mmHg on day 1 and steadily rises to 95 mmHg on
day 8.

Case 3: The Data Reflect a Downward Trend Over the Number of Days

Here we assume the mean E(X) is determined from E(X)�120− slope ∗ (Day − 1)
for day�1, 2, …, 8; where slope=(120 − 95)/7, Xij ∼N (E(X), σ 2

i ) and SD =8.7.
Based on the different means across days, we have 8 normal distributions for

observations on those days such that, for eachday, themean is decreasing as compared
to previous days, and starts at 120 mmHg on day 1 and steadily drops to 95 mmHg
on day 8.

For each of the three linear cases above we simulate data on 100 subjects from
multivariate normal distribution (for each subject). This gives 100 simulated obser-
vations for each of 8 days, for a total of 800 simulated baseline run-in observations
from each case and each simulation run. In performing the simulation, individual
data points were rounded to the nearest integer and constrained to the interval (80;
120].

It should be noted constraining DBP to the (80,120] interval means that DBP
chosen randomly from the distributions that lie outside the interval are rejected. This
is similar to applying inclusion/exclusion criteria in a hypertension clinical trial in
identifying the population to be studied. For the three linear cases, we assume the
DBP of all subjects will be above or around 95 mmhg, and all subjects will be
eligible to be randomized to either treatment or placebo at the end of the baseline
run-in period.

2.5.2.2 Non-linear Cases

For non-linear case, we have similar assumptions. We simulate baseline run-in data
for a cohort of 100 patients. We assume that their diastolic blood pressure (DBP) is
measured once (in practice this may be the average of 3 consecutive measurements
5 min apart) each day for 8 consecutive days at around the same time each day (say
around 10:00 AM). DBP at the time of measurement ranges from 80 to 120 mmHg.
Since we have three different scenarios on each non-linear case, the baseline Xij

will have three different forms, respectively. We use the same standard deviation
(SD =8.7) as we did in the linear cases in order to maintain the same variability
among data. All the baseline DBP measurements will be in the (80; 120] interval
(any simulated DBP outside the interval is excluded). We still assume that the DBP
distribution is normal.
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Case 4: The Data Are Periodic as Reflected by the Sine Function

Here we assume the mean of DBP over the baseline run-in period oscillates as a sine
function with standard deviation 8.7 on days�1, 2, …, 8; where slope = sin(day −
1), the mean E(X)� (a+b)/2+ ((a − b)/2) ∗ slope, i =1, 2, …, 8, j =1, 2, …, 100,
and where a =80 is the lower bound, b =120 is the upper bound.

Case 5: The Data Reflect Mixed Linear and Non-linear Data

Here we use the 4 data sets that have been generated above and combine to form
a new data set: randomly choose subjects from case 1 through case 4 datasets. The
new dataset will have 100 subjects with 25% randomly selected from each dataset,
respectively. This dataset has no specific data trend across days.

Case 6: The Data Derive from a Random Walk

Here we assume the mean of baseline period behaves as a random walk process with
standard deviation of 8.7 on days�1, 2, …, 8. The mean for each day may be any
number from 80 to 120 mmHg. Xij ∼N (E(X), σ 2

i ) and SD =8.7.

2.5.3 Post Randomization Treatment Period

For the linear and the non-linear cases, we randomize all subjects at the end of the
baseline run-in period into a placebo group or a treatment group in balanced fashion
(50 per arm). Data are then simulated over a six-month period so that there will be
100 post-baseline DBP measurements at each month-for a total of 600 post-baseline
DBPs over the six-month treatment period.

For the Placebo group, we assume mean DBP to be 90 mmHg at the end of the
treatment period for all six linear and non-linear baseline cases: an average decrease
of 5 mmHg in DBP over the six-month treatment period. For the Treatment group,
we assume mean DBP to be 80 mmHg at the end of the treatment period for all
six cases: an average decrease of 15 mmHg in DBP over the six-month treatment
period. Note that the mean of the distribution of DBP just prior to randomization
(after measurement on baseline run-in day 8), is around or above 95 mmHg, for six
baseline run-in period cases.

Let DBP Yqij denote the post-baseline run-in blood pressure measurements, q
index intervention group: q �1 (Placebo), 2 (Treatment), i�1, 2, …, 6; j�1, 2, ….
The data sets for the Treatment group and the Placebo group are simulated assuming:

• Y 1ij ∼N (μ1i , σ 2
1 ), The Placebo group, and i�1, 2, …, 6, j�1, 2, …, n1

• Y 2ij ∼N (μ2i , σ 2
1 ), The Treatment group, and i�1, 2, 6, j�1, 2, …, n2
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Where σ 1 �σ 2 �8.7 and μ1i=Day 8 − (5/6) ∗ i and μ2i= Day 8 − (15/6) ∗ i,
i �1, 2, 3, 4, 5, 6.

2.5.4 Data Simulation Process

2.5.4.1 Variance-Covariance Structure

In the analysis of data from clinical trials with repeated measures, two main variance
covariance structures are usually considered: autoregressive (AR(1)) and compound
symmetry (CS). Since there are 14 (8 over the baseline run-in period and 6 post
over the treatment period) repeated DBP measures in the 6 cases, we also consider
use AR(1) and CS, with different correlation among these DBP variables. The two
variance-covariance structures are:

AR(1):

∑
� σ 2

⎛

⎜⎜⎜⎝

1 · · · ρ14

...
. . .

...

ρ14 · · · 1

⎞

⎟⎟⎟⎠

CS:

∑
� σ 2

⎛

⎜⎜⎝

1 · · · ρ

...
. . .

...
ρ · · · 1

⎞

⎟⎟⎠

In our cases, we have 14 repeated measures, assume the variance-covariance
structures are AR(1) and CS, then, the mathematical expression is

AR(1):
ρ = 0.9, or ρ = 0.5, or ρ = 0.1,

∑
� 8.72

⎛

⎜⎜⎜⎝

1 · · · ρ14

...
. . .

...

ρ14 · · · 1

⎞

⎟⎟⎟⎠

CS:
ρ = 0.9, orρ = 0.5, or ρ = 0.1,
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∑
� 8.72

⎛

⎜⎜⎝

1 · · · ρ

...
. . .

...
ρ · · · 1

⎞

⎟⎟⎠

For the 6 cases, let ρ =0.9, 0.5 and 0.1, separately, there are three AR (1)s and
three CSs with the different ρ. At the end, we have 6 variance-covariance matrix for
generating data under multivariate normal distribution for the 6 cases, which will be
36 datasets.

2.5.4.2 Baseline and Post-baseline Data Simulation

The DBPs are distributed as truncated multivariate normal distribution. DBP data
are simulated for 100 subjects at each of the baseline period of 8 days and six-month
treatment time, one DBPmeasurement per each subject for each day and eachmonth.

With two kinds of variance-covariance structures (matrices), AR (1) and CS,
we use the truncated multivariate normal R code package to generate the 6 cases
DBP datasets, where DBPs are randomly chosen from the distributions. DBPs that
lie outside the interval (80; 120] are rejected and the distributions resampled until
the requisite numbers of DBPs lying in the interval are obtained. This mimics the
screening of patients so that those satisfying the inclusion DBP criteria only are
allowed to enter the protocol.

1. Baseline settings

The length of the baseline run-in period is 8 days. Themean and standard deviation
(SD) at each day as specified below:

(1) Constant mean at each day, mean�95, SD�8.7, n�100, day�1, 2, …, 8;
(2) Increasing mean data set: mean =80+k ∗ (day − 1), k =(95 − 80)/7, SD =8.7,

n =100, day�1, 2, …, 8;
(3) Decreasing mean data set: mean =120 − k ∗ (day − 1), k =(120 − 95)/7, SD

=8.7, n=100, day�1, 2, …, 8;
(4) Sine trend mean data set: mean =(a+b)/2+ ((a − b)/2) ∗ k, k =sin(day − 1),

a=80, b=120,SD =8.7, n=100, day�1, 2, …, 8;
(5) Mix mean data set: choose 100 subjects from the four generated datasets; the

probability of chosen from each dataset is 25%.
(6) Random walk mean data set: mean�uniform (80,120). Choose 8 means and

SD = 8.7, n =100, day�1, 2,…, 8;

2. Post-baseline settings

The length of the treatment period is 6 months for the 6 cases-3 linear cases
and 3 non-linear cases. We have six DBP measurements for each subject, one per
month that we need to simulate. The 100 subjects in the baseline run-in period are
randomly assigned in equal numbers to the Placebo group or to the Treatment group
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just after the last observation on Day 8 (considered as Baseline for the treatment
period). We simulate data over the six-month treatment period so that the average
difference between the treatment group and placebo group is 10 mmHg at the end of
the 6 months treatment period.

The DBP for each subject at the beginning of the treatment period is the subject’s
DBP at Day 8 of the baseline run-in period.

(1) Simulate Group One-Placebo

We assume that a linear average decrease of 5 mmHg in the placebo group occurs
over the six-months treatment period. This is equivalent to assuming that the decrease
is described by a constant slope of 5/6. That is, the mean of placebo group observa-
tions at month M is [Day8 − (5/6)M] mmHg. The standard deviation at each month
is assumed to be 8.7.

(2) Simulate Group Two-Treatment

We assume that a linear average decrease of 15 mmHg in the treatment group
occurs over the six-months treatment period. This is equivalent to assuming that the
decrease is described by a constant slope of 15/6. That is, the mean of treatment
group observations at month M is [Day8 − (15/6)M]mmHg. The standard deviation
at each month is assumed to be 8.7.

2.5.4.3 Merge Data from Baseline Run-in and Treatment Periods

We create 36 separate merged data sets that derive from the behavior of the DBP
means over the baseline run-in period: constant, increasing, decreasing, sine-trend,
mixed-means and random walk and the 6 variance-covariance structures. Each data
set will have the variables: Subject ID No., DBP1, DBP2, DBP3, DBP4, DBP5,
DBP6, DBP7, DBP8, Group, DBP9, DBP10, DBP11, DBP12, DBP13, and DBP14,
where Subject ID No. is a unique subject identifier, DBP1 through DBP8 are the
DBP observations on days 1 through 8 of the baseline run-in period, respectively;
Group identifies the treatment period intervention group (Placebo or Treatment) into
which subjects were randomized just after the day 8 observations; and DBP9 through
DBP14 are the DBP observations at months 1 through 6 over the treatment period,
respectively.

2.5.4.4 Compute Covariates and Final Datasets

For each of the baseline run-in data sets we identify 11 covariates as functions of the
DBP observations for each subject over baseline run-in days 1 through 8. These are:

• Mean of the DBP observations over days 1 through 8 (MEAN)
• Last DBP observation-which occurs at day 8 (LO)
• First DBP observation-which occurs at day 1 (FO)
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• Median of DBP observations over days 1 through 8 (MO)
• Maximum DBP observation over days 1 through 8 (MAX)
• Minimum DBP observation over days 1 through 8 (MIN)
• Area under the DBP observations time curve over days 1 through 8 (AUC)
• Average of the minimum and maximum over days 1 through 8 (Mm)
• Relative Fluctuation in DBP [(Max-Min)/Mean] over days 1 through 8 (Rate)
• Standard deviation of DBP observations over days 1 through 8 (SD)
• Coefficient of variation of DBP [Mean/SD] over days 1 through 8 (CV)

It is noted that other functions of the DBP observations over the baseline run-in
period are possible. For example, for the observations generated, we could compute
the mean of the observations on days 8 and 7; on days 8, 7 and 6; on days 8, 7, 6,
and 5; etc. This could possibly shed some insight on how long should be the baseline
run-in period.

Finally, after we compute the 11 covariates on each subject for each dataset,
separately, the data sets for statistical assessment of the best covariate are obtained
by adding the individual subject covariates to the data sets generated previously. The
final data sets for statistical assessment thus contain the original simulated DBP data
and the computed covariates and may be studied further.

2.6 Statistical Assessment of Covariates

2.6.1 Models Considered

The primary objective of this research is to identify what function of the baseline
run-in DBP data is best for use as a covariate in the comparative analysis of DBP
over the post-baseline run-in treatment period. To do this we consider two situations:

(1) The usual analysis of variance (ANOVA) model that includes fixed effects that
capture the design sources of variation other than a covariate:

Yi jk � μ + τi + π j + (τ ∗ π )i j+i jk (2.2)

where ijk ∼N (0, σ 2), Yi jk is DBP of the kth subject in intervention group i at month
j over the post-baseline run-in period, μ is an effect common to all subjects, τ i is the
fixed effect of intervention (Placebo or Treatment), π j is the fixed effect of month
(1, 2, 3, 4, 5, 6),(τ ∗ π )ij is the fixed interactive effect of intervention and time, and
ijk is the measurement error term in observing Yijk .

(2) The analysis of covariance (ANCOVA) model that includes the fixed effects in
the ANOVA model (2) but also includes a covariate:
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Yi jk � μ + γik + τi + π j + (τ ∗ π )i j+i jk (2.3)

where ijk ∼N (0, σ 2), and in addition to the fixed effects identified in the ANOVA
model (2), γ ik is one of the eleven covariates (identified above) on the kth subject in
intervention (Placebo or Treatment) group i (1 for Placebo, 2 for Treatment).

If a covariate has analysis utility, then the MSE from the ANCOVA model (3)
has to be less than the MSE from the ANOVA model (2). Thus the best covariate to
use in the comparative analysis of the post-baseline run-in data is the one that has
the greatest reduction in MSE. The adjusted correlation (R ADJ) from the ANCOVA
model (3) is also informative as it is ameasure of the strength of the linear relationship
the covariate has with the response (DBP) variable.

We considered two classifications of models used for statistical analysis of the
post- baseline run-in DBP data; those with treatment-by-time interaction and those
without treatment-by-time interaction. For those with treatment-by-time interaction,
we consider the repeated measures framework linear model and the longitudinal data
analysis model, each with and without a covariate. For those without treatment-by-
time interaction, we consider the repeated measures framework linear model and the
longitudinal data analysis model, each with and without a covariate. In addition, we
present analysis results of DBP averaged across months for each patient (Models
23). In describing the models below, we use English rather than Greek symbolism
and suppress the error term.

Class 1: Statistical Analysis Models with Treatment-by-Time interaction

• Models 11: Repeated measures analysis models of DBP

– Model 111 : DBP = trt + time + trt * time
– Model 112 : DBP =covariate +trt +time +trt * time

• Models 12: Longitudinal data analysis models of DBP

– Model 121 : DBP = trt + time + trt * time
– Model 122 : DBP = covariate + trt + time + trt * time

Class 2: Statistical Analysis Models without Treatment-by-Time interaction

• Models 21: Repeated measures analysis models of DBP

– Model 211: DBP� trt + time
– Model 212: DBP�covariate+ trt+ time
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• Models 22: Longitudinal data analysis models of DBP

– Model 221: DBP� trt + time
– Model 222: DBP�covariate+ trt+ time

• Models 23: Analysis models of mean of post-DBP as response variable

– Model 231: Mean of postDBP� trt
– Model 232: Mean of postDBP�covariate+ trt

2.6.2 Analysis Strategy

Our analysis strategy is based upon statistically analyzing simulated data sets for
each of the 36 settings produced by the 6 cases of DBP mean behavior over the
baseline run-in period and the 6 variance-covariance structures, using the 10 models
described in the previous section, and then replicating 1000 times.

For each of these simulated data sets, we compute the 11 covariates that are
functions of the baseline run-in data. We then statistically analyze each data set by
running the 10models described in the previous section and capture in tables features
of the output from these analyses.

The features or analysis statistic captured in tables are: MSE from the repeated
measures analysis linear model (ANOVA) without covariate, MSE for repeated mea-
sures analysis linear model (ANCOVA) with covariate (MSE1), the adjusted correla-
tion (R ADJ) from the ANCOVAmodel, the AIC from the longitudinal data analysis
model without covariate, and the AIC1 from the longitudinal data analysis model
with covariate. Finally, we list in summary tables the means of theMSEs, the RADJs
and the AICs for the 1000 simulations.

We also capture the P-value for the treatment-by-time interaction (P_INT) from
the models as a type of check on model validity. Since we simulated the data sets
such that there were constant declines over the six-month treatment period in each
group, with a significantly greater decline of 10 mmHg in the treatment group than
in the Placebo group at 6 months, we should expect to see a statistically significant
treatment-by-time interaction; i.e. at the 5% Type I error level, 95% of the P INT<
0.05.

We summarize our assessment of the best choice of a covariate for the models
with treatment-by-time interaction separate from the models without treatment-by-
time interaction and contrast the findings from each. Readers may determine on
their own whether a model with treatment-by-time interaction or a model without
treatment-by-time interaction is more appropriate for their research goal as well as
experimental design.
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Table 2.1 Linear case covariate summary: AR(1)

Model Best Cov. MSE MSE1 R.adj AIC AIC1

Case 1 Lin.Con

11/12 LO 42.60 28.21 0.44 3565 3503

21/22 LO 43.49 29.22 0.42 3606 3601

23 LO 30.83 16.57 0.48 NA NA

Case 2 Lin.Inc

11/12 LO 43.94 29.25 0.46 3572 3512

21/22 LO 44.91 30.34 0.44 3616 3614

23 LO 32.09 17.53 0.48 NA NA

Case 3 Lin.Dec

11/12 LO 36.61 26.15 0.37 3520 3469

21/22 LO 37.38 27.01 0.34 3558 3557

23 LO 25.42 15.08 0.42 NA NA

2.6.3 Analysis Results

In this section, we present the simulation results from the 6 cases under different
models with separate variance-covariance structures.

This section has two subsections, linear cases and non-linear cases. In each sub-
section, we first present the results under AR (1) with correlation is 0.9. Secondly,
we present the results under CS with correlation of 0.9. Here we only show the best
covariate, which gives the smallest MSE under each case for each model. Other
results and details may be found in the Appendix.

In reviewing the results presented in tabular form, the following notation and
conventions are helpful:

MSE From the repeatedmeasures analysis linearmodel (ANOVA)without covari-
ate

MSE1 From the repeated measures analysis linear model (ANCOVA) with covari-
ate

R ADJ The adjusted correlation from the ANCOVA model
AIC From the longitudinal data analysis model without covariate
AIC1 From the longitudinal data analysis model with covariate
NA Not Applicable

2.6.3.1 Linear Cases

Autoregressive AR (1) Covariance Structure

The results for AR (1) with Correlation Coefficient�0.9 appear in the Table 2.1.
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Table 2.2 Linear case covariate summary: CS

Model Best Cov. MSE MSE1 R.adj AIC AIC1

Case 1 Lin.Con

11/12 AUC 37.88 8.40 0.82 3245 2979

21/22 AUC 39.51 10.28 0.78 3372 3126

23 AUC 31.76 2.30 0.93 NA NA

Case 2 Lin.Inc

11/12 AUC 30.17 8.49 0.81 3223 2987

21/22 AUC 31.91 10.43 0.77 3353 3351

23 AUC 23.96 2.30 0.92 NA NA

Case 3 Lin.Dec

11/12 AUC 11.74 7.59 0.61 3035 2921

21/22 AUC 13.03 8.91 0.55 3134 3063

23 AUC 6.16 2.01 0.70 NA NA

For the three, linear cases under AR (1), overall, the MSEs for models with
interaction are smaller than the MSEs for models without interaction. With the high
correlation of 0.9, the last observation (LO) is the covariate that gives the greatest
reduction in MSE.

For the post mean DBP model 23, when the correlation is close to 0 (=0.1), the
MSEs from all covariate models are similar and smaller than the MSEs from all
covariate models for the other two correlations. This means that the mean of post-
DBP has no relation with baseline. We therefore summarize in the text of this paper
the results only for the highest correlation (=0.9). The other results appear in the
Appendix.

Under these two types of covariance structures, the longitudinal model (class
1), with treatment-by-time interaction, leads to conclusions about the best covariate
based on AICs that are similar to those from the linear models with interaction based
onMSEs. For example, if the LO is the best covariate based on the linear model with
smallest MSE, then LO is also the best covariate based on the smallest AIC from the
longitudinal model. However, for the models without treatment-by-time interaction
term, even though the ANCOVA analysis shows LO is the best covariate, MEAN
is the best covariate from the longitudinal model, based upon the smallest AIC (see
Appendix).

Compound Symmetry CS Covariance Structure

The results for CS with Correlation Coefficient�0.9 appear in the Table 2.2.
For the three linear cases under CS, overall, theMSEs from the linear models with

interaction are smaller than the MSEs from the linear models without interaction.
When we have high correlation among the DBP over the entire trial, AUC is the
covariate that gives the smallest MSE and largest adjusted R. The best covariate
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Table 2.3 Linear case
summary

Model Case 1 Case 2 Case 3

Covariance: AR(1)

11/12 LO LO LO

21/22 LO LO LO

23 No specific No specific No specific

Covariance: CS

11/12 AUC(Mean) AUC(Mean) AUC(Mean)

21/22 AUC(Mean) AUC(Mean) AUC(Mean)

23 AUC(Mean) AUC(Mean) AUC(Mean)

determined from the models with or without the treatment-by-time interaction term
are consistent with each other.

For the model with response being the mean of post-DBP, under the CS structure,
AUC is the best covariate regardless of the correlation coefficient considered. Details
are in the Appendix.

For the longitudinal model with treatment-by-time interaction term, the best
covariates based on AICs for the three linear cases are very consistent with those
from the ANCOVA models based on MSEs. The same consistency is not seen when
the treatment-by-time interaction is excluded. In case 1, Max as a covariate gives the
smallest AIC, so does Max in case 3 and Min in case 2. The Appendix may be seen
for details.

Linear Cases Summary

We have assessed the best covariate for the three linear cases of baseline run-in
data using the analysis models of treatment period data assuming two covariance
structures with three levels of correlation (ρ =0.1, 0.5 and 0.9). For smaller values of
correlation there is no clear advantage of one covariate over another (see Appendix).
The Table 2.3 summarizes the assessment of the best covariate when the DBP data
are highly correlated (ρ =0.9).

Summary of Best function of baseline as covariates for 3 linear cases in Table 2.3.
From this table the findings are:

1. Under Models 11/12 and 21/22 and AR (1) with high correlation, the last obser-
vation (LO) is the best covariate. For Model 22, the longitudinal models without
interaction term, mean gives the smallest AIC, which is not consistent with the
corresponding ANCOVA model.

2. Under Models 11/12 and 21/22 and CS with high correlation, AUC (or MEAN
as its value is close to that of AUC because the single daily observations taken
over the baseline run-in period were a day apart) is the best covariate and has the
larger adjusted R Square.
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Table 2.4 Non-Linear case covariate summary: AR(1)

Model Best Cov. MSE MSE1 R.adj AIC AIC1

Case 4 Non-Lin.Sine

11/12 LO 24.13 22.61 0.17 3387 3378

21/22 LO 24.59 23.09 0.15 3412 3413

23 LO 14.58 13.16 0.17 NA NA

Case 5 Non-Lin.Mix

11/12 MAX 36.51 32.10 0.23 3704 3648

21/22 MAX 37.19 32.82 0.21 3720 3696

23 MAX 25.36 21.12 0.20 NA NA

Case 6 Non-Lin.RW

11/12 LO 33.05 25.79 0.81 3511 3472

21/22 LO 86.27 79.16 0.45 4191 4190

23 LO 21.65 14.50 0.49 NA NA

ForModel 22, the longitudinal models without interaction term,MAX as a covari-
ate gives the smallest AIC in case 1,MAX in case 3 also gives the smallest AIC, while
MIN in case 2 gives the smallest AIC, they are not consistent with the corresponding
ANCOVA models. (see Appendix).

3. Under Model 23 for post-mean DBP with AR (1), no covariate is preferred to
another.

4. Under Model 23 with CS, AUC is the best covariate.

2.6.3.2 Non-linear Cases

Autoregressive AR (1) Covariance Structure

The results for AR (1) with Correlation Coefficient�0.9 appear in the Table 2.4.
For the three, non-linear cases under AR (1), overall, the MSEs from the models

with treatment-by-time interaction are smaller than the MSEs from the models with-
out treatment- by-time interaction; the greater is the correlation, the smaller is the
MSE and the larger is the Adjusted R square. The last observation (LO) as covariate
gives the smallest MSE and the largest adjusted R Square in non-linear cases 4 and 6,
and the maximum (MAX) as a covariate gives the smallest MSE and largest adjusted
R Square in non-linear case 5.

For model 23 where the mean of post baseline DBP is the response variable, we
observe the same results for the non-linear cases as we did for the linear cases under
AR (1). Correlation and MSE behave monotonically; i.e. the smallest correlation
leads to the smallest MSE and the largest correlation leads to the largest MSE.
Further no covariate is preferred to another and the reduction in MSE by adding any
covariate to the ANOVA model is near zero.
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Table 2.5 Non-linear case covariate summary: AR(1) special case

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 86.27 0.40 86.09 0.35 76.43 0.34 76.43

Mean 82.98 0.42 86.00 0.35 76.46 0.34 76.46

LO 79.16 0.45 85.56 0.35 76.47 0.34 76.47

For non-linear cases and AR (1), the results from the longitudinal model with
treatment- by-time interaction are consistent with those from their corresponding
ANCOVA models, respectively. The best covariate from ANCOVA has the small-
est AIC. For the longitudinal model without interaction term, the results are not
consistent with the results from ANCOVA model.

Actually, under AR(1), in model 11/12, model 21/22 and model 23, no matter
what the correlation is, the MSEs within the same correlation are similar-which says
that no covariate improves precision. The MSEs from LO and MAX are relatively
smaller among all covariates according to each case.

Specifically, for the random walk case 6 and the model without interaction term,
correlation andMSEs behavemonotonically. Regardless of the size of the correlation,
MSEs within the same correlation are similar. Further, for the smallest correlation,
adding a covariate to the ANOVA model virtually has no effect on the MSE. This
result seems opposite to results from model 11/12 and model 22 see Table 2.5.

Non-linear Case 6 for model without treatment-by-time interaction. In Table 2.5.

Compound Symmetry (CS) Covariance Structure

The results fromassuming compound symmetry covariance structurewith correlation
coefficient�0.9 appear in the Table 2.6.

For the three, non-linear cases under CS, overall, the MSEs from the models with
inter- action are smaller than the MSEs from the models without interaction, and the
greater is the correlation, the smaller is the MSE and the larger is the adjusted R
square. In model 11/12, model 21/22 and model 23, no matter what the correlation
is, the MSEs within the same correlation are similar which says that no covariate
improves precision. The AUC or Mean as covariates give the smallest MSE and
largest adjusted R Square for non-linear cases 4 and 6, and the maximum (MAX) as
a covariate gives the smallest MSE and largest adjusted R Square for non-linear case
5.
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Table 2.6 Non-linear case covariate summary: CS

Model Best Cov. MSE MSE1 R.adj AIC AIC1

Case 4 Non-Lin.Sine

11/12 AUC 9.42 7.80 0.63 2996 2938

21/22 AUC 10.71 9.10 0.57 3092 3068

23 AUC 3.68 2.06 0.73 NA NA

Case 5 Non-Lin.Mix

11/12 MAX 26.80 17.70 0.51 3477 3306

21/22 MAX 28.19 19.18 0.47 3531 3467

23 MAX 20.19 11.90 0.45 NA NA

Case 6 Non-Lin.RW

11/12 AUC 24.86 8.27 0.94 3186 2972

21/22 AUC 79.76 63.40 0.56 3372 2979

23 AUC 18.79 2,21 0.91 NA NA

Table 2.7 Non-linear case
summary

Model Case 4 Case 5 Case 6

Covariance: AR(1)

11/12 LO MAX LO

21/22 LO MAX LO

23 LO MAX LO

Covariance: CS

11/12 AUC(Mean) MAX AUC(Mean)

21/22 AUC(Mean) MAX AUC(Mean)

23 AUC(Mean) MAX AUC(Mean)

For non-linear longitudinal model with interaction term, the results are consis-
tent with their corresponding ANCOVA models, respectively. The best covariate
producing the smallest MSE also produces the smallest AIC. For the longitudinal
model without interaction term, best covariate results are inconsistent between the
ANCOVA model and the longitudinal model (see Appendix).

Non-linear Cases Summary

We have assessed the best covariate for the three non-linear cases of baseline run-in
data using the analysis models of treatment period data assuming two covariance
structures with three levels of correlation (ρ =0.1, 0.5 and 0.9). For smaller values of
correlation there is no clear advantage of one covariate over another (see Appendix).
The Table 2.7 summarizes the assessment of the best covariate when the DBP data
are highly correlated (ρ =0.9).

Summary of Best function of baselines as covariates for non-linear cases. In
Table 2.7.
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From this table the findings for the non-linear cases are:

1. The results are dissimilar across the three non-linear cases. Cases 4 and 6 yield
the same results while case 5 yields different results.

2. For case 4 and 6, under AR (1) the best covariate is LO; and under CS, the best
covariate is AUC (or Mean).

3. For case 5, with high correlation under AR (1) and CS,MAX is the best covariate
function of baseline and gives the smallest MSE.

4. For post-mean DBP as response under AR(1), all MSEs are similar under each
correlation, even though the MSE from LO is relatively smaller. It appears that
ANCOVA produces the same results as ANOVA when analyzing the mean of
Post-baseline DBP for all covariates considered. For the mean of Post-baseline
DBP as response under CS, the best covariate is AUC (or Mean) in case 4 and 6.
In case 5, Max is the best covariate.

2.7 Conclusions

Overall, the best function of 8 days of baseline run-in DBP for use as a covariate in
the statistical analysis of post-randomization DBP treatment effect data depends on
the pattern of the baseline run-in data, the strength of the correlation among DBP
measurements over time and the covariance structure of these observations. For
highly correlated DBP data in general, (1) the last observation (LO) in the baseline
run-in period is the best covariate underAR (1) and (2) the area under theDBP-by-day
curve (AUC) is the best covariate under CS.

There are practical implications from these findings regarding the design of a com-
parative efficacy trial in which covariance analysis of the efficacy data are planned.
Having multiple days of baseline run-in for the purpose of observing the primary
efficacy variable prior to randomization is not justified-if one can document that the
data exhibit high correlation and an AR (1) covariance structure; rather just take
one measurement prior to randomization. In the absence of such documentation,
using AUC based on multiple baseline measurements is expected to lead to covariate
efficiency gains beyond a single measurement prior to randomization.
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Appendix

This section includes all the result tables that we did not include in the body of the
chapter. A copy of the Appendix may be obtained by request from the first author.

The models used are:
Class 1: Statistical Analysis Models with Treatment-by-Time interaction

• Models 11: Repeated measures analysis models of DBP

– Model 111 : DBP � trt + time + trt ∗ time
– Model 112 : DBP � covariate + trt + time + trt ∗ time

• Models 12: Longitudinal data analysis models of DBP

– Model 121: DBP� trt + time+ trt*time
– Model 122: DBP�covariate+ trt+ time+ trt*time

Class 2: Statistical Analysis Models without Treatment-by-Time interaction

• Models 21: Repeated measures analysis models of DBP

– Model 211: DBP� trt + time
– Model 212: DBP�covariate+ trt+ time

• Models 22: Longitudinal data analysis models of DBP

– Model 221: DBP� trt + time
– Model 222: DBP�covariate+ trt+ time

• Models 23: Analysis models of mean of post-DBP as response variable

– Model 231: Mean of postDBP� trt
– Model 232: Mean of postDBP�covariate+ trt

See Tables 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20,
2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29, 2.30, 2.31, 2.32, 2.33, 2.34, 2.35,
2.36, 2.37, 2.38, 2.39, 2.40, 2.41, 2.42, 2.43, 2.44, 2.45, 2.46, 2.47, 2.48, 2.49, 2.50,
2.51, 2.52, 2.53, 2.54, 2.55, 2.56, 2.57, 2.58, 2.59, 2.60, 2.61, 2.62, 2.63, 2.64, 2.65,
2.66 and 2.67.



2 Choosing the Function of Baseline Run-in Data … 43

Table 2.8 Case 1 Model 21 (without interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 43.49 0.14 50.26 0.09 50.06 0.10 43.49

Mean 35.51 0.30 50.06 0.10 50.04 0.10 35.51

LO 29.22 0.42 49.40 0.11 50.04 0.10 29.22

FO 41.49 0.18 50.19 0.10 50.04 0.10 41.49

Median 35.99 0.29 50.08 0.10 50.04 0.10 35.99

MIN 35.32 0.30 50.09 0.10 50.04 0.10 35.32

MAX 36.90 0.27 50.11 0.10 50.05 0.10 36.9

AUC 35.9 0.29 50.11 0.1 50.04 0.1 35.9

Mm 35.25 0.3 50.07 0.1 50.04 0.1 35.25

Rate 43.17 0.15 50.18 0.1 50.04 0.1 43.17

SD 42.88 0.15 50.18 0.1 50.04 0.1 42.88

CV 43.17 0.15 50.18 0.1 50.04 0.1 43.17

Total—Min 29.22 49.4 50.04 29.22

Table 2.9 Case 1 Model 22 (longitudinal without interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1 MIN-AIC

Null 3606 4028 4059 3606

Mean 3544 4024 4060 3544

LO 3601 4030 4060 3601

FO 3580 4029 4060 3580

Median 3577 4029 4060 3577

MIN 3584 4029 4060 3584

MAX 3579 4029 4060 3579

AUC 3576 4029 4060 3576

Mm 3607 4029 4060 3607

Rate 3606 4029 4060 3606

SD 3607 4029 4060 3607

CV 3580 4029 4060 3580

Total—Min 3544 4024 4059 3544
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Table 2.10 Case 1 Model 21 (without interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 39.51 0.17 47.48 0.13 51.66 0.11 39.51

Mean 10.30 0.78 36.92 0.32 50.66 0.12 10.3

LO 15.13 0.68 43.28 0.21 51.47 0.11 15.13

FO 15.23 0.68 43.20 0.21 51.46 0.11 15.23

Median 10.54 0.78 37.60 0.31 50.82 0.12 10.54

MIN 11.87 0.75 40.08 0.27 51.18 0.11 11.87

MAX 11.87 0.75 39.98 0.27 51.22 0.11 11.87

AUC 10.28 0.78 37 0.32 50.68 0.12 10.28

Mm 10.78 0.77 38.16 0.3 50.94 0.12 10.78

Rate 38.28 0.2 47.16 0.14 51.64 0.11 38.28

SD 39.26 0.18 47.37 0.14 51.62 0.11 39.26

CV 38.11 0.2 47.13 0.14 51.64 0.11 38.11

Total—Min 10.28 36.92 50.66 10.28

Table 2.11 Case 1 Model 22 (longitudinal without interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1 MIN-AIC

Null 3372 3949 4075 3372

Mean 3224 3924 4074 3224

LO 3225 3925 4074 3225

FO 3117 3877 4068 3117

Median 3161 3901 4071 3161

MIN 3159 3900 4072 3159

MAX 3105 3870 4066 3105

AUC 3126 3882 4069 3126

Mm 3369 3949 4076 3369

Rate 3373 3950 4075 3373

SD 3369 3949 4076 3369

CV 3117 3877 4068 3117

Total—Min 3105 3869 4066 3105
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Table 2.12 Case 1 Model 23 AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 30.83 0.04 16.10 0.11 9.35 0.23 9.35

Mean 22.96 0.28 15.98 0.12 9.35 0.23 9.35

LO 16.57 0.48 15.30 0.15 9.34 0.23 9.34

FO 29.03 0.09 16.11 0.11 9.35 0.23 9.35

Median 23.44 0.27 16.00 0.12 9.34 0.23 9.34

MIN 22.76 0.29 16.01 0.12 9.35 0.23 9.35

MAX 24.38 0.24 16.03 0.11 9.35 0.23 9.35

AUC 23.35 0.27 16.03 0.11 9.35 0.23 9.35

Mm 22.7 0.29 15.98 0.12 9.35 0.23 9.35

Rate 30.75 0.04 16.1 0.11 9.34 0.23 9.34

SD 30.45 0.05 16.1 0.11 9.34 0.23 9.34

CV 30.75 0.04 16.1 0.11 9.34 0.23 9.34

Total—Min 16.57 15.3 9.34 9.34

Table 2.13 Case 1 Model 23 CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 31.76 0.02 19.26 0.07 10.89 0.19 10.89

Mean 2.32 0.93 8.63 0.58 9.89 0.26 2.32

LO 7.23 0.77 15.10 0.27 10.72 0.20 7.23

FO 7.34 0.77 15.02 0.28 10.71 0.20 7.34

Median 2.57 0.92 9.33 0.55 10.06 0.25 2.57

MIN 3.91 0.88 11.85 0.43 10.42 0.22 3.91

MAX 3.91 0.88 11.75 0.43 10.46 0.22 3.91

AUC 2.3 0.93 8.71 0.58 9.92 0.26 2.3

Mm 2.81 0.91 9.89 0.52 10.17 0.24 2.81

Rate 30.78 0.05 19.05 0.08 10.89 0.19 10.89

SD 31.77 0.02 19.26 0.07 10.87 0.19 10.87

CV 30.6 0.05 19.02 0.09 10.89 0.19 10.89

Total—Min 2.3 8.63 9.89 2.3
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Table 2.14 Case 1 Model 11 (with interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 42.60 0.16 49.88 0.10 49.62 0.11 42.6

Mean 34.55 0.32 49.68 0.11 49.60 0.11 34.55

LO 28.21 0.44 49.00 0.12 49.60 0.11 28.21

FO 40.58 0.20 49.80 0.10 49.61 0.11 40.58

Median 35.03 0.31 49.70 0.10 49.60 0.11 35.03

MIN 34.35 0.32 49.71 0.10 49.60 0.11 34.35

MAX 35.95 0.29 49.73 0.10 49.61 0.11 35.95

AUC 34.94 0.31 49.73 0.1 49.61 0.11 34.94

Mm 34.29 0.32 49.68 0.11 49.61 0.11 34.29

Rate 42.28 0.16 49.79 0.1 49.6 0.11 42.28

SD 41.98 0.17 49.79 0.1 49.6 0.11 41.98

CV 42.28 0.16 49.8 0.1 49.6 0.11 42.28

Total—Min 28.21 49 49.6 28.21

Table 2.15 Case 1 Model 12 (longitudinal with interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1 MIN-AIC

Null—with—interaction 3565 4025 4059 3565

Mean 3536 4025 4059 3536

LO 3503 4021 4059 3503

FO 3560 4026 4059 3560

Median 3538 4026 4059 3538

MIN 3535 4026 4059 3535

MAX 3542 4026 4059 3542

AUC 3538 4026 4059 3538

Mm 3535 4025 4059 3535

Rate 3566 4026 4059 3566

SD 3565 4026 4059 3565

CV 3566 4026 4059 3566

Total—Min 3503 4021 4059 3503
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Table 2.16 Case 1 Model 11 (with interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 37.88 0.21 46.33 0.15 51.04 0.12 37.88

Mean 8.43 0.82 35.68 0.35 50.03 0.13 8.43

LO 13.30 0.72 42.09 0.23 50.85 0.12 13.3

FO 13.40 0.72 42.01 0.23 50.84 0.12 13.4

Median 8.67 0.82 36.37 0.34 50.20 0.13 8.67

MIN 10.01 0.79 38.86 0.29 50.56 0.13 10.01

MAX 10.01 0.79 38.76 0.29 50.59 0.12 10.01

AUC 8.4 0.82 35.76 0.35 50.06 0.13 8.4

Mm 8.91 0.81 36.92 0.32 50.31 0.13 8.91

Rate 36.65 0.23 46 0.16 51.02 0.12 36.65

SD 37.63 0.21 46.21 0.16 51 0.12 37.63

CV 36.47 0.24 45.98 0.16 51.02 0.12 36.47

Total—Min 8.4 35.68 50.03 8.4

Table 2.17 Case 1 Model 12 (longitudinal with interaction) CS

Covariance AR(1)

Correlation 0.9 0.5 0.1 MIN-AIC

Null—with—interaction 3245 3933 4072 3245

Mean 2981 3853 4064 2981

LO 3097 3910 4072 3097

FO 3098 3909 4072 3098

Median 2991 3861 4065 2991

MIN 3034 3885 4069 3034

MAX 3034 3884 4069 3034

AUC 2979 3854 4064 2979

Mm 3000 3867 4066 3000

Rate 3243 3933 4073 3243

SD 3246 3934 4073 3246

CV 3242 3933 4073 3242

Total—Min 2979 3853 4064 2979
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Table 2.18 Case 2 Model 21 (without interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 44.91 0.18 50.40 0.10 50.00 0.10 44.91

Mean 36.80 0.33 50.15 0.10 49.99 0.10 36.8

LO 30.34 0.44 49.52 0.11 49.98 0.10 30.34

FO 43.82 0.20 50.33 0.10 49.99 0.10 43.82

Median 38.60 0.29 50.24 0.10 50.00 0.10 38.6

MIN 32.17 0.41 50.01 0.11 49.99 0.10 32.17

MAX 42.75 0.22 50.32 0.10 49.99 0.10 42.75

AUC 37.37 0.32 50.23 0.1 49.99 0.1 37.37

Mm 35.4 0.35 50.07 0.1 49.99 0.1 35.4

Rate 39.14 0.29 50.1 0.1 49.99 0.1 39.14

SD 38.06 0.3 50.07 0.1 49.99 0.1 38.06

CV 39.44 0.28 50.1 0.1 49.99 0.1 39.44

Total-Min 30.34 49.52 49.98 30.34

Table 2.19 Case 2 Model 22 (longitudinal without interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1 MIN-AIC

Null 3616 4029 4056 3616

Mean 3556 4025 4057 3556

LO 3614 4030 4057 3614

FO 3595 4030 4057 3595

Median 3566 4028 4057 3566

MIN 3590 4030 4057 3590

MAX 3582 4029 4057 3582

AUC 3597 4029 4057 3597

Mm 3593 4029 4057 3593

Rate 3598 4029 4057 3598

SD 3595 4030 4057 3595

CV 3573 4027 4056 3573

Total-Min 3556 4025 4056 3566
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Table 2.20 Case 2 Model 21 (without interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 31.91 0.30 48.15 0.18 54.06 0.12 31.91

Mean 10.46 0.77 39.16 0.33 53.19 0.13 10.46

LO 15.04 0.67 44.72 0.24 53.86 0.12 15.04

FO 15.29 0.66 45.49 0.22 53.92 0.12 15.29

Median 11.55 0.75 40.26 0.31 53.36 0.13 11.55

MIN 13.47 0.70 42.72 0.27 53.67 0.12 13.47

MAX 13.56 0.70 43.49 0.26 53.79 0.12 13.56

AUC 10.43 0.77 39.26 0.33 53.21 0.13 10.43

Mm 11.69 0.74 41.06 0.3 53.53 0.13 11.69

Rate 31.44 0.31 47.84 0.18 53.95 0.12 31.44

SD 31.37 0.31 47.33 0.19 53.9 0.12 31.37

CV 31.22 0.32 47.9 0.18 53.96 0.12 31.22

Total—Min 10.43 39.16 53.19 10.43

Table 2.21 Case 2 Model 22 (longitudinal without interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1 MIN-AIC

Null 3353 3976 4103 3351

Mean 3228 3956 4103 3228

LO 3231 3962 4103 3231

FO 3155 3920 4098 3155

Median 3202 3942 4101 3202

MIN 3114 3910 4097 3114

MAX 3160 3928 4099 3160

AUC 3351 3976 4103 3351

Mm 3351 3973 4103 3351

Rate 3350 3976 4104 3350

SD 3152 3920 4098 3152

CV 3222 3957 4100 3222

Total—Min 3114 3909 4096 3114
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Table 2.22 Case 2 Model 23 AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 32.09 0.05 16.21 0.11 9.33 0.23 9.33

Mean 24.10 0.28 16.03 0.12 9.33 0.23 9.33

LO 17.53 0.48 15.38 0.15 9.32 0.23 9.32

FO 31.23 0.08 16.21 0.11 9.33 0.23 9.33

Median 25.93 0.23 16.12 0.11 9.33 0.23 9.33

MIN 19.39 0.42 15.88 0.13 9.32 0.23 9.32

MAX 30.15 0.11 16.20 0.11 9.32 0.23 9.32

AUC 24.68 0.27 16.11 0.11 9.33 0.23 9.33

Mm 22.68 0.33 15.95 0.12 9.32 0.23 9.32

Rate 26.47 0.21 15.97 0.12 9.32 0.23 9.32

SD 25.38 0.25 15.95 0.12 9.32 0.23 9.32

CV 26.78 0.21 15.97 0.12 9.32 0.23 9.32

Total—Min 17.53 15.38 9.32 9.32

Table 2.23 Case 2 Model 23 CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 23.96 0.20 18.21 0.18 11.36 0.21 11.36

Mean 2.33 0.92 9.16 0.58 10.50 0.27 2.33

LO 6.99 0.76 14.82 0.33 11.18 0.22 6.99

FO 7.26 0.75 15.60 0.29 11.24 0.22 7.26

Median 3.45 0.88 10.28 0.53 10.68 0.26 3.45

MIN 5.40 0.82 12.78 0.42 10.99 0.24 5.4

MAX 5.50 0.81 13.56 0.38 11.11 0.23 5.5

AUC 2.3 0.92 9.26 0.58 10.52 0.27 2.3

Mm 3.59 0.88 11.09 0.5 10.84 0.25 3.59

Rate 23.67 0.21 17.99 0.19 11.28 0.22 11.28

SD 23.6 0.21 17.47 0.21 11.22 0.22 11.22

CV 23.44 0.22 18.05 0.18 11.29 0.22 11.29

Total—Min 2.3 9.16 10.5 2.3
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Table 2.24 Case 2 Model 11 (with interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 43.94 0.20 50.05 0.10 49.59 0.11 43.94

Mean 35.76 0.35 49.79 0.11 49.58 0.11 35.76

LO 29.25 0.46 49.15 0.12 49.57 0.11 29.25

FO 42.83 0.22 49.97 0.11 49.58 0.11 42.83

Median 37.57 0.31 49.88 0.11 49.59 0.11 37.57

MIN 31.09 0.43 49.65 0.11 49.58 0.11 31.09

MAX 41.76 0.24 49.96 0.11 49.58 0.11 41.76

AUC 36.34 0.34 49.87 0.11 49.59 0.11 36.34

Mm 34.35 0.37 49.71 0.11 49.58 0.11 34.35

Rate 38.11 0.3 49.74 0.11 49.58 0.11 38.11

SD 37.03 0.32 49.71 0.11 49.58 0.11 37.03

CV 38.42 0.3 49.74 0.11 49.58 0.11 38.42

Total—Min 29.25 49.15 49.57 29.25

Table 2.25 Case 2 Model 12 (longitudinal with interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1 MIN-AIC

Null—with—interaction 3572 4027 4058 3572

Mean 3544 4027 4059 3544

LO 3512 4023 4059 3512

FO 3570 4028 4059 3570

Median 3552 4027 4059 3552

MIN 3523 4026 4059 3523

MAX 3567 4028 4059 3567

AUC 3547 4027 4059 3547

Mm 3538 4026 4059 3538

Rate 3554 4027 4059 3554

SD 3550 4026 4059 3550

CV 3555 4027 4059 3555

Total—Min 3512 4023 4058 3512
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Table 2.26 Case 2 Model 11 (with interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 30.17 0.34 46.84 0.20 53.36 0.13 30.17

Mean 8.53 0.81 37.77 0.35 52.49 0.14 8.53

LO 13.14 0.71 43.38 0.26 53.16 0.13 13.14

FO 13.40 0.71 44.15 0.25 53.23 0.13 13.4

Median 9.63 0.79 38.88 0.34 52.66 0.14 9.63

MIN 11.57 0.75 41.36 0.29 52.97 0.13 11.57

MAX 11.66 0.74 42.13 0.28 53.10 0.13 11.66

AUC 8.49 0.81 37.87 0.35 52.51 0.14 8.49

Mm 9.77 0.78 39.69 0.32 52.83 0.14 9.77

Rate 29.69 0.35 46.53 0.21 53.26 0.13 29.69

SD 29.62 0.35 46.01 0.21 53.21 0.13 29.62

CV 29.46 0.36 46.58 0.2 53.27 0.13 29.46

Total—Min 8.49 37.77 52.49 8.49

Table 2.27 Case 2 Model 12 (longitudinal with interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1 MIN-AIC

Null—with—interaction 3223 3955 4099 3223

Mean 2988 3887 4092 2988

LO 3100 3936 4098 3100

FO 3104 3941 4099 3104

Median 3028 3899 4094 3028

MIN 3074 3921 4097 3074

MAX 3076 3927 4098 3076

AUC 2987 3888 4092 2987

Mm 3032 3907 4095 3032

Rate 3223 3955 4099 3223

SD 3223 3952 4099 3223

CV 3222 3956 4099 3222

Total—Min 2987 3887 4092 2987
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Table 2.28 Case 3 Model 21 (without interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 37.38 0.10 49.99 0.09 50.04 0.10 37.38

Mean 31.82 0.23 49.75 0.10 50.03 0.10 31.82

LO 27.01 0.34 49.14 0.11 50.02 0.10 27.01

FO 36.79 0.11 49.90 0.09 50.03 0.10 36.79

Median 33.46 0.19 49.84 0.09 50.03 0.10 33.46

MIN 36.45 0.12 49.90 0.09 50.03 0.10 36.45

MAX 27.94 0.32 49.56 0.10 50.02 0.10 27.94

AUC 32.24 0.22 49.82 0.09 50.03 0.1 32.24

Mm 30.45 0.26 49.64 0.1 50.03 0.1 30.45

Rate 30.93 0.25 49.63 0.1 50.02 0.1 30.93

SD 32.17 0.22 49.65 0.1 50.02 0.1 32.17

CV 31.4 0.24 49.63 0.1 50.02 0.1 31.4

Total—Min 27.01 49.14 50.02 27.01

Table 2.29 Case 3 Model 22 (longitudinal without interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1 MIN-AIC

Null 3558 4024 4058 3558

Mean 3506 4020 4059 3506

LO 3557 4025 4059 3557

FO 3542 4024 4059 3542

Median 3555 4025 4059 3555

MIN 3512 4022 4059 3512

MAX 3536 4024 4059 3536

AUC 3527 4023 4059 3527

Mm 3530 4023 4059 3530

Rate 3536 4023 4059 3536

SD 3532 4023 4059 3532

CV 3542 4024 4059 3542

Total—Min 3506 4020 4058 3506
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Table 2.30 Case 3 Model 21 (without interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 13.03 0.34 33.16 0.13 47.49 0.10 13.03

Mean 8.94 0.55 30.36 0.20 46.84 0.11 8.94

LO 10.88 0.45 32.30 0.15 47.34 0.10 10.88

FO 11.40 0.42 32.73 0.14 47.41 0.10 11.4

Median 9.81 0.50 31.00 0.19 47.00 0.11 9.81

MIN 10.99 0.44 32.34 0.15 47.35 0.10 10.99

MAX 10.58 0.46 31.84 0.16 47.23 0.10 10.58

AUC 8.91 0.55 30.4 0.2 46.86 0.11 8.91

Mm 9.95 0.49 31.43 0.17 47.14 0.11 9.95

Rate 12.08 0.39 32.4 0.15 47.33 0.1 12.08

SD 12.67 0.36 32.69 0.14 47.39 0.1 12.67

CV 12.15 0.38 32.43 0.15 47.34 0.1 12.15

Total—Min 8.91 30.36 46.84 8.91

Table 2.31 Case 3 Model 22 (longitudinal without interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1 MIN-AIC

Null 3134 3789 4025 3134

Mean 3091 3781 4025 3091

LO 3103 3786 4026 3103

FO 3058 3765 4021 3058

Median 3093 3782 4025 3093

MIN 3083 3776 4024 3083

MAX 3019 3757 4020 3019

AUC 3063 3771 4023 3063

Mm 3118 3782 4025 3118

Rate 3129 3786 4025 3129

SD 3120 3783 4025 3120

CV 3056 3765 4021 3056

Total—Min 3019 3756 4019 3019
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Table 2.32 Case 3 Model 23 AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 25.42 0.03 15.99 0.11 9.34 0.23 9.34

Mean 19.96 0.24 15.83 0.12 9.34 0.23 9.34

LO 15.08 0.42 15.21 0.15 9.33 0.23 9.33

FO 25.02 0.05 15.99 0.11 9.34 0.23 9.34

Median 21.63 0.17 15.92 0.11 9.34 0.23 9.34

MIN 24.67 0.06 15.98 0.11 9.34 0.23 9.34

MAX 16.02 0.39 15.64 0.13 9.33 0.23 9.33

AUC 20.39 0.22 15.9 0.12 9.34 0.23 9.34

Mm 18.57 0.29 15.72 0.13 9.34 0.23 9.34

Rate 19.05 0.27 15.71 0.13 9.33 0.23 9.33

SD 20.32 0.22 15.73 0.12 9.33 0.23 9.33

CV 19.53 0.25 15.71 0.13 9.33 0.23 9.33

Total—Min 15.08 15.21 9.33 9.33

Table 2.33 Case 3 Model 23 CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 6.16 0.08 9.50 0.10 9.78 0.17 6.16

Mean 2.04 0.69 6.70 0.36 9.13 0.23 2.04

LO 4.01 0.40 8.67 0.17 9.65 0.18 4.01

FO 4.54 0.32 9.11 0.13 9.72 0.18 4.54

Median 2.92 0.56 7.35 0.30 9.30 0.21 2.92

MIN 4.12 0.38 8.70 0.17 9.65 0.18 4.12

MAX 3.71 0.44 8.21 0.22 9.53 0.19 3.71

AUC 2.01 0.7 6.73 0.36 9.15 0.23 2.01

Mm 3.07 0.54 7.79 0.26 9.43 0.2 3.07

Rate 5.23 0.22 8.77 0.17 9.63 0.19 5.23

SD 5.83 0.13 9.06 0.14 9.69 0.18 5.83

CV 5.3 0.21 8.8 0.16 9.64 0.19 5.3

Total—Min 2.01 6.7 9.13 2.01
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Table 2.34 Case 3 Model 11 (with interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 36.61 0.12 49.62 0.10 49.62 0.11 36.61

Mean 30.99 0.25 49.38 0.10 49.61 0.11 30.99

LO 26.15 0.37 48.77 0.11 49.60 0.11 26.15

FO 36.01 0.13 49.54 0.10 49.61 0.11 36.01

Median 32.66 0.21 49.47 0.10 49.61 0.11 32.66

MIN 35.67 0.14 49.53 0.10 49.61 0.11 35.67

MAX 27.09 0.34 49.19 0.11 49.60 0.11 27.09

AUC 31.43 0.24 49.45 0.1 49.61 0.11 31.43

Mm 29.62 0.28 49.27 0.1 49.61 0.11 29.62

Rate 30.1 0.27 49.26 0.1 49.6 0.11 30.1

SD 31.35 0.24 49.28 0.1 49.6 0.11 31.35

CV 30.58 0.26 49.26 0.1 49.6 0.11 30.58

Total—Min 26.15 48.77 49.6 26.15

Table 2.35 Case 3 Model 12 (longitudinal with interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1 MIN-AIC

Null—with—interaction 3520 4022 4059 3520

Mean 3497 4022 4060 3497

LO 3469 4018 4059 3469

FO 3520 4023 4059 3520

Median 3505 4023 4060 3505

MIN 3518 4023 4059 3518

MAX 3475 4021 4059 3475

AUC 3499 4023 4060 3499

Mm 3490 4022 4059 3490

Rate 3492 4022 4059 3492

SD 3499 4022 4059 3499

CV 3495 4022 4059 3495

Total—Min 3469 4018 4059 3469
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Table 2.36 Case 3 Model 11 (with interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 11.74 0.40 32.42 0.15 46.99 0.11 11.74

Mean 7.62 0.61 29.60 0.22 46.33 0.12 7.62

LO 9.57 0.51 31.56 0.17 46.84 0.11 9.57

FO 10.10 0.49 31.99 0.16 46.91 0.11 10.1

Median 8.49 0.57 30.25 0.21 46.50 0.12 8.49

MIN 9.68 0.51 31.59 0.17 46.84 0.11 9.68

MAX 9.27 0.53 31.10 0.18 46.73 0.11 9.27

AUC 7.59 0.61 29.64 0.22 46.35 0.12 7.59

Mm 8.64 0.56 30.68 0.19 46.63 0.12 8.64

Rate 10.78 0.45 31.66 0.17 46.83 0.11 10.78

SD 11.38 0.42 31.95 0.16 46.89 0.11 11.38

CV 10.85 0.45 31.69 0.17 46.84 0.11 10.85

Total—Min 7.59 29.6 46.33 7.59

Table 2.37 Case 3 Model 12 (longitudinal with interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1 MIN-AIC

Null—with—interaction 3035 3779 4023 3035

Mean 2923 3744 4018 2923

LO 2992 3771 4023 2992

FO 3005 3776 4024 3005

Median 2960 3754 4019 2960

MIN 2995 3771 4023 2995

MAX 2984 3765 4022 2984

AUC 2921 3745 4018 2921

Mm 2965 3760 4021 2965

Rate 3019 3772 4023 3019

SD 3030 3775 4024 3030

CV 3021 3772 4023 3021

Total—Min 2921 3744 4018 2921
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Table 2.38 Case 4 Model 21 (without interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 24.59 0.09 46.96 0.06 49.65 0.09 24.59

Mean 24.26 0.11 46.87 0.06 49.64 0.09 24.26

LO 23.09 0.15 46.69 0.07 49.64 0.09 23.09

FO 24.47 0.10 46.90 0.06 49.64 0.09 24.47

Median 24.39 0.10 46.88 0.06 49.64 0.09 24.39

MIN 23.95 0.12 46.85 0.06 49.64 0.09 23.95

MAX 24.46 0.10 46.89 0.06 49.64 0.09 24.46

AUC 24.31 0.1 46.88 0.06 49.64 0.09 24.31

Mm 24.2 0.11 46.88 0.06 49.64 0.09 24.2

Rate 24.44 0.1 46.89 0.06 49.64 0.09 24.44

SD 24.38 0.1 46.88 0.06 49.64 0.09 24.38

CV 24.44 0.1 46.89 0.06 49.64 0.09 24.44

Total—Min 23.09 46.69 49.64 23.09

Table 2.39 Case 4 Model 22 (longitudinal without interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1 MIN-AIC

Null 3412 3987 4055 3412

Mean 3403 3987 4056 3403

LO 3413 3988 4056 3413

FO 3412 3988 4056 3412

Median 3409 3988 4056 3409

MIN 3413 3988 4056 3413

MAX 3412 3988 4056 3412

AUC 3411 3988 4056 3411

Mm 3413 3988 4056 3413

Rate 3412 3988 4056 3412

SD 3413 3988 4056 3413

CV 3412 3988 4056 3412

Total—Min 3403 3987 4055 3403
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Table 2.40 Case 4 Model 21 (without interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 10.71 0.49 33.46 0.15 48.20 0.10 10.71

Mean 9.13 0.56 31.65 0.20 47.71 0.11 9.13

LO 10.36 0.51 33.18 0.16 48.12 0.10 10.36

FO 10.20 0.51 33.12 0.16 48.12 0.10 10.2

Median 9.65 0.54 32.25 0.18 47.86 0.11 9.65

MIN 10.14 0.52 33.01 0.16 48.09 0.10 10.14

MAX 10.29 0.51 32.99 0.17 48.08 0.10 10.29

AUC 9.1 0.57 31.66 0.2 47.72 0.11 9.1

Mm 9.91 0.53 32.67 0.17 48.01 0.11 9.91

Rate 10.57 0.5 33.21 0.16 48.13 0.1 10.57

SD 10.69 0.49 33.38 0.16 48.17 0.1 10.69

CV 10.56 0.5 33.23 0.16 48.14 0.1 10.56

Total—Min 9.1 31.65 47.71 9.1

Table 2.41 Case 4 Model 22 (longitudinal without interaction) CS)

Covariance CS

Correlation 0.9 0.5 0.1 MIN-AIC

Null 3092 3804 4037 3091

Mean 3082 3802 4038 3082

LO 3077 3801 4038 3077

FO 3057 3791 4035 3057

Median 3075 3800 4037 3075

MIN 3081 3800 4037 3081

MAX 3033 3782 4034 3033

AUC 3068 3796 4036 3068

Mm 3089 3802 4038 3089

Rate 3092 3804 4038 3092

SD 3089 3803 4038 3089

CV 3056 3791 4035 3056

Total—Min 3033 3782 4033 3033
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Table 2.42 Case 4 Model 23 AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 14.58 0.08 14.81 0.11 9.26 0.23 9.26

Mean 14.35 0.10 14.79 0.11 9.25 0.23 9.25

LO 13.16 0.17 14.60 0.13 9.25 0.23 9.25

FO 14.57 0.08 14.82 0.11 9.26 0.23 9.26

Median 14.48 0.09 14.80 0.11 9.26 0.23 9.26

MIN 14.03 0.12 14.77 0.12 9.25 0.23 9.25

MAX 14.55 0.08 14.81 0.11 9.26 0.23 9.26

AUC 14.4 0.09 14.8 0.11 9.26 0.23 9.26

Mm 14.28 0.1 14.8 0.11 9.26 0.23 9.26

Rate 14.52 0.09 14.81 0.11 9.26 0.23 9.26

SD 14.46 0.09 14.8 0.11 9.26 0.23 9.26

CV 14.53 0.08 14.81 0.11 9.26 0.23 9.26

Total—Min 13.16 14.6 9.25 9.25

Table 2.43 Case 4 Model 23 CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 3.68 0.51 8.90 0.17 9.78 0.19 3.68

Mean 2.09 0.72 7.09 0.34 9.31 0.23 2.09

LO 3.34 0.56 8.65 0.19 9.72 0.19 3.34

FO 3.17 0.58 8.58 0.20 9.72 0.19 3.17

Median 2.62 0.65 7.71 0.28 9.46 0.22 2.62

MIN 3.12 0.59 8.48 0.21 9.69 0.20 3.12

MAX 3.27 0.57 8.46 0.21 9.68 0.20 3.27

AUC 2.06 0.73 7.1 0.34 9.32 0.23 2.06

Mm 2.88 0.62 8.13 0.24 9.61 0.2 2.88

Rate 3.55 0.53 8.68 0.19 9.73 0.19 3.55

SD 3.67 0.51 8.85 0.18 9.76 0.19 3.67

CV 3.55 0.53 8.7 0.19 9.74 0.19 3.55

Total—Min 2.06 7.09 9.31 2.06
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Table 2.44 Case 4 Model 11 (with interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 24.13 0.11 46.56 0.07 49.22 0.10 24.13

Mean 23.79 0.12 46.47 0.07 49.20 0.10 23.79

LO 22.61 0.17 46.28 0.07 49.20 0.10 22.61

FO 24.01 0.11 46.50 0.07 49.21 0.10 24.01

Median 23.93 0.12 46.48 0.07 49.21 0.10 23.93

MIN 23.48 0.13 46.45 0.07 49.21 0.10 23.48

MAX 24.00 0.11 46.49 0.07 49.21 0.10 24

AUC 23.85 0.12 46.48 0.07 49.21 0.1 23.85

Mm 23.73 0.12 46.48 0.07 49.21 0.1 23.73

Rate 23.97 0.12 46.49 0.07 49.21 0.1 23.97

SD 23.91 0.12 46.48 0.07 49.21 0.1 23.91

CV 23.98 0.12 46.49 0.07 49.21 0.1 23.98

Total—Min 22.61 46.28 49.2 22.61

Table 2.45 Case 4 Model 12 (longitudinal with interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1 MIN-AIC

Null—with—interaction 3387 3986 4054 3387

Mean 3386 3987 4055 3386

LO 3378 3986 4055 3378

FO 3388 3987 4055 3388

Median 3387 3987 4055 3387

MIN 3384 3987 4055 3384

MAX 3388 3987 4055 3388

AUC 3387 3987 4055 3387

Mm 3386 3987 4055 3386

Rate 3388 3987 4055 3388

SD 3387 3987 4055 3387

CV 3388 3987 4055 3388

Total—Min 3378 3986 4054 3378
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Table 2.46 Case 4 Model 11 (with interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 9.42 0.55 32.75 0.17 47.70 0.11 9.42

Mean 7.84 0.63 30.92 0.22 47.21 0.12 7.84

LO 9.07 0.57 32.47 0.18 47.63 0.11 9.07

FO 8.91 0.58 32.41 0.18 47.62 0.11 8.91

Median 8.35 0.60 31.54 0.20 47.36 0.12 8.35

MIN 8.85 0.58 32.30 0.18 47.59 0.11 8.85

MAX 9.00 0.57 32.28 0.18 47.58 0.11 9

AUC 7.8 0.63 30.94 0.22 47.22 0.12 7.8

Mm 8.62 0.59 31.96 0.19 47.51 0.11 8.62

Rate 9.28 0.56 32.5 0.18 47.63 0.11 9.28

SD 9.4 0.55 32.67 0.17 47.67 0.11 9.4

CV 9.27 0.56 32.52 0.18 47.64 0.11 9.27

Total—Min 7.8 30.92 47.21 7.8

Table 2.47 Case 4 Model 12 (longitudinal with interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1 MIN-AIC

Null—with—interaction 2996 3792 4033 2996

Mean 2939 3770 4029 2939

LO 2987 3790 4033 2987

FO 2982 3790 4033 2982

Median 2962 3779 4030 2962

MIN 2980 3788 4033 2980

MAX 2985 3788 4033 2985

AUC 2938 3771 4029 2938

Mm 2972 3784 4032 2972

Rate 2994 3791 4033 2994

SD 2997 3793 4034 2997

CV 2994 3791 4033 2994

Total—Min 2938 3770 4029 2938
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Table 2.48 Case 5 Model 21 (without interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 37.19 0.11 49.36 0.08 49.95 0.10 37.19

Mean 35.16 0.16 49.27 0.08 49.95 0.10 35.16

LO 36.36 0.13 49.23 0.08 49.94 0.10 36.36

FO 36.91 0.11 49.27 0.08 49.95 0.10 36.91

Median 36.15 0.13 49.29 0.08 49.95 0.10 36.15

MIN 36.92 0.11 49.29 0.08 49.95 0.10 36.92

MAX 32.82 0.21 49.18 0.08 49.94 0.10 32.82

AUC 34.85 0.16 49.27 0.08 49.95 0.1 34.85

Mm 34.25 0.18 49.24 0.08 49.95 0.1 34.25

Rate 35.27 0.15 49.23 0.08 49.94 0.1 35.27

SD 35.55 0.15 49.23 0.08 49.94 0.1 35.55

CV 35.32 0.15 49.22 0.08 49.94 0.1 35.32

Total—Min 32.82 49.18 49.94 32.82

Table 2.49 Case 5 Model 22 (longitudinal without interaction) AR(1)

Covariance CS

Correlation 0.9 0.5 0.1 MIN-AIC

Null 3720 4033 4058 3720

Mean 3714 4033 4059 3714

LO 3715 4033 4059 3715

FO 3711 4033 4059 3711

Median 3718 4033 4059 3718

MIN 3667 4032 4059 3667

MAX 3696 4033 4059 3696

AUC 3690 4032 4059 3690

Mm 3694 4032 4059 3694

Rate 3697 4032 4059 3697

SD 3694 4032 4059 3694

CV 3711 4033 4059 3711

Total—Min 3667 4032 4058 3667
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Table 2.50 Case 5 Model 21 (without interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 28.19 0.22 41.41 0.13 49.58 0.10 28.19

Mean 23.59 0.35 40.04 0.16 49.49 0.10 23.59

LO 26.34 0.27 40.93 0.14 49.54 0.10 26.34

FO 27.91 0.23 41.26 0.13 49.56 0.10 27.91

Median 25.46 0.30 40.61 0.15 49.52 0.10 25.46

MIN 28.09 0.23 41.33 0.13 49.57 0.10 28.09

MAX 19.18 0.47 38.71 0.19 49.42 0.10 19.18

AUC 23.09 0.36 39.87 0.16 49.48 0.1 23.09

Mm 22.77 0.37 39.86 0.16 49.51 0.1 22.77

Rate 23.96 0.34 39.68 0.16 49.46 0.1 23.96

SD 24.86 0.31 40.06 0.16 49.48 0.1 24.86

CV 24.5 0.32 39.78 0.16 49.45 0.1 24.5

Total—Min 19.18 38.71 49.42 19.18

Table 2.51 Case 5 Model 22 (longitudinal without interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1 MIN-AIC

Null 3531 3915 4052 3531

Mean 3506 3912 4053 3506

LO 3519 3914 4053 3519

FO 3503 3910 4053 3503

Median 3526 3915 4053 3526

MIN 3376 3888 4052 3376

MAX 3467 3903 4052 3467

AUC 3460 3902 4052 3460

Mm 3451 3896 4052 3451

Rate 3468 3900 4052 3468

SD 3462 3898 4052 3462

CV 3503 3910 4053 3503

Total—Min 3376 3888 4052 3376
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Table 2.52 Case 5 Model 23 AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 25.36 0.04 15.68 0.11 9.37 0.23 9.37

Mean 23.49 0.11 15.66 0.11 9.38 0.23 9.38

LO 24.71 0.07 15.62 0.11 9.37 0.23 9.37

FO 25.28 0.05 15.66 0.11 9.38 0.23 9.38

Median 24.51 0.08 15.68 0.11 9.37 0.23 9.37

MIN 25.28 0.05 15.68 0.11 9.38 0.23 9.38

MAX 21.12 0.20 15.57 0.12 9.37 0.23 9.37

AUC 23.18 0.12 15.66 0.11 9.37 0.23 9.37

Mm 22.57 0.15 15.63 0.11 9.38 0.23 9.38

Rate 23.6 0.11 15.62 0.11 9.37 0.23 9.37

SD 23.9 0.1 15.62 0.11 9.37 0.23 9.37

CV 23.65 0.11 15.61 0.11 9.37 0.23 9.37

Total—Min 21.12 15.57 9.37 9.37

Table 2.53 Case 5 Model 23 CS

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 20.91 0.05 15.52 0.08 10.55 0.18 10.55

Mean 16.40 0.25 14.23 0.16 10.47 0.18 10.47

LO 19.19 0.13 15.12 0.11 10.52 0.18 10.52

FO 20.80 0.06 15.46 0.09 10.55 0.18 10.55

Median 18.30 0.17 14.80 0.13 10.50 0.18 10.5

MIN 20.98 0.05 15.53 0.08 10.55 0.18 10.55

MAX 11.90 0.45 12.87 0.24 10.41 0.19 10.41

AUC 15.88 0.27 14.05 0.17 10.46 0.19 10.46

Mm 15.56 0.29 14.04 0.17 10.49 0.18 10.49

Rate 16.77 0.24 13.86 0.18 10.44 0.19 10.44

SD 17.69 0.19 14.24 0.16 10.46 0.19 10.46

CV 17.32 0.21 13.96 0.17 10.43 0.19 10.43

Total—Min 11.9 12.87 10.41 10.41
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Table 2.54 Case 5 Model 11 (with interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 36.51 0.12 48.95 0.09 49.55 0.11 36.51

Mean 34.45 0.17 48.86 0.09 49.54 0.11 34.45

LO 35.67 0.14 48.82 0.09 49.53 0.11 35.67

FO 36.23 0.13 48.86 0.09 49.54 0.11 36.23

Median 35.46 0.15 48.88 0.09 49.54 0.11 35.46

MIN 36.23 0.13 48.88 0.09 49.54 0.11 36.23

MAX 32.10 0.23 48.77 0.09 49.53 0.11 32.1

AUC 34.14 0.18 48.86 0.09 49.54 0.11 34.14

Mm 33.54 0.19 48.83 0.09 49.54 0.11 33.54

Rate 34.57 0.17 48.82 0.09 49.53 0.11 34.57

SD 34.85 0.16 48.82 0.09 49.53 0.11 34.85

CV 34.61 0.17 48.81 0.09 49.53 0.11 34.61

Total—Min 32.1 48.77 49.53 32.1

Table 2.55 Case 5 Model 12 (longitudinal with interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1 MIN-AIC

Null—with—interaction 3704 4031 4058 3704

Mean 3683 4031 4059 3683

LO 3696 4031 4059 3696

FO 3698 4031 4059 3698

Median 3694 4032 4059 3694

MIN 3701 4032 4059 3701

MAX 3648 4031 4059 3648

AUC 3678 4031 4059 3678

Mm 3672 4031 4059 3672

Rate 3676 4031 4059 3676

SD 3679 4031 4059 3679

CV 3676 4031 4059 3676

Total—Min 3648 4031 4058 3648
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Table 2.56 Case 5 Model 11 (with interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 26.80 0.26 40.56 0.15 49.01 0.11 26.8

Mean 22.16 0.39 39.19 0.18 48.91 0.11 22.16

LO 24.93 0.31 40.08 0.16 48.96 0.11 24.93

FO 26.52 0.27 40.42 0.15 48.99 0.11 26.52

Median 24.04 0.34 39.76 0.16 48.94 0.11 24.04

MIN 26.70 0.26 40.49 0.15 48.99 0.11 26.7

MAX 17.70 0.51 37.84 0.20 48.84 0.12 17.7

AUC 21.65 0.4 39.02 0.18 48.9 0.11 21.65

Mm 21.33 0.41 39 0.18 48.93 0.11 21.33

Rate 22.52 0.38 38.82 0.18 48.89 0.11 22.52

SD 23.44 0.35 39.2 0.17 48.9 0.11 23.44

CV 23.07 0.36 38.93 0.18 48.87 0.11 23.07

Total—Min 17.7 37.84 48.84 a 17.7

Table 2.57 Case 5 Model 12 (longitudinal with interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1 MIN-AIC

Null—with—interaction 3477 3905 4050 3477

Mean 3418 3894 4050 3418

LO 3450 3901 4050 3450

FO 3463 3903 4050 3463

Median 3447 3899 4050 3447

MIN 3472 3905 4051 3472

MAX 3306 3877 4049 3306

AUC 3408 3892 4050 3408

Mm 3400 3891 4050 3400

Rate 3389 3885 4049 3389

SD 3407 3890 4050 3407

CV 3401 3887 4049 3401

Total—Min 3306 3877 4049 3306
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Table 2.58 Case 6 Model 21 (without interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 86.27 0.40 86.09 0.35 76.43 0.34 76.43

Mean 82.98 0.42 86.00 0.35 76.46 0.34 76.46

LO 79.16 0.45 85.56 0.35 76.47 0.34 76.47

FO 85.67 0.40 86.10 0.35 76.47 0.34 76.47

Median 83.22 0.42 86.02 0.35 76.46 0.34 76.46

MIN 83.14 0.42 86.02 0.35 76.46 0.34 76.46

MAX 84.03 0.42 86.04 0.35 76.46 0.34 76.46

AUC 83.2 0.42 86.04 0.35 76.46 0.34 76.46

Mm 83.23 0.42 86.02 0.35 76.46 0.34 76.46

Rate 85.68 0.4 86.06 0.35 76.46 0.34 76.46

SD 85.51 0.41 86.03 0.35 76.47 0.34 76.47

CV 85.53 0.41 86.04 0.35 76.47 0.34 76.47

Total—Min 79.16 85.56 76.43 76.43

Table 2.59 Case 6 Model 22 (longitudinal without interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1 MIN-AIC

Null 4191 4270 4233 4191

Mean 4180 4269 4235 4180

LO 4190 4271 4235 4192

FO 4189 4271 4235 4189

Median 4190 4271 4235 4190

MIN 4191 4271 4235 4191

MAX 4190 4271 4235 4190

AUC 4190 4271 4235 4190

Mm 4192 4271 4235 4192

Rate 4192 4271 4235 4192

SD 4191 4271 4235 4191

CV 4189 4271 4235 4189

Total—Min 4180 4269 4233 4180
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Table 2.60 Case 6 Model 21 (without interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 79.76 0.43 86.95 0.38 82.42 0.34 79.76

Mean 63.43 0.56 78.22 0.45 81.37 0.34 63.43

LO 67.49 0.53 83.62 0.41 82.26 0.34 67.49

FO 67.47 0.53 83.62 0.41 82.24 0.34 67.47

Median 64.76 0.55 79.92 0.43 81.74 0.34 64.76

MIN 66.69 0.53 82.47 0.41 82.07 0.34 66.69

MAX 66.64 0.53 82.66 0.41 82.18 0.34 66.64

AUC 63.4 0.56 78.29 0.45 81.4 0.34 63.4

Mm 64.9 0.55 80.65 0.43 81.88 0.34 64.9

Rate 77.68 0.45 86.74 0.38 82.44 0.34 77.68

SD 79.66 0.44 86.83 0.38 82.39 0.34 79.66

CV 76.95 0.46 86.67 0.38 82.44 0.34 76.95

Total—Min 63.4 78.22 81.37 63.4

Table 2.61 Case 6 Model 22 (longitudinal without interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1 MIN-AIC

Null 3372 3951 4075 3372

Mean 2981 3853 4064 2981

LO 3097 3910 4072 3097

FO 3098 3909 4072 3098

Median 2991 3861 4065 2991

MIN 3034 3885 4069 3034

MAX 3034 3884 4069 3034

AUC 2979 3854 4064 2979

Mm 3000 3867 4066 3000

Rate 3243 3933 4073 3243

SD 3246 3934 4073 3246

CV 3242 3933 4073 3242

Total—Min 2979 3853 4064 2979
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Table 2.62 Case 6 Model 23 AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 21.65 0.25 15.21 0.31 9.24 0.46 9.24

Mean 18.39 0.36 15.12 0.32 9.24 0.46 9.24

LO 14.50 0.49 14.67 0.34 9.24 0.46 9.24

FO 21.12 0.26 15.22 0.31 9.24 0.46 9.24

Median 18.63 0.35 15.14 0.32 9.24 0.46 9.24

MIN 18.54 0.35 15.14 0.32 9.24 0.46 9.24

MAX 19.45 0.32 15.16 0.31 9.24 0.46 9.24

AUC 18.61 0.35 15.16 0.31 9.24 0.46 9.24

Mm 18.63 0.35 15.14 0.32 9.24 0.46 9.24

Rate 21.12 0.26 15.18 0.31 9.24 0.46 9.24

SD 20.96 0.27 15.15 0.31 9.25 0.46 9.25

CV 20.98 0.27 15.16 0.31 9.24 0.46 9.24

Total—Min 14.5 14.67 9.24 9.24

Table 2.63 Case 6 Model 23 CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 18.79 0.27 17.10 0.31 11.06 0.42 11.06

Mean 2.24 0.91 8.26 0.66 9.97 0.48 2.24

LO 6.38 0.74 13.75 0.44 10.87 0.43 6.38

FO 6.36 0.74 13.74 0.44 10.85 0.43 6.36

Median 3.60 0.85 9.99 0.59 10.34 0.46 3.6

MIN 5.55 0.78 12.58 0.49 10.68 0.44 5.55

MAX 5.51 0.78 12.77 0.48 10.79 0.43 5.51

AUC 2.21 0.91 8.34 0.66 10 0.47 2.21

Mm 3.74 0.85 10.73 0.56 10.49 0.45 3.74

Rate 16.75 0.35 16.91 0.32 11.05 0.42 11.05

SD 18.75 0.28 17 0.31 11 0.42 11

CV 16 0.38 16.85 0.32 11.05 0.42 11.05

Total—Min 2.21 8.26 9.97 2.21



2 Choosing the Function of Baseline Run-in Data … 71

Table 2.64 Case 6 Model 11 (with interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 33.05 0.76 48.78 0.62 49.20 0.56 33.05

Mean 29.65 0.78 48.63 0.62 49.18 0.56 29.65

LO 25.79 0.81 48.18 0.62 49.19 0.56 25.79

FO 32.36 0.76 48.72 0.62 49.19 0.56 32.36

Median 29.89 0.78 48.64 0.62 49.19 0.56 29.89

MIN 29.80 0.78 48.64 0.62 49.19 0.56 29.8

MAX 30.71 0.78 48.66 0.62 49.19 0.56 30.71

AUC 29.87 0.78 48.66 0.62 49.18 0.56 29.87

Mm 29.89 0.78 48.64 0.62 49.18 0.56 29.89

Rate 32.36 0.76 48.68 0.62 49.18 0.56 32.36

SD 32.2 0.77 48.65 0.62 49.19 0.56 32.2

CV 32.22 0.77 48.66 0.62 49.19 0.56 32.22

Total—Min 25.79 48.18 49.18 25.79

Table 2.65 Case 6 Model 12 (longitudinal with interaction) AR(1)

Covariance AR(1)

Correlation 0.9 0.5 0.1 MIN-AIC

Null—with—interaction 3511 4014 4050 3511

Mean 3495 4014 4050 3495

LO 3472 4011 4050 3472

FO 3509 4015 4050 3509

Median 3497 4014 4050 3497

MIN 3496 4014 4050 3496

MAX 3501 4014 4050 3501

AUC 3497 4014 4050 3497

Mm 3497 4014 4050 3497

Rate 3509 4014 4050 3509

SD 3508 4014 4051 3508

CV 3508 4014 4051 3508

Total—Min 3472 4011 4050 3472
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Table 2.66 Case 6 Model 11 (with interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1

Covariates MSE R.adj MSE R.adj MSE R.adj MIN-
MSE

Null 24.86 0.81 43.95 0.68 51.24 0.58 24.86

Mean 8.30 0.94 35.07 0.74 50.14 0.59 8.3

LO 12.40 0.91 40.52 0.70 51.03 0.58 12.4

FO 12.38 0.91 40.51 0.70 51.01 0.58 12.38

Median 9.65 0.93 36.78 0.73 50.51 0.58 9.65

MIN 11.59 0.91 39.36 0.71 50.84 0.58 11.59

MAX 11.54 0.91 39.54 0.71 50.95 0.58 11.54

AUC 8.27 0.94 35.14 0.74 50.17 0.59 8.27

Mm 9.78 0.93 37.52 0.73 50.65 0.58 9.78

Rate 22.68 0.83 43.66 0.68 51.21 0.58 22.68

SD 24.67 0.81 43.75 0.68 51.16 0.58 24.67

CV 21.94 0.83 43.59 0.68 51.21 0.58 21.94

Total—Min 8.27 35.07 50.14 8.27

Table 2.67 Case 6 Model 12 (longitudinal with interaction) CS

Covariance CS

Correlation 0.9 0.5 0.1 MIN-AIC

Null—with—interaction 3186 3915 4071 3186

Mean 2973 3844 4061 2973

LO 3080 3895 4070 3080

FO 3080 3895 4070 3080

Median 3022 3863 4065 3022

MIN 3066 3886 4068 3066

MAX 3065 3887 4069 3065

AUC 2972 3844 4062 2972

Mm 3026 3870 4066 3026

Rate 3176 3915 4072 3176

SD 3187 3916 4071 3187

CV 3171 3915 4072 3171

Total—Min 2972 3844 4061 2972
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Chapter 3
Adaptive Trial Design in Clinical
Research

Annpey Pong and Shein-Chung Chow

3.1 Introduction

In the past several decades, it is recognized that increasing spending of biomedical
research does not reflect an increase of the success rate of pharmaceutical (clinical)
development.Woodcock (2005) indicated that the low success rate of pharmaceutical
development could be due to (i) a diminished margin for improvement that escalates
the level of difficulty in proving drug benefits, (ii) genomics and other new science
have not yet reached their full potential, (iii)mergers and other business arrangements
have decreased candidates, (iv) easy targets are the focus as chronic diseases are
harder to study, (v) failure rates have not improved, (vi) rapidly escalating costs and
complexity decreases willingness/ability to bring many candidates forward into the
clinic. As a result, the United States Food and Drug Administration (FDA) kicked off
a Critical Path Initiative to assist the sponsors in identifying the scientific challenges
underlying the medical product pipeline problems. In 2006, the FDA released a
Critical Path Opportunities List that calls for advancing innovative trial designs,
especially for the use of prior experience or accumulated information in trial design.
Many researchers interpret it as the encouragement for the use of innovative adaptive
design methods in clinical trials, while some researchers believe it is for the use of
Bayesian approach.

The purpose of adaptive design methods in clinical trials is to give the investigator
the flexibility for identifying best (optimal) clinical benefit of the test treatment
under study without undermining the validity and integrity of the intended study.
The concept of adaptive design can be traced back to 1970s when the adaptive
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randomization and a class of designs for sequential clinical trials were introduced
(Wei 1978).As a result,most adaptive designmethods in clinical research are referred
to as adaptive randomization (Wei 1978; Efron 1971; Lachin 1988; Atkinson and
Donev 1992; Rosenberger et al. 2001; Rosenberger and Lachin 2002; Hardwick
and Stout 2002), group sequential designs with the flexibility for stopping a trial
early due to safety, futility and/or efficacy (Lan and DeMets 1987; Wang and Tsiatis
1987; Posch and Bauer 1999; Lehmacher and Wassmer 1999; Liu et al. 2002; Chow
and Liu 2003), and sample size re-estimation at interim for achieving the desired
statistical power (Cui et al. 1999; Shih 2001; Chung-Stein et al. 2006). The use
of adaptive design methods for modifying the trial and/or statistical procedures of
ongoing clinical trials based on accrued data has been practiced for years in clinical
research. Adaptive design methods in clinical research are very attractive to clinical
scientists due to the following reasons. First, it reflects medical practice in real world.
Second, it is ethical with respect to both efficacy and safety (toxicity) of the test
treatment under investigation. Third, it is not only flexible, but also efficient in the
early phase of clinical development. However, it is a concern whether the p-value
or confidence interval regarding the treatment effect obtained after the modification
is reliable or correct. In addition, it is also a concern that the use of adaptive design
methods in a clinical trial may lead to a totally different trial that is unable to address
scientific/medical questions that the trial is intended to answer (EMEA 2002, 2006).

In recent years, the potential use of adaptive design methods in clinical trials
have attracted much attention. The Pharmaceutical Research and Manufacturers of
America (PhRMA) andBiotechnology IndustryOrganization (BIO) have established
adaptive design working groups and proposed strategies, methodologies, and imple-
mentations for regulatory consideration (Gallo et al. 2006). However, there are no
universal agreement in terms of definition, methodologies, and applications. Many
journals have published special issues on adaptive design. These journals included,
but are not limited to, Biometrics (Vol. 62, No. 3), Statistics in Medicine (Vol. 25,
No. 19), Journal of Biopharmaceutical Statistics (Vol. 15, No. 4 and Vol. 17, No.
6), Biometrical Journal (Vol. 48, No. 4), and Pharmaceutical Statistics (Vol. 5, No.
2). For a comprehensive summarization of the issues and recommendations for the
use of adaptive design methods, it may look up Chow and Chang (2006) and Chang
(2007).

In the next section, commonly employed adaptations and the resultant adaptive
designs are briefly described. Also included in this section are regulatory and statis-
tical perspectives regarding the use of adaptive design methods in clinical trials. The
impact of protocol amendments, challenges of by design adaptations, and obstacles
of retrospective adaptations when applying adaptive design methods in clinical trials
are discussed in Sects. 3.3–3.5, respectively. Some concluding remarks are given in
the last section.
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3.2 What Is Adaptive Design?

In clinical trials, it is not uncommon to modify trial procedures and/or statistical
methods during the conduct of clinical trials based on the review of accrued data
at interim. The purpose is not only to efficiently identify clinical benefits of the
test treatment under investigation, but also to increase the probability of success of
the intended clinical trial. Trial procedures are referred to as the eligibility crite-
ria, study dose, treatment duration, study endpoints, laboratory testing procedures,
diagnostic procedures, criteria for evaluability, and assessment of clinical responses.
Statistical methods include randomization scheme, study design selection, study
objectives/hypotheses, sample size calculation, data monitoring and interim analy-
sis, statistical analysis plan, and/or methods for data analysis. In this chapter, we will
refer to the adaptations (changes or modifications) made to the trial and/or statistical
procedures as the adaptive design methods. Thus, an adaptive design is defined as a
design that allows adaptations to trial and/or statistical procedures of the trial after
its initiation without undermining the validity and integrity of the trial (Chow et al.
2005). In one of their publications, with the emphasis of the feature of by design
adaptations only (rather than ad hoc adaptations), the PhRMA Working Group on
Adaptive Design refers to an adaptive design as a clinical trial design that uses accu-
mulating data to decide on how tomodify aspects of the study as it continues, without
undermining the validity and integrity of the trial (Gallo et al. 2006). In February
2010, a draft guidance onAdaptive Design Clinical Trials for Drugs and Biologics by
the FDA was circulated for comments. The FDA draft guidance defines an adaptive
design as a study that includes a prospectively planned opportunity for modification
of one or more specified aspects of the study design and hypotheses based on anal-
ysis of (usually interim) data from subjects in the study. The FDA draft guidance is
a document describing the potential use of adaptive designs in clinical trials. It is
generally viewed as supportive of the use of adaptive designs if they are employed
properly. The FDAdraft guidance is not a specific guidance for the implementation of
adaptive designs in clinical trials. It, however, should be noted that adaptive designs
have been used at times in confirmatory contexts, for themost part cautiously, limited
to changes such as sample size re-estimation and treatment arm consolidation in the
early phase of clinical development where there is more uncertainty and regulatory
concerns are minimized. In many cases, an adaptive design is also known as a flexi-
ble design (EMEA 2002, 2006). Note that the 2010 FDA draft guidance on adaptive
design is currently being revised by the FDA Adaptive Design Working Group.

3.2.1 Adaptations

An adaptation is referred to as a modification or a change made to trial procedures
and/or statistical methods during the conduct of a clinical trial. By definition, adap-
tations that are commonly employed in clinical trials can be classified into the cate-
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gories of prospective adaptation, concurrent (or ad hoc) adaptation, and retrospective
adaptation. Prospective adaptations include, but are not limited to, adaptive random-
ization, stopping a trial early due to safety, futility or efficacy at interim analysis,
dropping the losers (or inferior treatment groups), sample size re-estimation, and
etc. Thus, prospective adaptations are usually referred to as by design adaptations
as described in the PhRMA white paper (Gallo et al. 2006). Concurrent adaptations
are usually referred to as any ad hoc modifications or changes made as the trial
continues. Concurrent adaptations include, but are not limited to, modifications in
inclusion/exclusion criteria, evaluability criteria, dose/regimen and treatment dura-
tion, changes in hypotheses and/or study endpoints, and etc. Retrospective adap-
tations are usually referred to as modifications and/or changes made to statistical
analysis plan prior to database lock or unblinding of treatment codes. In practice,
prospective, ad hoc, and retrospective adaptations are implemented by study proto-
col, protocol amendments, and statistical analysis plan with regulatory reviewer’s
consensus, respectively.

3.2.2 Type of Adaptive Designs

Based on the adaptations employed, commonly considered adaptive designs in clin-
ical trials include, but are not limited to: (i) an adaptive randomization design,
(ii) a group sequential a sample size re-estimation (SSRE) design, (iv) a drop-
the-losers (or pick-the-winners) design, (v) an adaptive dose finding design, (vi)
a biomarker-adaptive design, (vii) an adaptive treatment-switching design, (viii) an
adaptive-hypothesis design, (ix) an adaptive seamless (e.g., phase I/II or phase II/III)
trial design, and (x) a multiple adaptive design. These adaptive designs are briefly
described below.

Adaptive randomization design—An adaptive randomization design is a design
that allows modification of randomization schedules based on varied and/or unequal
probabilities of treatment assignment in order to increase the probability of success.
Commonly applied adaptive randomization procedures include treatment-adaptive
randomization (Efron 1971; Lachin 1988), covariate-adaptive randomization, and
response-adaptive randomization (Rosenberger et al. 2001; Rosenberger and Lachin
2002; Hardwick and Stout 2002). For example, a simple randomizationmay cause an
imbalance of prognostic factors among treatment groups (e.g., a greater proportion of
“very ill” subjects are assigned to a particular treatment group) for small or moderate
clinical trials. The baseline adaptive randomizationwill improve the chance of having
balance among treatment groups with respect to the prognostic factors.
Although an adaptive randomization design could increase the probability of suc-
cess, it may not be feasible for a large trial or a trial with relatively long treatment
duration because the randomization of a given subject depends on the response of
the previous subject. A large trial or a trial with a relatively long treatment duration
utilizing adaptive randomization design will take a much longer time to complete.
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Besides, randomization schedule may not be available prior to the conduct of the
study. Moreover, statistical inference on treatment effect is often difficult to obtain if
it is not impossible due to complicated probability structure as the result of adaptive
randomization.

Group sequential design—A group sequential design is a design that allows for
prematurely stopping a trial due to safety, futility/efficacy or both with options of
additional adaptations based on results of interim analysis. Various stopping bound-
aries based on different boundary functions for controlling an overall type I error
rate are available in the literature (Rosenberger et al. 2001; Lan and DeMets 1987;
Wang and Tsiatis 1987; Chow and Chang 2006; Jennison and Turnbull 2000, 2005).
In recent years, the concept of two-stage adaptive design has led to the development
of the adaptive group sequential design (Posch and Bauer 1999; Lehmacher and
Wassmer 1999; Liu et al. 2002; Cui et al. 1999).
Unlike a traditional single-stage clinical trial in which the data remain blinded until
the conclusion of the study, for example, a two-stage allows adaptive designs that
permit increasing the sample size at the end of stage I while still protecting the type
I error rate. It should be noted that the standard methods for group sequential design
may not be appropriate (i.e., it may not be able to control the overall type I error
rate at the desired level of 5%) if there is a shift in target patient population due to
additional adaptations or protocol amendments.

Sample size re-estimation design—A sample size re-estimation (or N-adjustable)
design is referred to as an adaptive design that allows for sample size adjustment
or re-estimation based on the observed data at interim. Sample size adjustment or
re-estimation could be done in either a blinding or unblinding fashion based on the
criteria of treatment effect-size, conditional power, and/or reproducibility probability
(Posch andBauer 1999; Cui et al. 1999; Shih 2001; Chung-Stein et al. 2006; Proschan
and Hunsberger 1995; Liu and Chi 2001; Friede and Kieser 2004). Sample size re-
estimation suffers from the same disadvantage as the original power analysis for
sample size calculation prior to the conduct of the study because it is performed
by treating estimates of the study parameters, which are obtained based on data
observed at interim, as true values. It is not a good clinical/statistical practice to start
with a small number and then perform sample size re-estimation (adjustment) at
interim by ignoring the clinically meaningful difference that one wishes to detect for
the intended clinical trial. It should be noted that the observed difference at interim
based on a small number of subjects may not be of statistically significant (i.e., it
may be observed by chance alone). In addition, there is variation associated with
the observed difference which is an estimate of the true difference. Thus, standard
methods for sample size re-estimation based on the observed differencewith a limited
number of subjects may be biased and misleading.

Drop-the-losers design—A drop-the-losers design is a design that allows drop-
ping the inferior treatment groups. A drop-the-losers design may also allow adding
additional arms. A drop-the-losers design is useful in phase II clinical development
especially when there are uncertainties regarding the dose levels (Bauer and Kieser
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1999; Brannath et al. 2003; Sampson and Sill 2005; Posch et al. 2005). The selection
criteria and decision rules play important roles for drop-the-losers designs. Dose
groups that are dropped may contain valuable information regarding dose response
of the treatment under study. Typically, drop-the-losers design is a two-stage design.
At the end of the first stage, the inferior arms will be dropped based on some pre-
specified criteria. The winners will then proceed to the next stage. In practice, the
study is often powered for achieving a desired power at the end of the second stage
(or at the end of the study). In other words, there may not be any statistical power
for the analysis at the end of the first stage for dropping the losers (or picking up
the winners). In this case, it is a common practice to drop the losers or pick up
the winners based on so-called precision analysis, i.e., an approach for determining
the confidence level for achieving a statistical significance. Note that some clinical
scientists prefer the term pick-the-winners designs.

Adaptive dose finding design—An adaptive dose finding (e.g., escalation) design
is often used in early phase clinical development to identify the minimum effective
dose (MED) and/or the maximum tolerable dose (MTD), which is used to determine
the dose level for the next phase clinical trials (Bauer and Rohmel 1995; Whitehead
1997; Zhang et al. 2006). For adaptive dose finding design, the method of continual
re-assessment method (CRM) in conjunction with Bayesian approach is usually
considered (O’Quigley et al. 1990; O’Quigley and Shen 1996; Chang and Chow
2005).Mugno et al. (2004) introduced a nonparametric adaptive urn design approach
for estimating a dose-response curve. More details regarding PhRMA’s proposed
statistical methods, the reader may consult with a special issue recently published at
the Journal of Biopharmaceutical Statistics, Vol. 17, No. 6.

Biomarker-adaptive design—A biomarker-adaptive design is a design that allows
for adaptations based on the response of biomarkers such as genomic markers. An
adaptive-biomarker design involves biomarker qualification and standard, optimal
screening design, and model selection and validation. It should be noted that there
is a gap between identifying biomarkers that associated with clinical outcomes and
establishing a predictivemodel between relevant biomarkers and clinical outcomes in
clinical development. For example, correlation between biomarker and true clinical
endpoint makes a prognostic marker. However, correlation between biomarker and
true clinical endpoint does not make a predictive biomarker. A prognostic biomarker
informs the clinical outcomes, independent of treatment. They provide information
about the natural course of the disease in individuals who have or have not received
the treatment under study. Prognostic markers can be used to separate good- and
poor-prognosis patients at the time of diagnosis. A predictive biomarker informs the
treatment effect on the clinical endpoint (Chang 2007).
A biomarker-adaptive design can be used to (i) select right patient population (e.g.,
enrichment process for selection of a better target patient population), (ii) identify
nature course of disease, (iii) early detection of disease, and (iv) help in developing
personalized medicine (Chang 2007; Charkravarty 2005; Wang et al. 2007).
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Adaptive treatment-switching design—An adaptive treatment-switching design is
a design that allows the investigator to switch a patient’s treatment from an initial
assignment to an alternative treatment if there is evidence of lack of efficacy or
safety of the initial treatment (Shao et al. 2005; Branson and Whitehead 2002). In
cancer clinical trials, estimation of survival is a challenge when treatment-switching
has occurred in some patients. A high percentage of subjects who switched due to
disease progression could lead to change in hypotheses to be tested. In this case,
sample size adjustment for achieving a desired power is necessary.

Adaptive-hypotheses design—An adaptive-hypotheses design refers to a design
that allows modifications or changes in hypotheses based on interim analysis results
(Hommel 2001). Adaptive-hypotheses designs often considered before database lock
and/or prior to data unblinding. Some examples include the switch from a superiority
hypothesis to a non-inferiority hypothesis and the switch between the primary study
endpoint and the secondary endpoints. For the switch from a superiority hypothesis to
a non-inferiority hypothesis, the selection of non-inferiority margin is critical which
has an impact on sample size adjustment for achieving the desired power. According
to the ICH guideline, the selected non-inferiority margin should be both clinical
and statistical justifiable (International Conference on Harmonization Guideline E10
2000; Chow and Shao 2005).

Adaptive seamless trial design—An adaptive seamless trial design is referred to
a program that addresses within single trial objectives that are normally achieved
through separate trials of clinical development. An adaptive seamless design is an
adaptive seamless trial design that would use data from patients enrolled before and
after the adaptation in the final analysis (Kelly et al. 2005; Maca et al. 2006). Com-
monly considered adaptive seamless trials in clinical development are an adaptive
seamless phase I/II design in early clinical development and an adaptive seamless
phase II/III trial design in late phase clinical development. An adaptive seamless
phase II/III design is a two-stage design consisting of a learning or exploratory stage
(phase IIb) and a confirmatory stage (phase III). A typical approach is to power
the study for the phase III confirmatory phase and obtain valuable information with
certain assurance using confidence interval approach at the phase II learning stage.
Its validity and efficiency, however, has been challenged (Tsiatis and Mehta 2003).
Moreover, it is not clear how to perform a combined analysis if the study objectives
(or endpoints) are similar but different at different phases. (Chow et al. 2007) Further
research is needed.

Multiple adaptive design—Finally, a multiple adaptive design is any combinations
of the above adaptive designs. Commonly considered multiple-adaptation designs
include (i) the combination of adaptive group sequential design, drop-the-losers
design, and adaptive seamless trial design and (ii) adaptive dose-escalation design
with adaptive randomization (Chow and Chang 2006). In practice, since statistical
inference for a multiple-adaptation design is often difficult, it is suggested that a
clinical trial simulation be conducted to evaluate the performance of the resultant
multiple adaptive design at the planning stage.
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Note that as indicated in its draft guidance, the FDA classifies adaptive designs
into well-understood designs and less well-understood designs. Well-understood
design refers to the typical group sequential design, which has been employed in
clinical research for years. Less well-understood designs include the adaptive dose
finding and two-stage phase I/II (or II/III) seamless designs. Many scientific issues
surrounding the less well-understood designs are posted in the draft guidancewithout
recommendations for resolution. This raises the question whether the use of adaptive
design methods in clinical trials (especially for those less well-understood designs)
is ready for implementation in practice.

3.2.3 Regulatory/Statistical Perspectives

From regulatory point of view, the use of adaptive design methods based on accrued
data in clinical trials may introduce operational bias such as selection bias, method of
evaluation, earlywithdrawal, andmodification of treatment. Consequently, itmay not
be able to preserve the overall type I error rate at the pre-specified level of significance.
In addition, p-values may not be correct and the corresponding confidence intervals
for the treatment effect may not be reliable. Moreover, it may result in a totally
different trial that is unable to address the medical questions that original study
intended to answer. Li (2006) also indicated that commonly seen adaptations which
have an impact on the type I error rate include, but are not limited to, (i) sample
size adjustment at interim, (ii) sample size allocation to treatments, (iii) delete, add,
or change treatment arms, (iv) shift in target patient population such as changes in
inclusion/exclusion criteria, (v) change in statistical test strategy, (vi) change in study
endpoints, and (vii) change in study objectives such as the switch from a superiority
trial to a non-inferiority trial. As a result, it is difficult to interpret the clinically
meaningful effect size for the treatments under study (Quinlan et al. 2006).

From statistical point of view, major (or significant) adaptations to trial and/or sta-
tistical procedures could (i) introduce bias/variation to data collection, (ii) result in a
shift in location and scale of the target patient population, and (iii) lead to inconsis-
tency between hypotheses to be tested and the corresponding statistical tests. These
concerns will not only have an impact on the accuracy and reliability of statistical
inference drawn on the treatment effect, but also present challenges to biostatisti-
cians for development of appropriate statistical methodology for an unbiased and
fair assessment of the treatment effect.

Note that although the flexibility of modifying study parameters is very attractive
to clinical scientists, several regulatory questions/concerns arise. First, what level of
modifications to the trial procedures and/or statistical procedures would be accept-
able to the regulatory authorities? Second, what are the regulatory requirements and
standards for review and approval process of clinical data obtained from adaptive
clinical trials with different levels of modifications to trial procedures and/or statisti-
cal procedures of ongoing clinical trials? Third, has the clinical trial become a totally
different clinical trial after the modifications to the trial procedures and/or statistical
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procedures for addressing the study objectives of the originally planned clinical trial?
These concerns should be addressed by the regulatory authorities before the adaptive
design methods can be widely accepted in clinical research and development.

3.3 Impact of Protocol Amendments

3.3.1 Moving Target Patient Population

In practice, for a given clinical trial, it is not uncommon to have 3–5 protocol amend-
ments after the initiation of the clinical trial. One of the major impacts of many
protocol amendments is that the target patient population may have been shifted
during the process, which may have resulted in a totally different target patient pop-
ulation at the end of the trial. A typical example is the casewhen significant adaptation
(modification) is applied to inclusion/exclusion criteria of the study. Denote by the
target patient population with the mean μ and standard deviation σ for the primary
endpoint. After a given protocol amendment, the resultant (actual) patient population
may have been shifted to (μ1, σ 1), where μ1 �μ +ε is the population mean of the
primary study endpoint and σ 1 �Cσ (C >0) is the population standard deviation of
the primary study endpoint. The shift in target patient population can be character-

ized by
∣
∣
∣
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C . Chow and Chang (2006) refer

to � as a sensitivity index measuring the change in effect size between the actual
patient population and the original target patient population.

Denote by, (μi, σ i) the actual patient population after the ith modification of trial
procedure, where μi �μ +εi and σ i �Ciσ , i �0, 1, … K . Note that i �0 reduces
to the original target patient population (μ, σ ). That is, when i �0, ε0 �0 and C0

�1. After K protocol amendments, the resultant actual patient population becomes
(μK , σK ), where μk � μ +

∑K
i = 1 εi and σk � ∑K

i = 1 Ciσ . It should be noted that (εi,
Ci), i �1,…, K are in fact random variables. As a result, the resultant actual patient
population following certain modifications to the trial procedures is a moving target
patient population rather than a fixed target patient population.

The impact of protocol amendments on statistical inference due to shift in target
patient population (moving target patient population) can be studied through amodel
that link the moving population means with some covariates (Chow and Chang 2006;
Chow and Shao 2006). Chow and Shao (2005) derived statistical inference for the
original target patient population for simple cases. Their approach and recommen-
dations for improvement are briefly outline below (Chow and Shao 2006).
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3.3.2 Statistical Inference with Covariate Adjustment

Suppose that there are a total of K protocol amendments for a given clinical trial that
compares I treatments. Letμi0 be themean of the study endpoint of the original target
patient population under treatment i and μik be the mean of the patient population
under treatment i after the kth protocol amendment. Suppose that the parameters of
interest are μi0’s (not μik) with k �1,…, K . If the differences among μi0, μi1,…,
μik are ignored and statistical inference is made by pooling all data (before and
after protocol amendment), then the conclusion drawn on μi0’s may be biased and
misleading. Assuming that there is a relationship betweenμik’s and a covariate vector
x. Chow and Shao (2005) considered the following regressionmodel (Chow and Shao
2006).

μik � αi + β ′
i xik k � 0, 1, . . . , K , i � 1, . . . , I, (3.1)

where αi is an unknown parameter, β i is a vector of unknown parameters, and β ′
i is

the transpose of β i. The best example is the change of patient inclusion/exclusion
criterion due to the problem of not enough patients. In Model (3.1), it is assumed xik
is fixed and known so that αi and β i can be estimated through a regression between
ȳik and x̄ik , where ȳik and x̄ik are the sample mean of the study endpoint and the
sample mean of the fixed known x-covariates, respectively, under treatment i after
modification k, i �1,…, I , k �0,1,…, K . Once αi and β i are estimated, μi0 can be
estimated from μi0 � αi + β ′

i x̄i0.
In practice, however, xik is often an observed random covariate vector and model

(3.1) should be replaced by

μik � αi + β ′
ivik k � 0, 1, . . . , K , i � 1, . . . , I, (3.2)

where ν ik is the population mean of the covariate under treatment i after modification
k. Let yikj be the observed study endpoint from the jth patient under treatment i after
amendment k and xikj be the associated observed covariate, j �1,…, nik , k �0,1,…,
K , i �1,…, I . There is room for improvement by the following two directions.

First, under model (3.2), we estimateμik by ȳik (the samplemean of yik1 ,…, yiknik )
and ν ik by x̄ik (the sample mean of xik1 ,…, xiknik ). Then, we estimate αi and β i by the
weighted least squares estimates α̂i and β̂i in a “regression” between ȳik and x̄ik for
each fixed i. The parameter μi0 is estimated by μ̂i0 � α̂i + β̂ ′

i x̄i0. Statistical inference
(such as hypothesis testing and confidence intervals) can be made using μ̂i0 and its
exact or asymptotic distribution can be derived accordingly. Second, a more efficient
statistical inference can be made if we replace model (3.2) by the following stronger
model:

E(yik j |xik j ) � αi + β ′
i xik j, j�1,...,nik , k � 0, 1, . . . , K , i � 1, . . . , I. (3.3)
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Under this model, we can first fit a regression between yikj and xikj for each fixed i to
obtain the least squares estimates α̂i and β̂i .Then,μi0 is estimated by μ̂i0 � α̂i+β̂ ′

i x̄i0.
Statistical inference can be made using μ̂i0 and its exact or asymptotic distribution
can be derived. Note that model (3.3) is stronger than model (3.2) so that we need to
balance the gain in efficiency over bias due to the violation of model (3.3).

As an alternative to model (3.1), we may consider a random-deviation model.
Suppose that there exist random variables δik , k �1,…, K , i �1,…, I , such that

μik � μi0 + δik, k � 1, . . . , K , i � 1, . . . , I. (3.4)

This means that the population mean after the kth protocol amendment deviates from
the mean of the target population by a random effect δik . Of course, we may consider
combining models (3.1) and (3.4):

μik � αi + β ′
i xik + δik, k � 1, . . . , K , i � 1, . . . I.

Under model (3.4) and the assumptions that, conditional on δik’s, yikj’s are inde-
pendent with mean μik in (3.4) and variance σ 2, where yikj is the study endpoint for
the jth patient under treatment i after modification k. Then, the observed data follow
a mixed effects model. Consequently, the existing statistical procedures for mixed
effects models can be applied to the estimation or inference. A further assumption
can be imposed to model (3.4).

yik j � μi0 + λk + γik + εik j, i � 1,...,I, k� 1,...,K , (3.5)

where λk’s, γik’s (which reflect the “interaction” between treatment and λk), εikj
are independently normal distributed with mean zero and variances σ 2

λ , σ 2
γ , and σ 2,

respectively. Gallo and Khuri (1990) derived an exact test for the unbalanced mixed
effects model (3.5). Although other refinements were developed (Ofversten 1993;
Christensen 1996; Khuri et al. 1998), these existing tests do not have explicit forms;
so the computation is complicated.

Not that model (3.4) can be modified under the Bayesian frame work. For future
methodology development based on statistical inference with covariate adjustment,
it is of interest to consider (i) a more complex situations such as unequal sample sizes
nik and/or unequal variances after protocol amendments, (ii) deriving approximations
to the integrals involved in the posterior probabilities, (iii) studying robustness of the
choices of prior parameters, and (iv) alternative forms of null hypotheses such as −a
≤θ ≤a with a given a >0.
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3.3.3 Inference Based on Mixture Distribution

The primary assumption of the above approaches is that there is a relationship
between μik’s and a covariate vector x. In practice, such covariates may not exist
or may not be observable. In this case, it is suggested assessing the sensitivity index
and consequently deriving a unconditional inference for the original target patient
population assuming that the shift parameter (i.e., ε) and/or the scale parameter (i.e.,
C) is random (Chow and Chang 2006). It should be noted that effect of εi could be
offset by Ci for a given modification i as well as by (εj, Cj) for another modification
j. As a result, estimates of the effects of (εi,Ci), i�1,…,K are difficult, if not impos-
sible, to obtain. In practice, it is desirable to limit the combined effects of (εi, Ci), i
�0, …, K to an acceptable range for a valid and unbiased assessment of treatment
effect regarding the target patient population based on clinical data collected from
the actual patient population.

3.4 Challenges in by Design Adaptations

In clinical trials, commonly employed by design (prospective) adaptations include
stopping the trial early due to safety, futility, and/or efficacy, sample size re-
estimation (adaptive group sequential design), dropping the losers (adaptive dose
finding design), and combining two separate trials into a single trial (adaptive seam-
less design) . In this section, major challenges in these by design adaptations will be
described. Recommendations for resolution are provided whenever possible.

3.4.1 Adaptive Group Sequential Design

The group sequential design has a long history of application in clinical trials. It is
a design in which the accumulating data are analyzed at a series of interim analyses
during the course of the trial. The main purpose of the group sequential design is to
allow the trail to be stopped for clinical benefit or harm at an interim analysis. The
idea of adaptive group sequential design started in early 1990s. It allows a wide range
of modifications to the trial design at each interim analysis. For example, the sample
size for a future interimanalysismaybe re-calculated based on the observed treatment
differences at the current interim analysis using accumulated data. Results on sample
size re-calculation and other modifications can be found in the literature (Lehmacher
and Wassmer 1999; Cui et al. 1999; Jennison and Turnbull 2005; Proschan and
Hunsberger 1995; Liu and Chi 2001; Shen and Fisher 1999; Posch and Bauer 2000;
Hommel et al. 2005; Hung et al. 2005; Li et al. 2005; Proschan 2005; Kelly et al.
2005; Proschan et al. 2005).
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Consider a group sequence design with K interim analyses without adaptation
(i.e., there is no change in the trial design after each interim analysis). Let Zk be
the test statistic at the kth interim analysis such that H0 is rejected and the trial
will be stopped if |Zk | >cα,k,κ , where cα,k,κ is a constant depending on k, κ , and the
significance level α. For k �1, …, K−1, the trial continues if |Zk |≤cα,k,κ . At the
last stage k �K , the trial stops andH0 is concluded if |Zk |≤cα,k,κ . Consequently, the
overall type I error rate for this procedure is

αK �
K

∑

k�1

P(|Zk | > cα,k,K , |Z1| ≤ cα,1,K , . . . , |ZK−1| ≤ cα,k−1,K |H0 ). (3.6)

If we choose cα,k,κ ’s to satisfy αK �α, then the overall type I error rate is maintained.
The selection of cα,k,κ ’s relies on the distributions of Zk’s under H0. When Zk is a
standard normal random variable based on data accumulated up to the kth interim
analysis, the most popular choice of cα,k,κ ’s is Pocock’s cα,1,κ �· · ·�cα,k,κ given in
a table by Pocock (1977). Since cα,k,κ ’s are not uniquely determined, various modi-
fications to Pocock’s test have been proposed, for example, O’Brien and Fleming’s
test, Wang and Tsiatis’ test, and the inner wedge test (Jennison and Turnbull 2000).

The assumption that Zk’s are standard normal, however, does not hold in most
practical situations. It holds approximately when the sample size at each interim
analysis is large enough, based on the central limit theorem. Consider for example
a parallel-group design with two treatments. Let xikj be the response from patient
j under treatment i at the kth interim analysis, i=1, 2, j=1, …, n, k=1,…, K . Let
x̄ik � 1

kn

∑n
j�1 xik j , i � 1, 2, k � 1, . . . , K . Assume xikj’s are independently

normal with mean μi and variance σ 2. If H0: μ1 �μ2 and σ 2 is known, then Zk �√
kn(x̄1k − x̄2k)/

√
2σ 2 is standard normal under H0, k�1, …, K , and αK in (3.6)

is exactly equal to α with Pocock’s cα,k,κ . In practice, σ 2 is usually unknown and
has to be estimated. If σ 2 is replaced by the pooled sample variance, then Zk has a
t-distribution instead of the standard normal. As a result, αK in (3.6) is not α and the
overall type I error rate is not maintained. Of course, αK→α as n →∞, because of
the central limit theorem.

One of major challenges for an adaptive group sequential design is that the overall
type I error rate may be in inflated when there is a shift in target patient population
(Feng et al. 2007). To overcome this problem, we suggest studying the effect of
unknown σ 2 and sample size n in the selection of cα,k,κ , for variousmethods and study
designs.With Pocock’smethod, for example, the simulation results in Table 3.1 show
that the overall type I error rate αK can be much larger than α (=0.05), when σ 2 is
replaced by the pooled sample variance (i.e., each Zk is not normal but t-distributed).
The simulation was carried out using two treatments, equal sample size n for any
treatment and interim analysis, up to K �5 stages, and simulation size 50,000. For
K �2, 3, 4, 5, Pocock’s c0.05,k,K values do not depend on k and are 2.178, 2.289,
3.361, 4.413, respectively.

From Table 3.1, the overall type I error rates are greater than the nominal level
0.05. As the sample size n increases, these error rates are closer to 0.05. But the
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Table 3.1 Overall type I
error rate for Pocock’s test

n K

2 3 4 5

2 0.197 0.198 0.195 0.198

3 0.129 0.127 0.127 0.124

4 0.100 0.101 0.101 0.100

5 0.089 0.089 0.086 0.086

6 0.081 0.079 0.079 0.079

7 0.076 0.074 0.075 0.075

8 0.071 0.070 0.071 0.071

9 0.069 0.069 0.068 0.069

10 0.067 0.067 0.065 0.067

11 0.066 0.063 0.066 0.066

12 0.063 0.065 0.065 0.064

13 0.061 0.059 0.061 0.061

14 0.063 0.062 0.062 0.061

15 0.062 0.061 0.061 0.060

16 0.061 0.058 0.059 0.059

17 0.058 0.059 0.059 0.058

18 0.060 0.056 0.057 0.060

19 0.058 0.059 0.058 0.058

20 0.058 0.059 0.056 0.058

21 0.059 0.058 0.056 0.056

22 0.057 0.057 0.057 0.057

23 0.058 0.055 0.056 0.057

24 0.057 0.057 0.055 0.058

25 0.056 0.056 0.058 0.054

26 0.057 0.055 0.057 0.056

27 0.056 0.055 0.055 0.053

28 0.056 0.055 0.055 0.055

29 0.054 0.056 0.055 0.055

30 0.054 0.057 0.054 0.055

results for small n are not satisfactory. We also note that the number of stages does
not have a large effect, since the overall type I error rates are quite close across the
stages when the sample size n is fixed. Thus, we suggest developing a new procedure
of choosing cα,k,κ ’s so that the overall type I error rate αK is exactly equal to α, when
σ 2 is replaced by the pooled sample variance in various group sequential tests. The
new cα,k,κ depends on the sample size n. A statistical table or software for cα,k,κ with
different n will be constructed.

An adaptive group sequential design is attractive to sponsors in clinical develop-
ment because it allows adaptations of the trial after each interim tomeet specific needs
within limited budget or resources and target timelines. However, some adaptations
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may introduce bias/variation to data collection as the trial continues. To account for
these (expected and/or unexpected) biases/variation, statistical tests are necessary
adjusted to maintain the overall type I error and the related sample size calculation
formulas have to be modified for achieving the desired power. Statistical inference
on moving patient population described in the previous section can be applied to the
adaptive group sequential design when the adaptations at each interim analysis may
alter the patient population. The problem for the adaptive group sequential design is
more difficult, since the test procedure is much more complicated. Thus, for future
development, it is worthy pursuing the following specific directions that (i) deriv-
ing valid statistical test procedures for adaptive group sequential designs assuming
model (3.2) or (3.3), which relates the data from different interim analyses, (ii) deriv-
ing valid statistical test procedures for adaptive group sequential designs assuming
the random-deviation model (3.5), (iii) deriving valid Bayesian methods for adap-
tive group sequential designs, and (iv) deriving sample size calculation formulas for
various situations.

3.4.2 Adaptive Dose Finding Design

Chang and Chow (2005) proposed a hybrid Bayesian adaptive design for dose esca-
lation study, which involves the steps of (i) construction of utility function, (ii) prob-
ability model for dose-response, (iii) the selection of a prior, (iv) the re-assessment
of model parameters, (v) update of the utility function, (vi) the determination of the
next action (i.e., treatment assignment of the next subject near the estimated MTD).

In early clinical development for establishing a dose response relationship, an
adaptive multistage design is commonly used (Bauer and Rohmel 1995). The adap-
tive multistage design allows various adaptations of the design in one or two pre-
scheduled interim analyses. The idea of an adaptive multistage design for establish-
ing dose response relationship is not only to reassess the sample size by using the
observed variability and/or effects, but also to reduce the set of multiple endpoints to
suitable subsets. In addition, the adaptive multistage design allows selecting a subset
of doses for further experimentation. More specifically, consider a two-stage sce-
nario. One would start with two doses from the conjectured therapeutic dose range.
If in the pre-scheduled interim analysis there is no sufficient trend, the doses may
be changed (e.g., by lowering the low dose and/or increasing the high dose). The
second stage of the experiment will be performed and the overall decision relies on
a combination test of the test results from the two stages separately. It, however,
should be noted that the adaptive multistage design for establishing dose response
relationship suffers the disadvantage that only the p-values of the samples are com-
bined but no pooling of the samples itself is performed. This leads to a crucial point
of interpretation.

For dose-toxicity studies, the “3+3” or more generally, the “m+n” traditional
escalation rules (TER) are commonly used in early phase of oncology studies. Many
new methods such as the assessment of dose response using multiple-stage designs
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(Crowley 2001) and the continued reassessment method (CRM) (O’Quigley et al.
1990; O’Quigley and Shen 1996; Babb and Rogatko 2001) have been developed.
For the method of CRM, the dose-response relationship is continually reassessed
based on accumulative data collected from the trial. The next patient who enters the
trial is then assigned to the potential MTD level. This approach is more efficient
than that of the usual TER with respect to the allocation of the MTD. However, the
efficiency of CRM may be at risk due to delayed response and/or a constraint on
dose-jump in practice (Babb and Rogatko 2001). In recent years, the use of adaptive
design methods for characterizing dose response curve has become very popular
(Bauer and Rohmel 1995). An adaptive design is a dynamic system that allows the
investigator to optimize the trial (including design, monitoring, operating, and anal-
ysis) with cumulative information observed from the trial. For Bayesian adaptive
design for dose response trials, some researchers suggest the use of loss/utility func-
tion in conjunction with dose assignment based on minimization/maximization of
loss/utility function (Whitehead 1997; Gasprini and Eisele 2000).

Let X �{x1, x2, …, xK} be the action space where xi is the coded value for action
of anything that would affect the outcomes or decision-making such as a treatment,
a withdrawal of a treatment arm, a protocol amendment, stopping the trial or any
combination of the above. In practice, xi can be either a fixed dose or a variable dose
given to a patient. If action xi is not taken, then xi �0. Let y �{y1, y2, …, ym} be the
outcomes of interest, which can be efficacy or toxicity of a test treatment. In each
of these outcomes, yi is a function of action yi(x), x∈X. The utility is then defined
as U � ∑m

j�1 wj � ∑m
j�1 w(yj), where U is normalized such that 0≤U ≤1 and wj

are pre-specified weights.
To allow more patients to be assigned to superior treatment groups, the target

randomization probability to xi group should be proportional to the current estimation
of utility or response rate of the group, that is U (xi)/

∑K
i�1U (xi ) where K is the

number of groups. As a result, the utility-adaptive randomization can be given. It is
to be noted that the hybridBayesian adaptive designmethod for dose response curve is
multiple endpoints oriented (Chang and Chow 2005). Thus, it can be used for various
situations. The method can be improved by the following specific directions that (i)
studying the relative merits and disadvantage of their method under various adaptive
methods, (ii) examining the performance of an alternative method by forming the
utility first with different weights to the response levels and then modeling the utility,
and (iii) deriving sample size calculation formulas for various situations.

3.4.3 Adaptive Seamless Designs

As indicated earlier, an adaptive seamless design is a two-stage design that consists
of two phases namely a learning (or exploratory) phase and a confirmatory phase.
One of the major challenges for designs of this kind is that different study endpoints
are often considered at different stages for achieving different study objectives. In
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this case, the standard statistical methodology for assessment of treatment effect and
for sample size calculation cannot be applied.

For a two-stage adaptive design, Bauer and Kohne (1994) proposed a method
using Fisher’s combination of independent p-values based on subsamples from dif-
ferent stages. Their method provides a great flexibility in the selection of statistical
methods for hypothesis testing of subsamples. However, the choices for the stopping
boundaries are not flexible to meet practical needs (Muller and Schafer 2001). As
an alternative, it was proposed using linear combination of the independent p-values
(Chang 2007). This method provides great flexibility in the selection of stopping
boundaries, which can be calculated manually (Chow and Chang 2006). Chang’s
method, however, is valid under the assumption of constancy of the target patient
populations, study objectives, and study endpoints at different stages. As pointed out
earlier, it is most likely that the study objectives and study endpoints are different at
different stages in practice. To have a valid and fair assessment of treatment effect
based on combined data from the two stages, appropriate test statistics are necessarily
developed.

Assuming that a two-stage adaptive seamless design utilizes two different study
endpoints. At the first stage (learning or exploratory phase), the same study endpoint
with a much shorter treatment duration or a biomarker is used. At the second stage
(confirmatory phase), regular clinical study endpoint is used. Under the assumption
that there exists a relationship between the two study endpoints, i.e., the first study
endpoint is predictive of the second study endpoint, an appropriate test statistic can
be developed. Let xi be the observation of the study endpoint (e.g., biomarker) at
the first stage from the ith subject, i=1, …, n and yj be the observation of the study
endpoint (the primary clinical endpoint) from the jth subject, j �1,…, m. Assume
that x ′

i s are independently and identically distributed withE(xi)�ν andVar(xi)�τ 2;
and y′

j s are independently and identically distributed with E(yj)�μ and Var(yj)�
σ 2. Suppose that x and y can be related in a simple relationship as follows:

y � β0 + β1x + ε,

where ε is an error term with zero mean and variance ξ 2. Furthermore, ε is inde-
pendent of x. Thus μ can be estimated by μ̂ � w ¯̂y + (1 − w)ȳ,where ¯̂y �
1
n

∑n
i�1 ŷi, ȳ � 1

m

∑m
j�1 y j and 0≤w ≤1. Note that μ̂ is the minimum variance

unbiased estimator among all weighted mean estimators when the weight is given by
w � [n/(β2

1τ
2)]/[n/(β2

1τ
2) +m/σ 2]. Based on the result of Khatri and Shah (1974),

the variance of μ̂ can be approximated with a given bias order. Thus, under a given
set of hypotheses (e.g., hypotheses for non-inferiority or equivalence) for evaluation
of treatment effect can be derived accordingly.

In practice, when designing a clinical trial, the first question that the investigator
will ask is how many subjects do we need in order to achieve the desired power at
the pre-specified significance level. For a two-stage adaptive design with different
study endpoints, sample size calculation also involves the allocation of sample sizes
n and m at the two different stages. Let m �ρn. Then the total sample size N � (1+
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ρ)n. For simplicity, consider testing the hypotheses for equality, n can be derived
accordingly. Note that a two-stage adaptive seamless design can be viewed as a group
sequential design with one planned interim analyses (Chow et al. 2017).

Remarks—In the previous section for illustration purpose, we only consider the case
where the study endpoints are continuous variables. In practice, the study endpoints
could be discrete (e.g., binary responses), time-to-event data, or mixed types of
data. In these cases, similar idea can be carried out for development of appropriate
statistical methods for analysis of the combined data under the assumption that there
is a well-established relationship between the two study endpoints.
As indicated earlier, the traditional sample size calculation is often estimated by
sample mean and sample variance from a small pilot study. Note that sample size
calculation based on s2/δ̂2 is rather instable. As an alternative, it is suggested that the
median of s2/δ̂2 be considered. As it can be seen the bias of the median approach can
be substantially smaller than the mean approach for a small sample size and/or small
effect size. However, in practice, we do not know the exact value of the median of
s2/δ̂2. In this case, a bootstrap approach may be useful (see also Chow et al. 2017).

3.5 Obstacles of Retrospective Adaptations

In practice, retrospective adaptations such as adaptive-hypotheses are commonly
encountered prior to database lock (or unblinding) and implemented through the
development of statistical analysis plan. To illustrate the impact of retrospective
adaptations, for simplicity, wewill only consider the common situation formodifying
hypotheses is switching a superiority hypothesis to a non-inferiority hypothesis. For
a promising test drug, the sponsor would prefer an aggressive approach for planning
a superiority study. The study is usually powered to compare the promising test drug
with an active control agent. Let μT and μA be the mean efficacies of the test drug
and the active control agent, respectively. Testing for superiority of the test drug over
the active control agent amounts to testing the following hypotheses:

H0 :μT ≤ μA + � versus H1:μT > μA + � (3.7)

where �>0 is a known mixed superiority margin. If the null hypothesis H0 in (3.7)
is rejected, then we can conclude that the test drug is superior to the active control
agent since μT is larger than μA by a fixed margin �.

However, the collected data may not support superiority. Instead of declaring the
failure of the superiority trial, the sponsor may switch from testing superiority to
testing the following non-inferiority hypotheses:

H0:μT ≤ μA − � versus H1:μT > μA − �. (3.8)
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If the null hypothesis H0 in (3.8) is rejected, then we can conclude that the test drug
is not worse than the active control agent by the margin �. Typically, the margin is
carefully chosen so that μA−� is larger than the placebo effect and, thus, declaring
non-inferiority to the active control agent means that the test drug is superior to
the placebo effect. The switch from a superiority hypothesis to a non-inferiority
hypothesis will certainly increase the probability of success of the trial because the
study objective has beenmodified to establishing non-inferiority rather than showing
superiority. This type of switching hypotheses is accepted to the regulatory agency
such as the U.S. FDA, provided that the impact of the switch on statistical issues
(e.g., the determination of non-inferiority margin�) and inference (e.g., appropriate
statistical methods) on the assessment of treatment effect is well justified.

To illustrate the concept of switching a superiority hypothesis to a non-inferiority
hypothesis, we consider a parallel-group design with one interim analysis. Both
groups for the test drug and active control agent have n patients at the interim analysis,
and have additional n patients if the trial continues. For simplicity, assume that data
are normally distributed with known variances σ 2

T and σ 2
A for the test drug and the

active control agent, respectively. At the interim analysis, a superiority test rejects

H0 in (3.7) if Z1 >c1,α , where Z1 �√
n(d̄1 − �)/

√

σ 2
A + σ 2

T , d̄1 is the difference
between the sample mean of the test drug and the sample mean of the active control
agent, α is a given significance level, and c1,α is a constant specified according to

(3.9). The trial continues if Z1 ≤c1,α . Let Z2 � √
2n(d̄2 − �)/

√

σ 2
A + σ 2

T , where d̄2
is the difference between the sample mean of the test drug and the sample mean of
the active control agent, based on all patients at the end of the trial. The two-stage
superiority test rejects H0 in (3.7) if Z2 >c2,α , where c1,α and c2,α are chosen so that

P
(

Z1 > c1,α
)

+ P
(

Z2 > c2,α, Z1 ≤ c1,α
) � α whenH0 in (3.7) holds. (3.9)

Now, assume that the hypothesis of interest are switched to (3.8) when Z1 ≤c1,α at

the interim analysis. Let Z̃2 � √
2n(d̄2 +�) /

√

σ 2
A + σ 2

T . Consider the following test
rule, which is referred to as a two-stage superiority-noninferiority test: If Z1 >b1,α ,
conclude superiority (μT >μA+�) and stop the trial; otherwise, continue the trial
and if Z̃2 >b2,α, conclude non-inferiority, but not superiority (−�<μT −μA ≤�);
otherwise, conclude not non-inferiority (μT−μA ≤−�). The constants b1,α and
b2,α can be determined according to

P
(

Z1 > b1,α
) � α whenH0 in (3.7) holds (3.10)

P
(

Z1 > b1,α
)

+ P(Z̃2 > b2,α, Z1 ≤ b1,α) � α whenH0 in (3.8) holds

It can be shown that b1,α and b2,α satisfying (3.10) exist; in fact, b1,α is the 1−α

quantile of the standard normal distribution. Note that c1,α satisfying (3.9) is larger
than b1,α satisfying (3.10). Note that the following pros and cons regarding the two
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kinds of tests are observed. First, the two-stage superiority-noninferiority test has a
better power at the interim stage than the two-stage superiority test. Second, the two-
stage superiority-noninferiority test requires smaller sample size since the second
stage test is for non-inferiority. Third, at the second stage, the two-stage superiority-
noninferiority test can only conclude non-inferiority, whereas the two-stage superi-
ority test may conclude superiority. Thus, in practice, it is worthy of pursuing the
following research topics that (i) develop the two-stage superiority-noninferiority
tests in more complex situations in terms of the study design and model assumption,
(ii) consider a more flexible superiority-noninferiority test by adding a condition at
the end of the first stage, i.e., if Z1 ≤b1,α but Z1 >a1,α , then do not switch hypotheses;
otherwise (Z1 ≤ b1,α), then switch hypotheses, (iii) derive formulas for sample size
calculation. Since the hypotheses in two stages are different, it may not be a good
idea to have the same sample size for each stage, and (iv) extend the results to group
sequential tests with more than two stages.

Other Adaptive-Hypotheses—For clinical trials comparing several treatments or
several doses of the same treatment with a placebo or an active control agent, a
parallel-group design is usually considered. After the analysis of interim data, it is
desirable to drop some treatment groups or dose groups showing no efficacy. It is
also desirable to add some new treatment groups and/or modify the dose regimen for
best clinical results. As a result, hypotheses have to be changed in the next stage of
analysis.

To illustrate the concept of changing treatment arms, we consider the following
simple case. Suppose that a group sequential design with K �2 is adopted. At stage
1, two independent samples of size n are taken from a placebo control and a test
drug with dosage x1. Let ȳ01 and ȳ11 be the sample means from the control and test
groups, respectively.

Assume ȳ01is distributed as N (μ0, σ
2/n) and ȳ11is distributed as N (μ1, σ

2/n).
Let Z1 � √

n/2(ȳ01 − ȳ11)/s1, where s21 is the pooled sample variance. We reject the
hypothesis H01: μ0 �μ1 and we stop the trial if |Z1| >cα . If |Z1|≤cα , then the trial
continues with two independent samples of size n taken from the placebo control
and the test drug with an increased dosage x2 >x1. At stage 2, the sample mean
ȳ02 from the control group is distributed as N (μ0, σ

2/n), and the sample mean ȳ22
from the test group is distributed as N (μ2, σ

2/n). Hence, the null hypothesis at
stage 2 is switched to H02: μ2 �μ0. The test statistic at the second stage depends
on what we assume of the relationship between the dosage and mean response.
Without any assumption, we can consider the Z2 � √

3n/2(ȳ0 − ȳ22)/s2, where
ȳ0 � (ȳ01 + ȳ02)/2 and s22 is the pooled sample variance based on 2 stages of data.
We reject the null hypothesis H02 if |Z2| >bα , where cα and bα are chosen so that

P(|Z1| > cα) + P(|Z2| > bα, |Z1| ≤ cα) � α (3.11)

when μ0 �μ1 �μ2 for a given significance level α. Note that μ2 is estimated using
the second stage data only, although μ0 and σ 2 are estimated using data from both
stages.
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Assume now that the mean response and the dose level has the relationship that
μk �βxk , k �1, 2, where β is an unknown parameter. Then, μ2 can be estimated
using data from both stages. First, we estimate β by β̂ � x1 ȳ11+x2 ȳ22

x1+x2
.Thenwe estimate

μ2 by μ̂2 � β̂x2. The test statistics Z2 is modified as Z2 � (ȳ0 − μ̂2)/
√

ν, where
ν is an appropriate estimate of the variance of ȳ0 − μ̂2. We reject H02 if |Z2| >bα ,
where cα and bα are still determined by (3.11) under μ0 �μ1 �μ2. Thus, it is
worthy of pursuing the following research topics that (i) deriving valid statistical test
procedures for more complex situations, such as designs with multiple dose levels
and multiple interim analyses, (ii) employing Bayesian methods to relate dose levels
with response means, and (iii) deriving sample size calculation formulas for various
situations.

3.6 Concluding Remarks

As indicated earlier, although the use of adaptive design methods in clinical trials
is motivated by its flexibility and efficiency, many researchers are not convinced
and still challenge its validity and integrity (Tsiatis and Mehta 2003). As a result,
many discussions are around the flexibility, efficiency, validity, and integrity. When
implementing an adaptive design in a clinical trial, it is suggested a couple of prin-
ciples that (i) adaptation should not alter trial conduct and (ii) type I error should
be preserved must be followed when implementing the adaptive design methods in
clinical trials (Li 2006). Following these principles, some basic considerations such
as dose/dose regimen, study endpoints, treatment duration, and logistics should be
carefully evaluated for feasibility (Quinlan et al. 2006). To maintain the validity and
integrity of an adaptive design with complicated adaptations, it is strongly suggested
that an independent data monitoring committee (IDMC) should be established. In
practice, IDMC has been widely used in group sequential design with adaptations of
stopping a trial early and sample size re-estimation. The role and responsibility of an
IDMC for a clinical trial using adaptive design should clearly defined. IDMC usually
convey very limited information to investigators or sponsors about treatment effects,
procedural conventions, and statistical methods with recommendations in order to
maintain the validity and integrity of the study.

When applying adaptive design methods in clinical trials, it is suggested that the
feasibility of certain adaptations such as changes in study endpoints/hypotheses be
carefully evaluated to prevent from any possible misuse and abuse of the adaptive
design methods. For a complicated multiple adaptive design, it is strongly recom-
mended that an independent data monitoring committee be established to ensure
the integrity of the study. It should also be noted that although clinical trial simu-
lation does provide a solution not the solution for a complicated multiple adaptive
design. In practice, “how to validate the assumed predictive model for clinical trial
simulation?” is a major challenge to both investigators and biostatisticians.
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We are moving in the right direction and yet there is still a long way to go until
we are able to address all of the scientific issues from clinical, statistical, and reg-
ulatory perspectives as described earlier. Detailed design-specific guidances (e.g.,
guidances regarding sample size calculation/allocation and statistical/clinical con-
siderations for a two-stage phase I/II or phase II/III seamless adaptive trial design)
must be developed by the regulatory agencies before implementation of adaptive
design methods in pharmaceutical/clinical research and development. In addition,
qualification, composition, role/responsibility, and function/activity of an indepen-
dent data monitoring committee for implantation of adaptive trial design need to
be established for an objective and unbiased assessment of the treatment effect of
the drug under investigation. Thus, from future perspectives, it is suggested that the
escalating momentum for the use of adaptive design methods in clinical trials pro-
ceed with caution. At the same time, valid statistical methods for interested adaptive
designs with various adaptations should be developed to prevent the possible misuse
and/or abuse of the adaptive design methods in clinical trials. More details regarding
recent development of statistical methodologies for specific adaptive designs such
as adaptive dose finding, genomic-guide target clinical trial design, and two-stage
adaptive seamless (phase I/II or phase II/III) designs can be found in Pong and Chow
(2010) and Chow and Chang (2012).
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Chapter 4
Best Practices in Clinical Trial
Simulations for Adaptive Study Designs

Cristiana Mayer and J. Kyle Wathen

4.1 Introduction

If asked to explain what modeling and simulation activities are about and where they
are used, simulation of virtual clinical trials in the pharmaceutical industry is not
the first example that comes to mind. It seems more natural to imagine aerospace
engineers who model the aerodynamic properties of a new aircraft and simulate its
performance under different flying conditions. One may also think of the National
Aeronautics and Space Administration which has been using simulations for decades
for astronauts training. Entertainment will likely be another common example where
simulating a virtual reality has played a big role in the production of movies and
games. Why not the pharmaceutical industry then?

Pharmaceutical research and development (R&D) is a scientific field notoriously
known to be challenged by high failure rates and continuously increasing costs in the
attempt of bringing better and safer medicines to the market. Ignoring large differ-
ences by therapeutic class, the overall clinical approval success rate between 1999
and 2004 was estimated to be 19% based on recent research data on the investi-
gational compounds of the 50 largest pharmaceutical companies, whose size was
determined by their sales in 2006 (DiMasi et al. 2010).

It would be obvious that in such high-risk environment the business model for the
pharmaceutical industrywould have routinely included a heavy-duty use ofmodeling
and simulations before investing in multi-million dollar clinical studies, especially
in the early learning phases of development. But this did not materialize before the
world of adaptive and other innovative clinical trials stepped in the pharmaceutical
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R&D environment. This chapter is intended to illustrate the simulation process in the
context of pharmaceutical drug development with emphasis to the design of adaptive
clinical trials. The definition of adaptive trials and themost common types of adaptive
designs are left to other publications (Bauer et al. 2016; He et al. 2014).

In the next section, the motivation for the new trends in planning, conducting
and sharing modeling and simulation activities is described. Section 4.3 illustrates
the simulation process and describe in details each of the different components that
constitute a simulation study. Section 4.4 describes the scenario planning followed
by testing in Sect. 4.5. The chapter ends with the benefits and challenges in Sect. 4.6.
and the overall conclusions in Sect. 4.7.

4.2 Motivation

The idea of shifting the R&D paradigm and modernizing drug development is not
new. More than a decade ago both industry and Health Authorities recognized that
drug development was stagnating and had to transform to thrive. This necessity was
described already in the FDA report (2004) on “Innovation/Stagnation: Challenge
and Opportunity on the Critical Path to New Medical Products” and measures to
inject innovation presented in the subsequent “Innovation/Stagnation: Critical Path
Opportunity List” (2006) as well as in the EMEA Innovation Task Force and concept
papers (2007, Innovative Drug Development Approaches; 2011, EMAReport on the
implementation; 2010 EMA Road Map to 2015).

The introduction of novel statistical methodologies for adaptive trial designs and
their broader utilization have vehemently flourished in the last decade. Clinical tri-
als are designed and executed to gather reliable scientific evidence that allows for
quantitative-based sound decision making as early as possible, because “failing ear-
ly” is a success by saving time and resources (Kannt and Wieland 2016). Much has
beenwritten on how to improve the R&Dbusinessmodel and it is nowadays common
to prefer the drug development paradigm labeled “quick win, fast fail” as illustrated
in Paul et al. (2010). According to this paradigm, a smaller number of compounds
advance in Phase 2b, and Phase 3 but those that advance have a higher probability
of successfully being approved and launched on global markets.

Nowadays the current business model in the pharmaceutical industry must be
strongly anchored on quantitative approaches for evaluating and comparing the
designs and analysis methods of clinical trials to enable better decision-making and
quantify more precisely risks as well as predict more precisely the outcomes. The
need to make the “right” decision at the “earliest” time point requires simulations
that allow a detailed evaluation of outcome uncertainty per unit of time and of costs.

Given the richness of recent medical, statistical and computing technological
advances, adaptations in clinical trials triggered by accumulating data in near real
time has brought to the spotlight the importance and usefulness of modeling and
simulation. Not only adaptive design of clinical trials, but also the combination of
different statistical approaches, like Bayesian and frequentist concepts, and advanced
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modeling techniques, like disease progressionmodels ormodel-basedmeta-analyses,
are more commonly and routinely used. All these approaches require careful and
detailed statistical evaluations which cannot avoid simulations.

The interest and support from Health Authorities has also boosted the interest in
and application of clinical trials simulations (Westfall et al. 2008). The regulators
acknowledge the importance of clinical trial simulation in the armamentariumof tools
for innovation in R&D to help predict efficient designs for development programs
that reduce the number of trials and patients, improve decisions on dosing, and
increase informativeness (2006 Challenge and Opportunity on the Critical Path to
New Medical Products). The efficient and intelligent use of the simulation tools
on an adaptive design clinical trial should ultimately help increase the likelihood
of success at the program development level (Wang 2009). As stated in the FDA
guidance “Computer simulations can play a crucial role in adaptive designs and can
provide the operating characteristics of the study design under different scenarios”
(FDAGuidance on Adaptive Designs forMedical Device Clinical Studies p. 28, July
2016).

In December 2016, the US Congress signed into law “The 21st Century Cures
Act”. Under title III—Subtitle C “Modern trial design and evidence development”,
direct reference to the use of more complex adaptive and other novel trial designs
is made paired with the need for a dialogue between the FDA and sponsors on the
expectations and technical issues related to modeling and simulations.

The Prescription Drug User Fee Act (PDUFA) V sunsets on September 30, 2017.
In the current PDUFA VI legislation approved by the United States Congress in
August 2017, an enhancement is focused on promoting simulation approaches con-
sidered a critical tool to support innovation and regulatory statistical sciences. The
legislation mandates the necessity to clarify for sponsors the regulatory expectations
around simulations studies that aim to adequately characterize the performance of
more complex trials.

Beyond the regulatory and legislative changes in the last few years, the expansion
of statistical methodologies on adaptive clinical trial designs and advancement in
computing technologies and software development to support the design and execu-
tion of more sophisticated and complex adaptive study designs have accelerated the
use of simulations in the context of drug development.

As Ruberg (2016) has eloquently hypothesized, “The prediction that the future
will usemore adaptive clinical trialsmay seem to be an easy one given the burgeoning
efforts that are underway today. […] This will be a fundamental change from oper-
ating in “batch mode,” whereby clinical trials proceed in a step-by-step fashion with
discrete decision points—accompanied by “white space” in between completion of
trials and initiation of the next trial—to operating in “interactive mode” in which
predefined decision criteria supported by models and simulations allow valid statis-
tical inference” (page 60). Adaptive designs are indeed an invaluable tool to increase
the efficiency of drug development process by utilizing accumulating information to
make decisions faster on a compound’s safety or efficacy (Gallo et al. 2006).

Another important reason that significantly promote the use of simulation tech-
niques in the pharmaceutical industry is to bridge gaps in knowledge for clinical
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testing of investigational drugs while quantifying the involved risks. If, on one side,
an adaptive design may be chosen because improves the information quality and
value for the money invested in a resource-constrained environment (maximize the
high-quality information amount per dollar spent), simulations are the critical tool to
gain a better understanding ofwhat can be expected in a trial, what type of efficiencies
and potential reduction in failure rate can be achieved and the degree of uncertainty
around such quantities. In addition, simulations satisfy the need to explore a large set
of scenarios to pressure-test the clinical study design and to explain key operating
characteristics (OC) and statistical properties that often cannot be derived analyti-
cally.

4.3 Simulation Process

In the attempt to define the term “simulation” in the context of clinical trials, one
may describe it as the utilization of computer intensive procedures involving mathe-
matical and statistical techniques for conducting virtual clinical experiments on the
computer. The assessment of the performance of a variety of statistical andmathemat-
ical methods, clinical trial designs, and/or modeling approaches cannot be achieved
by conducting clinical studies in the real world. Consequently, a computer simula-
tion is an attempt to model a real-life clinical study or a hypothetical situation within
a pharmaceutical compound development program on a computer so that it can be
studied to see how the trial and/or statistical or mathematical model would work
under a wide range of plausible—not all necessarily likely—scenarios. By changing
values of key variables, assumptions and scenarios, predictions can be made about
the performance of the study design or compound development program features.

More concisely, clinical trials are conducted to test the safety and efficacy of new
medicinal products and devices whereas a clinical trial simulation is conducted to
understand how the design will perform in practice and why the final design was
selected.

4.3.1 Simulation Terminology

For ease of explanation, the simulation terminology that is used throughout this
chapter is introduced first. Without loss of generality, concepts are explained in the
context of a two-arm trial comparing the standard of care (S) to an experimental (E)
treatment. The approaches of simulation discussed here can easily be adapted to fit
more complex settings.

There are numerous commercial and freeware packages available for clinical trial
simulation.Among themore frequently used commercial packages are: (1) EAST® 6,
(2) ADDPLAN®, (3) COMPASS® 2.0 and (4) FACTS. TheM.D. Anderson software
download site (https://biostatistics.mdanderson.org/SoftwareDownload/) provides a
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wide variety of free software for simulating Bayesian designs. Quite often custom
simulation software is developed to make the design fit the trial goals rather than
changing the trial to match available designs in the commercial software. It is not
uncommon that custom simulation software is created to address the adaptive ele-
ments, logistical considerations or other decision points that are being considered.
Regardless of what software is used, the termVirtual Trial Simulator (VTS) is used
to reference the complete collection of components necessary to simulate and under-
stand the clinical trial design. The VTS consists of a virtual trial, analysis model(s),
decision rules, the simulation model, scenarios and performance metrics.

The clinical trial being simulated is called the virtual trial. The virtual trial
defines the design and consists of the analysis model and decision rules. The goal of
the simulation is to utilize software to make the virtual trial design match exactly, or
as close as possible, what will be done when the clinical trial is conducted. Using
this approach, the virtual trial is simulated repeatedly by enrolling virtual patients, or
computer generated patients, for the study team to obtain a better understanding of
how the design will perform in the real world. The OCs are used to characterize the
design and consist of frequently required statistical quantities such as false-positive
error rate, power and average sample size. Before the virtual trial can be simulated
the teammust specify collection of scenarios. A scenario is a list of values specifying
the “true” underlying parameters, such as true response rates for S and E or the true
recruitment rate. The simulation model is the component that describes how the
virtual patient data, such as outcome(s), enrollment time and patient characteristics
are simulated.

There are two methods for simulating a clinical trial: (1) Commercial software or
(2) custom software. There are advantages and disadvantages to each approach and
the decision to use one over the other can be rather easily determined by answering
two questions: (1) Does commercial software exist that very nearly fits the design
for trial or would major simplification need to be made to use the available packages
and (2) Does the team have sufficient time and the required skills/ability to develop
custom software that can better match the trial design while meeting the timelines
often dictated by completely other reasons in drug development.

It becomes apparent that the complexity and desirability of the study design must
be evaluated in conjunction with the skills and abilities of staff to create specific
simulation software. In the end, it is the tradeoff between the desire for the simulation
to match the real clinical trial versus using a pre-made design and the resources
available to the project team that will dictate what choice is to be made among the
VTS tools.

Commercial softwarewill often provide a wide variety of additional information
that is used in understanding the performance of different trial designs. The obvious
appeal for using the commercial software is the convenience of having pre-prepared
tools at disposal to facilitate the comparison of multiple trial designs which are
reproducible and require a relatively short development time. In addition, multiple
users can access and utilize the same tools without the needs for experience and
knowledge of computer science programming languages or computing technologies
beyond the software specifications or input information associated with the specific
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design engine of choice. The biggest drawback with commercial software is the lack
of extensibility to create new designs that are not currently in the software, regardless
of how close the current options match the desired design features.

A major advantage of custom software is the ease of obtaining any summary
information that could be used for decision making, such as values that are not
routinely examined. In addition, with custom simulation software one can often go
well beyond theOCs and average behavior to better understandwhat could potentially
happen when the real trial is executed. The biggest advantage of custom software is
the complete flexibility to accommodate any design so that the design can match the
trial goals and features. The process of developing custom simulation software often
leads to a much deeper and extensive understanding of what could happen during
the clinical trial execution. The biggest disadvantage to custom simulation software
is that it requires developers with expertise and knowledge of clinical trial designs
and of programming code, time to create the code with the necessary flexibility to
be used in different settings and time to validate the code to a reasonable degree of
comfort.

The goal of a simulation is to determine the best design options for conducting the
trial, especially in the context of adaptive designs where adaptations are planned to
potentially offer different outcomes along theway, such as an early futility decision, a
sample size readjustment or treatment dose or regimens selection in multiple stages.
The simulation may also try several different types of analysis model and decision
criteria. In addition, the simulation may include other aspects such as multiplicity
adjustment strategies or missing data handling methods. In many settings addressing
all these questions analytically may be difficult or even impossible. In the following
section the various components of the VTS are described as well as an overview of
the simulation process.

4.3.2 Analysis Models and Assumptions

The analysis model is the component of the VTS that most project teams in the
pharmaceutical industry are familiar with. The analysis model is typically described
in the protocol and details given in the Statistical Analysis Plan (SAP). The analysis
model may oftenmake assumptions, like normality of the data or proportional hazard
function, that may not be true.

There are many features of the analysis model that the simulation will be designed
to test. For example, if historical data is available to suggest that the hazard for patients
with a disease is decreasing over time and that based on the historical treatments the
proportional hazard assumption is unlikely to hold, then a simulation could test how
robust the proposed analysis model is to departures from the underlying assump-
tions. In this setting, there are various approaches to how to analyze the data and
ultimately make decisions. In practice one would provide all the details of analysis
options. However, without loss of generality, only two options for analyzing the data
are presented here and labeled as Option 1 and Option 2. After the project team
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has identified a simulation model that would simulate virtual patients that closely
resemble real patients the VTS can be used to compare Option 1 and Option 2. This
would allow the team to compare the likelihood of success (or other OCs) for the
two different options. It is a good practice to assume that the simulation model and
analysis model are not the same and simulate the trial under various simulation mod-
els to understand the risk, and generate a robust set of scenarios, as addressed in
the Scenario Planning Sect. 4.4. One of the goals of the simulation is to make sure
that the analysis model will provide the best chance of success under a variety of
simulation models, or at least many scenarios.

In combination with the analysis model the decision rules define what actions
will be taken based on the results of the analysis. For example, in a frequentist
analysis a p-value <0.05 may lead one to conclude “success” or in a Bayesian design
a posterior probability that the experimental treatment is better than control of a
very small amount may lead to a futility conclusion. It is important to make sure
that the decision rules are in line with clinical intuition and practical considerations.
Statistical quantities are to be molded to conform and satisfy clinical meaningful
decisions and contribute to a scientific based quantitative decision making process
that also combines elements of commercial, regulatory and clinical value.

4.3.3 Simulation Model

A subtle, but important, aspect of simulating a clinical trial is to understand the
difference between the analysis model and the simulation model. Statisticians and
clinical teams are familiar with the analysis model, because the analysis model is
used during interim analysis and final analysis to analyze the data obtained from
the clinical study and are typically documented in the trial SAP. Conversely, the
simulation model is not part of a conventional fixed design because the OCs, such
as power and false-positive error rate, can be obtained theoretically with no need for
a simulation study. That is, in a standard design, one often relies on large sample
theory and assumes the simulation model and analysis model are the same, thus no
need to specify any simulation model.

In the context of adaptive studies and other more sophisticated trial designs, to
simulate the trial, the simulation model provides the details about how the trial
will be simulated. This may sound trivial but it is experience of the authors that
the simulation process may be somewhat overlooked. The details include specifics
about the assumptions made to generate virtual patients and the logistical aspects of
the trial used in the simulation. For virtual patients, the simulation model includes
details about how the patient outcomes and patient characteristics, if needed, will
be generated during the simulation. In addition, the simulation model will specify
the treatments impact on several patient outcomes. It is important to note that how
the patient outcomes are simulated does not have to match the analysis model. For
example, the simulation model may include a patient covariate, such as age, that
impacts the primary patient efficacy variable but the patient’s age in not part of the
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analysis model. If the analysis model and the simulation model do not match, then
the simulation will highlight how sensitive the analysis model and decision making
rules are to departures from what is expected or even planned. It is a best practice to
consider cases where the simulation model and analysis models do not match.

One of the key components of the simulation model is the enrollment pattern
and patient arrival times in the virtual trial. In practice, it is common for the patient
accrual to increase over the first several months of the trial and often accelerate
even faster towards the end, especially when competing enrollment is used among
sites. The details on how this would be translated in simulation constitutes part of
the simulation model. While it may take more effort to get the virtual trial to match
the expectations of the real trial, simulations can often identify potential problems
before they occur. In the context of different simulated accrual rates, for example, the
ramp-up in accrual can show if an interim analysis may be planned when too little
data will be available or it is not feasible operationally if patients’ accrual will be fast
relative to the timepoint of the outcome assessment. A commonly used approach is
to assume patients arrive according to a Poisson process where the rate is either fixed
or changes over time, see Fig. 4.1 as an example. This component of the VTS can be
used to graphically illustrate potential different accrual patterns with the associated
confidence bands on top of the timingwhen data would likely be available. Figure 4.1
provides an example of patient accrual where both the number of patients recruited
per site and the number of sites in the study increases at the beginning of the study.
In addition, Fig. 4.1 shows how much patient data would be available over the time
horizon, assuming that the outcomes of interest are observed at 6 and 12 week time
point after treatment. This type of plot can be very helpful for planning purposes and
can easily convey when the data would be available for decision making at various
time points in the trial.

4.3.4 Performance Metrics

Performance metrics are the key deliverable of a simulation study. They are used to
explain how a design will perform in practice and are critical for comparing design
options. The amount of information that is captured during the simulation can help
to provide a clear understanding of both the statistical properties, as well as highlight
logistical and cost/time characteristics.

There are many situations where the usual OCs like power, false-positive error
rate and average sample size are not sufficient to provide a clear picture for compar-
ing among various designs. New methodology in the field of adaptive clinical trial
designs is developed with a specific goal in mind. For example, outcome adaptive
randomization is an approach often used to unbalanced randomization to favor the
treatment that, on average, has better performance based on the accruing patient
information. In this setting it is typical to report the usual OCs mentioned above.
However, it is also important to report additional metrics such as the probability that
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Fig. 4.1 Example trial accrual and patient data availability

more patients are assigned to the inferior treatment and the sample size distribution
per arm.

As a second example, consider a trial that is intended to gain an understanding
of a dose-toxicity curve as well as a dose-response curve and the tradeoff between
them. In this example, a simulation would want to report the likelihood of selecting
each of the doses under a variety of scenarios, (see the next section for more about
scenario planning in this example). In addition, a simulation should report quantities
to summarize the likelihood of selecting safe and/or effective doses as defined by the
trial objectives and the average, minimum and maximum number of patients treated
on each dose. It is a very good practice to capture several examples of individual
virtual trials to show to the team how different decisions could be made under certain
circumstances.

A third example of performance metrics that can be very useful are non-statistical
quantities. For example, it is often useful to compare design strategies based on
metrics such as financial considerations, time to market (even if an adaptive trial
may take longer to complete, is the drug development program significantly faster
overall compared to others?), or selection of subpopulations that may benefit for the
treatment that maximizes the benefit-risk ratio.

Making general statement about the OCs beyond the usual false-positive error rate
and statistical power is difficult because the desired OCs are often highly dependent
on the specifics of the design and settings that the simulation is being performed
under. It is critical to perform an extensive simulation study when trying a new
statistical methodology and utilize virtual patients, rather than real one, to determine
whether the new statistical methods provide the desired performance.
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4.4 Scenario Planning

Scenario planning can be thought of as an opportunity to examine “what if” cases.
It is common for team members or others, such as senior management, to inquire
about how a design performs in specific settings. For example, the following “what
if” questions could be raised: (1) what if the recruitment rate is much slower/faster
than expected?, (2) what if the dropout rate is higher than expected?, (3) what if the
control/placebo effect is different than was observed in historical trials?, (4) what if
only patients under age 50 respond to our treatment?, or (5) What if multiple interim
analyses are considered instead of just one?

As a team develops a trial and identifies a set of “what if” questions, scenarios
can be created to answer each of the questions. Being able to answer such questions
is a major benefit of the simulations. Typically, one simple question like those listed
above can lead to several subsequent questions that ultimately result in a separate
collection of scenarios. Each scenario describes a potential “true state of nature”
and thus simulating many scenarios allows study teams to understand how a design
could ultimately perform. In scenario planning the team thinks carefully about the
question, determines which parameters need to be varied to answer the question, then
simulates the scenarios to address the question.

To help clarify what scenario planning entails, a few of the most common “what
if” questions listed above are used to describe what a team may consider when they
are planning scenarios. Each example provides a few thoughts the team may go
through and how scenarios could be built, to answer the questions. Typically, the
main concern is how much, if any, the changes will impact the OCs or likelihood of
success.

Example 1
Question: What if patient recruitment is much slower than expected?
Scenario Planning: The team has provided the baseline assumptions around patient
accrual and simulations have been conducted assuming the recruitment follows a
Poisson process with the anticipated recruitment rate. It is a best practice to consider
a recruitment rate that may vary from 25 to 200% of what is anticipated to help
the team understand the impact on the design. It is often informative to consider
alternatives where the recruitment rate ramps up at the beginning of the study.

Example 2
Question: What if placebo (or control) response rate is different than historical?
Scenario Planning: The team has provided the baseline assumptions around how
patients will respond to placebo (or control). These estimates are often based on
historical data, literature or expert opinion. It is a best practice to consider varying
the placebo rate and determine the impact on the design. In Bayesian designs this can
be a very important concern, especially if an informative prior is utilized. Typically,
the guess on the range on the parameter of interest has scientific validity, but it still a
good idea to simulate some scenarios where the true parameter of interest is outside
the provided range.
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Example 3
Question: What if an additional interim analysis (IA) is included?
Scenario Planning: This questions arises often in the context of adaptive trials as
the perception is that looking more frequently can lead to better performance. Sim-
ulating various cases where more IAs are included can provide the team with a clear
understanding of the benefits of more frequent monitoring and trade-off with some
measure of penalty. If the initial design has one IA and a final analysis (FA) then it
would be very helpful to consider the potential gain of several options: (1) adding
one additional IA midways between the original IA and FA, (2) consider moving the
IA earlier/later or (3) frequent/continuous monitoring such as monthly monitoring. It
would be important to report the impact on the OCs such as increase in false-positive
error rate or statistical power as well as the changes in other quantities of interest
such as probability of stopping early for futility under the null hypothesis or success
under an alternative hypothesis. One key factor to keep in mind in addition to the
usual Type 1 error rate control is what the practical limitations are around doingmore
frequent monitoring from an operational perspective.

4.5 Testing

For both commercial and custom software, a fair amount of testing should be per-
formed.However, the testing that is done is highly dependent on the software category
(commercial or custom). For commercial software, it important tomake sure to “test”
that the software is applied to the correct setting matching the design and features
the researcher has chosen to test. In addition, it is important to make sure to correctly
input the information (e.g. parameter defining the software specifications) to match
the assumptions made by the study team and have a clear understanding of how
such parameter/feature entries impact the design. It is important to ensure that the
simulated data, models and results are accurate and match the desired assumptions
to meet the objectives of the simulation and answer the questions that the simulation
was designed to address. It is also helpful to simulate some scenarios at extremes
to check how the results match with what is expected. For custom code, testing
should be more extensive and include the steps suggested for the commercial soft-
ware packages. However, explaining the ideal testing environment for custom code
is well beyond the scope of this chapter, as there are no prespecified fields to be
populated for a given design engine. Lastly, the number of simulations must be care-
fully planned, as the variance of quantities of interest resulting from the simulation
study greatly changes with the number of simulation runs per scenario. One cannot
sacrifice accuracy of results for practical execution and computing time.
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4.6 Benefits and Challenges

In the conventional fixed design study, it is often straightforward to obtain the infor-
mation needed to determine the adequate sample size for a given expected treatment
effect. There are many tools available to answer the simple, and common, ques-
tion “What sample size do I need to achieve this primary objective with sufficient
statistical power?”.

When looking at the landscape of adaptive clinical trials with multiple decision
rules and adaptations, multiple looks at the data and multiple objectives, the assump-
tions made to conduct the simulation are an integral part of the dialogue between
functions in clinical development. It is no longer a matter of a “simple” statistical
sample size calculation. It is now amatter of combining assumptions around the clin-
ical and commercial value of different study designs, the clinical operation aspects
in conducting a certain trial design that have an impact on the scenario analysis as
well the statistical methodologies and quantities to be compared among studies.

Related to the collection of assumptions, statisticians who perform simulations
may encounter the challenge of engaging colleagues in other functions who are not
so familiar with the concepts around adaptive designs and the simulation process.
It is often conceivable that some of the clinical team members may not completely
understand what simulations entail. The interaction among statisticians and other
team members is an aspect of the conduct of the simulation process that cannot be
emphasized enough. The dialogue between statistician and study team consists of 2
parts: eliciting information for constructing meaningful and plausible assumptions,
and providing a clear description of the design and scenarios of interest to assess
how it matches the clinically meaningful objectives. The benefit of obtaining a better
and more comprehensive understanding of the trial features and performance is not
always an obvious benefit to non-statisticians. Colleagues in the clinical, operational
and commercial fields are typically not required to think critically about certain
design parameters at the design stage. They may not value the scope of simulations
in assessing and comparing different clinical trial ‘realities’. They may not be fully
aware of the impact of some implementation or logistical aspects of conducting a
clinical trial on the performance of a given study design like in the case of speed of
enrollment and timing of interim analyses, for example.

On the side of challenges, developing simulation code or understanding commer-
cial software to run simulations requires time. The time required to run simulations
(computing time may not be easily ignored), summarize results and put together a
succinct report add to the working time of the statistician. At the end of the simula-
tion study, there is also the challenge to explain the results in a clear manner, make
recommendations and spend time to collect feedback and possibly re-run code with
the necessary changes.

Hence, the new educational role for statisticians in addition to conducting and
interpreting simulationsmay appear a significant burden to the profession of statistics
in clinical trials. But it is the view of the authors that this is instead a new opportunity
for statisticians to become leaders within the clinical team. Simulations offer the
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advantage of generating a much more extensive picture of what the trial is, what
could happen in different settings, what the potential risks are in terms of decisions
and operational consequences. Not only the trial features can be better understood but
also the data simulated at patient level can help the researcher to compare designs in
setting that are close to reality that may or may not meet the assumptions of the data
generating model. All in all, there is much more time required for the statistician
to communicate with the team and for the team to understand more complicated
scenario analysis than just comparing power levels for different sample sizes.

4.7 Conclusions

In a typical old-fashion setting, statisticians are asked “What sample size do I need
to have a Type 1 error rate of 0.05 and power of 90% when the true treatment
difference is X with a given standard deviation?”. If statisticians take this simple
question, that can easily be answered with existing software, as an opportunity to
begin a scientific dialogue within the project team, simulations become a tool to
answer much more meaningful questions and gain valuable and deeper insight into
the best approach(s) for developing a new therapy. Simulations could be a vehicle
to develop and strengthen the leadership role of statisticians as important partners to
other functions in drug development.

Given the richness of new statistical methodologies and computing technological
advances, the utilization of adaptive designs in the pharmaceutical and device indus-
try cannot ignore the important tool of simulations. Not only the drug development
paradigm has to shift, but the community of statisticians must also embrace a change
in mindset to help develop clinical trials designs that are more efficient and better
equipped to make faster and more precise decisions based on interim and accumu-
lating data. This can be achieved with the routine and extensive use of simulations
in drug development.
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Chapter 5
Designing and Analyzing Recurrent
Event Data Trials

Stephan Ogenstad

5.1 Introduction

Recurrent event data analysis is common in clinical trials. Literature reviews indicate
that most statistical models used for such data are often based on time to the first
event or that events within a subject are considered to be independent. Even when
taking into account the dependence of the events within subjects, statistical analyses
are mostly done with continuous risk interval models, which may not be appropriate
for treatments with sustained effects. Furthermore, results can be biased in cases of a
confounding factor implying different risk exposure, e.g. in malaria transmission, if
subjects are located at zones showing different environmental factors implying dif-
ferent risk exposures (Sagara et al. 2014). Hence, in many prospective randomized
controlled clinical trials, events are recurrent, in the sense that the events involve
repeat occurrences of the same or different types of events over time. Typical event
data consist of times of occurrences of events and the types of events or states that
occur. Frequently, an eventmay be considered as a transition fromone state to another
and, therefore, multistate models will often provide a relevant framework for event
history data. Event history analysis deals with inference for transition intensities and
transition probabilities in multistate models. This includes estimation and hypothesis
testing for these quantities and analysis of regression models where these quantities
are related to explanatory variables observed for the subjects under study. Multistate
models are defined by their transition intensities from which transition probabilities
may or may not be derived depending on the modeling assumptions. Multistate mod-
els are discussed from several points of view in the books and articles by Andersen
and Keiding (2002), Andersen et al. (1993), Blossfeld and Rohwer (1995), Courgeau
and Lelièvre (1992), and Hougaard (1999, 2000), and Commenges (1999).
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The recurrent events are health indicators that assess disease progression or ther-
apeutic effect when subjects are observed over a period of time. It is clinically mean-
ingful to consider whether the treatment a subject is receiving is expected to impact
the first event or subsequent events or both. In other words, does the intervention
increase the time to the first event or decrease the event number over the study
period? In many therapeutic areas, time to the first event is chosen to be the primary
endpoint, but this choice then ignores all events after the first one. It is true that
statistical approaches for recurrent event endpoints usually are more complex, with
less regulatory experience, though there are a number of indications where these end-
points are used, such as hospitalizations in cardiology, asthma andmultiple sclerosis.
The recurrent event approaches are usually more statistically efficient as information
beyond the first event is used. When the follow-up time may be truncated by com-
peting terminal events, it is possible that a subject’s observation times may correlate
with the competing terminal events themselves, thus making the observation times
difficult to assess.

Flexible parametric models of time to the first event or survival can help us in a
number of ways. These types of models allow us to obtain estimates of the baseline
survival function and its uncertainty which vary smoothly over time. Prediction of
survival probabilities and differences, hazard rate functions, hazard differences and
ratios, time-dependent effects of covariates, and excess mortality rates in the context
of relative survival are just some of the possible outputs from these models.

There are a number of different methods that can be used to evaluate the effects
that different treatments can have on subjects in a controlled clinical trial. A fewof the
methods are to study the ‘time to the first event’ for the subject, the ‘number of events’
observed for the subject during the time period that the subject is observed, marginal
models, special models with time-dependent covariates, and frailty (random-effects)
models. Random effects models are interesting, and our understanding of how they
work when applied is beginning to mature. Marginal models are relatively simple
to use, interpretable, and flexible, but all of them have limitations. Usually, these
models can be fit with standard software such as SAS, Stata and the R package.

In this chapter, we will initially spend some efforts on survival models, since these
models form a foundation of many recurrent event models. We are only considering
right-censored observations, that is when subjects are still alive at the end of the study
andweonly have incomplete survival timeobservations.Acrucial problem iswhether
the available incomplete data enables us to make valid inference on parameters in the
multistatemodel for the complete data. The condition for this is knownas independent
right-censoring and the interpretation is that a sample observed after independent
right-censoring is ‘representative’ of the population without censoring. This means
that subjects who are censored should have neither lower nor higher risk of future
events than subjects who are not censored. We will not cover events that affect trial
conduct, such as treatment switching after an event has occurred.
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5.2 Methods

5.2.1 Time to First Event

Let T denote a continuous non-negative random variable representing survival time,
with probability density function f (t) and cumulative distribution function F(t) �
P(T ≤ t). The survival function S(t)� P(T > t)�1−F(t) expresses the probability of
a subject being alive at time t. The hazard rate function α(t) � f (t)/S(t) describes the
conditional probability of an event occurring at time t, given that the event has not
yet occurred. Models based on the hazard rate function can assess whether covariates
have an effect on the hazard. If we let �(t) � ∫ t

0 α(u)du denote the cumulative or
integrated hazard rate function then the survival function can be expressed as S(t) �
exp(−�(t)).

The simplest multistate model is a two-state model where a subject can transition
from being ‘alive’ (in state 0) to the absorbing state of being ‘dead’ (in state 1).
Sometimes what is happening to a subject is being viewed as being part of a Markov
process. The time it takes until this ‘absorbing state’ is reached (or the observational
period is censored) is the ‘survival time’. The survival time for a subject will here
in the most simple form consist of a random variable, say T , representing the time
from a given origin (time 0) to the occurrence of the event ‘death’ or we have the
knowledge that the observational period is censored. It is seen that S(t) and F(t),
respectively, correspond to the probabilities of being in state 0 or 1 at time t. If
every subject is assumed to be in state 0 at time 0 then F(t) is also the transition
probability from state 0 to state 1 for the time interval from 0 to t. In continuous time
the distribution of T may also be characterized by the hazard rate function transition
probability from state 0 to state 1 for the time interval from 0 to t. The hazard rate
function may be characterized by

α(t) � −d log S(t)/dt � lim
dt→0

P(T ≤ t + dt |T ≥ t)

dt

that is,

S(t) � exp

⎛

⎝−
t∫

0

α(u)du

⎞

⎠

Thus, α(.) is the transition hazard rate from state 0 to state 1, i.e., the instantaneous
probability per time unit of going from state 0 to state 1.

The survival function is often estimatedwith theKaplan-Meier (KM) curve (Aalen
et al. 2008). It is the most frequently used tool to describe what happened to the
subjects in each treatment group. Fromcensored survival datawe can easily estimate a
survival function by theKMestimator. Figure 5.1 showsKMsurvival curve estimates
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Fig. 5.1 KM survival curve estimates for time to death from cancer for two treatment groups
Placebo and Drug

for time to death from cancer for two treatment groups Placebo and Drug. The cancer
dataset that ships with the software Stata (cancer.dta) is used, but is entirely fictional.

The least precise parts of the KM curves get the most visual focus, i.e., the right-
hand parts of the curves towards the end of the study, where the fewest number of
subjects are at risk of the event of death. This is a general criticism of KM survival
curve estimates. Kaplan-Meier-type estimates are composed of a sequence of point
estimates of the survival functions that are highly serially correlated. Accordingly,
KM plots tend to display ‘runs’ of values that move away from and back toward the
general trend, giving an undulating appearance. This may make the curves difficult
to interpret andmay lead to the overemphasis of local features (Royston and Lambert
2011).

The estimation of a hazard rate function is more difficult. What can easily be
done is to estimate the cumulative hazard rate function �(t) � ∫ t

0 α(u)du using the
Nelson-Aalen estimator. Figure 5.2 shows the Nelson-Aalen estimates for the same
two treatment groups Placebo and Drug described previously.

If the increments of a Nelson-Aalen estimate are smoothed then the new estimates
may be used to provide estimates of the hazard rate function themselves. Below are
estimates of the hazard rate functions after smoothing of the Nelson-Aalen estimates
for the two treatment groups Placebo and Drug (Fig. 5.3).

The smoothing options will, of course, affect the shape of the hazard estimates.
We will later on in this chapter show alternative ways of estimating the survival,
cumulative hazard and hazard rate functions.
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Fig. 5.2 Nelson-Aalen estimates for time to death from cancer for two treatment groups Placebo
and Drug
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5.2.1.1 The Cox Proportional Hazards Model

Modeling of censored survival data has since the 1970’s almost always been done
by the use of the Cox proportional-hazards regression model. The model is in its
original form semi-parametric. The hazard rate function for the Cox proportional
hazard model (Cox 1972) has the form

α(t |zi ) � ρ0(t) exp(β1zi1 + β2zi2 + . . . + βpzip) � ρ0(t) exp(z′
iβ)

whichgives the hazard rate at time t for subject iwith covariate vector zi andparameter
vector β. The baseline hazard ρ0(t) is arbitrary, which in one sense is scientifically
comforting, though the function does not extrapolate any information beyond that.
An underlying assumption of the Cox model is that the estimated parameters are not
associated with time.

Ignoring ties at the moment and conditioning on the existence of a unique event
at some particular time t the probability that the event occurs in subject i for which
Ci � 1 (uncensored) and Ti � t is

Li (β) � θi∑
j :Tj≥Ti

θ j

where θ j � exp(z′
jβ). Treating the subjects’ events as if they were statistically

independent, the joint probability of all realized events conditionedupon the existence
of events at those times is the partial likelihood

L(β) �
∏

i :Ci�1

θi∑
j :Tj≥Ti

θ j

Its log partial likelihood is

l(β) �
∑

i :Ci�1

⎛

⎝ziβ − log
∑

j :Tj≥Ti

θ j

⎞

⎠

This function can be maximized over β to produce maximum partial likelihood
estimates of the model parameters.

Several approaches have been proposed to handle situations in which there are
ties in the time data. The partial likelihood for recurrent failure times is the case
when two or more subjects are recorded as dying at the same time. Breslow (1975)
developed a method that is the default for many statistical software packages, but it
is not the default for the R package. Breslow’s method uses the partial likelihood,
expressed as
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L(β) �
I∏

i�1

∏
j∈D(t(i)) φ j

(∑
j∈R(t(i)) φ j

)|D(t(i))|

where
∣
∣D(t(i))

∣
∣ is the number of subjects that fail at time t(i).

Breslow’s method describes the approach in which the procedure described above
is used unmodified, even when ties are present. An alternative approach that is con-
sidered to give better results is Efron’s method (Efron 1974). The Cox model may be
specialized if a reason exists to assume that the baseline hazard follows a particular
form. In this case, the baseline hazard ρ0(t) is replaced by that particular function.
An alternative to Cox’s model is the additive regression model due to Aalen (Aalen
et al. 2008), which assumes that the hazard rate of a subject i with p covariates zi1,
…, zip takes the form

α(t |zi ) � β0(t) + β1(t)zi1 + . . . + βp(t)zip.

For this model β0(t) is the baseline hazard, while the regression functions β j(t)
describe how the covariates affect the hazard rate at time t. For the Cox and additive
regression model hazard rate functions, the covariates are assumed to be fixed over
time. More generally, one may consider covariates that vary over time (Aalen et al.
2008). The generic term parametric proportional hazards models can be used to
describe proportional hazards models in which the hazard rate function is specified.
The Cox proportional hazards model is sometimes called a semiparametric model
by contrast.

The R package uses Efron’s partial likelihood, as it is considered a closer approx-
imation to the exact partial likelihood. Efron’s partial likelihood has the following
shape

L(β) �
I∏

i�1

∏
j∈D(t(i)) φ j

∏|D(t(i))|
k�1

(∑
j∈R(t(i)) φ j − k−1

|D(t(i))|
∑

j∈D(t(i)) φ j

)

An extension of the proportional hazards model is to allow for multiple strata in
the fitting procedure. That is, we assume that the subjects can be broken into multiple
groups, and the hazard rate function for subjects in the kth group is

ρ0k(t) exp(z′
i
β).

Acommon use of stratification is inmulticenter trials. Because of different subject
populations and referral patterns, different centers in the trialmay have quite different
hazard rates, yet a common treatment effect across centers. In this way, strata play
a similar role to multiple intercept terms in an analysis of covariance model. Each
baseline hazard captures the baseline rate for an event. When events are of different
types, we have in reality different baselines. If we, for instance, are studying heart
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Fig. 5.4 KM and Cox model estimates for time to death from cancer for two treatment groups
Placebo and Drug

attacks, are the first and second heart attacks the same type of event? Well, we would
only know if we investigate it.

TheKaplan-Meier andCox estimation provide estimates of the survival functions.
Continuing to use our cancer data, Fig. 5.4 displays theKMandCoxmodel estimates.

5.2.1.2 Extending the Cox Model for the Two-State Case

The main purpose of the Cox model in its simplest form is to estimate hazard rates
assuming that the hazards are proportional to each other. Because the model can
be embedded in a counting process framework (Andersen et al. 1997), the model
can be extended in many different ways to answer questions across a wide range of
situations, where we need to obtain informative estimates of quantities that include
hazard rates and their differences and ratios, survival curves and their differences,
rates, and survival at given time points. By ‘informative’ wemean unbiased estimates
that are smooth functions.

Parametric survival models generally provide smooth estimates of the hazard and
survival functions for any combination of covariate values. The exponential model
is often used when planning a clinical trial and for calculating the power and sample
sizes. Though, the exponential survival model is a rather unrealistic model since it
is assumed that the hazard rate function is constant over the whole observational
study period. This model can be generalized by splitting the observational period
into intervals. The choice of the number of intervals and where to place the cutpoints
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is of course subjective. With the piecewise exponential model, the time scale is split
into several intervals, where we assume that the hazard rate function is constant
within each interval but can vary from interval to interval. The hazard rate function
for the piecewise exponential model can be written hi j (t, zi ) � α j exp(z′

iβ), where
the subscript i is for subject and j is for the interval. Modeling the data with the
Poisson approach allows us to think about survival time in a different way from that
in standard survival analysis. Usually, survival time is considered to be the outcome
variable andwehave to use specialmethods to account for the censoringprocess.With
the Poisson approach, it becomes clearer that we aremodeling rates.We have a binary
variable as an outcome, and our models investigate variation in the corresponding
rates. There are many factors that cause systematic variation in rates, for example,
age and gender, but also time. In the Poisson framework, we can, therefore, consider
time to be a covariate, as opposed to a response. Thus we can adjust for time just as
we would for any other covariate. Time-dependent effects of a covariate of interest
are then simply an interaction between time and the covariate. The Poisson model
with a split at each unique failure time gives us the Cox model. However, we do not
want to fit a model with so many parameters. An important question is, what is the
effect of changing the number of time intervals of the parameters of interest (usually
log hazard ratios)? The problem with the piecewise exponential model is that if we
choose too few intervals we may miss important changes in the hazard rate; if we
choose too many, we end up with too many parameters, and the underlying shape of
the hazard rate is difficult to see because of random variation.

5.2.1.3 Royston-Parmar Models

The use of parametric models for the type of data we so far have considered may
have some advantages. The non-proportional hazards that are a potential difficulty
with the Coxmodel, could sometimes be handled in a simpler way, and the visualiza-
tion of the hazard rate function could be much easier. Royston–Parmar (RP) models
(Royston and Parmar 2002, Lambert and Royston 2009) have great flexibility with
respect to the shapes of the survival distributions they can model. Familiar standard
parametric survival models are the starting point for the generalizations called RP
models. Weibull, log logistic, and lognormal models can be generalized to propor-
tional hazards, proportional odds, and probit-scaled RP models, respectively. The
additional flexibility of RP models arises because the baseline distribution function
is represented as a restricted cubic spline function of log time instead of simply as
a linear function of log time. Modeling with spline functions generates some addi-
tional complexity. The additional complexity is determined by the number and the
positions of the connection points in log time, known as knots, of the spline’s cubic
polynomial segments. Estimation of parameters is by maximum likelihood. Quite
often, the characteristics of the fitted model are rather insensitive to the number and
particularly the position of the knots, lending a certain robustness to the process of
model selection. The restriction that the transformed survival function be linear in
Ln(t) is, in practice, severely limiting and is not really necessary. In RP models, we
may relax linearity and allow nonlinear functions. There are many possible fami-
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lies of nonlinear functions that we could use. Because cubic splines are flexible yet
relatively simple to work with and understand, Royston and Parmar (2002) chose
them as their preferred tool to extend standard models. The result is a major advance-
ment in the practical usefulness of parametric survival analysis and in the range of
applications that can be tackled.

In cancer survival trials, one often wants to know the impact of covariates on the
mortality rate for a particular cancer diagnosis. Since cancer is mostly a disease of
old age, many people may die of diseases other than the specific type of cancer they
were originally diagnosed with. Relative survival is a measure of patient survival
corrected for the effect of other causes of death by utilizing the patients’ expected
survival. Both Poisson models and Royston–Parmar (RP) models can be extended
to relative survival by incorporating information on expected survival or mortality.
Relative survival is related to the concept of competing risks (Gamel and Vogel
2001). We there assume that an individual is at risk of either dying of their cancer
or dying of another cause. In relative survival models, we can deal with this issue by
incorporating expected mortality, which can usually be obtained from routine data
sources. Traditionally, simple piecewise models have been used for relative survival,
but all the advantages of standard parametric survival models also apply to relative
survival models.

The baseline survival function in a Cox model is available only in the estimation
sample. To predict survival outside the estimation sample, we need special mea-
sures, such as interpolation or even extrapolation. Using special measures limits the
applications of the Cox model in some situations. An important case arises when we
wish to validate a survival model in an independent sample, a task that necessitates
out-of-sample prediction. There are at least two situations in which this is useful.
One is by interpolating or extrapolating the baseline or other survival functions at
time points not represented in the estimation sample. The other is by predicting sur-
vival probabilities or other quantities of interest from a model on a derivation sample
onto individuals in an evaluation sample (that is, external validation). Interpolation
is helpful, for instance, when we wish to plot a survival function for an individual,
a group, or a covariate pattern as a smooth curve at a suitable choice of time points
within the range of the observed follow-up time. We need the extrapolation when we
want to project a modeled survival function into the future. Successful external vali-
dation is usually regarded as the gold standard of potential usefulness of a proposed
prognostic model (Altman and Royston 2000).

The Hazard rate function is of utmost relevance in clinical medicine since it is
a decidedly meaningful measure of disease course, and is the basis against which
relative hazard effects are estimated. Fuchs et al. (1994) report on a double-blind ran-
domized multicenter clinical trial designed to assess the effect of rhDNase (purified
recombinant form of the human enzyme DNase I) versus placebo on the occurrence
of respiratory exacerbations among patients with cystic fibrosis. The subjects in these
treatment groups are susceptible to an accumulation of mucus in the lungs, which
leads to pulmonary exacerbations and deterioration of lung function. The occur-
rences of exacerbations over the study period were recorded for each subject. The
estimated hazard functions in the Fig. 5.5 are derived from the Cox model and the
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Fig. 5.5 Cox model and the Royston-Parmar model estimates under the proportional hazards
assumption from rhDNase data

Royston-Parmar model under the proportional hazards assumption. The thicker pair
of lines show estimates of the hazard rate functions from the Royston-Parmar model
and the thinner lines from the Cox model, using kernel smoothing, in the Placebo
and rhDNase groups, respectively.

The Royston-Parmar model gives a more plausible trajectory of the hazard for
the patients, then the rugged course that is shown from the estimates based on the
Cox model. In the RP model, the hazards seem to be highest about one month after
randomization and decreases after that time. The hazards are substantially reduced
by the rhDNase treatment. The proportional hazards condition forces the curves to be
proportional to each other. Even after 175 days the hazard in the rhDNase treatment
arm is still substantial but reduced by about one third. The fact that the curve does
not approach zero suggests that the disease is chronic. We have obtained quite a lot
of useful information. Even if we relax the proportional hazards assumption, the plot
of the ensuing hazard rate functions (not shown) are very similar to the thick lines
in the figure. So, our conclusion about the treatment effect seems to be robust.

The baseline hazard contains useful information. If we are told that the mortality
rate is double for subjects with a particular exposure, then we want to know what
reference value this doubling refers to. In a survival model, the reference is usually
the baseline hazard rate, which usually changes as a function of time. Thus even if the
proportional hazards assumption is reasonable, the impact of a particular exposure in
absolute terms depends on how long time has passed since the time origin (diagnosis,
randomization, start of treatment, etc.) and the magnitude of the underlying hazard
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Fig. 5.6 Estimated survival and hazard rate functions with confidence intervals, for time to death
from cancer for two treatment groups Placebo and Drug

rate. Flexible parametric survival models can help us in a number of ways. For
instance, thesemodels allow us to obtain an estimate of the baseline survival function
and its uncertainty which vary smoothly over time.

We will illustrate (Fig. 5.6) the survival distributions and hazard functions using
nonparametric techniques (Kaplan–Meier and smoothed hazard functions, respec-
tively) and aflexible parametric technique (Royston–Parmarmodels) using the cancer
dataset.

The survival curves indicate a median time to event of about 16–20 weeks. The
Kaplan–Meier curve shows a slight downturn after about 22 weeks, which is not
reflected in the survival curve from the Royston-Parmar estimates. The smoothed
nonparametric hazard estimate shows a corresponding upturn about 30 weeks.
Whether the feature is “real” or not is questionable—it seems surprising that the
event rate would start to increase after 18 weeks and then gradually turning down at
30 weeks, and then again from thereon shoot up. The pointwise confidence intervals
(CIs) from the smoothed hazard estimate are wider than that from the Royston-
Parmar. Conditional on a parsimonious parametric model, CIs are generally too
narrow because they do not take model uncertainty into account. Nonparametric
CIs make fewer assumptions and tend to be wider. Also, they are implicitly high-
dimensional and noisy.

The Royston-Parmar models can equally be used to perform multistate survival
analysis (Crowther 2016).
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5.2.2 Multiple Events Per Subject

5.2.2.1 Multistate Models

We have considered situations where each subject can only have one event. If death
is the outcome, then clearly it is not possible to have more than one event. However,
if the event is the recurrence of disease or readmission to hospital, then it is possible
for each subject to have more than one event. As a continuation of survival analysis,
we will consider another type of multivariate data in the setting of competing risks,
where T 1, T 2,…, Tk represent survival times to different causes of death. Estimation
of these models is complicated by the fact that we only observe T �min{T 1, …, Tk}
where evenT can be censored, so that none of the k events have occurred. Yet, another
type of multivariate data involves transitions among several types of states, where
some of them might be terminal, but not all. This combines elements of competing
risk models with models for series of events.

The framework for these types of models can be set up in the following way:
Suppose there is a total of m subjects accrued into a study and each subject is at risk
for a particular type of recurrent event. Let (0,τ ] represent the period of observation
and let N ∗

i (u) be a right-continuous integer function representing the number of events
experienced by subject i over the interval (0, u], i � 1, 2,…,m, 0 < u ≤ τ . During the
observation period (0, τ ], some subjects may experience an event which terminates
their recurrent event processes (e.g. death), but subjects may also withdraw from the
study according to some random censoring mechanism which is independent of the
recurrent event and terminal event processes. For i � 1, …, m, let Ti be the time of
the terminating event, Ci the censoring time, Xi �min(Ti, Ci), π (t)� P(Xi ≥ t), and
δi � I(Xi � dTi), where I(·) is an indicator function. We let Ni (t) � N ∗

i {min(t, Ti )}
denote the number of recurrent events observed over (0, t] in the presence of death.
The data contributed by each subject then take the form ({Ni (u), 0 < u≤ Xi}, Xi, δi),
i � 1,…, m. Let Yi(t) � I(Xi > t) be the at risk indicator function which is one when
subject i is under observation and at risk for an event at time t and is zero otherwise.
We suppose initially that we have a single sample of subjects.

The most important class of models is the continuous time Markov process X(t)
on the finite state space S �{1,…, p} where the dependence of transition hazard rate
function αi

n j (t) on the history Xt is only through the current state of X(t) and possibly
via time-fixed covariates. Statistical models are usually obtained by specifying the
class of transition intensities (αi

n j (t)) for each subject i.
The most important deviations from the Markov property in practice are various

kinds of duration dependence, where transition intensities depend on other time ori-
gins than t �0, typically the time of entry to the present state. There are two main
approaches to handling these. As long as transition intensities depend only on one-
time origin each (for example, all intensities depend only on duration in the present
state), a model for the multistate process may be obtained by combining indepen-
dent submodels for each transition hazard rate. These may, in turn, be modeled as
constant or piecewise constant or by non- or semiparametric models, and as long as
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there is a unidirectional flow in the model, transition probabilities are still straight-
forward explicit functionals, which may be estimated by plugging in the hazard rate
estimates. Variance calculations may, however, become less direct (Andersen and
Keiding 2002).

5.2.2.2 Univariate Recurrent Events

At the moment, we are only concerned with univariate events, i.e., events of the
same kind. Because the various events occur to the same subject, the waiting times
will in general not be independent. Since the events occur one after the other, it will
generally be the case that only the last interval can be censored.

With recurrent events, we can expect a correlation between the times to event of
a given subject. For instance, subjects with severe disease will tend to have more
events and a shorter time between events than those with mild disease. The most
commonmodels used are (i) Generalized estimating equationsmodel using a Poisson
orNegative Binomial distribution, and three extended Coxmodels: (ii) theAndersen-
Gill counting process (AG) (Andersen and Gill 1982), (iii) the Prentice-Williams-
Peterson counting process (PWP) (Prentice et al. 1981), (iv) Wei, Lin, andWeissfeld
(WLW) (Wei et al. 1989; Lin 1994) and (v) the frailty model (Gutierrez 2002). For
the marginal models, the correlation is dealt with using a robust sandwich-based
estimator to avoid inflation of type I error due to multiple observations per subject
which do not require specification of the correlation matrix (Kelly and Lim 2000).
Consideration needs to be taken whether the events are ordered or not. Ordered
events could be, for instance, first, second, third,…hospitalization.Unordered events
could, for instance, be of different types, such as ‘hospitalization’, ‘withdrawal’, and
‘death’, where ‘death’ is a competing event. For more details of the approaches, see
Therneau (1997) and Therneau and Grambsch (2000). One can fit similar models
within the Royston-Parmar framework (Royston and Parmar 2002; Lambert and
Royston 2009).

5.2.3 Poisson Regression

A Poisson process can be described via the hazard rate function that is of the form

α(t |H (t)) � ρ(t) t > 0,

where ρ(t) is a nonnegative integrable function. It is also assumed that the cumulative
hazard rate

μ(t) �
t∫

0

ρ(u)du t > 0,
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is continuous and finite for all t >0. It is seen from the hazard rate function above
that the Poisson process is Markovian. The probability of an event in (t, t +Δt) may
depend on t but is independent of the history H(t).

Poisson regression is a generalized linear form of regression analysis used to
model count response data. Poisson regression assumes the response variable Y has
a Poisson distribution and assumes that the logarithm of its expected value can be
modeled by a linear combination of unknown parameters. The Poisson regression
model is frequently used to analyze count datawhen the dependent variable represents
the number of independent events that occur during a fixed period of time (Prentice
et al. 1981, Sagara et al. 2014). The method assumes that all events are independent
and is based on event rates, where the total number of events is divided by the
follow-up time. The conditional mean of Y (the number of events) can be written as:

Ln(Y |Z, β) � Ziβ

where Ziβ � β0 + β1Z1 + . . . + βk Zk of k parameters and Ln is the natural logarithm
function.

The probability function for a unit-time interval for a subject i can be expressed
as

fY (yi ;μi ) � e−μi μ
yi
i /yi !

for y = (0, 1, …) and μi >0. The mean and variance are both equal to μi. With
subscripts indicating subject i’s observation the log-likelihood function can bewritten
as

L(μi ; yi ) �
∑

[yi ln(μi ) − μi − ln(yi ! )]

The parameter μi can be reparameterized as exp(z′
iβ), and therefore the log-

likelihood function can be written as

L(βi ; yi ) �
∑

[yi (ziβ) − exp(ziβ) − ln(yi ! )]

5.2.4 Negative Binomial Regression

Oneof the key features of the Poisson distribution is that the variance equals themean.
However, one often finds that overdispersion is frequent in count data.Overdispersion
in a Poisson model occurs when the variance of the response is greater than the
mean. One approach to handling the overdispersion is to add covariates to the model.
Though, even after conditioning on covariates, there could still be more inter-subject
variation in event occurrence than accounted for by a Poisson process. Another
approach is then to model the overdispersion by adding a multiplicative random
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effect to represent unobserved heterogeneity. Doing so will lead to the negative
binomial regression model where the conditional distribution of the outcome Y ,
given an unobserved variable θ , is indeed Poisson with mean and variance θμ. The
variable θ captures unobserved factors that increase (if θ >1) or decrease (if θ <1)
relative to what we would expect given the observed values of the covariates. In this
model, the data would be Poisson if only we could observe θ . Unfortunately, we do
not. Instead, we make an assumption regarding its distribution and integrate θ out of
the likelihood, effectively computing the unconditional distribution of the outcome.
It is mathematically convenient to assume that θ follows a gamma distribution. The
unconditional distribution of the outcome is the negative binomial distribution (Cook
and Lawless 2007; Hilbe 2007).

5.2.5 Extended Cox Models for Recurrent Events

Aswementioned, recurrent event data are correlated sincemultiple events may occur
within the same subject. While using frailty models is one method to account for
the correlation in recurrent event analyses, a simpler approach that can also account
for this correlation is the use of robust standard errors (SEs). With the addition of
robust SEs, recurrent event analysis can be done as a simple extension of either
semi-parametric or parametric models.

If interest focuses on recurrent occurrences of a given event, for instance, hospital-
ization, then another model than the Coxmodel should be considered. In applications
of such amodel, an interesting functional is often the expected number of occurrences
of the event over the time interval (0, t]. The corresponding semi-parametric estimate
of the cumulative expected number of events over (0, t] for subject i is

Ê[Ni (t)] �
t∫

0

ρ̂0(s) exp(z′
i β̂)ds

where Ni(t) is the number of events for subject i over (0, t]. This is the same as the
generalized Nelson–Aalen, or Breslow, estimate from survival analysis. (Cook and
Lawless 2002; Andersen et al. 1993).

Cumulative Sample Mean Function

Plots like the one in Fig. 5.7 have limitations since it is often not easy to determine
visually whether a trend or other patterns exist in data.

A visually more informative function is the cumulative sample mean function
(Cook and Lawless 2007). The function can be defined as follows. Suppose that m
individual processes are observed, with each process being observed over the time
interval (0, t]. Let Ni(t) represent the number of events over the time interval (0, t]
for the ith process. Then the cumulative sample mean function is
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Fig. 5.7 Event plots from time of randomization for tumor occurrence in 60 subjects (30 subjects
on Active and Placebo, respectively)

μ̂(t) � 1

m

m∑

i�1

Ni (t).

The samedata as in Fig. 5.7 is used to display the cumulative samplemean function
(Fig. 5.8).

5.2.5.1 The Andersen-Gill Model (AG)

The counting process, or Andersen-Gill, approach to recurrent event modeling
assumes that each recurrence is an independent event, and does not take the order or
type of event into account. In this model, follow-up time for each subject starts at the
beginning of the study and is broken into segments defined by events (recurrences).
Subjects contribute to the risk set for an event as long as they are under observation at
that time (not censored). The model is simple to fit as a Cox model with the addition
of a robust standard error estimator, and hazard ratios are interpreted as the effect of
the covariate on the recurrence rate over the follow-up period. This model would be
inappropriate, however, if the independence assumption is not reasonable.

External covariates x(t), which include fixed covariates, can be incorporated in
a Poisson process by specifying the hazard rate as a function of t and the covariate
history x (t) � {x(u) : 0 ≤ u ≤ t}. This is usually done by defining covariate vectors
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Fig. 5.8 The cumulative sample mean function from time of randomization for tumor occurrence
in 60 subjects (30 subjects on Active and Placebo, respectively)

z(t) that are based on x(t) and then considering the multiplicative intensities of the
form

ρ(t |x (∞)) � ρ(t |x (t)) � ρ0(t) exp(z′(t)β),

where β is a vector of regression parameters of the same length as z(t). The positive
valued function ρ0(t) is often called the baseline rate or intensity and corresponds
to a subject for whom z(t)�0 for all t >0. This model is sometimes referred to
as a log-linear model. The exponential term can be replaced by a different positive
term but has been chosen for mathematical convenience. When the baseline function
ρ0(t) is specified as nonparametric then the model is semiparametric and is called
the Andersen-Gill (AG) (1982) model.

The AG model is an extension of the Cox model and uses the counting process
timescale for all events. The time-scale does not reset to 0 after an event but continues
from the time point of the event. Data for each subject needs to be entered in the
counting process style, with a start time, stop time and censoring indicator for each
event. The model is close in spirit to Poisson regression and the increments are
assumed to be independent. Each gap time (interval from one event to the next)
contributes to the likelihood and the model assumes that the events are independent.
The AG model splits the time scale where the split points are defined by the time
point when the events occur. The time intervals are non-overlapping; that is, the start
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time of a new event is the ending time of the preceding event. In the AG model, the
underlying shape of the baseline hazard is assumed to be the same for all events; that
is, there is no stratification by event number. Although not specified in the original
article, cluster-based robust standard errors are usually used.

The sandwich robust standard error of Lin and Wei (1989) which is a variance-
correction technique, is usually employed together with these Cox extended models
to avoid inflation of type I error due to multiple observations per subject which do
not require specification of the correlation matrix.

5.2.5.2 Conditional Counting Process Model
by Prentice-Williams-Peterson (PWP)

The PWP model is a conditional model, similar to the AG model, but stratified by
events. The hazard rate function is written as:

ρik(t |x (t)) � ρ0k(t) exp(z′
ik(t)β)

ρ0k(t) represents the event-specific baseline hazard for the kth event over time. In this
model, a subject is assumed not to be at risk for a subsequent event until a current
event has terminated. The PWP model is similar to the AG model in that it uses
nonoverlapping time intervals (gap times) for each subject. As for the AG model, it
is not possible to be at risk of the second event before the first event has occurred.
The PWPmodel differs from the AGmodel in that the baseline hazard for each event
k is allowed to be different; that is, there is stratification by event number.

5.2.5.3 The Wei, Lin, and Weissfeld (WLW) Model

Suppose there are n subjects and each subject can experience up toK potential events.
Let Zki(t) be the covariate process associated with the kth event for the ith subject.
The marginal Cox model is given by

ρik(t |x (t)) � ρ0k(t) exp(z′
ik(t)

′βk), k � 1, . . . , K ; i � 1, . . . , n

ρ0k(t) is the (event-specific) baseline hazard function for the kth event and βk is
the (event-specific) column vector of regression coefficients for the kth event. The
WLW model estimates β1, . . . , βK, by the maximum partial likelihood estimates
β̂1, . . . , β̂K, respectively, and uses a robust sandwich covariance matrix estimate for

(β̂
′
1, . . . , β̂

′
K)

′ to account for the dependence of the multiple failure times.
The WLWmodel uses overlapping time intervals for each subject and stratum so

that each stratum is fit separately, and then the estimates are combined. This implicitly
forces all strata and covariate interactions to be present. This is equivalent to fitting
all of the data at once, i.e., the events are occurring in parallel. The model treats an
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ordered dataset as though it were an unordered dataset in a competing risks problem.
Thus, each event or event type is in its own stratum and all time intervals starting at 0.
Hence, theWLW approach considers each event to be a separate process, so subjects
are at risk for all events from the start of follow-up, regardless of whether they
experienced a prior event. This model is appropriate when the events are thought to
result from different underlying processes, so that a subject could experience the 3rd
event, for example, without experiencing the 1st. Although this assumption seems
implausible with some types of data, like cancer recurrences, it could be used to
model injury recurrences over a period of time, when subjects could experience
different types of injuries over the time period that have no natural order. There is a
need to specify the total number of events in advance. The method also analyzes the
gap times between different events.

5.2.5.4 Competing Risks

Traditional survival analysis methods assume that only one type of events of interest
occurs. A way to avoid dealing with competing events in a more complex model
than the Cox model is to construct composite endpoints. An example of this is when
studying cardiovascular outcomes in type 2 diabetes, where the primary composite
outcome is the time-to-event of the first occurrence of death from cardiovascular
causes, nonfatal (including silent) myocardial infarction, or nonfatal stroke (Marso
et al. 2016).Models inwhich there are different types of events (multiple destinations)
are also of interest. Competing risks occur when a subject is at risk of more than
one type of event, but can actually experience only one of them. The most common
case is when the different events are death from different diseases, such as cancer,
heart disease, or an infection. Competing risk models are a special case of multistate
models in which each of the different events are absorbing states (Andersen et al.
2002). In competing risks, a subject is at risk of dying from one of, say K , different
causes, but can only actually die of one cause.

More complex methods exist to allow the investigation of several types of events
in the same study, such as death from multiple causes. Competing risks analysis is
used for these studies in which the survival duration is ended by the first of several
events. Special methods are needed because analyzing the time to each event sepa-
rately can be biased. Specifically, in this context, the Kaplan-Meier method tends to
overestimate the proportion of subjects experiencing events. Competing risk analy-
sis utilizes the cumulative incidence method, in which the overall event probability
at any time is the sum of the event-specific probabilities. The models are generally
implemented by entering each study participant several times—one per event type.
For each study participant, the time to any event is censored on the time at which the
patient experienced the first event.

The twomost significantmeasures in competing risks are the cause-specific hazard
rate and the cumulative incidence function. The cause-specific hazard rate function
for cause k, say hk(t), gives the hazard rate at time t conditional on not having died
of any of the K possible causes of death. The cause-specific hazard, hk(t), can be
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estimated by treating events due to competing causes as censored observations. The
K cause-specific hazard rates are usually estimated by fitting K separate models
or by stacking the events (having K rows of data per subject) and fitting a model
stratified by cause (Lunn and McNeil 1995). The second most important measure is
the cumulative incidence function, say Ck(t), for the kth competing event. This gives
the probability, as a function of time, that a subject dies of cause k in the presence
of competing risks. It recognizes that a subject cannot die of cause k if that subject
has already died of one of the competing causes. The cumulative incidence function
is also known as the crude probability of death (Tsiatis 2005). It can be contrasted
with the net probability of death, which gives the probability of dying in a situation
where it is impossible to die of other causes. cumulative incidence functions give
probabilities of death where subjects are always at risk of death from several different
causes. The cumulative incidence is calculated from a relative survival model and is
defined as

Ck(t) �
t∫

0

hk(u) exp

⎧
⎨

⎩
−

u∫

0

k∑

k�1

hk(v)dv

⎫
⎬

⎭
du �

t∫

0

hk(u)
K∏

k�1

Sk(u)du.

Ck(t) can be calculated by using the Stata package (Fine and Gray 1999).
A nonparametric analysis of recurrent events in the presence of death as a com-

peting risk has been developed by Ghosh and Lin (2000) and by Li and Lagakos
(1997).

5.2.5.5 Period Analysis

Cancer survivalmeasures the effectiveness of health-care systems. Persistent regional
and international differences in survival represent a source of information that may
be used to avoid early death. Differences in survival have impelled or steered cancer
control strategies. Statistics reflective of patient survival should be as current as pos-
sible. The traditional methods for analyzing survival have important shortcomings
with regard to how current they are with respect to long-term cumulative survival
estimates. An alternative approach denoted ‘period analysis’, that may be used to
overcome or reduce these constraints. When cancer survival is improving over time,
the use of older data underestimates the survival proportion. One potential solution
to this is to use period analysis to obtain more up-to-date estimates of patients’ sur-
vival (Brenner and Gefeller 1997). This approach has become widely established in
the analysis of population-based cancer survival. For example, it has been used in a
number of recent international comparisons of cancer survival (Coleman et al. 2011;
Møller et al. 2010). Period estimates of patient survival are usually calculated sepa-
rately in subgroups of interest using life table methodology. Up-to-date estimates of
patient survival using period analysis are based on artificially truncating individuals’
survival times prior to a recent cutoff in calendar time. This has the effect of using
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individuals diagnosed in a recent time period for short-term survival and individuals
diagnosed further back in time for longer term survival.

In the Coleman et al. (2011) study, data from population-based cancer registries in
12 jurisdictions in six countries were provided for 2.4 million adults diagnosed with
primary colorectal, lung, breast (women), or ovarian cancer during 1995–2007, with
follow-up to Dec 31, 2007. Data quality control and analyses were done centrally
with a common protocol, overseen by external experts. They estimated 1-year and 5-
year relative survival, constructing 252 complete life tables to control for background
mortality by age, sex, and calendar year. Also, they reported age-specific and age-
standardized relative survival at 1 and 5 years, and 5-year survival conditional on
survival to the first anniversary of diagnosis. In addition, they examined incidence
and mortality trends during 1985–2005. Their findings were that relative survival
improved during 1995–2007 for all four cancers in all jurisdictions.

In theMøller et al. (2010) study, several international studies reported that survival
from breast cancer is lower in the United Kingdom than in some other European
countries. They compared breast cancer survival between the national populations
of England, Norway, and Sweden, with a view to identifying subsets of patients with
particularly good or adverse survival outcomes. They also extracted cases of breast
cancer in women diagnosed 1996–2004 from the national cancer registries of the
3 countries. The study comprised 303,657 English cases, 24,919 Norwegian cases
and 57,512 cases from Sweden. Follow-up was in 2001–2004. The main outcome
measures were 5-year cumulative relative survival and excess death rates, stratified
by age and period of follow-up.

5.2.5.6 Frailty Models

Correlated survival data can arise due to recurrent events experienced by an individual
or when observations are clustered into groups. Either due to lack of information or
for feasibility, some covariates related to the event of interest may not be measured.
Frailty models account for the heterogeneity caused by unmeasured covariates by
adding random effects that act multiplicatively on the hazard function. Frailtymodels
are essentially extensions of the Cox model with the addition of random effects.
Although there are various classification schemes and designation used to describe
these models, four common types of frailty models include shared, nested, joint, and
additive frailty.

The frailtymodel, introduced in the biostatistical literature byVaupel et al. (1979),
and discussed in detail by Hougaard (1984, 1986a, b, 1995), Duchateau and Janssen
(2008), and Wienke et al. (2001), accounts for the heterogeneity in baseline. This
model is an extension of the proportional hazards model in which the hazard rate
function depends upon an unobservable random variable. Subjects may be exposed
to different risk levels, even after controlling for known risk factors, because of some
relevant unobserved covariates. In a shared frailty model, subjects in the same group
share the same frailty value which generates dependence between those subjects who
share frailties.
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The shared frailty model can be written as follows:

ρik(t |ui ) � uiρik(t) � ρ0(t) exp(z′
ikβ + ui ),

where ρik(t) is the conditional hazard rate function for the kth subject from the ith
cluster conditional on ui, ρ0(t) is the baseline hazard, β is the fixed effects vector
of dimension p, zik is the vector of covariates, and ui is the random effect for the
ith cluster. Thus, subjects in the same cluster i share the same frailty factor and it
is a conditional hazard model, given the ui. The cluster may represent a family or a
single subject for which multiple episodes are observed.

The distribution of ui may be Gamma, Gaussian, or another distribution. The
gamma distribution is often chosen because of its mathematical tractability and
because it is widely used. The one-parameter gamma distribution is defined as:

fw(u) � v1/θ−1e(u/θ)

θ1/θ�(1/θ )

with � the gamma function and E(u)�1 and Var(u)�θ . This means that subjects in
class i with ui >1 are frail (having a higher risk) while subject with ui <1 are strong
(having a lower risk). The parameter θ gives information on the clusters or classes
heterogeneity in the population.

5.3 Illustrations

5.3.1 Poisson Regression Data (N�1000)

Poisson regression is a commonly used count response regressionmodelwhere events
are considered to be of the same kind. Since the model is the ‘foundation’ of other
recurrent event models, we will look at some of the models’ behavior. Few real-life
datasets are trulyPoisson,where themean andvariance are equal. Thevastmajority of
datasets that are initially thought to be close to Poisson usually have a larger variance
than the mean. When this is the case, we say that the Poisson model is overdispersed,
which may cause the standard errors of the estimates to be underestimated. When
this is the case, a variable may appear to be a significant predictor when in fact it
is not. We will illustrate these behaviors by generating data that follows a Poisson
regression model, then remove a predictor and see the effect this has on the Poisson
model.

We are going to generate n�1000 standard normally distributed observation for
each of 3 independent variables Z1, Z2, and Z3, and then apply the linear equation
Z′β � β1Z1 + β2Z2 + β3Z3 with coefficient (β1, β2, β3)� (−0.50, −0.50, −0.25).
After exponentiating Z′β the Poisson variate y is generated using the probability
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Table 5.1 General linear Poisson model on y with independent variables Z1, Z2, and Z3

Table 5.2 General linear Poisson model on y with independent variables Z2 and Z3

integral transform methods of Kemp and Kemp (1990, 1991) and the method of
Kachitvichyanukul (1982) through the Stata software.

The Poisson variate y is next modeled on the three randomly generated indepen-
dent variables Z1, Z2, and Z3. The results of the analysis are presented in Table 5.1.

Although a sample size of n�1000 usually is considered to be a decent sample
size for a clinical study with one single treatment arm, we will find some interesting
outcomes from the analysis results. We find that the estimates of the coefficients (β1,
β2, β3) are (−0.4896, −0.4292, −0.2327). All parameter estimates are lower than
what we assigned them to be, especially the estimate of β2 which is−0.4292 instead
of −0.50. The Pearson dispersion statistic, defined as the Pearson statistic divided
by the model degrees of freedom, would be equal to 1.0 if the model is the ‘correct’
one. Here the Pearson statistic is 1.089563, which is about 9% higher than expected.

We will now omit predictor Z1 and again model the data on the remaining vari-
ables. Thus, the Poisson variate y is then modeled on the two randomly generated
independent variablesZ2 andZ3. The results of the analysis are presented inTable 5.2.

We find that the estimates of the coefficients (β2, β3) are (−0.4736, −0.2235).
Both parameter estimates are still lower than what we assigned them to be, but
not worse than from the previous model. The Pearson dispersion statistic has
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now increased from 1.089563 to 1.508055. Here the Pearson statistic has notably
increased, telling us that the model is overdispersed. The AIC and BIC statistics are
also inflated.

5.3.2 Poisson Regression Data (N�25,000)

We will now increase the sample size to 25,000, but everything else will be kept the
same. When we use all of the independent variables Z1, Z2, and Z3 in the model
(table not shown), we find what we can expect, that the Pearson dispersion statistic is
1.0121, which is very close to 1.0. The estimates of the coefficients (β1, β2, β3) are
(−0.4889, −0.5058, −0.2563), i.e., the parameter estimates are very close to what
we assigned them to be.

Again, we now omit predictor Z1 and again model the data on the remaining
variables. Thus, the Poisson variate y is then modeled on the two randomly generated
independent variablesZ2 andZ3. The results of the analysis are presented inTable 5.3.

We find that the estimates of the coefficients (β2, β3) are (−0.5062, −0.2565).
Both parameter estimates are still close to what we assigned them to be, though
this is not an indication that the model is appropriate. What has notably changed is
that the Pearson dispersion statistic is now about 1.375, telling us that the model is
overdispersed. Given the very large dataset of 25,000 observations, the dispersion
statistic correctly indicates that the Poisson model is overdispersed. We see that the
model obviously does not fit the data.

Wewill now assume that the variance is proportional rather than equal to themean,
and estimate the scale parameter ϕ dividing Pearson’s chi-squared by its degrees of
freedom (df), which gives us the value 1.375. We see that the variance is about
37.5% larger than the mean. This means that we should adjust the standard errors
multiplying by 1.173, the square root of 1.375 (see Table 5.4).

Using this procedure of scaling the standard errors we have essentially attributed
all the lack of fit to pure error. We can also try to run the Poisson model with the

Table 5.3 General linear Poisson model on y with independent variables Z2 and Z3
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Table 5.4 General linear Poisson model on y with independent variables Z2 and Z3

robust option to compute standard errors using the robust or ‘sandwich’ estimator.
Doing sowewill get very similar results. In either case, all tests have to be done using
Wald’s statistic. Likelihood ratio tests are not possible because we are not making
full distributional assumptions about the outcome, relying instead on assumptions
about the mean and variance.

5.3.3 Negative Binomial Regression (N�25,000)

Since the Poisson model with the two independent variables Z2 and Z3 was overdis-
persed, we will now fit a negative binomial model to the recent data with the same
variables Z2 and Z3. The results are shown in Table 5.5.

The alpha in Table 5.5 is the variance of the multiplicative random effect. We
have overwhelming evidence of overdispersion. For testing hypotheses about the
regression coefficients, we can use either Wald tests or likelihood ratio tests.

Table 5.5 Negative Binomial model on y with independent variables Z2 and Z3
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Table 5.6 Comparing
estimates and standard errors
side by side

5.3.4 Comparing Estimates and Standard Errors

The parameter estimates based on the negative binomial model are not very different
from those based on the Poisson regression model. We will now compare the models
side by side in Table 5.6.

Both sets of parameter estimates would lead to the same conclusions. Looking
at the standard errors reported just below the coefficient estimates, we see that both
approaches to overdispersion lead to very similar estimates and that ordinary Poisson
regression underestimates the standard errors.

5.3.5 Goodness of Fit

We will evaluate the goodness of fit using the second dataset above with 25,000
observations. One way to compute the deviance of the negative binomial model is
to feed the estimate of the variance into the generalized linear model. The deviance
statistic is now 1.0741, which tells us that the negative binomial model fits much
better than the Poisson model, but still, has a deviance just above the five percent
value. One way to model this type of situation is to assume that the data come from
a mixture of two populations, one where the counts are always zero, and another
population where the count has a Poisson distribution with mean μ. In this, model
zero counts can come from either population, while positive counts come only from
the second population.

The distribution of the outcome can then be modeled in terms of two parameters,
π the probability of ‘always zero’, and μ, the mean number of for those not in the
‘always zero’ population. A natural way to introduce covariates is to model the logit
of the probability π of always zero and the log of the mean μ for those not in the
always zero population.
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5.3.6 Simulations

Clinical trial simulation studies can be used to assess the impact of many aspects of
trial design, conduct, analysis and decision making. Simulation studies can play a
vital role in improving the efficiency of drug development within the pharmaceutical
industry, but only if they are well designed and conducted. An efficient way of
evaluating the properties that different models have for the study design and analysis
thatwe are considering is to use simulations.Anumber of common software packages
make this possible, such as EAST, SAS, Stata, and R.

A comprehensive overview is given of how to use simulations for designing clin-
ical trials and how to analyze the simulated clinical trial data in Ette et al. (2002). A
generic template for clinical trials simulations that are typically required by statisti-
cians has been developed by Westfall et al. (2008). Realistic clinical trials datasets
are created using a unifying model that allows general correlation structures for end-
point and timepoint data and nonnormal distributions (including time-to-event), and
computationally efficient algorithms are presented. The structure allows for patient
dropout and noncompliance. A grid-enabled SAS-based system has been developed
to implement this model and details are presented summarizing the system develop-
ment (Westfall et al. 2008, 2010).

For instance, wemay use simulations to compare the conditional frailtymodel and
several variance-corrected and frailty models with a known data generating process
that exhibits heterogeneity, event dependence, both, and neither. Box-Steffensmeier
and De Boef (2006) did this and focused their simulations on the comparison of the
three more popular and promising variance-corrected models: the Andersen–Gill,
conditional gap time, and conditional elapsed time models, and the basic frailty
model estimated with a gamma random effect. They gauged model performance on
three dimensions: the bias in the estimated treatment effects as well as in the esti-
mated variance of the random effect, bias in the standard errors, and rate of which the
estimated standard errors includes the true parameter. Their simulations suggested
that the conditional frailty model can estimate the effects of both sources of correla-
tion simultaneously and retrieve the parameters of the true data generating process
better in all four cases. Furthermore, in the simulations they investigated, the con-
ditional frailty model performed similarly to, or better than, the variance-corrected
and frailty alternatives. In the case of both heterogeneity and event dependence, only
the conditional frailty model performed well. So, in cases where there is a possi-
bility of both, and often we cannot rule either out, the conditional frailty model is
recommended.

5.4 Discussion

The foundation of recurrent event analysis is survival analysis has been a commonand
well-accepted strategy to study treatment effect in a population of patients. During
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the last few years, there has been an increasing interest in assessing therapy effect
not only by using time to death, but also time to surrogate events such as time to
hospitalization. The combined endpoint of time to death and time to disease-related
hospitalizations is often analyzed with a time-to-first-event analysis, which has the
drawback of waste of information and indistinct handling of two clinically different
events.

The analysis of multiple events per subject cannot be approached by a standard
Cox model, where the assumption of independence of observations is not valid. In
order to account for intra-subject correlation, we have presented the use of marginal
and multistate models using a counting process approach for, for instance, the joint
analysis of survival and time to disease-related hospitalizations.

In a comparison of common statistical methods for analyzing recurrent event data,
the results with each method for lack of bias, efficiency, and robustness for within-
subject correlation are not, but depending on the process driving the event counts.
In general, the Poisson regression with correction for overdispersion has similar
coverage probabilities of confidence intervals, but slightly higher type I error rates
compared to the robust Andersen–Gill and negative binomial approaches, which are
therefore preferable. Advantages in power for some situations are only at the price
of an increased type I error. The negative binomial regression surprisingly produces
results similar to those of the Andersen–Gill approach, even when the distribution
is not homogeneously Poisson. On the other hand, for homogeneous Poisson pro-
cesses, the Andersen–Gill approach does not lose efficiency in comparison with
the perfectly fitting negative binomial regression model (Jahn-Eimermacher et al.
2015). The demonstrated comparability of the Andersen–Gill approach and nega-
tive binomial regression for Poisson processes supports the findings of Metcalfe and
Thompson (2006). The results are in agreement with the data example presented by
Guo et al. (2008), in which trial results from an Andersen–Gill model were similar
to those from Poisson regression.

For the conditional model not derived from the Poisson process, with all the inves-
tigated methods, estimation of a zero treatment effect and its standard error may be
considered as acceptable, and thus be applicable to hypothesis testing. However, the
effect estimates are biased, whatever method is used. All of the investigated meth-
ods are not applicable if the independent increment assumption is violated. For a
specific application, this assumption, therefore, must be checked by appropriate sen-
sitivity analyses. So, results could be compared with those of the conditional model
of Prentice et al. (1981) or the marginal model of Wei et al. (1989). However, these
approaches also have sources of bias as demonstrated by Therneau and Grambsch
(2000) and Kelly and Lim (2000) and, furthermore, the applicability of the marginal
model to recurrent failure time data is discussed critically inMetcalfe and Thompson
(2007).

We found no advantages in performancewith Poisson regression as comparedwith
the Andersen–Gill approach, which allows more complex analyses and may, there-
fore, be preferable. The Poisson regression remains applicable when only aggregated
event counts are available or when the actual time of occurrence of an event cannot
be determined. Dean and Balshaw (1997) demonstrated for nonhomogeneous Pois-
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son processes that treatment effects can be efficiently estimated based on aggregated
count data as long as censoring is balanced between treatment groups.

Standard errors might be substantially underestimated with all the methods exam-
ined if within-subject correlation is not accounted for, in accordance with previ-
ous findings (Glynn and Buring 1996, Therneau and Hamilton 1997, Metcalfe and
Thompson 2006). Robust variance estimation can be used to adjust for the simulated
degree of within-subject-correlation, however, in rare cases, data may be even more
highly correlated (Thall 1988). In those situations, the robust methods may also fail
to prevent type I error from increasing to unacceptable levels.

The use of a gamma distribution for the random effect is common in the literature
(Stukel 1993;Metcalfe and Thompson 2006; Thomsen and Parner 2006). Regression
parameter estimation in a gamma frailty model seems to be robust to frailty distri-
bution misspecification as Hsu et al. (2007) demonstrated for single event data in
cohort and case-control family trials. Kelly and Lim (2000), Therneau and Grambsch
(2000) and Metcalfe and Thompson (2006) used realizations from normal and uni-
form distributions, with which the Andersen–Gill method underestimated treatment
effects.

Finally, the most appropriate model should be chosen based on the anticipated
nature and structure of the data.
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Chapter 6
Response-Adaptive Allocation
for Binary Outcomes: Bayesian Methods
from the BASS Conference

Roy T. Sabo

6.1 Introduction

Outcome- or response-adaptive allocation methods are used to adjust randomization
probabilities in clinical trials based on observations frompreviously accrued patients.
These methods aim to achieve one of several allocation goals, which have included
maximizing statistical power, balancing for covariates, and maximizing treatment
benefit. In the latter case, adaptive allocation strategies aim to treat patients as eth-
ically as possible, often by minimizing the expected number of treatment failures.
These “optimal designs” achieve this minimization through algorithms and functions
of success probabilities in each group of subjects.

Though much of the conceptual and theoretical work in adaptive allocation meth-
ods has been conducted in the frequentist framework, Bayesianmethods are a natural
fit for conducting outcome-adaptive allocation in practice. These methods are more
easily adaptable to small sample cases and are generally more flexible than are fre-
quentist alternatives. For instance, frequentist allocation approaches generally require
an initial lead-in period where allocation probabilities are held constant in order
to overcome small-sample irregularities in proportion estimates. Some researchers
have introduced scaling parameters into allocation algorithms that restrict allocation
in early phases of a trial and gradually allow increasing adaptation, but even these
approaches cannot account for situations where a treatment group has no observed
successes, which would result in no allocation to that group. Bayesian methods can
overcome these difficulties in several ways, most notably through informative prior
specification or through replacing success proportion estimates with posterior or
predictive probabilities of treatment superiority. Bayesian methods are also more
readily adapted to account for situations where allocation ratios are desired to adapt
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based on information from multiple outcomes, as joint distributions between multi-
ple outcomes can be estimated through a posterior distribution in a straightforward
manner.

In this Chapter we provide two examples of Bayesian approaches to outcome-
adaptive allocation. The first overcomes the necessity of a lead-in by eliciting an
informative yet skeptical prior that exhibits decreasing influence on the posterior as
more patients enter a trial. This approach – dubbed the Decreasingly Informative
Prior approach – was the subject of a 2013 presentation at the Biopharmaceutical
and Applied Statistics Symposium (BASS) as well as a subsequent publication Sabo
(2014). The second method presents an approach to base allocation upon two out-
comes simultaneously, such as in trials where both treatment efficacy and toxicity are
important. This approach was the subject of a 2012 BASS presentation and subse-
quent publication Sabo et al. (2013). In both cases we focus on two- and three-group
clinical trials with binary outcomes. A general review of response-adaptive allocation
will be provided in the next section, while the Bayesian approach will be covered in
Sect. 6.3. The decreasingly informative prior approach will be discussed in Sect. 6.4,
while the two-outcome approach will be presented in Sect. 6.5.

6.2 Response-Adaptive Allocation

6.2.1 Optimal Allocation

Rosenberger et al. (2001) derived optimal allocation weights for two-group trials
with binary outcomes, with the goal to minimize the expected number of treatment
failures. These weights are given below in Eq.6.1.

w1 =
√
p1√

p1 + √
p2

, (6.1)

w2 = 1 − w1,

where p j is the proportion of successfully treated patients in group j ( j = 1, 2),
and where weight w j is the probability the next patient will be allocated into the j th
treatment group. In practice the unknown estimates p1 and p2 are replaced with the
current sample proportions p̂1 and p̂2, which could lead to the awkward scenario in
early phases of a trial where the weights given in Eq.6.1 are incalculable due to no
events being observed in either of the two groups.

Optimal allocation ratios for three-group trials were established numerically by
Tymofyeyev et al. (2007) and in closed-form by Jeon and Hu (2010). These optimal
allocation ratios depend upon the relative magnitudes of the success proportions in
each group and a constant B ∈ (0, 1/3), which is a lower allocation bound selected
by the investigator (Jeon and Hu recommend selecting 0 < B ≤ 1/3 to prevent sit-
uations where a treatment ends up with no patients). We present them here with
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minor corrections due to typos in the original manuscript. Let p1, p2 and p3 be the
true efficacy rates of treatments 1, 2 and 3, and let w∗ = (w∗

1, w
∗
2, w

∗
3)

T denote the
vector of optimal allocation proportions. Then for p1 > p2 > p3, B ∈ (0, 1/3), and
q j = 1 − p j , j = 1, 2, 3, the allocation rates are

w∗
1 = l−1

2 (l1 + l3B) (6.2)

w∗
2 = B

w∗
3 = 1 − B − w∗

1,

where,

l1 = a(p1 − p3) + b(p2 − p3) + d

p3q3
,

l2 = b(p1 − p2) + c(p1 − p3) − d

p1q1
+ l1,

l3 = a(p1 − p2) − c(p2 − p3) + d

p2q2
− l1,

a = − Bq2 − (B − 1)q3
p1q1

b = − B(q3 − q1)

p2q2

c = Bq2 − (B − 1)q1
p3q3

d =
√

−ab(p1 − p2)2 − ac(p1 − p3)2 − bc(p2 − p3)2.

Ifw∗
1 > B andw∗

3 > B then (Eq.6.2) is the optimal solution. Ifw∗
1 ≤ B, the solution

is w∗ = (B, B, 1 − 2B)T . If w∗
3 ≤ B, the solution is w∗ = (1 − 2B, B, B)T . When

p1 = p2 > p3 the solution is:

w∗
1 = w∗

2 =
√
p1

2(
√
p1 + √

p3)
, w∗

3 =
√
p3√

p1 + √
p3

,

provided w∗
j ≥ B ∀ j . If B >

√
p1

2(
√
p1+√

p3)
, the solution is w∗ = (B, B, 1 − 2B)T . If

B >
√
p3√

p1+√
p3
, the solution is w∗ = ((1 − B)/2, (1 − B)/2, B)T . When p1 > p2 =

p3 the solution is:

w∗
1 =

√
p1√

p1 + √
p3

, w∗
2 = w∗

3 =
√
p3

2(
√
p1 + √

p3)
,

provided w∗
j ≥ B ∀ j . If B >

√
p3

2(
√
p1+√

p3)
, the solution is w∗ = (1 − 2B, B, B)T .
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6.2.2 Natural Lead-In

Thall andWathen (2007)model the root for the two-group case as an increasing func-
tion of the observed sample size (n/2N ), where n is the number of observed patients
and N is the planned total sample size. Here, the weighting algorithm becomes

w1 = pn/2N
1

pn/2N
1 + pn/2N

2

, (6.3)

w2 = 1 − w1.

This approach has the effect of acting as a natural lead-in, since it forces equal
weights at the beginning of a trial and gradually allows more adaptation as the trial
continues. In addition, as n → N the weights in Eq.6.3 approach the same structural
form as those given in Eq.6.1.

In the three-group case Hu and Zhang (2004) introduced an allocation function
based on the doubly adaptive biased coin design (Eisele 1994), which is given as
follows

w j =
w∗

j

(
(w∗

j

∑3
i=1 ni )/n j

)γ

∑3
k=1 w∗

k

(
(w∗

k

∑3
i=1 ni )/nk

)γ (6.4)

j = 1, 2, 3,

where n j is the current observed sample size in group j , w∗
j is the current optimal

allocation weight (Eq. 6.2) in group j , and γ is a tuning parameter for calibrating
the degree of randomness of the allocation probability function. By setting γ =
(N − (n + 1))/n we again achieve a natural lead-in that forces equal allocation
early in the trial, and approaches the optimum allocation rates found in Eq.6.2 as
n → N − 1 (Bello and Sabo 2016).

6.3 General Bayesian Approach

In the Bayesian framework proportions p j for treatment groups j = 1, . . . , k, are
assigned a common prior distribution π(θ0), where π(.) is some distributional form
and θ0 is some fixed value. The prior distributions are combined with likelihood
distributions p(y j |p j , n j ) for each treatment group, where p(.) is some distribu-
tional form, n j is the number of observed patients in treatment group j , and y j is
the number of “successful” events observed in n j subjects. The specific choice of
prior and likelihood are then synthesized into a posterior distribution for parameter p j
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P(p j |y j , n j , θ0) ∝ p(y j |p j , n j )π(θ0), j = 1, . . . , k. (6.5)

We can slightly generalize this framework by establishing a hierarchical posterior
distribution for any parameter θ as follows

θ ∼ P(θ |y) = p(y|θ, n)π(θ |θ0, n, N )g(θ0|λ)
∫

p(y|θ, n)π(θ |θ0, n, N )g(θ0|λ)
, (6.6)

where y are the observed data, p(.) is the likelihood function, π(.|θ0, n, N ) is the
prior information on θ , and g(.) is a hyperprior on θ0 with hyperparameter λ. This
posterior can be used to estimate the mean or mode success rate in each group, which
can then be used in Eqs. 6.1 or 6.2.

6.3.1 Posterior Estimates and Probabilities

As an alternative to posterior means or modes, Huang et al. (2007) and Thall and
Wathen (2007) replaced success probabilities with probabilities of greater treatment
response. Here we calculate the posterior probability that p1 is greater than p2, so
that allocation weights increase in favor of treatment 1 as evidence of its superiority
accumulates. While similar to using success rates directly, these probabilities tend
to provide quicker and greater adaptation. In two-arm trials (Thompson 1933; Thall
and Wathen 2007) we need only calculate one probability

P1 = P(p1 > p2|y, n, θ0) (6.7)

P2 = 1 − P1,

where y = (y1, y2) and n = (n1, n2). In three-arm trials (Bello and Sabo 2016; Sabo
and Bello 2017) we calculate three probabilities

P1 = [(p1 > p2) ∩ (p1 > p3)|y, n, θ0] , (6.8)

P2 = [(p2 > p1) ∩ (p2 > p3)|y, n, θ0] ,

P3 = [(p3 > p1) ∩ (p3 > p2)|y, n, θ0]

where y = (y1, y2, y3) and n = (n1, n2, n3). In practice, these posterior probabilities
can be used in place of the unknown population success rate for the corresponding
group.

Predictive probabilities could also be used in adaptive allocation (Sabo and Bello
2017). Many predictive probability approaches in clinical trials use the current pos-
terior probability distribution (as given in Eq.6.6) as the new prior, and combine
this information with some likelihood for the patients who have yet to accrue or
whose outcomes are currently unobserved, and the resulting predictive distributions
are used to calculate the probability of interest. Using the standard formulation of the
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predictive distribution produces similar mean or mode estimates to those obtained
from simulating from the posterior distribution, since both the posterior and pre-
dictive posterior distributions have the same center. An alternative approach, as
outlined in Sabo and Bello (2017), relies upon the re-use of skeptical prior infor-
mation to calculate predictive probabilities. Rather than assume that future patients
will behave similarly to patients already accrued into the trial, we return to our
skeptical assumptions expressed in the prior distribution π(θ0) to conservatively
account for uncertainty in the non-accrued patients. The rationale for using this
skeptically predictive approach is to avoid the assumption that there are no time-
based biases in patient accrual or treatment effectiveness, an issue raised by
Korn and Freidlin (2011) in their critique of outcome-adaptive allocation. In essence,
the predictive probability distribution is used to simulate responses y∗

j for the remain-
ing n∗

j subjects in treatment j . Direct sampling ormarkov-chainmonte carlomethods
(with T iterations) can be used to estimate predictive probabilities for between-
treatment comparisons as

P1 = P(p1 > p2|θ0, y, y∗, n, n∗) =
T∑

t=1

I (p1 > p2)/T (6.9)

P2 = 1 − P1,

in two-group studies, and as

P1 = P
[
(p1 > p2) ∩ (p1 > p3)|θ0, y, y∗, n, n∗] =

T∑

t=1

I

⎡

⎣
3⋂

i=2

(p1 > pi )

⎤

⎦ /T, (6.10)

P2 = P
[
(p2 > p1) ∩ (p2 > p3)|θ0, y, y∗, n, n∗] =

T∑

t=1

I

⎡

⎣
3⋂

i=1,�=2

(p2 > pi )

⎤

⎦ /T,

P3 = P
[
(p3 > p1) ∩ (p3 > p2)|θ0, y, y∗, n, n∗] =

T∑

t=1

I

⎡

⎣
2⋂

i=1

(p3 > pi )

⎤

⎦ /T,

in three-group studies. The predictive probabilities given in Eqs. 6.9 and 6.10 can
then be incorporated in two- and three-group optimal designs in the same manner as
the posterior efficacy comparisons.

6.4 Example 1: The Decreasingly Informative
Prior Approach

This method was presented at BASS in 2013 and much of the following passages
originally appeared in Sabo (2014). Lead-in and natural lead-inmethods are designed
to prohibit or constrain adaptation of allocationweights in early stages of a trial, when



6 Response-Adaptive Allocation for Binary Outcomes: Bayesian Methods … 155

estimates may be unreliable due to small sample sizes. Alternatively, one could use
a posterior distribution to provide estimators that do not change much in early parts
of a trial. Under the Bayesian framework, we could elicit decreasingly informative
priors (DIP) which are mass or density functions that are functions of observed (n)

and planned (N ) sample sizes. These functions would also serve as skeptical priors in
that they would be centered around some value θ0 indicative of treatment equivalence
when sample sizes are small. However, information is incrementally transferred to
likelihood as n increases, making the prior decreasingly informative.

6.4.1 Decreasingly-Informative Prior Model

An alternative to the natural lead-in approach discussed in Thall and Wathen (2007)
is the concept of a built-in lead-in component achieved by making the prior dis-
tributions functions of non-accrued patients. We first assume skeptical prior distri-
butions for each treatment group by centering the efficacy rates around the same
value p0. To simultaneously keep the mode of the prior distribution at p0 while also
accounting for the accruing data, where π() is the common distributional form of
the priors for parameters p j , j = 1, . . . , k, we make these priors to be functions of
the hypothesized value p0 and the unobserved non-accrued subjects N − n such that
π() = π(p0, n, N ), where N is the total planned sample size, and n = ∑k

j=1 n j is
the total number of accrued patients.

Say we have binary outcomes in k groups and that we want to model those
outcomes using the beta-binomial conjugate pair. Based on the general Bayesian
set-up in Eq.6.6, we could model outcomes in group j as y j ∼ f (n j , p j ) =
binomial(n j , p j ). The DIP for the group j success rate could be modeled as
p j ∼ π(p0, n, N ) = beta [1 + p0(N − n), 1 + (1 − p0)(N − n)], where the skep-
tical value pθ is chosen as a single value or given its own hyperprior. This hyper-
prior could take any number of suitable forms, including p0 ∼ U [δ1, δ2], where
0 ≤ δ1 < δ2 ≤ 1 are suitably chosen upper and lower bounds for p0, or even
p0 ∼ beta [1 + δ1, 1 + δ2] where δ1 and δ2 are chosen to elicit diffuse support
for p0. In either case, by parameterizing the priors with a = 1 + p0(N − n) and
b = 1 + (1 − p0)(N − n), the desired mode is achieved

mode = a − 1

a + b − 2
= p0(N − n)

p0(N − n) + (1 − p0)(N − n)
= p0.

These prior distributions can be combined with likelihood functions for each
treatment group to obtain posterior distributions for each parameter or a joint distri-
bution of all parameters may be obtained. While using a hyperprior for p0 may lead
to a non-closed-form posterior, selecting a particular value for pθ combined with
beta priors and binomial(ni , pi ) likelihoods will lead to closed-form posterior
distribution for the group j success rate p j ∼ beta [1 + yk + p0(N − n), 1+
(n j − y j ) + (1 − p0)(N − n)

]
. Regardless of the choices of prior and likelihood
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and also between using posterior means, modes or efficacy comparisons, allocation
weights are calculated using the optimal formulations found in Eqs. 6.1 and 6.2, not
with Eqs. 6.3 and 6.4 since we are attempting to mimic the effect of a natural lead-in.
At the beginning of a trial, the posterior estimates and probabilities depend only
upon the skeptical prior information and are centered at the same value p0, meaning
that the allocation weights are equal. As more patients accrue into the trial, the prior
information becomes increasingly less important relative to the accrued data. Thus,
like the natural lead-in approach, the use of decreasingly-informative prior distribu-
tions forces the adaptation to move slowly during early parts of a trial and allows for
more sensitive adaptation during latter parts of a trial.

6.4.2 Simulation Study for DIP Model

We performed a simulation study to compare the relative performance of Thall and
Wathen’s natural lead-in (TW) method with that of the decreasingly-informative
prior (DIP) method of adaptive allocation in both two- and three-group trials. For
the two-group case we assume that the first treatment has some superior true level
of efficacy to the second treatment (i.e. p1 > p2), while in the three-group case we
assume that p1 > p2 > p3. In both cases we expect the first group of simulated
patients to outperform those from the other groups, and thus expect both procedures
to randomize more patients into the first treatment. For each new patient we simulate
a random number u ∼ U [0, 1] to allocate between groups using Eqs. 6.1 (DIP) or
6.3 (TW) in the two-group case or Eqs. 6.2 (DIP) or 6.4 (TW) in the three-group case.
The binary outcome for each patient is then probabilistically simulated based on a
treatment-specific Bernouli distribution with success rate p1, p2 or p3. The TW or
DIP allocation ratios are then recalculated based on all currently available outcomes,
and the process is repeated until the total number of patients is achieved, which is
selected to attain at least 80% power in the balanced case.

For the TW procedure we have assumed a non-informative beta(1, 1) prior distri-
bution on the efficacy proportion in each group. For the DIP procedure we examine
situations where we select a particular prior value for p0 and also where we select a
non-informative hyperprior on that value. In the former case three values of p0 are
used to represent different realistic scenarios: one where we correctly guess the null
hypothesized value, a second where we guess the null hypothesized value incorrectly
by understating its value, and a third where we overstate its value. For the hyperprior
case we select a diffuse and non-informative U [0, 1] hyperprior in order to mimic
the situation where we make no assumptions about the underlying efficacy about
either group. We also investigate the use of either posterior means or posterior effi-
cacy comparisons to calculate the allocation probabilities. Each trial was simulated
1000 times for each set of parameter values, from which we measure end-of-trial
treatment-specific sample sizes (with standard deviations), empirical power, error
rates, and allocation probabilities.
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In Table6.1 we see the results from two-group trials with a true effect-size of
δ = 0.2. In this case – which reflects overwhelming evidence of superiority for the
first treatment – we see that the TW procedure maintains the highest power, though
the DIP procedure is close when the pre-selected skeptical value p0 is near the
actual success rate in the second group. We also see that the methods provide similar
allocation (in terms of final sample size), though the DIP method often does so
with less variability than the natural lead-in approach. Figure6.1 shows the average
allocation probabilities for both groups throughout the trial. Here we see that the
adaptation gradually increases with sample size, which is similar though not identical
between the different approaches.

In Tables6.2 and 6.3 we see comparisons in the two group case with a smaller
effect size (δ = 0.15) and where we now formulate the DIP procedure with a diffuse
hyperprior. For both the TW and DIP methods we present the use of posterior means
to calculate allocation weights in Table6.2, and the use of efficacy comparisons in

Table 6.1 Simulation summaries for two group case (DIP with point mass). ∗ indicates correct
choice of prior

True efficacy p1 = 0.5 p2 = 0.3 N = 200

DIP

TW p0 = 0.2 p0 = 0.3∗ p0 = 0.4

%(n1 > n2) 99.7% 98.4% 99.4% 99.6%

Power 80.9% 71.8% 78.6% 79.7%

n̂1 144.7 153.8 148.3 143.0

n̂2 55.3 46.2 51.7 57.0

(SD) (16.37) (20.07) (16.60) (14.16)

True efficacy p1 = 0.7 p2 = 0.5 N = 200

DIP

TW p0 = 0.4 p0 = 0.5∗ p0 = 0.6

%(n1 > n2) 98.9% 98.2% 98.5% 98.6%

Power 79.1% 75.8% 79.8% 77.5%

n̂1 143.6 150.0 146.8 142.9

n̂2 56.4 50.0 53.2 57.1

(SD) (17.80) (19.08) (17.14) (15.32)

True efficacy p1 = 0.9 p2 = 0.7 N = 200

DIP

TW p0 = 0.6 p0 = 0.7∗ p0 = 0.8

%(n1 > n2) 99.9% 99.3% 99.8% 99.9%

Power 95.3% 92.2% 94.7% 93.8%

n̂1 153.0 154.0 153.0 151.5

n̂2 47.0 46.0 47.0 48.5

(SD) (15.76) (15.70) (14.09) (13.34)
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(a) TW (b) DIP p0 = 0.2

(c) DIP p0 = 0.3∗ (d) DIP p0 = 0.4

Fig. 6.1 Allocation probabilities for two group case (DIP with point mass). ∗ indicates correct
choice of prior

Table6.3. In the posterior mean case (Table6.2) we see that though both methods
provide some adaptation, neither meaningfully increases the expected number of
successes from that achieved using balanced allocation. However, when posterior
efficacy comparisons are used (Table6.3), we see that in addition to providing more
adaptation, both methods increase the expected number of treatment successes rela-
tive that achieved using balanced allocation.

Tables6.4 and 6.5 present results from three-group trials using either posterior
means and efficacy. In this case both posterior formulations provide increased treat-
ment successes relative to balanced allocation. While the natural lead-in approach
provides greater adaptation and more treatment successes, the DIP procedure has
less variability in these measures.
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Table 6.2 Simulation summaries for two group case (DIP with hyperprior; posterior mean)

True efficacy p1 = 0.25 p2 = 0.1 N = 200

Bal. TW DIP

Exp. Succ. 35.1 (3.85) 36.5 (4.28) 36.1 (4.00)

n̂1 100.2 (7.13) 110.6 (7.81) 105.3 (6.89)

n̂2 99.8 (7.13) 89.4 (7.81) 94.7 (6.89)

Power 80.0% 81.2% 80.3%

Error 0.0% 0.0% 0.0%

R50 – 1.24 (0.15) 1.06 (0.04)

R75 – 1.40 (0.22) 1.14 (0.07)

R100 – 1.58 (0.30) 1.53 (0.25)

True efficacy p1 = 0.55 p2 = 0.4 N = 352

Bal. TW DIP

Exp. Succ. 167.2 (7.86) 167.9 (8.92) 167.8 (8.57)

n̂1 175.7 (9.47) 183.1 (10.23) 181.4 (9.65)

n̂2 176.3 (9.47) 168.9 (10.23) 170.6 (9.65)

Power 80.0% 81.3% 80.1%

Error 0.0% 0.0% 0.0%

R50 – 1.08 (0.04) 1.05 (0.03)

R75 – 1.13 (0.06) 1.10 (0.04)

R100 – 1.17 (0.07) 1.17 (0.07)

6.5 Example 2: Accounting for Multiple Outcomes

There may be occasions when both the efficacy and toxicity of a novel treatment
are under investigation, or where there are two important measures of efficacy. In
such situations the meaning of a successful treatment could be defined as being
one that is effective while not inducing toxicity, or is effective in more than one
way. Investigators of such treatments may then want to utilize both outcomes in an
outcome-adpative allocation process. One such method was presented at BASS in
2012, and much of the following passages appeared in Sabo et al. (2013).

6.5.1 Models for Dual Outcomes

We assume that the dual primary outcomes in the trial are dichotomous in nature
(e.g. success or failure). The outcomes are not required to be immediately observable
(though that definitely helps), provided that such delays are not too great with respect
to the pace of patient enrollment and the planned duration of the trial Zelen (1969).
At best, such delays merely prolong the period during which the original allocation
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Table 6.3 Simulation summaries for two group case (DIP with hyperprior; posterior efficacy)

True efficacy p1 = 0.25 p2 = 0.1 N = 200

Bal. TW DIP

Exp. Succ. 35.1 (3.85) 40.6 (5.12) 38.5 (4.56)

n̂1 100.2 (7.13) 138.6 (12.85) 122.7 (7.60)

n̂2 99.8 (7.13) 61.4 (12.85) 77.3 (7.60)

Power 80.0% 77.8% 83.1%

Error 0.0% 0.0% 0.0%

R50 – 2.56 (1.11) 1.44 (0.29)

R75 – 5.51 (3.12) 2.24 (0.73)

R100 – 12.2 (8.22) 12.3 (7.78)

True efficacy p1 = 0.55 p2 = 0.4 N = 352

Bal. TW DIP

Exp. Succ. 167.2 (7.86) 178.0 (15.11) 175.1 (12.79)

n̂1 175.7 (9.47) 244.1 (22.60) 226.9 (17.08)

n̂2 176.3 (9.47) 107.9 (22.60) 125.1 (17.08)

Power 80.0% 76.5% 81.5%

Error 0.0% 0.0% 0.0%

R50 – 2.63 (1.12) 1.69 (0.46)

R75 – 5.55 (3.14) 3.24 (1.57)

R100 – 12.3 (8.44) 12.4 (8.13)

Table 6.4 Simulation summaries for three group case (DIP with hyperprior, true efficacy: p1 =
0.25, p2 = 0.15, p3 = 0.1, N = 345, and B = 0.2)

Posterior mean

Bal. Natural lead-in DIP

E(S) 57.2 (4.2) 62.6 (6.1) 59.0 (4.6)

Power 79.5% 81.1% 78.5%

Error 0.0% 1.1% 1.3%

R50 – 2.93 (2.17) 2.36 (1.79) 1.39 (0.75) 1.29 (0.69)

R75 – 2.30 (1.05) 1.96 (0.98) 1.53 (0.77) 1.32 (0.70)

R100 – 2.18 (0.75) 1.87 (0.73) 2.18 (0.74) 1.83 (0.72)

Posterior efficacy

Bal. Natural lead-in DIP

E(S) 57.2 (4.2) 67.2 (6.5) 62.5 (5.6)

Power 79.5% 77.0% 76.9%

Error 0.0% 0.7% 0.9%

R50 – 3.68 (2.46) 3.32 (1.44) 1.88 (0.89) 1.81 (0.79)

R75 – 3.07 (0.82) 2.99 (0.61) 2.43 (0.79) 2.37 (0.73)

R100 – 2.93 (0.40) 2.94 (0.32) 2.91 (0.44) 2.93 (0.35)
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Table 6.5 Simulation summaries for three group case (DIP with hyperprior, true efficacy: p1 =
0.55, p2 = 0.45, p3 = 0.4, N = 618, and B = 0.2)

Posterior mean

Bal. BS DIP

E(S) 288.4 (8.9) 294.4 (14.9) 290.2 (11.6)

Power 78.8% 81.3% 80.1%

Error 0.0% 0.7% 1.3%

R50 – 2.34 (1.50) 2.00 (1.58) 1.44 (0.70) 1.31 (0.67)

R75 – 2.00 (0.84) 1.61 (0.87) 1.66 (0.67) 1.36 (0.65)

R100 – 1.89 (0.61) 1.50 (0.63) 1.90 (0.58) 1.46 (0.61)

Posterior efficacy

Bal. BS DIP

E(S) 288.4 (8.9) 305.6 (21.0) 302.4 (19.3)

Power 78.8% 80.2% 80.3%

Error 0.0% 0.5% 0.8%

R50 – 3.54 (2.26) 3.20 (1.39) 2.57 (0.76) 2.52 (0.72)

R75 – 3.03 (0.68) 2.99 (0.51) 2.85 (0.52) 2.84 (0.47)

R100 – 2.93 (0.38) 2.95 (0.29) 2.93 (0.40) 2.94 (0.32)

proportions are held constant, and at worst prohibit adaptation until latter stages of
the trial, possibly even excluding changes all together (Berry and Eick 1995). The
two outcomes do not need to be observed simultaneously in each patient; however, it
must be noted that the algorithmwould be biased in favor of the observed outcome in
such cases. Further, we assume that the total sample size is fixed at some n, and that
patients are randomized into one of k treatment groups or arms. This data will then be
used to estimate θ j and λ j , j = 1, . . . , k, where these parameters represent the mean
of the first and second outcomes in each of the k treatments, respectively. Since we
are assuming that our observations are dichotomous, these parameters would most
likely represent proportions, but could be arranged to represent odds ratios or relative
risks.

Bayesian methods can be used to turn the observed data and any beliefs concern-
ing the two outcomes for each treatment into posterior probabilities on the k pairs
of parameters in which we are interested. Regardless of how we calculate the pos-
terior probabilities, or of what combinations we use for the two outcomes, we want
the allocation weight for treatment j to be proportional to posterior probabilities of
“positive” outcomes (e.g. efficacy), and proportional to the complements of “neg-
ative” outcomes (e.g. toxicity, futility). In the following subsections, we illustrate
three different approaches for estimating allocation proportions. These approaches
differ in how the posterior probabilities are calculated, based on whether we compare
the outcome parameters directly between treatments or to hypothesized values.
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6.5.1.1 Comparisons Between Treatment Arms

We first outline the case where we compare the “success” rates for both the first and
second outcomes (θ j and λ j , respectively) for treatment j to the corresponding rates
in all other treatments. The result of these comparisons are the posterior probabilities
Pθ
j� = P(θ j > θ�) for the first outcome and Pλ

j� = P(λ j > λ�) for the second out-
come, where these comparisons are made for � = 1, . . . , k, where Pθ

j j = Pλ
j j = 1. If

the θ j and λ j represent“positive” events (implying that larger values of Pθ
j� and Pλ

j�
indicate greater likelihoods of positive responses), then the allocation weight for the
j th of k treatment arms is defined as

w j =
(
�k

�=1P
θ
j�P

λ
j�

)c(n)

∑k
i=1

(
�k

�=1P
θ
i�P

λ
i�

)c(n)
,

where c(n) is a suitably chosen tuning parameter that can adjust the pace of adaptation
(Thall and Wathen 2007; Bello and Sabo 2016). Note that the allocation weight w j

for treatment j is proportional to the product of the posterior probabilities that the
success rates for outcomes θ and λ in treatment j are greater than the success rates in
every other treatment. Thus, the weight w j can increase (or decrease) in a number of
ways. For example, the allocation weight can increase if the success rate for just one
of the outcomes in treatment j is larger than the corresponding rate in just one other
treatment (assuming the probabilities for all other comparisons stay constant), or it
could increase if treatment j has a higher outcome-one (or outcome-two) success
rate than all other treatments; in this latter case the weight may increase more than
in the former case. Conversely, w j can decrease if treatment j is outperformed by
another or several other treatments, with respect to outcome one, outcome two, or
both.

Note that if one of the outcomes (say the second) were to represent a “negative”
outcome (implying that higher rates for the λ j represented undesirable outcomes,
and that larger values of Pλ

j� indicate a greater likelihood of that undesirable outcome
happening), then we could simply focus on the“positive” complement 1 − Pλ

j� for
each outcome in the allocation weight for the j th of k treatment arms.

6.5.1.2 Comparisons to Hypothesized Values

As mentioned in Huang et al. (2007), we could compare the “success” rates for each
outcome in each treatment to hypothesized values (say pθ

o and pλ
o ), should such values

exist. For instance, we could compare the efficacy rates for a set of new treatments to
a rate of 30% established by a “gold-standard” treatment, or physicians may wish to
keep the toxicity rates below a 10% threshold. If such values are available, then the
posterior probabilities Pθ

j = P(θ j > pθ
o) and Pλ

j = P(λ j > pλ
o ) can be calculated

from the posterior distributions for each outcome in each treatment group. If we
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assume that the two outcomes are “positively” valued, then the allocation weight for
the j th of k treatment arms is defined as

w j =
(
Pθ
j P

λ
j

)c(n)

∑k
i=1

(
Pθ
i P

λ
i

)c(n)
(6.11)

The weights described in Eq.6.11 are proportional to the likelihood of positive out-
comes in single treatments. While the treatments in this case are not directly com-
pared with one another, the two outcomes in each group are compared to the same
values. Treatments are thus indirectly compared, and superiority of one treatment
over the hypothesized value will lead to an increased allocation weight for that treat-
ment when either: such superiority is not as strong or lacking for other treatments,
or those treatments are showing inferiority to the hypothesized values. The behavior
of allocation weights for ambiguous scenarios would by their nature be difficult to
predict.

6.5.1.3 Hybrid Approach

A likely scenario is the case where we want to compare one outcome between treat-
ments and the other outcome within each treatment to a hypothetical standard. This
could be the case if we wanted to determine the treatment with the greatest effi-
cacy, provided that it kept toxicity below an allowable threshold. We assume that
the first outcome is compared between treatments and the second is compared to a
hypothesized value, so for each treatment j we will have k − 1 posterior probabili-
ties Pθ

j� = P(θ j > θ�), � = 1, . . . , k for the first outcome (recall Pθ
j j = 1), and one

posterior probability Pλ
j = P(λ j > pλ

o ) for the second outcome. If we assume that
both outcomes represent “positive” outcomes, then the allocation weight for the j th
of k treatment arms is defined as

w j =
(
Pλ
j �

k
�=1P

θ
j�

)c(n)

∑k
i=1

[
Pλ
i

(
�k

�=1P
θ
i�

)]c(n)
. (6.12)

6.5.2 Simulation Study for Dual Objective Model

We calculate weights w j for the j = 1, . . . , k treatment arms based assuming that
posterior probabilities are raised to the power (n/2N ) as described in Eq.6.3. By
simulating u ∼ U [0, 1], we allocate the simulated patient to the j th treatment arm
if

∑ j−1
i=0 wi < u <

∑ j
i=1 wi , where w0 = 0. At this point we simulate the efficacy

and toxicity outcome for the new patient by generating a random outcome from a
Bernoulli trial with efficacy probability (pe + δ j ), where δ j is the amount by which
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the probability of a successful outcome in the j th treatment arm differs from pe, and
by also generating a random outcome from a second Bernoulli trial with toxicity
probability (pt + τ j ), where τ j is the amount by which the probability of a toxic
outcome in the j th treatment armdiffers from pt . These newvalues are combinedwith
the existing data to calculate posterior probabilities of both efficacious outcomes and
toxic outcomes, which are in turn used to update the allocation weights, the method
of which depends upon whether the performance of the treatment arms are being
compared to hypothesized values, each other or both. One simulated clinical trial
ends when the maximum sample size of n = 200 patients has been fully allocated.
This process is repeatedm = 1000 times for each set of assumed efficacy and toxicity
rates.

Here we focus solely upon three-arm studies where efficacy is compared between
arms and toxicity is compared to a hypothesized value. We assume informative and
skeptical beta prior distributions for the Pe

j and P
t
j (beta(1.3, 1.7) and beta(1.1, 1.9),

respectively). While the probability that a given treatment is less toxic than a hypoth-
esized value (Pt = 0.1) can again be calculated using the posterior distribution of Pt

j ,
we use direct sampling to calculate Pe

jk = P(Pe
j > Pe

k ). Assuming treatment groups
are independent, we simulate m = 1000 values each from the posterior distribu-
tions of the Pe

j , j = 1, . . . , k, to obtain (Pe
1, j , . . . , P

e
1000, j ) and estimate the posterior

probability that treatment arm j is more successful than treatment arm k as

Pjk = P(Pe
j > Pe

k ) =
∑m

i=1 I (P
e
i, j > Pe

i,k)

1000
,

where I () is an indicator function.
The average behaviors of allocation weights under various scenarios are found in

Fig. 6.2. The first three panels show relatively straightforward scenarios, where (i)
there is no efficacy or toxicity differences between the three treatments, (ii) the first
treatment ismore efficacious than the other two treatments, and (iii) the first treatment
is more toxic than the other two treatments. The allocation weights do not change
in the first case, skew in favor of the first treatment in the second case, and skew
away from the first treatment in the third case. The average sample sizes presented in
Table6.6 for these three cases corroborate the visual results. In the ambiguous case
where the first treatment is simultaneously more efficacious (pe1 = 0.5) and toxic
(pt1 = 0.2) than the second and third treatments, Fig. 6.2 shows that the allocation
weights change little during the trial, and the average numbers of subjects (Table6.2)
allocated between the three treatments (78.1, 60.1 and 61.7, respectively) are not
as different as in first three cases. Here efficacy is slightly more meaningful than
toxicity because in each treatment there are two inter-arm efficacy comparisons for
every toxicity comparison. In the case where the first treatment is more efficacious
(pe1 = 0.4) than the second treatment (pe2 = 0.3), which in turn is more efficacious
than the third treatment (pe3 = 0.2), more patients (101.0) are allocated to the first
treatment than to the second (61.0) and third (38.0), with heavy favoring of treatment
one resulting predominantly from the large efficacy difference between the first and
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(a) pe1 = pe2 = pe3 = 0.3, pt1 = pt2 = pt3 = 0.1 (b) pe1 = 0.5, pe2 = pe3 = 0.3; pt1 = pt2 = pt3 =
0.1

(c) pe1 = pe2 = pe3 = 0.3; pt1 = 0.25, pt2 = pt3 =
0.1

(d) pe1 = 0.5, pe2 = pe3 = 0.3; pt1 = 0.2, pt2 =
pt3 = 0.1

(e) pe1 = 0.4, pe2 = 0.3, pe3 = 0.2; pt1 = pt2 =
pt3 = 0.1

(f) pe1 = 0.4, pe2 = 0.3, pe3 = 0.2; pt1 =
0.15, pt2 = 0.1, pt3 = 0.05

Fig. 6.2 Average allocation weights based on number of accrued patients in 3 treatment arms for
given efficacy and toxicity probabilities
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Table 6.6 Average sample size (with standard deviation) for 3–arm trials: results from simulation
study withm = 1000 repetitions with treatment comparisons made between treatments for efficacy
and to hypothesized values for toxicity (pto = 0.1)

Parameters Sample size Standard
deviation

Parameters Sample size Standard
deviation

pe1 = 0.3 pe1 = 0.5

pe2 = 0.3 n̂1 = 66.0 SD1 = 23.1 pe2 = 0.3 n̂1 = 78.1 SD1 = 28.4

pe3 = 0.3 n̂2 = 66.2 SD2 = 23.0 pe3 = 0.3 n̂2 = 60.1 SD2 = 24.4

pt1 = 0.1 n̂3 = 67.8 SD3 = 22.5 pt1 = 0.2 n̂3 = 61.7 SD3 = 25.5

pt2 = 0.1 pt2 = 0.1

pt3 = 0.1 pt3 = 0.1

pe1 = 0.5 pe1 = 0.4

pe2 = 0.3 n̂1 = 113.0 SD1 = 21.9 pe2 = 0.3 n̂1 = 101.0 SD1 = 23.4

pe3 = 0.3 n̂2 = 42.9 SD2 = 17.1 pe3 = 0.2 n̂2 = 61.0 SD2 = 21.8

pt1 = 0.1 n̂3 = 44.1 SD3 = 17.3 pt1 = 0.1 n̂3 = 38.0 SD3 = 15.0

pt2 = 0.1 pt2 = 0.1

pt3 = 0.1 pt3 = 0.1

pe1 = 0.3 pe1 = 0.4

pe2 = 0.3 n̂1 = 37.2 SD1 = 14.7 pe2 = 0.3 n̂1 = 82.7 SD1 = 26.0

pe3 = 0.3 n̂2 = 81.2 SD2 = 25.7 pe3 = 0.2 n̂2 = 72.3 SD2 = 24.0

pt1 = 0.25 n̂3 = 81.6 SD3 = 26.4 pt1 = 0.15 n̂3 = 45.1 SD3 = 18.7

pt2 = 0.1 pt2 = 0.1

pt3 = 0.1 pt3 = 0.05

third treatments. For the other ambiguous case, where treatments one and two are
sequentially more efficacious and toxic than treatment three, Fig. 6.2 shows that the
weights turn against the third treatment in favor of the first and second (even though
it is less toxic, it is also less efficacious than the other two). The weights for the
first treatment are slightly higher than those for the second, and both are larger than
the weights for the third treatment. The average number of total patients allocated
to the first and second treatments (82.7 and 72.3, respectively) are also higher than
the average number allocated to the third treatment (45.1). This is again due to the
fact that while treatment two is less toxic than treatment one, treatment one is much
more efficacious than treatment three. This might be a scenario where we consider
different radical exponents for the two outcomes.

Using the same simulations from which the previous results were obtained, we
have also calculated the percentage of simulations for which each of the three treat-
ment arms had the highest number of allocated patients. These results are found
in Table6.7 and show that the most efficacious and least toxic treatments routinely
receive the most patients. Also reported is the proportion of simulated trials (for
both the adaptive and balanced allocation procedures) for which the various efficacy
and toxicity rates were deemed significantly different between the three possible
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Table 6.7 Percentage of larger samples and decisions in favor in 3–arm trials: results from simula-
tion study withm = 1000 repetitions with treatment comparisons made between treatments for effi-
cacy and to hypothesized values for toxicity (pto = 0.1). Case 1: pe1 = pe2 = pe3 = 0.3, pt1 = pt2 =
pt3 = 0.1. Case 2: pe1 = 0.5, pe2 = pe3 = 0.3, pt1 = pt2 = pt3 = 0.1. Case 3: pe1 = pe2 = pe3 = 0.3,
pt1 = 0.25, pt2 = pt3 = 0.1. Case 4: pe1 = 0.5, pe2 = pe3 = 0.3, pt1 = 0.2, pt2 = pt3 = 0.1. Case
5: pe1 = 0.4, pe2 = 0.3, pe3 = 0.2, pt1 = pt2 = pt3 = 0.1. Case 6: pe1 = 0.4, pe2 = 0.3, pe3 = 0.2,
pt1 = 0.15, pt2 = 0.1, pt3 = 0.05

Case
comparison

Reject in Favor of % of Reject in Favor of % of

(Adapt) (%) (Equal) (%) Samples (Adapt) (%) (Equal) (%) Samples

Case 1 Case4

Eff: 1v2 6.8 4.7 n1 > n2, n3 77.2 76.6 n1 > n2, n3
Eff: 1v3 6.1 5.1 31.2% 78.9 79.9 49.2%

Eff: 2v3 6.6 5.4 n2 > n1, n3 8.0 4.7 n2 > n1, n3
Tox: 1v2 7.1 4.4 33.9% 50.8 54.2 22.7%

Tox: 1v3 7.2 5.4 n3 > n1, n2 52.7 49.9 n3 > n1, n2
Tox: 2v3 7.3 6.4 33.8% 9.2 5.3 27.1%

Case 2 Case5

Eff 1v2 77.3 77.8 n1 > n2, n3 32.7 32.4 n1 > n2, n3
Eff 1v3 75.4 78.2 93.2% 74.7 82.0 79.7%

Eff 2v3 11.6 6.3 n2 > n1, n3 36.7 40.2 n2 > n1, n3
Tox: 1v2 4.3 5.8 3.2% 6.0 6.2 17.7%

Tox: 1v3 4.4 6.2 n3 > n1, n2 7.5 6.7 n3 > n1, n2
Tox: 2v3 11.6 5.6 3.3% 12.0 5.1 1.9%

Case 3 Case6

Eff 1v2 8.9 5.1 n1 > n2, n3 35.3 34.7 n1 > n2, n3
Eff 1v3 9.3 4.5 1.5% 81.8 82.9 55.0%

Eff 2v3 5.3 6.3 n2 > n1, n3 38.2 43.0 n2 > n1, n3
Tox: 1v2 75.3 78.0 48.7% 23.3 20.8 37.3%

Tox: 1v3 75.2 74.3 n3 > n1, n2 58.6 61.8 n3 > n1, n2
Tox: 2v3 4.9 4.8 48.8% 29.4 31.0 6.9%

treatment pairings (1 vs. 2, 1 vs. 3, and 2 vs. 3) using chi-square tests. The estimated
proportions for the adaptive and fixed allocation methods are similar for Cases 1, 2,
3, 4 and 6, and the adaptive allocation method features a slight loss of power com-
pared to the fixed allocation method in Case 5. These Cases show that the benefit of
allocating subjects away from less efficacious or more toxic treatments may come at
the cost of slightly lower power as compared to the fixed allocation method.
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6.6 Discussion

Presented here are examples of adaptive allocation algorithms conducted under the
Bayesian analytic framework. These methods – an adaptive allocation algorithm for
dual outcomes, and the decreasingly informative prior approach – were originally
presented at the BASS conference in 2012 and 2013, respectively. While these are
emblematic of Bayesian techniques, they are by no means the only examples in the
adaptive allocation literature. One particularly active research area is in covariate-
adjusted response-adaptive allocation designs (Bandyopadhyay et al. 2007; Thall
and Wathen 2007), where allocation algorithms can be balanced for patient charac-
teristics, or where particular sub-groups can be given separate allocation weights.
Another example is adaptive allocation designs for clinical trials with continuous
Biswas and Bhattacharya (2016) our survival outcomes Zhang and Rosenberger
(2007), which in general require entirely different algorithms and concepts of what
constitutes “optimal” treatment outcomes.
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Chapter 7
Addressing High Placebo Response
in Neuroscience Clinical Trials

Gheorghe Doros, Pilar Lim and Yuyin Liu

7.1 Background

7.1.1 Placebo Response in Major Depressive Disorder Trials

7.1.1.1 Factors Contributing to Placebo Response

In pharmacological research of Major Depressive Disorder (MDD), 38–50% of all
short-term, acute, Phase 3 clinical studies failed to distinguish active drug from
placebo, even for approved antidepressants (Gispen-de Wied et al. 2012; Khin
et al. 2011), while 15% of the studies were considered negative (Chen et al. 2014).
Although not all of these failed trials represent false negatives, meta-analyses of
antidepressant studies suggest that high variability in the placebo response, inde-
pendent of drug response, explains the majority of the variability in trial outcome
(Alkermes announces advances 2014; Gispen-deWied et al. 2012; Khin et al. 2011).
The net result of this is an increasing number of failed clinical trials in depression,
resulting inmedicationswith potential clinical value not reaching patients in need. As
summarized in a recent review by Rutherford et al. (2014), “High placebo response
rates hamper efforts to detect signals of efficacy for new antidepressant medications,
contributing to trial failures and delaying the delivery of new treatments to market”,

G. Doros (B) · Y. Liu
Department of Biostatistics, Boston University, 801 Massachusetts Avenue,
Boston, MA 02118, USA
e-mail: doros@bu.edu

Y. Liu
e-mail: yuyin@bu.edu

P. Lim
Department of Quantitative Sciences, Janssen Research & Development, LLC,
1125 Trenton-Harbourton Road, Titusville, NJ 08560, USA
e-mail: plim@its.jnj.com

© Springer Nature Singapore Pte Ltd. 2018
K. E. Peace et al. (eds.), Biopharmaceutical Applied Statistics Symposium, ICSA
Book Series in Statistics, https://doi.org/10.1007/978-981-10-7829-3_7

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7829-3_7&domain=pdf


172 G. Doros et al.

and by Gispen-de Wied et al. (2012), “All efforts should be made to optimize the
clinical development of drugs in the psychiatric domain, in order to improve the
intrinsic quality of studies and reduce the burden to both pharmaceutical companies
and society of too many trials needed to complete the dossier.”

There are numerous factors contributing to the problem of failed clinical trials in
depression, including patient factors, investigator/site factors, and research design
factors, discussed below.

Patient Factors Patient factors include expectancy of improvement (Meyer
et al. 2002; Papakostas and Fava 2009; Rutherford and Roose 2013; Sotsky et al.
1991), past experiences with antidepressant medications, the patient’s perception
of the informed consent process, and the patient’s relationship with the investigator.
Patients’ expectancy of improvement in clinical trials of antidepressants is thought to
be a primary mechanism of placebo responding (Rutherford and Roose 2013). There
are several factors which contribute to expectancy bias: (1) the informed consent
procedure, during which patients are informed about the study design, past effec-
tiveness of the drug under study, side effects associated with the study drug, and
the investigator’s opinion/biases regarding potential effectiveness of the study drug,
(2) past experience with antidepressant treatment, and (3) the probability of receiv-
ing active drug versus placebo. Meta-analyses suggest that the design of a clinical
trial, especially the probability of receiving active drug versus placebo, influences
patients’ expectancy of clinical improvement regardless of treatment assignment,
which has a negative impact on signal detection. Recent studies that have measured
patient expectancy at baseline report that higher expectancy predicts greater symp-
tom improvement over the course of treatment (Krell et al. 2004; Meyer et al. 2002;
Rutherford et al. 2013).

Another patient factor that can contribute to placebo response is clinical presenta-
tion, which includes severity and duration of the depressive episode (Fournier et al.
2010;Kirsch et al. 2008; Stein et al. 2006), subtype of depressive disorder, and comor-
bidities (particularly anxiety disorders). In addition, the natural course of psychiatric
illnesses, involving spontaneous improvement and worsening of patients’ symptoms
unrelated to study treatment, is an uncontrolled source of variability. Other patient
factors influencing placebo response include psychiatric history, (including family
history of psychiatric disorders), use of concomitant medications (Wernicke et al.
1997), positively perceived therapeutic effects of undergoing medical procedures,
and the methods used for patient recruitment (source and types of patient recruited
into trials).

Investigator/Site Factors Investigator/site factors include experience conducting
clinical trials, rater bias, and the therapeutic setting at the site.

Rater bias, reflecting a conscious or subconscious determination to detect effects
of the study medication, can influence ratings of symptom severity (Landin et al.
2000; Mundt et al. 2007; Rief et al. 2009). The rater’s guess of treatment assignment
to rate patients according to a preconceived, desired outcome in placebo-controlled
depression trials has been shown to impact ratings, with a negative rating bias against
demonstrating improvement when the rater believes that the subject is on placebo,
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and a positive rating bias demonstrating improvement when the rater believes that
the subject is on active drug treatment (Chen et al. 2015).

The effect of the therapeutic setting (supportive contact with investigative site
staff) also impacts the placebo response. In a meta-analysis of 41 randomized, con-
trolled antidepressant trials for major depression, the greater the number of study
visits (and therefore, greater amount of potentially therapeutic contact with site staff),
the higher the placebo response rate (Posternak and Zimmerman 2007). Although
patients receiving active drug also demonstrated more improvement with an increas-
ing number of study visits, the relative effect of two extra study visits was approxi-
mately 50% greater in the placebo group than in the active treatment group, suggest-
ing that greater therapeutic contact has a differential effect on placebo response.

ResearchDesignFactorsFinally, research design factors play a significant role in
placebo response, and, being under the control of the sponsor, are the most amenable
to modification to reduce the placebo response. These design factors include validity
and responsiveness of the primary outcome measure, duration of the trial, flexible
versus fixed dose designs, number of treatment arms, and number of trial sites that can
each impact the placebo response even after controlling for similar study population,
inclusion criteria, study site/geographical region, test product, and similar study
design.

Certain psychiatric rating scales have been shown to be more consistently respon-
sive to change in pharmacotherapy trials, and therefore the choice of primary outcome
measure is important to ensure adequate ability to detect an efficacy signal (Carmody
et al. 2006; Khan et al. 2002, 2004). Measurement factors represent a source of bias
and error, and are significant given the subjective scales employed in psychiatric
trials. Regression to the mean, a statistical event that occurs when repeated measure-
ments associated with random error are made on the same trial participant over time,
is another source of apparent, but not true, symptom change in antidepressant trials
(Rutherford and Roose 2013).

Shorter trial duration is associated with higher antidepressant trial success rates
(6-week versus 8-week trials) (Khin et al. 2011) and, in general, fixed dose studies
have a slightly higher success rate than flexible dose trials (Khan et al. 2003; Khin
et al. 2011). Regarding number of treatment arms, mean placebo response rate has
been shown to be lower in studies including 1 active treatment versus 2 or more
active treatments (Khan et al. 2004). In fact, as the probability of receiving placebo
decreases, the placebo response rates increase (Papakostas and Fava 2009). For each
10% decrease in the probability of receiving placebo, the probability of response
to the active drug increased by 1.8%, while the probability of response to placebo
increased by 2.6%. When comparing drug response between placebo-controlled tri-
als and active comparator trials (2 or more drugs with no placebo group), patient
expectancy has been shown to influence treatment response: mean drug response
rates in active comparator trials were greater than in placebo-controlled trials, a find-
ing that is consistent across studies of children, adolescents, adults, and older adults
(Rutherford 2009; Sneed et al. 2008). In general, the smaller the number of trial sites,
the less variability is introduced, and the higher the trial success rate (Bridge et al.
2009; Robinson and Rickels 2000).
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In summary, the high rate of placebo response/variability is a major factor con-
tributing to the failure of clinical trials in psychiatry, and particularly, clinical
trials in MDD. The growing number of failed trials has made developing psychi-
atric medications increasingly more time consuming and expensive when compared
with non-CNS indications (Cressey 2011; Nutt and Goodwin 2011).

7.1.1.2 Methods of Controlling for Placebo Response

Patient Expectancy Since patient expectancy of improvement is considered to
be a prime driver of placebo response and decreased placebo-drug differences,
researchers have implemented a number of strategies to reduce expectancy. One
strategy is to implement a placebo lead-in period to identify and exclude subjects
who respond rapidly to placebo treatment. This approach, in theory, addresses both
patient expectancy bias and nonspecific therapeutic effects of the health care set-
ting. However, analyses of studies with single-blind placebo lead-in periods have not
found this design element to be beneficial in improving signal detection (Rutherford
et al. 2011; Stein et al. 2006; Trivedi and Rush 1994). A single, published study
incorporating a double-blind lead-in period (both study personnel and patients were
blind to the duration of the placebo lead-in) showed some benefit in signal detection
(Douglas et al. 2001).

Rater Bias/Measurement Error Several methods may be employed to reduce
rater bias, measurement error, and regression to the mean. Dual assessments, cen-
tralized ratings, rater drift monitoring, etc. are techniques frequently being used in
trials. Raters can be blinded as to the timing of the baseline assessment when the
severity score required for randomization is assessed, and different rating scales can
be used to determine subject eligibility and to serve as the primary outcome measure
in the planned analyses.

Functional unblinding, occurring when a subject reports side effects caused by the
study drug,may increase the subject’s and investigator’s expectancy of improvement,
resulting in measurement bias. This can be mitigated through the use of an indepen-
dent rater blinded to the treatment assignment who is unaware of any reported side
effects.

7.1.1.3 Clinical Trial Design

As discussed above, several design features have been shown to contribute to reduc-
ing the risk of a failed clinical trial in MDD, including: a higher probability of
receiving placebo; enrichment with higher baseline severity of illness; fewer study
visits (reducing therapeutic contact); a single active treatment arm; and fewer study
sites (reducing placebo variability).

In addition to these measures, the use of novel trial designs aimed at addressing
expectancy bias and untangling the complex relationship between true medication
effect and the contribution of nonspecific, “placebo” effects to overall medication
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response will be important in addressing the issue of the growing placebo response
rate in clinical trials of antidepressants. Trial designs implementing double-blind
lead-in periods, in which the randomization timepoint is blinded to both subject and
investigator, and trials implementing enrichment designs such as double randomiza-
tions, in which subjects not responding to placebo in the first period of the study are
re-randomized to study drug or placebo, are increasingly being used to determine
true drug response. Equal randomization to active compound or higher allocation to
placebo may reduce subjects’ expectancy of improvement.

As a result, various trial design features for reducing the risk of a failed study
have been developed, including the implementation of placebo lead-in periods and
reduction in the number and complexity of study visits. Despite the implementation
of such design features, failed clinical trials remain a major issue hampering the
development of urgently-needed new therapies for MDD.

7.1.2 Novel Study Designs to Address Placebo Response

Themost commonly employed design used in antidepressant clinical trials today, the
parallel-group design, has been used for the past 30+ years (Khan et al. 2003) with
onlyminormodifications and has suffered high rates of failed trials with high placebo
response felt to be a major contributing factor (Khin et al. 2011; Thase 1999). No
single intervention or combination of interventions has been shown to be successful in
eliminating placebo response. Given that the contributions from the multiple factors
discussed above cannot be completely eliminated, recent novel trial designs such
as the sequential parallel design (SPD) and the doubly-randomized delayed start
(DRDS) design are being employed to increase the efficiency of placebo-controlled
trials using the concepts of re-randomization and enrichment (Chen et al. 2011; Liu
et al. 2012). This is the first significant advance in clinical trial methodology in the
last quarter-century.

7.1.2.1 Sequential Parallel Design

The SPD is a two-period design that was proposed in 2003 by Dr. Maurizio Fava
and colleagues of the Massachusetts General Hospital (Fava et al. 2003) to address
the emerging issue of the placebo response and to reduce sample size in psychiatric
clinical trials. The original SPD randomizes all subjects only once, at the beginning
of Period 1, into 3 treatment sequences: treatment-placebo, placebo-treatment, and
placebo-placebo; this trial design was used in the TRD-2 and ADAPT-A trials for
MDD (Study of 6(S)-5-MTHF 2014; Fava et al. 2012; Papakostas et al. 2012).

Statistical Analysis Researchers from academic institutions, the United States
Food and Drug Administration, and the pharmaceutical industry have published
many papers on analytical methods for SPD data. Because the SPD involves two
periods and assumes that subjects who have failed to respond to placebo in the first
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period are even less likely to respond to placebo in the second period, Period 2 reveals
a higher drug-placebo difference. Efficient statistical tests aggregate data from both
periods while controlling the Type I error. Statistical tests for the SPD using binary
measurements include the likelihood ratio test,Wald test, score test, and combination
test. (Fava et al. 2003; Huang and Tamura 2010; Ivanova et al. 2011; Tamura et al.
2011) For continuous measurements, the combination test was studied but the design
with no re-randomization at Period 2 poses technical analysis difficulties.

Current Applications So far, at least 21 trials have used or plan to use the SPD
(Fava et al. 2003). Some trials are funded by the United States National Institute of
Health while others are sponsored or collaborated by institutions (eg, Massachusetts
General Hospital, University of Connecticut, Vanderbilt University, Yale University)
and pharmaceutical companies (eg, Alkermes, Bristol-Myers Squibb, Pfizer). In the
United States, the Food and Drug Administration has recently approved the use of
SPD in three Phase 3 pivotal studies for compounds in development for the treatment
of MDD (Alkermes announces advances 2014).

7.2 Binary Response

Fava et al. (2003) developed a test for used in the SPCD that is based on linear
combination of treatment differences in the two stages. Fava et al. (2003) and Tamura
andHuang (2007) concluded that the SPCD ismore efficient than a two-arm placebo-
controlled single-stage design under a broad range of assumptions. Ivanova et al.
(2011) proposed a 1 and 2 degree of freedom (DOF) score tests for treatment effect
in SPCD trials. In this section, we will discuss these analysis methods for binary
responses in SPCD trials.

7.2.1 Original Method

Fava et al. (2003) proposed a test for binary responses when they brought up the
concept of SPCD trials. They assume that patients will be randomized into three
groups. The first two groups will initially receive placebo, those patients that do not
respond to placebo will receive placebo (group 1) or drug (group 2). The third group
will initially receive drug. The proportions randomized to the three groups will be a,
a, and (1 − 2a).

Let p1, q1 be the response rates to the first administration of drug and placebo
respectively and let p2, q2 be the responses to the second treatment. To analyze these
data, they use a statistic based on δω = ω(p1 − q1) + (1 − ω)(p2 − q2). The weight,
ω and the randomization fraction, a are chosen to maximize the power of the test,
based on the alternative hypothesis.
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Table 7.1 Notations of the original method

Group Response Frequency Probability

1 Placebo-placebo No-Yes n11 (1 − q1)q2
No-No n12 (1 − q1)(1 − q2)

Yes n13 q1
2 Placebo-Drug No-Yes n21 (1 − q1)p2

No-No n22 (1 − q1)(1 − p2)

Yes n23 q1
3 Drug Yes n31 p1

No n32 (1 − p1)

The standard error for δω requires a special formula because some of the same
patientswho are included in the estimation of p2, and q2 are included in the estimation
of p1, and q1. The delta method was used to compute the standard error of δω.
The computation is facilitated by considering by considering the following table of
outcomes, where in this case p1, p2, q1, and q2 are the theoretical probabilities rather
than the observed relative frequencies (Table7.1).

Then

δω = ω

(
n31

n(1 − 2a)
− (n13 + n23)

2na

)
+ (1 − ω)

(
n21

(n21 + n22)
− n11

(n11 + n12)

)

where n is the total number of patients. Let Q be the column vector of derivatives of
δω with respect to n31, n13, n23, n21, n22, n11, n12, from the multinomial distribution.
Then the standard error of δω is given by sqrt (Q′V Q), which is computed with the
observed values of p1, p2, q1, and q2. The formula below is a simplified calculation
of the standard error of δω:

D = −2(−1 + 2a)p2(−1 + ω)2 + 2(−1 + 2a)p2
2(−1 + ω)2

−2(−1 + 2a)q2(−1 + ω)2 + 2(−1 + 2a)q2
2(−1 + ω)2

+(−1 + q1)((−1 + q1)q1 + 2a(−p1 + p1
2 + q1 − q1

2))ω2

N = 2a(−1 + 2a)(−1 + q1)

s =
√

D

N

To test the null hypothesis, they use Z = δω/s. The values of a and ω were
calculated by substituting the alternative hypothetical values of p1, p2, q1, and q2
and find the values of a and ω that maximize Z . The power of the test is then
�(Z − 1.96), where � is the cumulative distribution of the normal distribution.
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7.2.2 Score Tests

Ivanova et al. (2011) developed a 1 and 2 degrees of freedom (DOF) score tests for
treatment effect in SPCD trials. The 1 DOF test uses a test parameter r equal to a
known ratio between treatment differences in Stage II and Stage I. The 2 DOF test
does not require assumptions about the relationship between the treatment differences
in the two stages. It is likely that some subjects who participated in Stage I will not
participate in Stage II; therefore, all formulae have been developed to accommodate
the possibility of such dropouts.

Description of the DesignLet the total sample size in the trial be n with n1 subjects
in the placebo-placebo group, n2 subjects in the placebo-drug group, and n3 subjects
in the drug-drug group, n1 + n2 + n3 = n, with n1 = n2 and a = n1/n. Therefore,
subjects are randomized to the three groups according to an a : a : (1 − 2a) ratio.
Because a = n1/n and n1 = n2, in theory, the range for a is 0 ≤ a ≤ 0.5, with
a = 0.5 corresponding to a two-stage design with all patients receiving placebo in
Stage I, and a = 0.25 corresponding to a two-stage design with equal allocation
to drug and placebo in the first stage. Denote p1 = Pr(Drug Response in Stage I),
q1 = Pr(Placebo Response in Stage I), p2 = Pr(Drug Response in Stage II|Placebo
Non-responder in Stage I), and q2 = Pr(Placebo Response in Stage II|Placebo Non-
responder in Stage I). The SPCD is depicted in Table7.2. In the placebo-placebo
group, n11 is the observed number of non-responders in Stage I who respond in
Stage II, n12 is the observed number of non-responders in both stages, n13 is the
observed number of responders in Stage I, and n14 is the number of non-responders
who dropped out after Stage I, n1 ≥ n11 + n12 + n13. Similarly, in the placebo-drug
group, n21 is the observed number of non-responders in Stage I who respond in
Stage II, n22 is the observed number of non-responders in both stages, n23 is the
observed number of responders in Stage I, and n24 is the number of non-responders
who dropped out after Stage I, n2 ≥ n21 + n22 + n23. In the drug-drug group, n31
and n32 are the numbers of non-responders and responders, respectively, in Stage I.

The Score Test with 1 DOF Let s be the probability that a first-stage placebo
non-responder continues to the second stage. Because subjects are independent, it
follows that

n11 + n12 ∼ Bin(n1 − n13, s)n21 + n22 ∼ Bin(n2 − n23, s)

The dropout process is assumed random and independent of future outcomes. The
joint likelihood for (p1, q1, p2, q2, s) based on n11, n12, n13, n21, n22, n23, n31, and
n32 is then

L0(p1, q1, p2, q2, s) ∝ p1
n32 (1 − p1)

n31qn23+n13
1 (1 − q1)

n1+n2−n23−n13 p2
n21(1 − p2)

n22

×q2
n11(1 − q2)

n12sn11+n12+n21+n22 (1 − s)n1+n2−n13−n23−n11−n12−n21−n22
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Table 7.2 Notations of score test

Treatment Response
Period 1 Period 2 Period 1 Period 2 Count Probability
Placebo Placebo(n1) No Yes n11 s(1− q1)q2

No No n12 s(1− q1)(1− q2)
Yes . n13 q1
No Missing n14 (1− s)(1− q1)

Placebo Drug(n2) No Yes n21 s(1− q1)p2
No No n22 s(1− q1)(1− p2)
Yes . n23 q1
No Missing n24 (1− s)(1− q1)

Drug Drug(n3) No . n31 1− p1
Yes . n32 p1

Define treatment effects �1 = p1 − q1, �2 = p2 − q2 and �2 = ρ�1, the ratio
of treatment effects. The test is derived under the assumption that ρ is known. They
refer to r , r = ρ, as a test parameter to distinguish it from ρ. They restrict r to be
0 ≤ r < +∞. The parameters (p1, q1, p2, q2, s) are transformed to (�1, q1, q2, s).
Then, p1 = �1 + q1, p2 = r�1 + q2, and the re-parameterized likelihood is

L1(�1, q1, q2, s) ∝ (�1 + q1)
n32(1 − q1 − �1)

n31

×q1
n23+n13(1 − q1)

n1+n2−n23−n13(r�1 + q2)
n21(1 − r�1 − q2)

n22

×qn11
2 (1 − q2)

n12sn11+n12+n21+n22(1 − s)n1+n2−n13−n23−n11−n12−n21−n22 .

The null hypothesis of interest is testing H0 : �1 = 0. Under H0, �1 = p1 −
q1 = 0, (p2 − q2) = r(p1 − q1) = r�1 = 0, and therefore H0 implies that treatment
effects are 0 in both stages.

Maximum likelihood estimates under H0 obtained by setting �1 = 0 and solving
the likelihood equations for q1, q2, and s are as follows:

q̃1 = n32 + n13 + n23
n

,

q̃2 = n11 + n21
n11 + n12 + n21 + n22

,

s̃ = n11 + n12 + n21 + n22
n1 + n2 − n13 − n23

.
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The test statistic is

T1 = ( n32q̃1
− n3−n32

1−q̃1
+ rn21

q̃2
− rn22

1−q̃2
)2

n3(n1+n2)
q̃1(1−q̃1)(n1+n2+n3)

− r2(1−q̃1)n1n2 s̃
q̃2(1−q̃2)(n1+n2)

(7.1)

The asymptotic distribution of T1 under H0 is Chi-squared with 1 DOF. The test
is similar in concept to that in Fava et al. (2003), where a weight ω is chosen to
combine data from Stage I and II. If r = 0, the test is equivalent to the score test that
uses data from Stage I only. If r is large, T1 is close to the score test statistic that uses
data from Stage II only. In the theoretical extreme case, if a = 0.5, that is n3 = 0,

T1 = q̃2(1 − q̃2)(n1 + n2)

(1 − q̃1)sn1n2

(
n21
q̃2

− n22
1 − q̃2

)2

(7.2)

This test does not depend on r and is a score test for Stage II data only. Generally,
as a increases, the choice of r has less effect on the power of the test.

The Score Test with 2 DOF In the 2 DOF test, the constraint regarding relationship
between treatment effects�1 and�2 no longer exists. Changing parameter from (p1,
q1, p2, q2, s) to (�1, �2, q1, q2, s), the likelihood is

L2(�1,�2, q1, q2, s) ∝ (�1 + q1)
n32(1 − q1 − �1)

n31

×qn23+n13
1 (1 − q1)

n1+n2−n23−n13(�2 + q2)
n21(1 − �2 − q2)

n22

×qn11
2 (1 − q2)

n12sn11+n12+n21+n22(1 − s)n1+n2−n13−n23−n11−n12−n21−n22 .

The hypothesis testing: H0: �1 = �2 = 0. The score test statistic is

T2 = q̃1(1 − q̃1)(n1 + n2 + n3)

(n1 + n2)n3

(
n32
q̃1

− n3 − n32
1 − q̃1

)2

+ q̃2(1 − q̃2)(n1 + n2)

(1 − q̃1)s̃n1n2

(
n21
q̃2

− n22
1 − q̃2

)2

(7.3)

The distribution of T2 under H0 is Chi-squared with 2 DOF. When a = 0.5, T2 =
T1 in Equation (7.2). Because T1 is compared against 1 DOF Chi-square and T2 is
compared against 2 DOF Chi-square, the 2 DOF test would have lower power than
the 1 DOF test when a = 0.5.
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7.3 Continuous Response

In most depression trials, it is also of interest to analyze continuous efficacy data
such as change from baseline to the end of study in a total score such as the Hamilton
Depression Rating Scale (HDRS). The data from each phase of the study have its own
unique set of dependent and independent variables. Howwould one analyze such data
from a sequential parallel comparison design (SPCD)? Many statistical approaches
have been brought out in the past 10years. In this chapter, we will discuss the fol-
lowing four analysis methods: seemingly unrelated regression (SUR), ordinary least
square (OLS) estimation, repeated measures model (RMM) and weighted repeated
measures model (WRMM).

In this work, we consider the SPCD format with one active treatment and placebo
in Phase I and re-randomization of the Phase I placebo non-responders to active treat-
ment or placebo in Phase II. Without much loss of generality, we can also assume
that, in Phase I, the subjects are randomized 2 : 1 to placebo versus active treatment,
while in the Phase II, placebo non-responders are randomized 1 : 1 to placebo ver-
sus active treatment. Placebo responders continue on placebo in Phase II, whereas
subjects randomized to active treatment in Phase I continue on active treatment in
Phase II. The parametrization of the design is presented in the flowchart in Fig. 7.1.

δ0

δ1

δ5

δ4

δ2

δ3

δ01

δ02

Phase I Phase II

Fig. 7.1 Treatment effect diagram in sequential parallel comparison design trial
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In this figure

• δ0 denotes the mean change from baseline to the end of Phase I for subjects in the
placebo group.

• δ1 denotes the difference in mean change from baseline to the end of Phase I
between subjects in the active treatment group and subjects in the placebo group
(treatment effect in Phase I).

• δ01 denotes the difference between the mean outcome at the end of Phase I for all
placebo subjects and mean outcome for placebo non-responders. It can be viewed
as the amount of deviation from the change in outcome for all placebo subjects
incurred by placebo non-responders.

• δ02 denotes the difference between the mean outcome at the end of Phase I for
all placebo subjects and mean outcome for placebo responders. It can be viewed
as the amount of deviation from the change in outcome for all placebo subjects
incurred by placebo responders.

• δ2 denotes the mean change from the baseline of Phase II to the end of Phase II
for placebo non-responders who were randomized to placebo in Phase II.

• δ3 denotes the difference inmean change from the baseline of Phase II to the end of
Phase II between placebo non-responders subjects randomized to active treatment
and placebo non-responders randomized to placebo in Phase II (treatment effect
in Phase II).

• δ4 denotes the mean change from the baseline of Phase II to the end of Phase II
for placebo responders.

• δ5 denotes the mean change from the baseline of Phase II to the end of Phase II
for subjects in the active treatment group in Phase I.

Under the assumption of a normally distributed outcome, for a full specification
of the design, each parameter would need to be specified along with the variance-
covariance parameters. The parameters δ0, δ01, δ02, δ2 and δ4 are the characteristics
of subjects who receive only placebo, thus the information can be elicited from
previous trials. The parameter δ2 represents the placebo response among placebo
non-responders, while δ4 represents the placebo response among placebo responders.
Both can be elicited from historical data.

The parameter δ5 represents the Phase II treatment response for patients random-
ized to active treatment in Phase I. This parameter must be elicited. The parameters
δ1 and δ3 are the treatment effect in Phase I and Phase II, respectively, and the overall
treatment effect is defined as a weighted average of the two,

δω = ωδ1 + (1 − ω)δ3

The magnitude of the treatment effect in Phase I, δ1, treatment effect in Phase
II, δ3, and the weight w, are the parameters that mainly determine the size of the
trial. In the following sections, we assume a 12-week trial, with Phase I baseline at
Week 0, the end of Phase I/beginning of Phase II at Week 6, and the end of Phase II
at Week 12. The four analysis approaches will be introduced with the consideration
and determination of these parameters.
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7.3.1 Seemingly Unrelated Regression

Tamura and Huang (2007) used the seemingly unrelated regression to analyze the
SPCD data by taking into account the intra-patient correlation between efficacy data
of placebo non-responders from both stage. They assume the data from the two
phases of the study can be expressed via a linear model:

�Yi1 = α01 + α11Yi1,0 + δ1Gi1 + εi1; i = 1 : N

�Yi2 = α02 + α12Yi2,0 + δ3Gi2 + εi2; i = 1 : nN R

where �Yi1 = Yi6 − Yi1,0 is the difference between the Week 6 and baseline out-
come scores, Yi1,0 is the Week 0 (Phase I baseline) outcome score and Gi1 is the
active treatment indicator for the data during Phase I; �Yi2 = Yi12 − Yi2,0 is the
difference between the Week 12 and Week 6 outcome scores, Yi2,0 is the Week 6
(Phase II baseline) outcome score and Gi2 is the active treatment indicator for the
data during Phase II for placebo non-responders.

It is assumed that the variances are constant from patient to patient within each
phase; however, for a patient with data from both phases of the study the random
errors from the two phases of the study may be correlated.

It is also assumed that patients are independent, E(εi ) = 0, and that the within
patient residual vector has a variance covariance matrix:

	 =
(

σ11 σ12

σ21 σ21

)

If	 were known, the generalized least squares solution (GLS)would be available;
however in practice	 is unknown and an estimator of	 must be used. The analogue
to the GLS using the estimator of 	 is sometimes called the estimated generalized
least squares estimator (EGLS). As long as the estimator of	 is consistent, the EGLS
will have the sam asymptotic distribution as the GLS. Most software packages use
the estimator of 	 based on the ordinary least squares residuals from the analysis of
each phase separately.

In this application, SUR ignores the occurrence of missing Phase II data from
placebo responders. SUR differs from a repeated measures analysis which treats the
three groups as fixed covariates. In the repeated measures analyses, the model would
be assumed to be true even for the population of patients with missing data.

Consider the situation where treatment is the only factor in both Phase I and
Phase II models; δ1 represents the treatment effect in Phase I, and δ3 represents the
treatment effect in placebo non-responders in Phase II, and the null hypothesis of no
treatment effect is:

H0 : δ1 = δ3 = 0.
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It is assumed that treatment effect in each period would be in the same direction
and consider a weighted average test statistic:

ZSUR = ωδ̂1 + (1 − ω)δ̂3√
ω2Var(δ̂1) + 2ω(1 − ω)Cov(δ̂1, δ̂3) + (1 − ω)2Var(δ̂3)

(7.4)

where ω is between 0 and 1. If σ12 = 0, then seemingly unrelated regression is
equivalent to ordinary least squares on each phase of the study separately. In this
case, the estimates of treatment effect in either phase are the simple treatment mean
differences. Zellner (1962) showed that by considering the correlation and the infor-
mation on explanatory variables in both phases simultaneously, the EGLS will be
more efficient than the phase by phase ordinary least squares estimates.

7.3.2 Ordinary Least Square Estimation

Chen et al. (2011) examined the covariance between the ordinary least square test
statistics for two stages of Fava’s SPCD. For simplicity, they did not consider missing
outcome data and the selected the two-sample t-test to estimate the treatment effect
in each stage. The OLS estimates of δ1 and δ3 can be written as

δ̂1 = 1

N/3

N∑
i=2N/3+1

Yi6 − 1

2N/3

2N/3∑
i=1

Yi6

and

δ̂3 = 1

nN R/2

nN R∑
j=nN R/2+1

Y j12 − 1

nN R/2

nN R/2∑
j=1

Y j12

respectively, where subjects are randomized 2:1 to placebo versus active treatment
at Phase I, and are re-randomized 1:1 to placebo versus active treatment at Phase II
for placebo non-responders. N is the total number of subjects enrolled in this trial,
and nN R is the number of placebo non-responders entering Phase II. Yi6 denotes the
outcome measure for the i-th subject at Week 6 (the end of Phase I), and Y j12 denotes
the outcome measure for the j-th subject at Week 12 (the end of Phase II). Assuming
a constant correlation between the continuous endpoint measures in two phases for
placebo non-responders entering Phase II and a constant variance of the continuous
endpoint measures for all subjects in each phase, it is analytically proved that the
covariance between δ̂1 and δ̂3 equals 0, and the weighted OLS statistic
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ZOLS = ωδ̂1 + (1 − ω)δ̂3√
ω2Var(δ̂1) + (1 − ω)2Var(δ̂3)

(7.5)

can be used as alternative to ZSUR to test the null hypothesis H0 : δ1 = δ3 = 0. Based
on this finding, the asymptotic power of the weighted OLS statistic is equal to

�

(
− 1.96 − ωδ1 + (1 − ω)δ3√

9ω2σ1
2

2N + 4(1−ω)2σ2
2

nN R

)

It is also analytically proved that when an analysis of covariance (ANCOVA) is
applied to each stage of the design, the unconditional covariance between the two
adjusted treatment effects is also zero asymptotically. Therefore, the aforementioned
weighted OLS statistic can also be applied to the SPCD when there is a need to
incorporate a covariate into analysis of variance.

7.3.3 Repeated Measures Model

Both SUR and OLS methods ignore some of the data collected during the trial, e.g.
the Phase II data on those on active treatment or who responded to placebo in Phase
I are simply ignored in the OLS setting and treated as missing in the SUR setting.
Doros et al. (2013) proposed a model that incorporates all the trial data and, using
simulations, they demonstrate that, under awide range of scenarios, thismethodology
preserves the type I error without compromising power.

At the core of this method is a repeated measure statistical model that uses all
available data. This model estimates the treatment effect by using the data collected
at baseline, end of Phase I and end of Phase II. Still, assume a 12-week trial, with
Phase I baseline at Week 0, the end of Phase I/beginning of Phase II at Week 6 and
the end of Phase II at Week 12.

The Equations Under The Model: This model consists of four equations.

1. An equation relating the outcome at the end of Phase I [defined as change in
score from baseline (Week 0) to the end of Phase I (Week 6)] to the outcome
at baseline and treatment allocation during the first 6weeks for the subjects on
placebo and on active treatment in the study

�Yi1 = α01 + α11Yi1,0 + δ1Gi1 + εi1; i = 1 : N ,

where �Yi1 = Yi6 − Yi1,0 is the difference between the end of Phase I (Week 6)
and baseline (Week 0) outcome scores, Yi1,0 is the baseline outcome score and
Gi1 is the active treatment indicator for the data during Phase I.
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2. An equation relating the outcome at the end of Phase II [defined as the change
in the outcome from Week 6 to Week 12 (end of Phase II)] to Phase II baseline
and treatment allocation for placebo non-responders

�Yi2 = α02 + α12Yi2,0 + δ3Gi2 + εi2; i = 1 : nN R,

where �Yi2 = Yi12 − Yi2,0 is the difference between the end of Phase II (Week
12) and the baseline of Phase II (Week 6) outcome score, Yi2,0 is the Phase II
baseline outcome score and Gi2 is the treatment indicator for active treatment
for the data during Phase II for placebo non-responders.

3. An equation relating the outcome at the end of Phase II to Phase II baseline for
placebo responders

�Yi2 = α03 + α13Yi2,0 + εi3; i = (nN R + 1) : (nN R + nR),

where �Yi2 is the difference between the end of Phase II (Week 12) and the
baseline of Phase II (Week 6) outcome score, Yi2,0 is the Phase II baseline
outcome score for placebo responders.

4. An equation relating the outcome at the end of Phase II and Phase II baseline
for subjects randomized to active treatment in Phase I

�Yi2 = α04 + α14Yi2,0 + εi4; i = (nN R + nR + 1) : N .

Above N is the total number of subjects enrolled in Phase I, nN R, nR , and
nT = N − nN R − nR are the respective numbers of placebo non-responders, placebo
responders, and subjects on active treatment, who continue to Phase II.

The Covariance Under The Model: The error terms {εi1}i , {εi2}i , {εi3}i , and {εi4}i
are assumed to be independent and identically distributed across individuals. Since
the subjects contributing data to the estimation carried out in Phase I also contribute
data to the estimation in Phase II, the errors corresponding to data from the same
subjects should be correlated. To achieve this, the following assumptions are made:

(εi1, εi2) ∼ N

[
(0, 0),

(
σ 2
1 σ12

σ21 σ 2
2

)]
; i = 1 : nN R,

(εi1, εi3) ∼ N

[
(0, 0),

(
σ 2
1 σ12

σ21 σ 2
2

)]
; i = (nN R + 1) : (nN R + nR),

(εi1, εi4) ∼ N

[
(0, 0),

(
σ 2
1 σ12

σ21 σ 2
2

)]
; i = (nN R + nR + 1) : N .

Thus, the same correlation matrices are assumed for subjects who contribute data
to the efficacy evaluation in Phase II and for subjects who do not.
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Of note, there are three properties of this model that set it aside from the previous
approaches:

1. All the data is used in estimating the parameters of the above model.
2. Different mean structure for Phase II outcome is assumed for the model in

placebo responders and subjects on active treatment in Phase I.
3. Mean and variance parameters of the model are estimated then using the

restricted maximum likelihood, thus, resulting in asymptotically efficient esti-
mates.

The contrast of interest
δω = ωδ1 + (1 − ω)δ3

which represents the weighted average treatment effect in all subjects in Phase I
and in placebo non-responders in Phase II, is estimated by δ̂ω = ωδ̂1 + (1 − ω)δ̂3,
with δ̂1 and δ̂3 are the model based estimates of δ1 and δ3, respectively. A test for
H0 : ωδ1 + (1 − ω)δ3 = 0 is based on the test statistic

ZRMM = ωδ̂1 + (1 − ω)δ̂3√
ω2Var(δ̂1) + 2ω(1 − ω)Cov(δ̂1, δ̂3) + (1 − ω)2Var(δ̂3)

(7.6)

where the variances and covariances are estimated based on the model above. This
test statistic is of the same form as (7.4), the difference being the model used in
estimating the parameters and the variance-covariance estimates of these estimators.
Under the null hypothesis H0, the above test statistic is assumed to follow a standard
normal distribution, thus, allowing us to carry out the test and obtain p-values.

7.3.4 Weighted Repeated Measures Model

Rybin et al. (2015) proposed a change in the method of analysis of SPCD trial data
that includes more subjects into the estimation of the Phase II effect by using all
re-randomized Phase I placebo subjects and the weighted estimation for the Phase II
effect. This would hopefully increase precision of the estimate and increase the test
power. Figure7.2a shows the graphical representation on the effects estimated with
the repeated measure model. The blue arrows represent outcome progression in the
placebo group and the red arrows - in the active treatment group. Still, the parameter
of interest

δω = ωδ1 + (1 − ω)δ3

is the weighted average treatment effect in all subjects in Phase I and in placebo
non-responders in Phase II.

The placebo response can be defined explicitly in terms of the change of the
outcome measure from baseline in subjects treated with placebo. However, simple
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Fig. 7.2 Parametrization

classification of subjects as placebo responders and placebo non-responders based
on the change is subject to misclassification. In general, this method tries to define
placebo response as a characteristic that is, to some extent, present in each subject
of the trial.

If that characteristic is known or measurable, it can be scaled to range from 0 to
1 so that scores close to 0 correspond to high placebo response, and scores close to
1 correspond to low placebo response. These can be seen as subject contributions
(weights) in the placebo response corrected treatment effect in Phase II of the SPCD
in Phase I placebo subjects. In previous approaches proposed by Tamura and Huang,
and Chen et al. placebo non-responders are used to estimate treatment effect in Phase
II, while placebo responders are excluded from the estimation, which is tantamount
to assigning placebo non-responders a weight of 1 and placebo responders a weight
of 0 for the analysis of Phase II data. Thus, the 0/1 classification can be seen as a
particular case of this more general approach. It is assumed that the non-response
characteristic is known.

The parameterization of this approach is presented on Fig. 7.2b. Both placebo
responders and placebo non-responders are re-randomized after Phase I in a 1:1 ratio
to placebo and active treatment in Phase II. Therefore, the treatment effect in Phase II
can be computed in all Phase I placebo subjects. Figure7.2b notations are the same
as Fig. 7.2a notations with one exception: the Phase II treatment effect can no be
defined in both placebo non-responders (indicated by δ31) and placebo responders
(indicated by δ32).

The Equations Under The Model: This model consists of three equations.

1. An equation relating the outcome at the end of Phase I to the outcome at baseline
and treatment allocation during the first 6 weeks for the subjects on placebo and
on active treatment in the study
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�Yi1 = α01 + α11Yi1,0 + δ1Gi1 + εi1; i = 1 : N ,

where �Yi1 = Yi6 − Yi1,0 is the difference between the end of Phase I (Week 6)
and baseline (Week 0) outcome scores, Yi1,0 is the baseline outcome score and
Gi1 is the active treatment indicator for the data during Phase I.

2. An equation relating the outcome at the end of Phase II to Phase II baseline
(Week 6 outcome) and the new treatment assignment for re-randomized Phase I
placebo group.

�Yi2 = α02 + α12Yi2,0 + δ3Gi2 + εi2; i = 1 : nP ,

where �Yi2 = Yi12 − Yi2,0 is the difference between the end of Phase II (Week
12) and the baseline of Phase II (Week 6) outcome scores, Yi2,0 is the Phase II
baseline outcome score and Gi2 is the treatment indicator for active treatment
for the data during Phase II for Phase I placebo group.

3. An equation relating the outcome at the end of Phase II and Phase II baseline
for subjects randomized to drug in Phase I

�Yi2 = α03 + α13Yi2,0 + εi3; i = nP + 1 : N .

Above N is the total number of subjects enrolled in Phase I, nP , and nT are the
respective numbers of Phase I placebo and Stage I treatment subjects.

The Covariance Under The Model: The errors ε under the model are distributed
normally with mean E(ε) = 0 and Var(ε) = σ 2	, where σ 2 is unknown, and 	 is
defined as follows, reflecting correlation between Phase I and Phase II (ρ12):

	i = wi
−1/2

[
1ρ12

ρ121

]
wi

−1/2; i = 1 : nP

	i =
[
1ρ12

ρ121

]
; i = nP + 1 : N

The weights are set to 1 for all subjects in Phase I. In Phase II, all Phase I treated
subjects are assigned weight 1 but Phase I placebo subjects are assigned weights
based on their non-response to placebo. Therefore, wi takes the following form:

wi =
[
1 0
0 wi

]

In matrix form themodel can be written as�Yi = Xiβ + εI , where δYi is a vector
of outcome measures and Xi is the covariate matrix for individual i . The generalized
least squares estimate for coefficients is
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β̂ =
{ N∑

i=1

(X ′
i	

−1
i Xi )

}−1 N∑
i=1

X ′
i	

−1
i Yi

With 	i known, the variance of the estimate is

Var(β̂) = σ 2

{ N∑
i=1

(X ′
i	

−1
i Xi )

}−1

The estimate is unbiased, and for a given wi, both σ 2 and 	i are estimated from
the data using restricted maximum likelihood. To account for possible model mis-
specification of the variance, the ‘Sandwich Estimator’ of the variance, a robust
estimate of the variance, can be used:

˜Var(β̂) =
{ N∑

i=1

(X ′
i	

−1
i Xi )

}−1 N∑
i=1

(X ′
i	

−1
i Vi	

−1
i Xi )

{ N∑
i=1

(X ′
i	

−1
i Xi )

}−1

where Vi = (�Yi − Xi β̂)(�Yi − Xi β̂)′. Therefore, the treatment effect in Phase I
δ̂1 and the treatment effect in Phase II can be estimated with corresponding variances
and covariance Var(δ̂1), Var(δ̂3), and Cov(δ̂1, δ̂3).

The Treatment Effect Estimate: The treatment effect is defined as a linear com-
bination of the treatment effect in Phase I δ1 and the treatment effect in Phase II δ3
estimated in all Phase I placebo subjects. The weight for SPCD treatment effect ω is
specified. A test for H0 : δω = ωδ1 + (1 − ω)δ3 = 0 is based on the test statistic

ZWRMM = ωδ̂1 + (1 − ω)δ̂3√
ω2Var(δ̂1) + 2ω(1 − ω)Cov(δ̂1, δ̂3) + (1 − ω)2Var(δ̂3)

, (7.7)

where the effects, variances and covariances are estimated with the model above. It
is assumed that ZWRMM to follow approximately standard normal distribution under
the null hypothesis.

In reality, the placebo non-response characteristic is an unknown quantity. Two
ways are proposed for defining and estimating this characteristic.

Prediction of placebo non-response prediction: Placebo response can be affected
by a number of factors such as age, gender, and severity of disease. Therefore, it is
appropriate to predict the probability of responding to placebo based on a subject’s
characteristics.

They propose to generate a subject’s propensity score of placebo response (or
inversely placebo non-response) based on the subject’s characteristics. A simple
prediction can be based solely on baseline outcome measure (and hence on the
baseline disease severity), as presented below.

w(yi0) = pr(Ri = 0|Yi,0 = yi,0); i = 1 : nP
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Above Yi,0 is the outcome measure at baseline for subject i , Ri is a response
indicator taking value 0 or 1 (for non-response or response to placebo, respectively)
and nP is the number of Phase I placebo subjects. In practice w(yi0) can be easily
estimated with logistic regression applied to Phase I placebo subjects data.

Placebo non-response as a characteristic based on trial data: Alternatively, one
can measure subject’s non-response to placebo based on the data observed in Phase
I. In general, each subject can be placed in the Rn space of the n measured char-
acteristics. Because the characteristics are selected to express placebo non-response
(actual change from baseline, percent change from baseline, disease severity etc.),
the subjects with similar degree of non-responsewill naturally be closer to each other.
And hence the subject’s coordinates can be used as a measure of non-response. They
propose to use K-means clustering to determine subjects relative positions in the
Rn space. K is set to 2 in order to group ‘placebo responders’ and ‘placebo non-
responders’.

In this example, two variables are considered for clustering: percent change from
baseline in Phase I and the baseline value in Phase II. It is expected that non-
responders would have low percent change from baseline in Phase I and a high
baseline value in Phase II. The former quality is simply by definition of non-response,
and the latter quality is due to the smaller change in Phase I and the inverse rela-
tionship of the disease severity and placebo response. These two variables are likely
to be correlated. Therefore, to preserve relative distances and to base the analysis
on the Euclidean distance they propose to compute two principal components for
the two measures previously mentioned. Then, following procedure can be used to
determine individual placebo response measure.

1. Perform K-means clustering (with K = 2) on the two principal components.
The centers of clusters, the variability within clusters and the total variability are
retrieved from the analysis.

2. The center-point coordinates (adjusted for within cluster variability) are com-
puted as follows:

c1 = m11s21 + m21s11
s11 + s21

c2 = m12s22 + m22s12
s12 + s22

,

where c1 and c2 are X andY center coordinates,m11,m21 aremean X coordinates
of cluster 1 and cluster 2,m12 andm22 are the mean Y coordinates of the clusters,
s11 and s21 are the standard deviations of the X coordinates, and s12 and s22 are
the standard deviations of Y coordinates.

3. The distance di to the center-point for subject i is computed as follows:

di = (−1)Ci
√

(p1i − c1)2 + (p2i − c2)2; i = 1 : nP ,
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where Ci ⊂ {1, 2} is the cluster (in this example, cluster 1 subjects have greater
change in Phase I and decreased baseline value in Phase II (responders), and
cluster 2 subjects have decreased change in Phase I and greater baseline value
in Phase II (non-responders)), and p1i and p2i are the two principal components
for i th subject.

4. The subject specific scores are then computed as follows:

wi,k = �k(di )

where �k is the CDF function of normal distribution with mean 0 and standard
deviation k × T SD (T SD is total standard deviation determined in K-means
clustering step). The parameter k regulates values close to the tails of the dis-
tribution. Lower values of k produce the w function that is close in shape to a
step-function, and higher values of k produce function that is close to linear.

This approach can be easily generalized for larger number of measured parameters.
The number of principal components may change accordingly.

Bothmethods provide us with subject-specificmeasures of placebo non-response,
ranging from 0 to 1. The scores close to 0 correspond to high placebo response and
the scores close to 1 correspond to low placebo response. These can be seen as subject
contributions (weights) in the placebo response corrected analysis.

7.4 ADAPT-A Trial Example

The multi-center, double-blind placebo-controlled study of the efficacy of low-dose
aripiprazole (2mg/day) adjunctive to antidepressant therapy (ADT) in the treatment
of major depressive disorder patients with a history of inadequate response to prior
ADT (ADAPT-A)was conducted using SPCD (Fava et al. 2009, 2012). After screen-
ing, patients were randomized to either aripiprazole 2mg/day (n = 54), placebo-
placebo (n = 83) or placebo-aripiprazole (n = 84) with a 2:3:3 ratio. The patients
were followed for 60days (30days Phase I and 30days Phase II). The key secondary
endpoint was the difference in absolute change from baseline in the Montgomery-
Asberg Depression Rating Scale (MADRS) score between aripiprazole 2mg and
placebo. The non-response was defined at the end of Phase I as less than a 50%
decrease in MADRS total score from baseline and a MADRS score greater than 16.
The summaries of the outcome are presented in Table7.3.

Prior antidepressant therapy data showed that Phase I outcome changeswere either
negatively or not significantly correlated with Phase II changes. Pearson correlation
was ρ = −0.32(p = 0.027) for aripiprazole-aripiprazole group, ρ = −0.08(p =
0.503) for placebo-placebo group, and ρ = −0.18(p = 0.119) for placebo-
aripiprazole group.
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Table 7.3 Baseline MADRS score and change for phase I and phase II (ADAPT-A Trial)

Time Measure Aripiprazole Placebo

Baseline N 54 167

Mean ± SD 30.69 ± 4.02 31.20 ± 4.75

Stage I N 52 162

Mean ± SD −8.46 ± 7.18 −8.26 ± 8.15

Stage II N 58 61

Mean ± SD −5.84 ± 6.98 −3.30 ± 6.00

7.4.1 Binary Response

The Original Method: The sample sizes in the three groups were n1 = 83, n2 = 84,
n3 = 54, and the observed counts in the trial were n11 = 5, n12 = 58, n13 = 15,
n21 = 11, n22 = 50, n23 = 14, n31 = 44, n32 = 10. There were 138 non-responders
to placebo in Stage I, 124 of them participated in Stage II, yielding the estimated
retention rate s̃ = 124/138 = 0.9. The test statistic in the original method proposed
byFava et al. (2003), assigning equalweight to the two treatment differences, yielding
a p-value of 0.168.

Score Tests: The values of the test statistics for score tests: for 1 DOF score
test with r = 1, 2, and 5 and for the 2 DOF test, the values are 1.74, 2.52, 2.84, and
2.86, with corresponding p-values 0.19, 0.11, 0.09, and 0.24. The estimated response
rates were p̂1 = 10/54 = 0.185, q̂1 = 29/167 = 0.174, p̂2 = 11/61 = 0.180, q̂2 =
5/63 = 0.079. The large estimatedρ, ρ̂ = 8.8 (which is probably considerably larger
than will typically be observed in SPCD trials and probably resulted from the low
dose used in the trial, and the fact that aripiprazole was adjunctive to other therapy),
explains why the 1 DOF test with r = 5 yielded a smaller p-value than tests with r =
1 and 2. The 2 DOF test is robust to r misspecification, when the true rates are equal
to the observed ADAPT-A rates the 2 DOF test has better power than the 1 DOF test
with r lower than 2 but worse than 1 DOF test with r higher than 2.

7.4.2 Continuous Response

SUR: The estimate of the treatment effect using SUR are obtained in SAS using
PROC MODEL. The significant difference in the adjusted mean outcome is found
for Phase II, while the difference in the adjusted mean outcome for Phase I is non-
significant (Table7.4). The treatment effect, defined as the weighted adjusted mean
difference for the two Phases with weight w = 0.75 is not significant and estimated
with 95% Confidence Interval to be -0.85 (-2.80, 1.09).



194 G. Doros et al.

Table 7.4 ADAPT-A Estimates based on the SUR Model

Parameter Estimate StdErr tValue Probt

Phase I Intercept −3.284 3.714 −0.880 0.378

Baseline −0.160 0.117 −1.360 0.176

Treatment −0.286 1.262 −0.230 0.821

Phase II Intercept −0.460 2.911 −0.160 0.875

Baseline −0.110 0.107 −1.030 0.303

Treatment −2.553 1.192 −2.140 0.034

Table 7.5 ADAPT-a estimates based on the OLS model

Parameter Estimate StdErr tValue Probt

Phase I Intercept −3.223 3.715 −0.870 0.387

Baseline −0.161 0.117 −1.380 0.171

Treatment −0.289 1.262 −0.230 0.819

Phase II Intercept −0.813 2.912 −0.280 0.781

Baseline 0.095 0.107 −0.890 0.376

Treatment −2.524 1.192 −2.120 0.036

OLS: The estimates of the treatment effect using OLS are obtained using two
ANCOVA models fit in SAS PROC REG. Then the results are combined as above.
As with SUR, no significant difference in the adjusted mean outcome is found for
Phase I, while the difference in the adjusted mean outcome for Phase II is significant
(Table7.5). The combined treatment effect is not significant and estimated with 95%
Confidence Interval to be −0.85 (−2.79, 1.10).

RMM: The estimates of the coefficients using RMM are obtained in SAS using
PROC MIXED. As with the previous two methods, no significant difference in the
adjustedmean outcome is found for Phase I, while the difference in the adjustedmean
outcome for Phase II is significant (Table7.6). There is no significant difference in
the combined adjusted mean outcome. The combined treatment effect is estimated
with 95% Confidence Interval to be −0.82 (−2.78, 1.13).

WRMM: The individual weights for Phase II were determined for Phase I placebo
subjects via placebo response prediction model, which is based on the baseline
MADRS score, and via K-means clustering, which is based on percent change from
baseline in Phase I and Phase II baseline value. The Fig. 7.3 shows the weight char-
acteristics for propensity-based approach. Panel 1 of the figure shows the weight
change with the baseline measure (a slight jitter was added in order to show all
subjects). Some placebo responders were assigned relatively high weights and some
placebo non-responders were assigned low weights.

The next three panels of the figure show relationship of theweight and the baseline
MADRS measure with main characteristics determining placebo response, that is,
the percent change from baseline and the MADRS score at the end of Phase I. The
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Table 7.6 ADAPT-a estimates based on the RMM

Parameter Estimate StdErr tValue Probt

Phase I Intercept −3.233 3.714 −0.870 0.385

Baseline −0.161 0.117 −1.370 0.171

Treatment −0.268 1.262 −0.210 0.832

Phase II Intercept −1.223 2.871 −0.430 0.670

Baseline −0.077 0.105 −0.730 0.466

Treatment −2.491 1.175 −2.120 0.035

Phase II in placebo respon-
ders & Phase I drug

Intercept −0.247 1.729 −0.140 0.887

Baseline −0.088 0.085 −1.040 0.299

Treatment −1.667 2.027 −0.820 0.412
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Fig. 7.3 ADAPT-a trial propensity-based weights for placebo responders and non-responders
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vertical and horizontal lines represent the defined response criteria (50% decrease
and 16 points MADRS score). The diameter of the dots is proportional to the weight.
Panels 2 and 3 show that those with high baseline scores - namely above 35 points -
tended to have smaller change in Phase I when randomized to placebo. Hence, those
with more severe disease tended to have less placebo response.

Similarly, Fig. 7.4 presents weights based on K-means clustering (K = 2, k =
1.5). The weights assigned to placebo responders are visibly lower. This results in
lower effective sample size and loss of power.

Table7.7 presents a comparison of the estimates of the combined treatment effect
among the four different methods: seemingly unrelated regression, ordinary least
squares estimation, repeatedmeasuresmodel, andweighted repeatedmeasuresmodel
usingweighting of the subjects based on propensity to placebo response andK-means
clustering. The difference is quite trivial in this case.
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Fig. 7.4 ADAPT-A trial K-means based weights for placebo responders and non-responders
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Table 7.7 ADAPT-a estimates of treatment effect based on the four methods

Method Estimate Statistic P-Value

SUR −0.853 −0.860 0.391

OLS −0.848 −0.854 0.393

RMM −0.824 −0.830 0.407

WRMM Propensity −0.819 −0.830 0.407

WRMM CDF k = 0.5 −0.846 −0.850 0.394

WRMM CDF k = 1.0 −0.867 −0.880 0.382

WRMM CDF k = 1.5 −0.872 −0.880 0.380

7.5 Discussion

A typical placebo-controlled clinical trial in depressed patients might be eight weeks
in duration whereas a sequential parallel design might be designed for 12weeks.
Thus, the trade-off involves more visits for the novel design versus more randomized
patients in the conventional design. In depression trials conducted in practice, it is
typical to space visit intervals more frequently early in the trial. As an example, for an
eight week trial, visits might be scheduled after 1, 2, 4, 6, and 8weeks. In a sequential
parallel comparison design, it is believed that it is preferable to schedule visits at a
constant visit interval such as after every two weeks and to blind the initiation of the
second phase of the study to both investigators and participating subjects.

The gain in efficiency in this design is related to three factors, (1) the treatment
effects, δi in each phase, (2) the variance covariance matrix 	, and (3) the sample
size of the second phase relative to the first phase of the study. The four approaches
mentioned in this chapter provide different angles to view the data collected in the
SPCD trials. The three factors are discussed extensively under various assumptions,
which provide multiple choices to statisticians and physicians during the phase of
trial design, for different situations in the clinical studies.

However, as pointed by Chen et al. (2011), it is also recognized that there are
some practical challenges that are worth addressing cooperatively with clinicians and
other clinical trial staffs in the future. First, although it is beneficial to re-randomize
placebo non-responders into Phase II from a statistical point of view, such a re-
randomization may threaten the integrity of the trial conduct. It may not be easy to
maintain the blindness over the entire course of Phase II: it is likely that placebo
non-responders who have taken placebo for the whole period of Phase I may feel the
treatment effect right after they switch to the active treatment in Phase II if there is an
influence due to the active treatment use; while those who continue on placebo may
find their symptoms getting worse over time as they are placebo non-responders. The
investigators may sense the treatments assigned to some subjects in Phase II if their
symptoms appear to improve. Second, SPCD trials may take longer to complete than
conventional trial, so its gain in power could be limited when the treatment difference
is already very large at the end of Phase I. Finally, in addition to the practical issues
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discussed above related to a SPCD design, there is a critically important issue as
discussed in Chi et al. (2016) regarding the proper definition of the true treatment
effect in a population � with a substantial proportion (αR) of placebo responders
�R . If one also denotes the subpopulation of placebo non-responders by�N R and its
proportion by αN R , then the relative treatment difference�1 = μ1,T − μ1,P between
treatment and placebo at the end of Phase I can also be represented as�1 = αR�R +
αN R�N R , where αN R = (1 − αR) and αR is the proportion of placebo responders,
�R = μR,T − μR,P is the treatment effect between treatment and placebo among
the placebo responders and �N R = μN R,T − μN R,P is the treatment effect between
treatment and placebo among the placebo non-responders. Therefore, when there is
a substantial presence of placebo responders, then the term αR�R is expected to be
small and the relative treatment difference�1 will under represent the true treatment
effect. This is the primary reason whymany previous trials in populations with a high
placebo response rate using the traditional randomized parallel design had failed. On
the other hand, with a SPCD design, sponsors may find it difficult to determine the
weights on Phase I data (ω) and Phase II data (1 - ω) at the design stage. Since the
original motivation for a SPCD design is based on the intuitive expectation that the
treatment effect size at the end of Phase II is greater than that at the end of Phase I, it
may be tempting to take advantage of the expectedly larger effect size at the end of
Phase II and give a larger weight to Phase II data and thus biasing the result in favor of
the treatment. For example, even with the Phase I randomization ratio r1 = 2 as often
used in recent SPCD trials, overweighting of Phase II data can occur. In addition,
when the number of evaluable subjects in Phase II is small, putting too much weight
on Phase II data may jeopardize the validity of the asymptotically normal inference
from Phase II data and the interpretation and acceptability of the trial results. Thus,
the choice of the weight ω is critically important in order to avoid the potential bias
in overestimating the true treatment effect which may lead to subsequent approval of
an ineffective treatment and if approved, with an incorrect dosing recommendation.
Chi et al. (2016) propose to define the true treatment effect in a SPCD design as
a weighted average of the treatment effects from Phase I and Phase II of a SPCD
design using weights defined through the inverse variances following the method of
weighted least square. This weighted average can be shown to actually represent the
true treatment effect under certain reasonable and mild assumptions. An abbreviated
discussion of their method is discussed in the next paragraph.

With the development of new methods in SPCD, there are also some discus-
sions in the analysis methods. Ishida (2016) works on the OLS method for contin-
uous responses. He examined the consequence of the Equal Covariance Assump-
tion, which assumes the same covariance between Stage II baseline and endpoint
for subjects in Placebo-Placebo and Placebo-Drug groups. With this assumption, if
ANCOVA models are applied on an SPCD trial, then the estimates of the treatment
effects are asymptotically uncorrelated. However, Ishida shows that if the Equal
Covariance Assumption is not met, the proposed estimator statistic for the weighted
treatment effect is biased. Li et al. (2016) is proposing an unbiased estimator of the
Two-Period Treatment Effect, that is, an estimator for the difference in Drug-Drug
and Placebo-Placebo group over Stage I and Stage II. They assume normal responses
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in Stage I and Stage II, and that a non-responder is a subject with a good outcome:
Y2 > C . Then, they develop a moment estimator based on the proposed model. How-
ever, the correlation between the Stage I and Stage II data is not incorporated in the
evaluation. With the proposed estimator, the adjustment for baseline or important
covariates is not straightforward. In Chi et al.’s work (Chi et al. 2016), they pointed
out a population � with a substantial proportion (αR) of placebo responders �R ,
one is often unable to characterize the subpopulation �R . On the other hand, if the
relative treatment effect in a randomized parallel design tends to underestimate the
true treatment effect, then how is it possible to estimate the true treatment effect in an
unbiased manner? Or put it in another way, how should one define the true treatment
effect to be estimatedwhen the relative treatment effect only represents a reduced true
treatment effect? For this reason, Chi et al. (2016) call the relative treatment effect in
a randomized parallel design an apparent treatment effect. They then introduce the
concept of an adjusted treatment effect which is derived by adjusting the apparent
treatment effect �1 from Phase I of a SPCD design with Phase I randomization ratio
r1 = 1 by a quantitywhich is determined from the information fromPhase II. Thus, the
real value of a SPCD design lies in the fact that it provides additional information that
will be needed for making the necessary and appropriate adjustment to the apparent
treatment effect. This additional information is unavailable from a randomized par-
allel design as noted earlier, since one is unable to characterize the placebo responder
subpopulation �R . So, how is this additional information from Phase II being used
to make the adjustment? Specifically, unlike in Li et al.’s work (Li et al. 2016), they
assume that a placebo non-responder in Phase I is a subject with a response X1,P

that is below certain threshold C. The true treatment effect � is then defined as a
least squares weighted average of the treatment effect �1 in Phase I with weight ω1

and the treatment effect (�2 | X1,P < C) in Phase II with weight ω2 = (1 − ω1),
i.e., � = ω1�1 + ω2(�2 | X1,P < C), under a SPCD design with a randomization
ratio r1 = 1 (i.e., with an equal allocation) in Phase I. The least square weight ω2 as a
function of r1 is at its minimum when r1 = 1 and does not overweight Phase II which
avoids a potential common source of bias. This weight ω2 is given by the expres-

sion,ω2 =
[
1 + (

σ2
σ1

)2 2
γ

]−1
,whereσ1

2 = var(�̂1),σ2
2 = var(�̂2 | X1,P < C), and

γ = �(τ) = �
(
C−μ1,P

σ1,P

)
is the proportion of placebo responds in the population

�, and where one simplifies the expression by taking advantage of the fact that
cov

(
�̂1, (�̂2 | X1,P < C)

) → 0 asymptotically. It is important to point out here
that the SPCD design with a randomization ratio r1 = 1 is only used in defining the
weight ω2, while the actual SPCD design implemented can adopt a randomization
ratio r1 > 1. This will not affect the definition of the weight ω1, but in fact will allow
a flexibility that can provide greater precision in the estimate of the treatment effect
(�2 | X1,P < C) in Phase II and strengthen the validity of the statistical inference.
They further show that the true treatment effect � represents the apparent treatment
effect �1 adjusted appropriately for the presence of placebo responders in the popu-
lation as follows: In the derivation below, the following relationships are used, �1 =
αRδR + αN R�N R , (�2 | X1,P < C) = �N R , ω1 = (1 − ω2), and through cancel-
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lations and simplification, one obtains the following expression for the true treat-
ment effect, � = ω1�1 + ω2(�2 | X1,P < C) = ω1[αR�R + αN R�N R] + ω2(�2 |
X1,P < C) ≈ ω1[αR�R + αN R�N R] + ω2�N R = �1 + ω2αR(�N R − �R). Now
from the above equation,� = �1 + ω2[αR(�N R − �R)], one canmake a few obser-
vations. If there are no placebo responders, then αR = 0, then � = �1, that is, the
adjusted treatment effect � and the apparent treatment effect �1 are identical and
hence no adjustment is needed. On the other hand, if �R is not empty, then it is
expected that �N R > �R . In this case, then the expression, [αR(�N R − �R)], rep-
resents the total amount of expected treatment effect �N R that is not observed due
to the placebo response in �R . Now because �N R ≈ (�2 | X1,P < C), one can
view [αR(�N R − �R)] = [αR((�2 | X1,P < C) − �R)] as the equivalent amount
of treatment effect from Phase II that has been nullified by the placebo response in
�R . Then it follows that ω2[αR(�N R − �R)] represents the appropriately weighted
amount of the treatment effect, [αR((�2 | X1,P < C) − �R)], from Phase II that
needs to be added to the apparent treatment effect �1 from Phase I to account
for the presence of placebo responders �R . Hence the amount of adjustment,
ω2[αR(�N R − �R)], properly compensates for the presence of placebo responders.
Furthermore, in order for the adjusted treatment effectiveness claim to be extend-
able to the intended study population, the authors introduce a consistency measure
for assessing the consistency between the treatment effect �1 from Phase I and the
treatment effect (�2 | X1,P < C) from Phase II. They propose to jointly test the
consistency and the efficacy hypothesis. In light of the proposed adjustment and the
joint test of efficacy and consistency, the sample size requirement may be higher
than one may wish. But that is the cost one has to pay for the additional information
needed from Phase II of a SPCD design to make the necessary adjustment for the
presence of placebo responders and to allow the efficacy claim to be extendable to
the intended population. For a detailed discussion of the various issues associated
with a SPCD design and proposed methodology, the interested readers may refer to
their original paper in Chi et al. (2016).
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Chapter 8
Phase I Cancer Clinical Trial Design:
Single and Combination Agents

Ying Yuan, Heng Zhou and Yanhong Zhou

8.1 Introduction

The objective of a phase I trial is to find the maximum tolerated dose (MTD), which
is defined as the dose or dose combination with the toxicity probability closest to the
target toxicity rate. A phase I clinical trial is critically important because it determines
the MTD that will be further investigated in the subsequent phase II or III trials.
Misidentification of the MTD could result in an inconclusive trial, thereby wasting
enormous resources, or lead to a trial in which a substantial number of patients are
treated at excessively toxic doses. In addition, inappropriate selection of a dose as
the MTD might cause researchers to overlook a promising drug if the dose has low
toxicity and negligible efficacy.

Numerous phase I trial designs have beenproposed tofind theMTD.These designs
are generally classified into algorithm-based designs and model-based designs (Jaki
et al. 2013; van Brummelen et al. 2016). The algorithm-based design uses a set
of simple, pre-specified rules (or algorithm) to determine dose escalation and de-
escalation,without assuming anymodel on the dose-toxicity curve. Examples include
the 3+3 design (Storer 1989, 2001) and up-and-down design (Stylianou and Flournoy
2002). The major advantages of the algorithm-based design, such as the 3+3 design,
are transparency and simplicity. The implementation of the design does not require a
computer program or much support from statisticians. Despite widespread criticism
of the 3+3 design for poor operating characteristics, its simplicity continues to make
it the dominant phase I trial design used in practice.
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Model-based dose-finding designs have been proposed in order to achieve a better
performance of dose finding. Model-based designs often assume a parametric dose-
toxicitymodel indexedbyoneor twoparameters, such as a probability power function
or a logistic regression model. As information accrues during the trial, the dose-
toxicity relationship is re-evaluatedbyupdating the estimates of themodel parameters
and then used to guide the dose allocation for subsequent patients. A typical example
of themodel-based design is the continuous reassessment method (CRM) (Pepe et al.
1990). Although a model-based design, such as the CRM, yields better performance
than an algorithm-based design (Jaki et al. 2013; van Brummelen et al. 2016; Iasonos
andO’Quigley 2014), it is considered bymany to be statistically and computationally
complex and its implementation requires repeated model fitting and estimation. This
leads practitioners to perceive dose allocations as coming from a “black box”. As a
result, the use of themodel-based designs has been fairly limited in practice (Rogatko
et al. 2007).

There has been increasing interest in a new class of designs that combine the
simplicity of algorithm-based designs and the good performance of model-based
designs. This class of designs utilizes a model to derive the design, similar to the
model-based design, but its rule of dose escalation and de-escalation can be pre-
tabulated before the onset of the trial in a fashion similar to the algorithm-based
design.We refer to this newclass of designs as the “model-assisted” design. Examples
of model-assisted designs include the modified toxicity probability interval (mTPI)
design (Ji et al. 2010), Bayesian optimal interval (BOIN) design (Liu and Yuan 2015;
Yuan et al. 2016), and keyboard design (Yan et al. 2017). In what follows, we will
first focus on single-agent phase I trials and then describe drug combination trials.

8.2 Single-Agent Trials

8.2.1 Algorithm-Based Designs

The most widely used algorithm-based design is the 3+3 design. Actually, the 3+3
design is a family of designs, for which there are numerous variations. Table8.1
gives a specification of a 3+3 design that is commonly used as a boilerplate in many
phase I protocols. Although the algorithm presented in Table8.1 is often included in a
protocol to describe the 3+3 design, it is actually incomplete. For example, it does not
say what to do or what to conclude if either 2 out of 3 dose-limiting toxicities (DLTs)
are seen at the lowest dose level or 0 out of 3 DLT is observed at the highest dose
level; see Yuan et al. (2016) for details. The 3+3 design has been widely criticized
for its poor operating characteristics, e.g., poor accuracy in identifying the MTD and
a great tendency to underdose patients. For this reason, we do not discuss the 3+3
design further.
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Table 8.1 A common boilerplate phase I protocol 3+3 algorithm

Number of patients with
DLT at a given dose level

Escalation decision rule

0/3 Enter 3 patients at the next dose level

1/3 Enter at least 3 more patients at this dose level

• If 0 of these 3 patients experiences DLT, proceed to the next
dose level

• If ≥ 1 of this group suffers DLT, this dose exceeds the MTD and
dose escalation is stopped

3 additional patients will be entered at the next lower dose level if
only 3 patients were treated previously at that dose

≥ 2 Dose escalation will be stopped. This dose level will be declared
the maximally administered dose (highest dose administered).
Three (3) additional patients will be entered at the next lower dose
level if only 3 patients were treated previously at that dose

MTD: The highest dose at which no more than 1 of 6 evaluable patients has had DLT. Six patients
should be treated before the dose is declared as the MTD

8.2.2 Model-Based Designs

8.2.2.1 Continuous Reassessment Method (CRM)

The CRM is a typical example of a model-base design. Let (d1, . . . , dJ ) denote a
set of J prespecified doses for the drug under investigation, and φ denote the target
toxicity rate specified by physicians. The CRM assumes a parametric model for the
dose-toxicity curve. Based on the accrued data, the CRM continuously updates the
model estimate of the dose-toxicity curve andmakes the decision of dose assignment
for the new patients. Commonly used dose-toxicity models include the power model
and logistic model. Specifically, the power model is given by

pr(toxicity at d j ) = p j (α) = π
exp(α)

j j = 1, . . . , J,

where (π1, . . . , πJ ) are the prior estimates of the toxicity probabilities (often known
as the “skeleton”) at the J doses, and α is an unknown parameter. Research shows
that the choice of the power model or logistic model has little impact on the perfor-
mance of the CRM.What is more critical is the specification of each model, e.g., the
specification of the skeleton.

Suppose that among n j patients treated at dose level j , y j patients have experi-
encedDLT. Let D denote the observed data, D = {(n j , y j ), j = 1, . . . , J }. Based on
the binomial distribution for the toxicity outcome, the likelihood function is given by

L(D|α) =
J∏

j=1

{π exp(α)

j }y j {1 − π
exp(α)

j }n j−y j .
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The DLT rate of dose d j is estimated by its posterior mean

p̂ j =
∫

π
exp(α)

j

L(D|α) f (α)∫
L(D|α) f (α)dα

dα,

where f (α) is a prior distribution for the parameter α, often assumed to follow a
normal distribution N (0, 2).

The dose-finding algorithm of the CRM is described below.

1. Patients in the first cohort are treated at the lowest dose d1, or the physician-
specified dose.

2. Based on the cumulated data, we obtain the posterior DLT rate estimate p̂ j , and
find dose level j∗ that has a DLT rate closest to φ. Let j denote the current dose
level. If j∗ < j , we de-escalate the dose level to j − 1; if j∗ > j , we escalate
the dose level to j + 1; otherwise, the dose stays at the dose level j for the next
cohort of patients.

3. Once the maximum sample size N is reached, the trial is completed and the dose
that has the DLT rate closest to φ is selected as the MTD.

In practice, we often impose an early stopping rule: If pr(toxicity rate at d1 > φ|D)
> 0.9, the trial is terminated for safety.

Numerous studies have shown that the CRM has substantially better performance
than the 3+3 design, however, the use of theCRM remains limited for several reasons.
Because of the statistical and computational complexity of the CRM, communicating
to clinical investigators how the design works remains challenging, which leads them
to perceive the dose allocations as coming from a “black box”. From a methodologi-
cal viewpoint, themodel-based CRM, although generally robust, is still subject to the
influence of model specification. To obtain good operating characteristics, the CRM
model (e.g., the skeleton) must be appropriately calibrated, which is a challenging
procedure that requires extensive statistical expertise. To simplify the model calibra-
tion, Lee and Cheung (2009) proposed a systematic method to generate a “default”
skeleton for the CRM. Their method requires users to specify only a half width of
an indifferent interval and the prior location of the MTD, and can be easily carried
out using the “getprior()” function in the R package “dfcrm”. Lee and Cheung’s
method simplifies the specification of the skeleton, but the issue of model sensitiv-
ity remains. Table8.2 shows the simulation results of the CRM with two different
skeletons, skeleton 1 = (0.070, 0.127, 0.200, 0.286, 0.377, 0.468) and skeleton 2 =
(0.012, 0.069, 0.200, 0.380, 0.560, 0.706), generated by using the method of Lee
and Cheung with a half-width indifferent interval of 0.04 and 0.08. We can see that
skeleton 1 substantially outperforms skeleton 2 in scenario 1, whereas the opposite
result is seen in scenario 2. In other words, a skeleton that works well in one scenario
may not work as well in another scenario, and there does not exist a single “best”
skeleton that dominates all others.
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Table 8.2 Performance of the CRM and Bayesian model-averaging-CRM (BMA-CRM) with two
different skeletons generated with half-width indifferent intervals of 0.04 and 0.08. The target
toxicity rate φ = 0.2 and sample size N = 36

Scenario 1

True DLT rate 0.03 0.04 0.05 0.06 0.07 0.20

CRM with skeleton 1 % sela 0 0.10 1.25 3.85 21.05 73.20
# ptsb 1.5 1.7 2.2 3.5 8.0 18.8

CRM with skeleton 2 % sel 0.05 1.35 5.70 8.10 28.25 56.40
# pts 1.5 2.2 3.4 5.2 10.1 13.4

BMA-CRM % sel 0 0.25 2.45 5.65 21.80 69.60
# pts 1.5 1.9 2.7 3.9 8.6 17.4

Scenario 2

True DLT rate 0.12 0.24 0.33 0.60 0.70 0.80

CRM with skeleton 1 % sel 35.15 43.50 10.45 0.25 0 0

# pts 13.9 12.2 5.2 1.2 0.3 0.1

CRM with skeleton 2 % sel 30.60 53.10 11.15 0 0 0

# pts 12.3 15.1 6.1 1.0 0.1 0

BMA-CRM % sel 32.30 49.85 10.05 0 0 0

# pts 12.7 14.3 5.5 1.0 0.3 0.1
aAverage selection percentage at each dose
bAverage number of patients treated at each dose

8.2.2.2 Bayesian Model-Averaging CRM (BMA-CRM)

One approach to reduce the sensitivity of the CRM to the skeleton is the BMA-
CRM (Yin and Yuan 2009), which prespecifies multiple skeletons, each of which
leads to a CRM model of the form (Sect. 8.2.2.1) with a different set of p j ’s. The
idea is to let the data determine which skeleton or model fits the data better and then
automatically favor that model as the basis for making the decision of dose escalation
and de-escalation.

Let (M1, . . . , MK ) be the models that correspond to the K prespecified skeletons
{(π11, . . . , π1J ), . . . , (πK1, . . . , πK J )}, where Mk (k = 1, . . . , K ) takes a form

pkj (αk) = π
exp(αk )

k j , j = 1, . . . , J,

obtained using the kth skeleton (πk1, . . . , πk J ). Let pr(Mk) be the prior proba-
bility that model Mk is the true model, i.e., the probability that the kth skeleton
(πk1, . . . , πk J )matches the true dose-toxicity curve. If there is no preference a priori
for any single model in the CRM case, we can assign equal weights to the different
skeletons by simply setting pr(Mk) = 1/K . When there is prior information about
the importance of each set of the prespecified toxicity probabilities, we can incorpo-
rate such information into pr(Mk). For example, if a certain set of the prespecifica-
tion is more likely to be true, we can assign it a higher prior model probability.
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At a certain stage of the trial, based on the observed data D = {(n j , y j ), j =
1, . . . , J }, the likelihood function under model Mk is

L(D|αk, Mk) =
J∏

j=1

{π exp(αk )

k j }y j {1 − π
exp(αk )

k j }n j−y j .

The posterior model probability for Mk is given by

pr(Mk |D) = L(D|Mk)pr(Mk)∑K
i=1 L(D|Mi )pr(Mi )

,

where L(D|Mk) is the marginal likelihood of model Mk ,

L(D|Mk) =
∫

L(D|αk, Mk) f (αk |Mk)dαk,

αk is the power parameter in the CRM associated with model Mk , and f (αk |Mk) is
the prior distribution of αk under model Mk .

The BMA estimate for the DLT rate at each dose level is given by

p̄ j =
K∑

k=1

p̂k jpr(Mk |D), j = 1, . . . , J, (8.1)

where p̂k j is the posterior mean of the DLT rate of dose level j under model Mk , i.e.,

p̂k j =
∫

π
exp(αk )

k j

L(D|αk, Mk) f (αk |Mk)∫
L(D|αk, Mk) f (αk |Mk)dαk

dαk .

By assigning p̂k j a weight of pr(Mk |D), the BMA method automatically identifies
and favors the best fitting model, thus p̄ j is always close to the best estimate. The
dose-finding algorithm of the BMA-CRM is the same as that of the CRM described
previously, except that the DLT rate estimate p̂ j is replaced by the BMA estimate p̄ j

given in (8.1). In other words, the decision of dose escalation or de-escalation in the
trial is based upon p̄ j ( which is determined through multiple skeletons) as opposed
to p̂ j (which is based on a single skeleton).

Table8.2 shows the performance of the BMA-CRM with two skeletons versus
that of the CRM using one skeleton. The BMA-CRM is more reliable than the CRM,
and its performance is close to that of the CRM with the better skeleton in both
scenarios 1 and 2. Such robustness and reliability is important because in practice
we often prefer a method that yields reliable performance to a method that has high
variability (i.e., performs well in some scenarios, but not in other scenarios).
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8.2.3 Model-Assisted Designs

Model-assisted designs comprise a new class of designs that combine the simplicity
of algorithm-based designs and the good performance of model-based designs. This
class of designs utilizes a statistical model (e.g., a binomial model) to derive the
design, similar to the model-based design, but its rule of dose escalation and de-
escalation can be pre-tabulated before the onset of the trial in a fashion similar to
the algorithm-based design. This feature makes the model-based designs attractive
in practice. In what follows, we introduce three different model-assisted designs,
namely, the mTPI design, BOIN design, and keyboard design. The comparison of
their performance is provided later in Sect. 8.2.4.

8.2.3.1 Modified Toxicity Probability Interval (mTPI) Design

The mTPI design starts by defining three dosing intervals: the underdosing interval
(0, δ1), proper dosing interval (δ1, δ2), and overdosing interval (δ2, 1). For example,
given the target DLT rate of 0.2, the three intervals may be respectively defined as
(0, 0.15), (0.15, 0.25), and (0.25, 1) in terms of the DLT rate.

Suppose that at the current dose level j , y j of n j patients have experienced DLT.
The mTPI design assumes that y j follows a beta-binomial model:

y j | n j , p j ∼ Binom(n j , p j ) (8.2)

p j ∼ Beta(1, 1) ≡ Unif(0, 1).

Then, the posterior distribution of p j is given by

p j | (y j , n j ) ∼ Beta(y j + 1, n j − y j + 1), for j = 1, . . . , J. (8.3)

The mTPI design makes the decision of dose escalation and de-escalation based
on the unit probability mass (UPM) of the three intervals, defined as

UPM(0,δ1) = pr(p j ∈ (0, δ1) | Dj )/δ1,

UPM(δ1,δ2) = pr(p j ∈ (δ1, δ2) | Dj )/(δ2 − δ1),

UPM(δ2,1) = pr(p j ∈ (δ2, 1) | Dj )/(1 − δ2).

That is, given a specific dosing interval, the UPM is defined as the posterior proba-
bility of the interval divided by the length of the interval.

For treating the next patient, the dose escalation and de-escalation rule of the
mTPI design is given below.
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• Escalate the dose if UPM(0,δ1) (i.e., the UPM of the underdosing interval) is the
largest,

• De-escalate the dose if UPM(δ2,1) the (i.e., the UPM of the overdosing interval) is
the largest,

• Stay at the same dose if UPM(δ1,δ2) (i.e., the UPM of the proper dosing interval) is
the largest.

One attractive feature of themTPI design is that its decision rule can be pre-calculated
for each possible n j = 1, . . . , N , which makes it easy to implement in practice.

ThemTPI design stops the trial when themaximum sample size N is reached. The
MTD is selected based on

{
p̃ j

}
, the isotonically transformed values of the observed

DLT rates
{
p̂ j

}
. Specifically, we select as the MTD dose j∗, for which the isotonic

estimate of the DLT rate p̃ j∗ is closest to the target DLT rate φ. If there are ties
for p̃ j∗ , we select from the ties the highest dose level when p̃ j∗ < φ or the lowest
dose level when p̃ j∗ > φ. The isotonic estimates

{
p̃ j

}
can be obtained by applying

the pooled adjacent violators algorithm (Barlow et al. 1973) to
{
p̂ j

}
. Operatively,

the pooled adjacent violators algorithm replaces any adjacent p̂ j ’s that violate the
non-decreasing order by their (weighted) average so that the resulting estimates p̃ j

become monotonic. In the case in which the observed DLT rates are monotonic, p̃ j

and p̂ j are equivalent.
One issue for the mTPI design is that it has a high risk of overdosing patients. For

example, given the target DLT rate of 0.3, evenwhenwe observe that 3/6 = 0.5 (50%
of patients experienced DLTs), the mTPI design continues to treat the next cohort of
patients at the same dose, which is intuitively excessively risky. The aggressiveness
of the mTPI design stems from its use of the UPM as the criterion for determining
dose allocation. To see this problem, consider a trial for which the target toxicity
rate is 0.2, and the underdosing, proper dosing and overdosing intervals are (0, 0.17),
(0.17, 0.23), and (0.23, 1), respectively. Suppose that at a certain stage of the trial,
the observed data indicate that the posterior probabilities of the underdosing interval,
proper dosing interval and overdosing interval are 0.01, 0.09 and 0.9, respectively.
That is, there is 90% chance that the current dose is overdosing patients and only 9%
chance that the current dose provides proper dosing. Despite such dominant evidence
of overdosing, themTPI design retains the same dose for treating the next new patient
because the UPM for the proper dosing interval is the largest. Specifically, the UPM
for the proper dosing interval is 0.09/(0.23 − 0.17) = 1.5, and the UPM for the
overdosing interval is 0.9/(1 − 0.23) = 1.17. This example demonstrates that the
UPM cannot appropriately quantify the evidence of overdosing.

8.2.3.2 Keyboard Design

Yan et al. (2017) proposed the keyboard design to address the overdosing issue of the
mTPI design. Unlike the mTPI design, which divides the toxicity probabilities into
three intervals (i.e., underdosing, proper dosing, and overdosing intervals), the key-
board design defines a series of equal-width dosing intervals (referred to as “keys”)
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Fig. 8.1 Contrast between the (a)mTPI design and (b) keyboard design. The curves are the posterior
distributions of p j . To determine the next dose, the mTPI design compares the values of the three
UPMs, whereas the keyboard design compares the location of the strongest key with respect to the
target key

that correspond to all potential locations of the true toxicity of a particular dose,
and uses the key with the highest posterior probability to guide dose escalation and
de-escalation. Figure8.1 contrasts the keyboard design with the mTPI design.

Specifically, the keyboard design starts by specifying a proper dosing interval
I ∗ = (δ1, δ2), referred to as the “target key”, and then populates this interval toward
both sides of the target key, forming a series of keys of equal width that span the range
of 0 to 1. For example, given the proper dosing interval or target key of (0.25, 0.35),
on its left side, we form 2 keys of width 0.1, i.e., (0.15, 0.25) and (0.05, 0.15); and on
its right side, we form 6 keys of width 0.1, i.e., (0.35, 0.45), (0.45, 0.55), (0.55, 0.65),
(0.65, 0.75), (0.75, 0.85) and (0.85, 0.95). We denote the resulting intervals/keys as
I1, . . . ,IK .

To make the decision of dose escalation and de-escalation, given the observed
data Dj = (n j , y j ) at the current dose level j , the keyboard design identifies the
interval Imax that has the largest posterior probability, i.e.,

Imax = argmax
I1,...,IK

{pr(p j ∈ Ik | Dj ); k = 1, . . . , K },

which can easily be evaluated based on the posterior distribution of p j given by
Eq. (8.3), assuming that p j follows a beta-binomial model (8.2). Imax represents
the interval in which the true value of p j is most likely located, referred to as the
“strongest” key by Yan et al. (2017). Graphically, the strongest key is the one with
the largest area under the posterior distribution curve of p j (see Fig. 8.1b). If the
strongest key is on the left (or right) side of the target key, that means that the
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observed data suggest that the current dose is most likely to represent underdosing
(or overdosing), and thus dose escalation (or de-escalation) is needed. If the strongest
key is the target key, the observed data support that the current dose is most likely to
be in the proper dosing interval, and thus it is desirable to retain the current dose for
treating next patient. In contrast, the UPM used by the mTPI design does not have
such an intuitive interpretation and tends to distort the evidence for overdosing, as
described previously.

Suppose j is the current dose level. The keyboard design determines the next dose
as follows.

• If the strongest key is on the left side of the target key, escalate the dose to level
j + 1.

• If the strongest key is the target key, retain the current dose level j .
• If the strongest key is on the right side of the target key, de-escalate the dose to
level j − 1.

The trial continues until the prespecified sample size is exhausted, and the MTD is
selected based on the isotonic estimates of p j as described previously.

8.2.3.3 Bayesian Optimal Interval (BOIN) Design

Unlike the mTPI and keyboard designs, which require specifying the prior distribu-
tion of p j and calculating its posterior, the BOIN design is more straightforward.
Under the BOIN design, the decision of dose escalation and de-escalation involves
only a simple comparison of the observed DLT rate at the current dose with a pair
of fixed, prespecified dose escalation and de-escalation boundaries.

Specifically, let p̂ j = y j/n j denote the observed DLT rate at the current dose and
λe and λd denote the prespecified dose escalation and de-escalation boundaries. The
BOIN design is illustrated in Fig. 8.2 and described as follows:

1. Patients in the first cohort are treated at the lowest dose d1, or the physician-
specified dose.

2. Assuming that the current dose level for treating the latest cohort of patients is
j , to assign a dose to the next cohort of patients,

• if p̂ j ≤ λe, escalate the dose to level j + 1;
• if p̂ j ≥ λd , de-escalate the dose to level j − 1;
• otherwise, retain the current dose.

3. Repeat step 2 until the maximum sample size N is reached. At that point, select
the MTD based on the isotonic estimates of the DLT probabilities as described
previously for the mTPI design.

The model-assisted component of the BOIN design is reflected by how the es-
calation and de-escalation boundaries (λe, λd ) are derived. Specifically, the BOIN
assumes that at the current dose level j , the number of patients who experienced
DLT (y j ) follows a binomial model:
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Fig. 8.2 Flowchart of the BOIN design

y j | n j , p j ∼ Binom(n j , p j ).

Under this model assumption, the BOINminimizes the incorrect decision of dose es-
calation and de-escalation based on three point hypotheses: H1 : p j = φ; H2 : p j =
φ1; H3 : p j = φ2, where φ1 denotes the highest DLT rate that is deemed subthera-
peutic (i.e., underdosing), such that dose escalation should be made; and φ2 denotes
the lowest DLT rate that is deemed overly toxic (i.e., overdosing), such that dose
de-escalation is required. The values of φ1 and φ2 can be elicited from physicians.
Liu and Yuan (2015) recommended that the default values be used as φ1 = 0.6φ
and φ2 = 1.4φ, which generally yield a design with good operating characteristics.
Alternatively, the values of φ1 and φ2 can be calibrated to achieve a particular re-
quirement of the trial at hand. For example, if more conservative dose escalation is
required, then setting φ2 = 1.2φ may be adequate. In general, the optimal escalation
and de-escalation boundaries (λe, λd ) that minimize the probability of making an
incorrect decision of dose assignment arise as
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Table 8.3 The escalation/de-escalation boundaries (λe, λd ) under the BOIN design for different
target toxicity rates

Boundaries Target toxicity rate φ

0.15 0.2 0.25 0.3 0.35 0.4

λe 0.118 0.157 0.197 0.236 0.276 0.316

λd 0.179 0.238 0.298 0.358 0.419 0.479

Using the default underdosing toxicity rate φ1 = 0.6φ and overdosing toxicity rate φ2 = 1.4φ

λe =
log

(
1 − φ1

1 − φ

)

log

{
φ (1 − φ1)

φ1 (1 − φ)

} , λd =
log

(
1 − φ

1 − φ2

)

log

{
φ2 (1 − φ)

φ (1 − φ2)

} ,

whichminimize the decision error of dose escalation and de-escalation. Liu andYuan
(2015) provided the derivation of these boundaries and showed that the resulting
BOIN design has desirable finite-sample and large-sample properties, i.e., long-term
memory coherence and consistency.

Table8.3 provides the values of λe and λd for commonly used target toxicity rates,
obtained with the default values φ1 = 0.6φ and φ2 = 1.4φ. For example, given the
target DLT rate φ = 0.3, the corresponding escalation boundary λe = 0.236 and the
de-escalation boundary λd = 0.358. Interestingly, in this case, the 3+3 rule is nested
within the BOIN design. That is, escalate/de-escalate/retain the current dose if 0/3 or
2/3 or 1/3 patients have DLT. This feature of the BOIN design links it to established
phase I approaches and facilitates communication with clinicians.

It is worth noting that φ1 and φ2 have different interpretations than the proper
dosing interval (δ1, δ2) used in the mTPI design. As described previously, φ1 and
φ2 represent the DLT rates that should be regarded as underdosing and overdosing,
respectively; whereas δ1 and δ2 represent the range of DLT probabilities that are
acceptable. For example, given that the target DLT probability φ = 0.25, setting
φ1 = 0.15 and φ2 = 0.35 mean that the doses with the DLT rates of 0.15 and 0.35
are respectively regarded as underdosing and overdosing, whereas setting δ1 = 0.15
and δ2 = 0.35means that the dose with a DLT rate between 0.15 and 0.35 is regarded
as acceptable. Thus, in general, the value of φ1 should be lower than δ1 and the value
ofφ2 should be higher than δ2. It may be viewed as an advantage that theBOINdesign
requires users only to specify a DLT rate deemed underdosing (i.e., φ1) and a DLT
rate deemed overdosing (i.e., φ2), rather than binning the DLT rate into the proper
dosing interval and improper dosing intervals as required by the mTPI and keyboard
designs. Binning the DLT rate into intervals causes the “discontinuity” dilemma. For
example, by setting (δ1, δ2) = (0.15, 0.30), the mTPI defines p j = 0.299 as proper
dosing and p j = 0.301 as overdosing, which may look odd in practice as these two
DLT rates are virtually the same.

The BOIN design and the CRM design are similarly flexible. The BOIN design
can target any prespecified DLT rate. For instance, for some cancer populations for
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whom there is no effective treatment, a target DLT rate higher than 0.3 may be
an acceptable trade-off to achieve higher treatment efficacy; while for other cancer
populations, a lower target DLT rate, e.g., 0.15 or 0.2, may be more appropriate.
In addition, unlike the 3+3 design, for which the dose escalation and de-escalation
decisions can be made only when we have 3 or 6 evaluable patients, the BOIN design
does not require a fixed cohort size and allows for decisionmaking at any time during
the trial by comparing the observed DLT rate at the current dose with the escalation
and de-escalation boundaries. Decisions regarding dose escalation and de-escalation
can be made at any time as long as we can calculate the DLT rate at the current dose.
Such flexibility has important practical utility and implications. It allows clinicians
to “adaptively” change the cohort size during the course of the trial to achieve certain
design goals. For example, to shorten the trial duration and reduce the sample size,
clinicians often prefer to use a cohort size of 1 for the initial dose escalation and then
switch to a cohort size of 3 after observing the first DLT, as with the commonly used
accelerated titration design (ATD) (Simon et al. 1997). Such an accelerated titration
can be easily and seamlessly performed using the BOIN design by simply switching
the cohort size from 1 to 3 when the first DLT is observed. Unlike the ATD, which
combines two independent empirical rules (the accelerated titration rule and the 3+3
rule), in an ad hoc way, the BOIN design achieves the same design goal under a
single, coherent framework with assured statistical properties.

Operatively and conceptually, the BOIN design is simpler and more transparent
than themTPI/mTPI-2 and keyboard designs. Tomake the decision of dose escalation
and de-escalation, the BOIN design simply compares the observed DLT rate p̂ j with
a pair of fixed, prespecified escalation and de-escalation boundaries (λe, λd ); whereas
the keyboard and mTPI/mTPI2 designs require calculating the posterior distribution
and identifying the “strongest” key andUPM, respectively, for each possible outcome
data (y j , n j ), though these evaluations and corresponding decision boundaries can
be calculated prior to the onset of the trial. In addition, thanks to the feature that the
BOIN design guarantees de-escalating the dose when the observed toxicity rate p̂ j

is higher than the de-escalation boundary λd , it is particularly easy for clinicians and
regulatory agents to assess the safety of a trial using the BOIN design. For example,
given a target DLT rate φ = 0.25, we know a priori that a phase I trial using the
BOIN design guarantees de-escalating the dose if the observed DLT rate is higher
than 0.298 (with the default values of φ1 and φ2). Accordingly, the BOIN design
also allows users to easily calibrate the design to satisfy a specific safety requirement
mandated by regulatory agents through choosing an appropriate target DLT rate φ or
φ2. For example, supposing for a phase I trial with a new compound, the regulatory
agent mandates that if the observed toxicity rate is higher than 0.25, the dose must
be de-escalated. We can easily fulfill that requirement by setting the target DLT rate
φ = 0.20, under which the BOIN automatically guarantees de-escalating the dose if
the observed toxicity rate p̂ j > λd = 0.238. If needed, the de-escalation boundary
λd can be further fine tuned by calibrating the value of φ2. Such flexibility and
transparency renders the BOIN design an important advantage over the mTPI/mTPI-
2 and keyboard designs in practice.
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8.2.4 Comparison of Phase I Designs

8.2.4.1 Simulation Settings

We considered target DLT rates of φ = 0.2 and φ = 0.3 with J = 6 dose levels.
Under each setting, 1000 dose-toxicity scenarios were randomly generated using the
method of Clertant and O’Quigley (2017). Under each scenario, we simulated 2000
trials. Figure8.3 displays 50 randomly selected scenarios with φ = 0.20 and J = 6.
These exhibit a variety of dose-toxicity curve shapes and spacings. We compared
the CRM, mTPI, keyboard and BOIN designs. For the CRM, we used (0.032, 0.095,
0.200, 0.332, 0.470, 0.596) as the skeleton. For the mTPI and keyboard designs,
we used the recommended default values δ1 = φ − 0.05 and δ2 = φ + 0.05. For the
BOIN design, we set φ1 = 0.6φ and φ2 = 1.4φ, which are the recommended default
values. We set the cohort size equal to 1 and the maximum sample size equal to 36.
A more comprehensive and complete comparison of these designs is provided by
Zhou et al. (2018a, b).
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Fig. 8.3 Panel a shows 50 randomly selected dose-toxicity curves, and panel b shows the distri-
bution of the toxicity probabilities by dose level from the 1000 scenarios with 6 dose levels
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8.2.4.2 Performance Metrics

For each of the 1000 scenarios, we calculated the following metrics:

MTD selection

• The percentage of correct selection (PCS), which we define as the percentage of
simulated trials in which the correct dose is selected as the MTD.

• The PCS within a 5% acceptable region, which we define as the percentage of
simulated trials in which the dose selected as the MTD has a DLT rate that lies in
the interval [φ − 0.05, φ + 0.05].

Patient allocation

• The average percentage of patients in the simulated trials who are assigned to the
MTD.

• The average percentage of patients in the simulated trials who are assigned to a
dose with a DLT rate that lies in the interval [φ − 0.05, φ + 0.05].

Overdose control

• The average number of patients in the simulated trials who are assigned to a dose
that is above the MTD.

• The risk of overdosing, which we define as the percentage of simulated trials in
which a large percentage of patients (e.g., 80%) are assigned to a dose that is above
the MTD. This metric quantifies how likely a particular design is to overdose a
large percentage of patients.

8.2.4.3 Results

Table8.4 summarizes the average performance of the CRM, mTPI, BOIN and key-
board designs. In general, the CRM, BOIN and keyboard designs provide compara-
ble, excellent operating characteristics, and each outperforms the mTPI design with
higher probability of correctly selecting the MTD and less likelihood of overdosing
patients.

MTD Selection

Figure8.4 shows the results for PCS and PCS within a 5% acceptable region for the
mTPI, BOIN and keyboard designs, with respect to the CRM. Each boxplot reflects
the distribution of the corresponding metric across the 1000 scenarios, and the red ×
reflects the average. As an example, the top-left panel of Fig. 8.4 shows a boxplot of
the PCS difference between mTPI and CRM, between BOIN and CRM, and between
keyboard and CRM when φ = 0.20. For mTPI versus CRM, most of the data points
are negative, which indicates that the CRM tends to outperformmTPI. For BOIN and
keyboard versus CRM, respectively, most of the data points are close to zero, which
indicates that the BOIN and keyboard designs tend to perform similarly to the CRM.
For PCS within 5% (bottom panels), we see a similar pattern. As evidenced by the
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Table 8.4 Average performance of the CRM, BOIN, mTPI and keyboard designs across 1000
scenarios with 6 dose levels

Performance metric Target φ = 0.20 Target φ = 0.30

CRM BOIN mTPI Keyboard CRM BOIN mTPI Keyboard

PCS (%) 50.2 51.9 44.0 51.4 51.0 51.8 49.0 51.8

PCS within 5% (%) 61.3 61.8 52.1 61.3 59.7 59.9 56.8 59.9

Patients treated at
MTD (%)

39.1 39.3 36.7 39.1 39.9 39.4 39.4 39.3

Patients treated within
5% (%)

48.6 48.0 44.2 47.9 47.3 46.4 46.3 46.3

Number of patients
treated above MTD

6.2 7.6 7.4 7.3 7.5 7.9 8.9 7.8

Risk of overdosing
80% (%)

6.6 7.4 15.6 7.2 9.0 8.4 16.0 8.0
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Fig. 8.4 Boxplot of the difference in the percentage of correct selection (PCS) of the MTD and the
PCS of the doses within 5% of the target for mTPI versus CRM, BOIN versus CRM and keyboard
versus CRM under 1000 scenarios with 6 dose levels. The red × reflects the average difference
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right panels of Fig. 8.4, when φ = 0.30 the CRM, BOIN and keyboard designs have
comparable PCS and PCS within 5%, and all outperform mTPI, though to a lesser
extent than when φ = 0.20.

Patient Allocation

Figure8.5 shows the results for the average percentage of patients who are assigned
to the MTD, and the average percentage of patients treated at the doses within the
5% acceptable region of the target DLT rate, respectively, for φ = 0.20 and φ = 0.30
with J = 6 doses. When φ = 0.20, CRM, BOIN and keyboard are comparable, and
all tend to outperform mTPI. When φ = 0.30, all four designs are comparable with
respect to the two metrics.

Overdose Control

Overdose control is important for protecting patients from overly toxic doses. The
upper panel of Fig. 8.6 shows our results for the number of patients treated above the
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Fig. 8.5 Boxplot of the difference in the percentage of patients treated at the MTD and the per-
centage of patients treated at doses within 5% of the target for mTPI versus CRM, BOIN versus
CRM and keyboard versus CRM under 1000 scenarios with 6 dose levels. The red × reflects the
average difference



222 Y. Yuan et al.

Fig. 8.6 Boxplot of the difference in the number of patients treated above the MTD and the risk of
overdosing at least 80% of patients for mTPI versus CRM, BOIN versus CRM and keyboard versus
CRM under 1000 scenarios with 6 dose levels. The red × reflects the average difference

MTD in each simulated trial under 1000 scenarios. Generally speaking, the four de-
signs have comparable performance. Table8.4 shows that, compared with the BOIN,
mTPI and keyboard designs, the CRM tends to assign fewer patients to doses that
are above the MTDwhen φ = 0.20. When φ = 0.30, the CRM, BOIN and keyboard
perform similarly and tend to assign fewer patients to doses that are above the MTD
than themTPI. The lower panel of Fig. 8.6 shows the results for the risk of overdosing
at least 80% of the patients. The difference between the designs for this safety metric
is more striking than for the other metrics. For instance, the difference betweenmTPI
and CRM in the risk of overdosing at least 80% of the patients is greater than zero in
every scenario, which indicates that the CRM is always safer than the mTPI design.
In contrast, the CRM, BOIN and keyboard designs are comparable regarding the risk
of overdosing at least 80% of the patients. When φ = 0.20, the CRM is slightly safer
than BOIN and keyboard, whereas when φ = 0.30, BOIN and keyboard are slightly
safer than the CRM. Table8.4 shows that the average risk of overdosing at least 80%
of the patients is substantially lower for the CRM, BOIN and keyboard designs than
for the mTPI design.
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Table 8.5 Escalation and de-escalation rules for the mTPI, BOIN and keyboard designs under their
default settings for a target toxicity rate of φ = 0.2

Number of patients treated at the current dose

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

mTPI design

Escalate if number
of DLTs ≤

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

De-escalate if number
of DLTs ≥

1 2 2 2 3 3 4 4 4 5 5 5 5 6 6 6

BOIN design

Escalate if number
of DLTs ≤

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2

De-escalate if number
of DLTs ≥

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Keyboard design

Escalate if number
of DLTs ≤

0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2

De-escalate if number
of DLTs ≥

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

The reason the mTPI design is more likely than the other designs to overdose at
least 80% of the patients can be seen through the dose escalation and de-escalation
rules for the three model-assisted designs reported in Table8.5. When the target is
φ = 0.2, the default BOIN, mTPI and keyboard designs use different thresholds for
dose escalation and de-escalation. In particular, compared to the BOIN and keyboard
designs, themTPI design uses a less aggressive escalation rule and a less conservative
de-escalation rule. For example, suppose 16 patients have been assigned to the current
dose, the mTPI design escalates the dose if 1 or fewer DLTs have been observed and
only de-escalates the dose if 6 or more DLTs have been observed. This is in contrast
to the BOIN and keyboard designs, which escalate the dose if 2 or fewer DLTs
have been observed and de-escalate the dose if 4 or more DLTs have been observed.
Consequently, themTPI design tends to get stuck at a particular dose once 10 ormore
patients have been treated at that dose. In particular, if the dose at which the mTPI
design happens to become stuck is above the MTD, a large percentage of patients
will be overdosed.

8.2.5 Software

Shiny apps to implement the aforementioned designs, including CRM, BMA-CRM,
BOIN, and keyboard designs, are freely available at http://www.trialdesign.org. Fig-
ure8.7 shows the interface of the Shiny app for the BOIN design, which allows

http://www.trialdesign.org
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Fig. 8.7 Shiny app for implementing the BOIN design for single agent trial

Fig. 8.8 Windows® desktop program for the BOIN design

users to generate the decision table for dose escalation and de-escalation, perform
a simulation study to generate the operating characteristics of the design, and cre-
ate the template for trial protocol preparation. To facilitate the use of the novel
designs, the BOIN design is also available in other easy-to-use forms, including a
stand-alone Windows® desktop program freely available from https://biostatistics.
mdanderson.org/softwaredownload/SingleSoftware.aspx?Software_Id=99, and the
R package “BOIN” available from CRAN. The software comes with detailed docu-
ments and provides step-by-step instructions on how to use it to design phase I trials.
Figure8.8 show the Windows® desktop program for the BOIN design.

https://biostatistics.mdanderson.org/softwaredownload/SingleSoftware.aspx?Software_Id=99
https://biostatistics.mdanderson.org/softwaredownload/SingleSoftware.aspx?Software_Id=99
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8.3 Drug Combination Trial

Drug combination therapy provides an important approach for treating difficult dis-
eases such as cancer. The objectives of using a combination of drugs are to induce
a synergistic treatment effect, increase the joint dose intensity with non-overlapping
toxicities, and target various tumor cell susceptibilities and disease pathways.

A major challenge in designing drug combination trials is that such combinations
are only partially ordered according to their toxicity probabilities. Consider a trial
combining J doses of agent A, denoted as A1 < A2 < . . . < AJ , and K doses of
agent B, denoted as B1 < B2 < . . . < BK . Let A j Bk denote the combination of A j

and Bk , and p jk denote the DLT rate for A j Bk . It is typically reasonable to assume
that when the dose of one agent (say agent A) is fixed, the toxicity of the combination
increases as the dose of the other agent increases (i.e., agent B). In other words, as
shown in Fig. 8.9, in the dose matrix, the rows and columns are ordered, with the
DLT rate increasing along with the dose. However, in other directions of the dose
matrix (e.g., along the diagonals from the upper left corner to the lower right corner),
the toxicity order is unknown due to unknown drug-drug interactions. For example,
between A2B2 and A1B3, we do not know which drug is more toxic because the first
combination has a higher dose of agent A whereas the second combination has a
higher dose of agent B. Thus, we cannot fully rank J × K combinations from low
to high in terms of their DLT rates. This is distinctly different from single-agent
trials, for which the dose can be unambiguously ranked assuming that higher dosage
yields higher DLT rate. The implication of such a partial ranking is that conventional
single-agent dose-finding designs cannot be directly used for finding the MTD in
drug combination trials.

Another challenge for combination trials is the existence of the MTD contour in
the two-dimensional dose space, as shown in Fig. 8.10. As a result, multiple MTDs
may exist in the J × K dosematrix. The implication of theMTDcontour is that when
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Fig. 8.10 Illustration of the linearization approach to find a single MTD for drug combination
trials. The lattices of dotted lines denote the dose combination matrix; solid curved lines indicate
the toxicity contours; and the solid line with solid circles indicates the linear path for dose finding

designing a drug combination trial, the first and most important question requiring
careful consideration is

Are we interested in f inding one MT D or multi ple MT Ds?

As we describe below, the answer to this question determines the choice of different
design strategies for drug combination trials. This important issue, unfortunately, is
largely overlooked by existing trial designs.

8.3.1 Combination Trials to Find One MTD

8.3.1.1 Model-Based Designs

Numerous designs have been proposed to find a single MTD for drug combina-
tions. For example, Conaway et al. (2004) proposed a drug combination dose-finding
method based on the order of the restricted inference. Yin and Yuan (2009a, 2009b)
proposed Bayesian dose-finding designs based on latent contingency tables (Yin and
Yuan 2009a) and a copula-type model (Yin and Yuan 2009b) for drug combination
trials. Braun andWang (2010) developed a dose-finding method based on a Bayesian
hierarchical model. Wages et al. (2011) extended the CRM (Pepe et al. 1990) based
on partial ordering of the dose combinations. Braun and Jia (2013) generalized the
CRM to handle drug combination trials. Riviere et al. (2014) proposed a Bayesian
dose-finding design based on the logistic model. Cai et al. (2014) and Riviere et al.
(2015) proposed Bayesian adaptive designs for drug combination trials involving
molecularly targeted agents. Albeit very different, most of these designs adopt a
common dose-finding strategy similar to the CRM: devise a model to describe the
dose-toxicity surface and then, based on the accumulating data, continuously update
the model estimate and make the decision of dose assignment for the new patient,
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typically by assigning the new patient to the dose for which the estimated DLT rate
is closest to the target DLT rate.

Although these designs perform reasonably well, they are rarely used in practice
for several reasons. First, these designs are statistically and computationally com-
plicated, leading many practitioners to perceive that the decisions of dose allocation
arise from a “black box”. Lack of easy-to-use software further hinders the adoption
of these designs in practice. Robustness is another potential issue for model-based
drug combination trial designs. As the models used in the drug-combination designs
are more complicated than the CRM, the designs are more vulnerable to model mis-
specification, and also the dose-finding scheme is much more likely to become stuck
at local “suboptimal” doses. Some strategies [e.g., giving high priority to exploring
new doses (Cai et al. 2014), and randomization (Riviere et al. 2015)] have been pro-
posed to alleviate this issue, but given the small sample size of early phase trials,
this remains an issue that affects the robustness of drug combination trial designs.
The robustness of the model-based drug combination trial designs warrants further
research. Because of the aforementioned issues, we do not discuss thesemodel-based
approaches further. Instead, in what follows, we focus on two simple and robust ap-
proaches that can be easily implemented using existing Shiny apps or a Windows®

desktop program, making them more likely to be used in practice.

8.3.1.2 Linearization Approach

When the goal is to find a single MTD, a much simpler, robust approach to drug
combination trials is available. The key observation is that there is no need to search
thewhole (partially ordered) dosematrix.As demonstrated byFig. 8.10,we can select
a certain ordered path (i.e., a sequence of combinations), which starts from a low
dose combination (e.g., lower left corner) and ends at a high dose combination (e.g.,
upper right corner), to find the MTD. This approach, which we call “linearization”,
has been widely used in practice to design drug combination trials. One may argue
that compared to searching the dose matrix, the linearization approach is more likely
to miss the MTD because the MTD is less likely to be in the selected linear path than
in the whole dose matrix. That occurs simply because the dose matrix contains more
doses to be investigated. For example, a 4×4 drug combination matrix contains 16
investigational doses. In the linearization approach, if we specify the same number
of, say 16, doses (on a finer grid), there is little reason for the linear path to be less
likely than the dose matrix to contain the MTD. This is because in principle, as
the number of doses increases, the linear path will eventually hit the MTD contour
(see Fig. 8.10). Actually, given a prespecified J × K dose matrix, there is also no
guarantee that it contains the MTD. The same argument applies to traditional single-
agent dose finding as well (In this chapter, we use the terms one-dimensional dose
finding and single-agent dose finding to indicate the same thing). Chu et al. (2016)
proposed a method to adaptively add new doses when the trial data indicate that none
of the prespecified doses are close to the target DLT rate. That method can be used
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with the linearization approach to address the concern that none of the doses is close
to the MTD.

The beauty of linearization is that it converts a complex, partially ordered dose
combination matrix into a sequence of ordered combinations. Therefore, the exist-
ing single-agent dose-finding methods, for example, the BOIN, keyboard or CRM,
can be directly used to find the MTD. Depending on the clinical setting, different
linearization paths can be used. For example, if drug A is the standard treatment and
serves as the backbone of the combination treatment, we may prefer to fix A at its
standard dose and vary the dose of drug B (see Fig. 8.10a). In other settings, such as
when two drugs are similarly important, we may prefer to alternatively increase the
doses of A and B, which results in a zigzag line in the dose surface (see Fig. 8.10b).

8.3.1.3 BOIN Drug-Combination Design

Unlike the linearization approach that requires users to select a specific ordered path
in the dose combination matrix, the BOIN drug-combination design (Lin and Yin
2015) provides a simple, well-performing method to find a single MTD directly in
the two-dimensional dose matrix. The BOIN drug-combination design makes the
decision of dose escalation/de-escalation based on the same rule as the single-agent
BOIN design described previously. The only difference is that, in combination trials,
whenwedecide to escalate or de-escalate the dose, there ismore than one neighboring
dose to which we can move. For example, when we escalate/de-escalate the dose, we
can escalate/de-escalate either the dose of drug A or the dose of drug B. The BOIN
drug-combination design makes this choice based on pr(p jk ∈ (λe, λd)|data), which
measures the likelihood of a dose combination being located within (λe, λd) given
the observed data, where λe and λd are the escalation and de-escalation boundaries
same as those for single-agent BOINdesign, described previously. The beta-binomial
model described above can be easily used to evaluate pr(p jk ∈ (λe, λd)|data).

Let p̂ jk = y jk/n jk denote the observed DLT rate at dose combination A j Bk ,
where y jk and n jk denote the number of toxicities and patients treated at A j Bk ,
respectively. Define an admissible dose escalation set as AE = {A j+1Bk, A j Bk+1}
and an admissible dose de-escalation set as AD = {A j−1Bk, A j Bk−1}. The BOIN
drug-combination design can be described as follows.

1. Patients in the first cohort are treated at the lowest dose combination A1B1 or a
prespecified dose combination.

2. Suppose the current cohort is treated at dose combination A j Bk , then to assign
a dose to the next cohort of patients, we follow these rules.

• If p̂ jk ≤ λe, escalate the dose to the combination that belongs to AE and has
the largest value of pr{p j ′k ′ ∈ (λe, λd)|data}.

• If p̂ jk ≥ λd , de-escalate the dose to the combination that belongs to AD and
has the largest value of pr{p j ′k ′ ∈ (λe, λd)|data}.

• Otherwise, if λe < p̂ jk < λd , stay at the same combination A j Bk .
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3. This process is continued until the maximum sample size is reached or the trial
is terminated because of excessive toxicity.

During dose escalation and de-escalation, if the two combinations in AE or AD

have the same value of pr{p j ′k ′ ∈ (λe, λd)|data}, we randomly choose one with equal
probability. If no dose combination exists in the sets of AE and AD (i.e., we are at
the boundaries of the dose matrix), we retain the current dose combination. After
the trial is completed, the MTD is selected as the dose combination with the esti-
mated DLT rate closest to φ. The estimates of DLT rates are obtained using isotonic
regression as described previously, but in a matrix form. More details on the BOIN
drug-combination design can be found in Lin and Yin (2015).

8.3.2 Combination Trials to Find Multiple MTDs

The primary motivation for combining drugs is to achieve synergistic treatment
effects. Because of the existence of the MTD contour and the fact that doses on the
MTD contour may have different efficacy due to drug-drug interactions, for many
drug combination trials, it is of intrinsic interest to find multiple MTDs. The efficacy
of the MTDs can be evaluated in subsequent phase II trials or simultaneously in
phase I-II trials. Given a prespecified J × K dose matrix, finding the MTD contour
is equivalent to finding an MTD, if it exists, in each row of the dose matrix. Without
loss of generality, we assume that J ≤ K . That is, drug B has more dose levels than
drug A.

Finding the MTD contour is substantially more challenging than finding a sin-
gle MTD. This is because in order to find all MTDs in the dose matrix, we must
explore the whole dose matrix using the limited sample size that is a characteristic
of phase I trials; otherwise, we risk missing some MTDs. In contrast to numerous
drug combination designs that have been proposed for finding a single MTD, a very
limited number of designs for finding the MTD contour have been proposed. Thall
et al. (2003) proposed a drug combination design to find three MTDs, but that design
assumes that the doses are continuous and can be freely changed during the trial,
which is not common in practice. Wang and Ivanova (2005) proposed a design to
find the MTD contour based on a parametric model, assuming that the logarithm of
the DLT rate of a drug combination is a linear function of the doses of the two drugs.
Yuan and Yin (2008) proposed a sequential dose-finding method that converts the
task of finding the MTD contour into a series of easier one-dimensional dose-finding
problems. Mander and Sweeting (2015) proposed a product of independent beta
probabilities escalation (PIPE) design to find the MTD contour based on Bayesian
model averaging, without assuming a parametric form on the dose-toxicity curve.
Zhang and Yuan (2016) extended the approach of Yuan and Yin (2008) and proposed
a so-called waterfall design to incorporate some practical considerations. Because
the waterfall design is easy to implement, has good performance and easy-to-use
software, we focus on the waterfall design hereafter.
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The basic idea of the waterfall design is straightforward: divide the
two-dimensional dose-finding problem into a series of simpler one-dimensional
dose-finding problems that can be easily solved by existing single-agent dose-finding
methods, where each one-dimensional dose-finding process is known as a “subtrial”.
As illustrated in Fig. 8.11, the waterfall design partitions the J × K dose matrix into
J subtrials, within which the doses are fully ordered. These subtrials are conducted
sequentially from the top of the matrix to the bottom, which is why we refer to the
design as the waterfall design. The goal of the design is to find the MTD contour,
which is equivalent to finding the MTD, if it exists, in each row of the dose matrix.
The waterfall design can be described as follows:

1. Divide the J × K dose matrix into J subtrials SJ , . . . , S1, according to the dose
level of drug A:

SJ = {A1B1, . . . , AJ B1, AJ B2, . . . , AJ BK },
SJ−1 = {AJ−1B2, . . . , AJ−1BK },
SJ−2 = {AJ−2B2, . . . , AJ−2BK },
. . .

S1 = {A1B2, . . . , A1BK }.

Note that subtrial SJ also includes lead-in doses A1B1, A2B1, . . . , AJ B1 (the
first column of the dose matrix) to impose the practical consideration that the
trial starts at the lowest dose. Within each subtrial, the doses are fully ordered
with monotonically increasing toxicity.

2. Conduct the subtrials sequentially using the BOIN design (or other single-agent
dose-finding method) as follows:

(i) Conduct subtrial SJ , starting from the lowest dose combination A1B1, to
find the MTD. We call the dose selected by the subtrial a “candidate MTD”
to highlight that the dose selected by the individual subtrial may not be the
“final” MTD that we select at the end of the trial. The final MTD selection
is based on the data collected from all the subtrials. The objective of finding
the candidate MTD is to determine which subtrial to conduct next and the
corresponding starting dose.

(ii) Assuming that subtrial SJ selects dose A j∗ Bk∗ as the candidate MTD, next,
conduct subtrial Sj∗−1 with the starting dose A j∗−1Bk∗+1. That is, the next
subtrial to be conducted is the one with the dose of drug A that is one
level lower than the candidate MTD found in the previous subtrial. After
identifying the candidate MTD of subtrial Sj∗−1, the same rule is used to
determine the next subtrial and its starting dose. See Fig. 8.11 for an example.

(iii) Repeat step (ii) until subtrial S1 is completed.

3. Estimate the DLT rate p jk based on the toxicity data collected from all the
subtrials using matrix isotonic regression (Gordon et al. 1984). For each row of
the dose matrix, select the MTD as the dose combination that has the estimate
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Fig. 8.11 Illustration of thewaterfall design for a 3 × 5 combination trial. The doses in the rectangle
form a subtrial, and the asterisk denotes the candidate MTD for the subtrial. As shown in panel (a),
the trial starts by conducting the first subtrial with the starting dose A1B1. After the first subtrial
identifies A3B2 as the candidate MTD, we then conduct the second subtrial with the starting dose
A2B3 [see panel (b)]. After the second subtrial identifies A2B4 as the candidate MTD, we conduct
the third subtrial with the starting dose A1B5 [see panel (c)]. After all subtrials are completed, we
select the MTD contour based on the data from all subtrials, as shown in panel (d)

of DLT rate that is closest to the target DLT rate φ unless all combinations in
that row are overly toxic.

The waterfall design conducts the subtrials sequentially such that the results of
each subtrial are used to inform the design (e.g., the dose range and the starting dose)
of subsequent subtrials. Such information borrowing allows the design to explore the
two-dimensional dose space efficiently using a limited sample size, and decreases
the chance of overdosing or underdosing patients. For example, in step 2, the reason
that subtrial Sj∗−1 starts with dose A j∗−1Bk∗+1 rather than the lowest dose in that
subtrial (i.e., A j∗−1B2) is that A j∗−1Bk∗+1 is the lowest dose that is potentially located
at the MTD contour. Starting from A j∗−1Bk∗+1 allows us to quickly reach the MTD.
Using Fig. 8.11 as an example, the first subtrial S3 identified the dose A3B2 as the
MTD, and thus the second subtrial S2 starts from the dose A2B3. It is not desirable to
start from the lowest dose A2B2 because the partial ordering informs us that A2B2 is
below the MTD. Starting at the lowest dose in this example wastes patient resources
and exposes patients to low doses that may be subtherapeutic.
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8.3.3 Software

The BOIN drug-combination and waterfall designs can be easily implemented us-
ing the Shiny app available at http://www.trialdesign.org, or the Windows® desktop
program freely available at https://biostatistics.mdanderson.org/softwaredownload/
SingleSoftware.aspx?Software_Id=99. These two software applications have intu-
itive graphical user interfaces and rich documents to help the users. These applica-
tions allow users to perform simulations to obtain the operating characteristics of
the design, generate the protocol template, and conduct the trial in real time. For
users who are comfortable with programming language R, the package “BOIN” is
freely available fromCRAN to implement the BOIN drug-combination andwaterfall
designs. The manual for the package can be found at https://cran.r-project.org/web/
packages/BOIN/index.html, and a statistical tutorial for using the package to design
drug combination trials can be found at http://odin.mdacc.tmc.edu/~yyuan/index_
code.html

References

Barlow,R. E., Bartholomew,D. J., Bremner, J.M.,&Brunk,H.D. (1973). Statistical inference under
order restrictions: The theory and application of isotonic regression. International Statistical
Review, 41(3).

Braun, T. M., & Jia, N. (2013). A generalized continual reassessment method for two-agent phase
I trials. Statistics in Biopharmaceutical Research, 5, 105–115.

Braun, T. M., & Wang, S. F. (2010). A hierarchical Bayesian design for phase I trials of novel
combinations of cancer yherapeutic agents. Biometrics, 66(3), 805–812.

Cai, C. Y., Yuan, Y., & Ji, Y. (2014). A Bayesian phase I/II design for oncology clinical trials of
combining biological agents. Journal of the Royal Statistical Society: Series C, 63, 159–173.

Chu, Y., Pan, H., & Yuan, Y. (2016). Adaptive dose modification for phase I clinical trials. Statistics
in Medicine, 35(20), 3497–3508.

Clertant, M., & Quigley, J.O. (2017). Semiparametric dose finding methods. Journal of the Royal
Statistical Society: Series B (Statistical Methodology). https://doi.org/10.1111/rssb.12229

Conaway, M. R., Dunbar, S., & Peddada, S. D. (2004). Designs for single- or multiple-agent phase
I trials. Biometrics, 60(3), 661–669.

Gordon, B., Richard, D., Carolyn, P., & Tim, R. (1984). Isotonic regression in two independent
variables. Journal of the Royal Statistical Society: Series C (Applied Statistics), 33(3), 352–357.

Iasonos, A., & O’Quigley, J. (2014). Adaptive dose-finding studies: A review of model-guided
phase I clinical trials. Journal of Clinical Oncology, 32(23), 2505–2511.

Jaki, T., Clive, S., & Weir, C. J. (2013). Principles of dose finding studies in cancer: A comparison
of trial designs. Cancer Chemotherapy and Pharmacology, 71(5), 1107–1114.

Ji, Y., Liu, P., Li, Y., & Nebiyou Bekele, B. (2010). A modified toxicity probability interval method
for dose-finding trials. Clinical Trials, 7(6), 235–244.

Lee, S. M., & Cheung, Y. K. (2009). Model calibration in the continual reassessment method.
Clinical Trials, 6(3), 227–238.

Lin, R., & Yin, G. (2015). Bayesian optimal interval design for dose finding in drug-combination
trials. Statistical Methods in Medical Research, https://doi.org/10.1177/0962280215594494.

Liu, S., & Yuan, Y. (2015). Bayesian optimal interval designs for phase I clinical trials. Journal of
the Royal Statistical Society: Series C (Applied Statistics), 64(3), 507–523.

http://www.trialdesign.org
https://biostatistics.mdanderson.org/softwaredownload/SingleSoftware.aspx?Software_Id=99
https://biostatistics.mdanderson.org/softwaredownload/SingleSoftware.aspx?Software_Id=99
https://cran.r-project.org/web/packages/BOIN/index.html
https://cran.r-project.org/web/packages/BOIN/index.html
http://odin.mdacc.tmc.edu/~yyuan/index_code.html
http://odin.mdacc.tmc.edu/~yyuan/index_code.html
https://doi.org/10.1111/rssb.12229
https://doi.org/10.1177/0962280215594494


8 Phase I Cancer Clinical Trial Design: Single … 233

Mander, A. P., & Sweeting,M. J. (2015). A product of independent beta probabilities dose escalation
design for dual-agent phase I trials. Statistics in Medicine, 34(8), 1261–1276.

O’Quigley, J., Pepe, M., & Fisher, L. (1990). Continual reassessment method: A practical design
for phase 1 clinical trials in cancer. Biometrics, 46(1), 33–48.

Riviere, M. K., Yuan, Y., Dubois, F., & Zohar, S. (2014). A Bayesian dose-finding design for drug
combination clinical trials based on the logisticmodel.Pharmaceutical Statistics, 13(4), 247–257.

Riviere, M. K., Yuan, Y., Dubois, F., & Zohar, S. (2015). A Bayesian dose-finding design for
clinical trials combining a cytotoxic agent with a molecularly yargeted agent. Journal of the
Royal Statistical Society: Series C, 64, 215–229.

Rogatko, A., Schoeneck, D., Jonas,W., Tighiouart,M., Khuri, F. R., & Porter, A. (2007). Translation
of innovative designs into phase I trials. Journal of Clinical Oncology, 25(31), 4982–4986.

Simon, R., Rubinstein, L., Arbuck, S. G., Christian, M. C., Freidlin, B., & Collins, J. (1997).
Accelerated titration designs for phase I clinical trials in oncology. Journal of the National
Cancer Institute, 89(15), 1138–1147.

Storer, B. E. (1989). Design and analysis of phase I clinical trials. Biometrics, 45(3), 925–937.
Storer, B. E. (2001). An evaluation of phase I clinical trial designs in the continuous dose-response
setting. Statistics in Medicine, 20(16), 2399–2408.

Stylianou, M., & Flournoy, N. (2002). Dose finding using the biased coin up-and-down design and
isotonic regression. Biometrics, 58(1), 171–177.

Thall, P. F., Millikan, R. E., Mueller, P., & Lee, S. J. (2003). Dose-finding with two agents in phase
I oncology trials. Biometrics, 59(3), 487–496.

van Brummelen, E. M. J., Huitema, A. D. R., van Werkhoven, E., Beijnen, J. H., & Schellens, J. H.
M. (2016). The performance of model-based versus rule-based phase I clinical trials in oncology:
A quantitative comparison of the performance of model-based versus rule-based phase i trials
with molecularly targeted anticancer drugs over the last 2 years. Journal of Pharmacokinetics
and Pharmacodynamics, 43(3), 235–242.

Wages, N. A., Conaway, M. R., & O’Quigley, J. (2011). Continual reassessment method for partial
ordering. Biometrics, 67(4), 1555–1563.

Wang, K., & Ivanova, A. (2005). Two-dimensional dose finding in discrete dose space. Biometrics,
61(1), 217–222.

Yan, F., Mandrekar, S. J., & Yuan, Y. (2017). Keyboard: A novel bayesian toxicity probability
interval design for phase I clinical trials. Clinical Cancer Research, 23(15), 3994–4003.

Yin, G., & Yuan, Y. (2009). Bayesian model averaging continual reassessment method in phase I
clinical trials. Journal of the American Statistical Association, 104(487), 954–968.

Yin, G., & Yuan, Y. (2009a). A latent contingency table approach to dose finding for combinations
of two agents. Biometrics, 65(3), 866–875.

Yin, G., & Yuan, Y. (2009b). Bayesian dose finding in oncology for drug combinations by copula
regression. Journal of the Royal Statistical Society: Series C (Applied Statistics), 58(2), 211–224.

Yuan, Y., Hess, K. R., Hilsenbeck, S. G., & Gilbert, M. R. (2016). Bayesian optimal interval design:
A simple and well-performing design for phase I oncology trials. Clinical Cancer Research, 22,
4291–4301.

Yuan, Y., Nguyen, H. Q., & Thall, P. F. (2016). Bayesian Designs for Phase I–II Clinical Trials.
New York: Chapman & Hall/CRC.

Yuan, Y., & Yin, G. (2008). Sequential continual reassessment method for two-dimensional dose
finding. Statistics in Medicine, 27(27), 5664–5678.

Zhang, L., & Yuan, Y. (2016). A practical Bayesian design to identify the maximum tolerated dose
contour for drug combination trials. Statistics in Medicine, 35(27), 4924–4936.

Zhou, H., Murray, T. A., Pan, H., & Yuan, Y. (2018a). Comparative review of toxicity probability
interval designs for phase I clinical trials. Statistics in Medicine, 37(14), 2208–2222.

Zhou, H., Yuan, Y., and Nie L. (2018b). Accuracy, safety and reliability of novel Phase I trial
designs. Clinical Cancer Research, https://doi.org/10.1158/1078-0432.CCR-18-0168.

https://doi.org/10.1158/1078-0432.CCR-18-0168


Chapter 9
Data Monitoring: Structure for Clinical
Trials and Sequential Monitoring
Procedures

David M. Reboussin and Dave L. DeMets

Many aspects of developing and fielding a clinical trial can be guided by
well-known theoretical properties of experimental design and practical experience
with the conduct of other types of studies on human populations. Interim data mon-
itoring, however, is often unfamiliar territory even to investigators who have been
involved with other aspects of clinical trials. Yet there is some general agreement
based on long experience, and some published literature, on successful models for
structuring the monitoring process, for statistical methods that can address common
questions relating to the decision to continue or stop a trial, and on how a committee
should approach the decision in the context of what is often an unexpectedly complex
set of issues. In this chapter we present a short discussion of these aspects of data
monitoring in clinical trials. The fundamental need for monitoring in order to fulfil
the investigators’ ethical responsibilities to participants in a trial provides a rationale
for the monitoring committee to be composed of experts independent of the investi-
gators and suggests some basic structure for the committee’s meetings. The nature
of statistical assessment of accumulating data has produced a variety of methods
which can address specific questions of importance for data monitoring and are flex-
ible enough to accommodate some practical constraints under which the monitoring
committee must act. Finally, the variety and complexity of actual data monitoring
experiences shows that no statistical technique can be used as the sole basis in the
decision to stop or continue: the monitoring committee’s charge usually requires an
active, thorough review of evidence which is neither simple nor straightforward.
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9.1 Monitoring Committee Structure and Function

Investigators in a clinical trial have an ethical responsibility to participants that
demands both harms and benefits be monitored during trials. Early termination of
the trial should be considered if data partway through the trial demonstrates harm
attributable to the intervention, or if a clear benefit of the intervention creates ethical
concerns for the control group. Alternatively, if differences in primary and possibly
secondary response variables are so unimpressive that the prospect of a clear result
is extremely unlikely, it may not be justifiable in terms of time, money, and effort
to continue the trial. Monitoring of response variables can also identify the need to
collect additional data to address questions of benefit or safety that arise during the
trial. Finally, monitoring may reveal logistical or data quality problems that need to
be addressed promptly. Thus, there are ethical, scientific, and economic reasons for
interim evaluation of clinical trials (Baum et al. 1994; Fleming and DeMets 1993;
Heart Special Project Committee 1988). Themonitoring committee process has been
described in detail (Ellenberg et al. 2003) as have case studies of trials terminated
for benefit, harm, or futility (DeMets et al. 2006).

Keeping in mind these issues, data and safety monitoring is not simply a matter
of looking at tables or results of statistical analysis of the primary outcome. Rather,
it is an active process in which additional tabulations and analysis are suggested
and evolve as a result of ongoing review. Monitoring also involves an interaction
with the individuals responsible for collating, tabulating, and analyzing the data. For
single center studies, the monitoring responsibility could, in principle, be assumed
by the investigator. However, while monitoring the data, the investigator may dis-
cover trends toward benefit or harm while participants are still being enrolled or
treated. Participants agree be part of clinical trials with the understanding that nei-
ther intervention nor control is favored, a state of clinical equipoise (Freedman 1987).
Knowing that a trend exists may make it difficult for an investigator to continue to
enroll, follow, evaluate, and care for the participants in an unbiased manner. The
credibility of the trial is enhanced if, instead of the investigator, an independent per-
son monitors the response variable data. Though some authors disagree (Crowley
et al. 1994; Green and Crowley 1993; Harrington et al. 1994), these considerations
suggest that individuals whomonitor later phase clinical trials should have no formal
involvement with the participants or the investigators.

One or two knowledgeable individuals may suffice for small, short-term stud-
ies whether early or late phase. For larger trials, the responsibility for monitoring
response variable data is usually placed with an independent group acting as a com-
mittee (Ellenberg et al. 2003; DeMets et al. 2006; Fisher et al. 2001). Independence
protects the members of the monitoring committee from being influenced in the
decision-making process by investigators, participants and federal or industry spon-
sors. The committee would usually include experts in the relevant clinical fields or
specialties, individuals with experience in the conduct of clinical trials, epidemi-
ologists, biostatisticians knowledgeable in design and analysis, and often for NIH
funded trials a bioethicist or participant advocate. While statistical procedures are
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often helpful in evaluating interim results, the decision process to continue, termi-
nate a trial early, or modify the design is invariably complex and no single statistical
procedure is adequate to address all trials.

The first priority of the monitoring committee must be to ensure the safety of
participants in the trial. The second priority ismeeting obligations to the investigators
and the Institutional Review Boards or ethics committees, who place enormous trust
in the monitoring committee both to protect participants from harm and ensure the
integrity of the trial. Third, the monitoring committee has a responsibility to the
sponsor of the trial, whether federal or private. Finally, the monitoring committee
provides a service to drug or device regulatory agencies, especially for trials which
are utilizing drugs, biologics or devices which still have investigational status.

Although many formats for monitoring committee meetings have been used, a
format that includes an open session, a closed session, and an executive session
allows for exchange of information by all relevant parties and for appropriate con-
fidential and independent review (Ellenberg et al. 2003; DeMets et al. 1995). The
open session enables interaction between investigator representatives such as the
study principal investigator or chair, the sponsor, the statistical center, the industrial
partners, and the monitoring committee. Though uncommon, it may sometimes be
appropriate for a regulatory agency to participate in the open session. In this session,
issues of participant recruitment, data quality, general adherence, toxicity issues, and
any other logistical matter that may affect either the conduct or outcome of the trial
are considered in a blinded fashion. In a closed session with monitoring committee
members and one or more members of the statistical team, analyses of the confi-
dential unblinded outcome data are reviewed. This review includes comparison by
intervention groups of baseline variables, primary or secondary variables, safety or
adverse outcome variables, adherence measures for the entire group, and examina-
tions of any relevant subgroups. Following this review, the monitoring committee
may decide to have an executive session with its members only where decisions
about continuation, termination or protocol modification are made. After the closed
session, theymaymeet with a representative of the sponsor or investigator leadership
to share their recommendations which are usually followed up in a letter. Regardless
of how formal, most monitoring committee meetings have these components.

Who specifically attends the various sessions must be decided before the trial
begins and before the first monitoring committee meeting is scheduled. In general,
attendance should be limited to those who are essential for proper monitoring. As
noted, it is common for the study principal investigator and sponsor representatives to
attend the first open session. If he or she does not provide care for participants in the
trial, the principal investigatorwill sometimes attend the closed session; however, that
practice is not recommended. If the study is sponsored by industry, independence and
credibility of the study is best served by no industry attendance at the closed session.
Industry sponsored trials that are also managed and analyzed by industry will require
a statistician from the sponsor who prepares the monitoring report to attend. In such
situations the company statistician must have a “firewall” separating her from other
colleagues at the company, something that may be difficult to achieve in a way that is
convincing to outsiders. However, another common practice for industry-sponsored



238 D. M. Reboussin and D. L. DeMets

pivotal Phase III trials is for a separate statistical analysis center to provide the interim
analyses and report to the independent monitoring committee (Fisher et al. 2001).
This practice reduces the possibility or perception that interim results are known to
the industry sponsor or the investigator group. Regulatory agency representatives
usually do not attend the closed session because being involved in the monitoring
decision may affect their regulatory role should the product be subsequently sub-
mitted for approval. An executive session should involve only the voting members
of the monitoring committee, although an independent statistician who provided the
data report may also attend.

How the intervention or treatment comparisons will be presented to the monitor-
ing committee also must be resolved before the start of a trial. In some trials, the
monitoring committee knows the identity of the interventions in each table or figure
of the report. In other trials, for two interventions the tables may be labelled as A
and B with the identity of A and B remaining blinded until the monitoring commit-
tee requests the unblinding on a “need to know” basis. Thus, if there are no trends
in either benefit or harm, which is likely to be the case early in a trial, there is no
overwhelming reason to know the identity of groups A and B. When trends begin
to emerge in either direction, the monitoring committee should have full knowledge
of the group identities (Meinert 1998). In some trials, the monitoring committee
is blinded throughout the interim monitoring. While this degree of blinding may
enhance objectivity, it conflicts with the monitoring committee’s primary purpose
of protecting the participants in the trial from harm or unnecessary continuation. As
pointed out by Whitehead (1999), the intention of this approach is to deny the moni-
toring committee a complete picture of the interim data. To assess the progress of the
trial, the harm and benefit profile of the intervention must be well understood and the
possible tradeoffs weighed. If each group of tables is labeled by a different code, the
committee cannot easily assess the overall harm/benefit profile of the intervention,
and thus may put participants at unnecessary risk or continue a trial beyond the point
at which benefit outweighs risks. Such complex coding schemes also increase the
chance for errors in labeling. This practice is not common and not recommended.

9.2 Statistical Methods Used in Interim Monitoring

The previous section discussed the administrative structure was for conducting
interim analysis of data quality and outcome data for benefit and potential harm
to trial participants. This section reviews some statistical methods for sequential
analysis that are currently used for monitoring accumulating data in a clinical trial.
These methods help inform decisions as to whether the trial should be terminated
early for benefit, harm, or futility or whether it should be continued to its planned ter-
mination. No single statistical test or monitoring procedure should be used as a strict
rule for decision-making, but rather as one piece of evidence to be integrated with
the totality of evidence (Fleming and DeMets 1993; Ellenberg et al. 2003; DeMets
et al. 2006; Fisher et al. 2001; Canner 1981; DeMets 1990). Therefore, it is difficult
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to make a single recommendation about which statistical approach should be used.
However, the following methods, when applied appropriately, can be useful guides
in the decision-making process.

Repeated Testing for Significance

Repeated significance testing of accumulating data, which is essential to monitor-
ing, has statistical implications (The Coronary Drug Project Research Group 1975;
Armitage et al. 1969; Armitage 1957; Bross 1952; Anscombe 1963; Robbins 1952,
1970). If the null hypothesis of no difference between two groups is true, and tests of
that hypothesis are made repeatedly at the same level of significance using accumu-
lating data, the probability that the test will be declared significant by chance alone
is larger than that significance level. That is, the rate of incorrectly rejecting the null
hypothesis, a false positive error, will be larger than if only a single test had been
done. Regardless of the test statistic or type of outcome, repeated testing of accu-
mulating data without taking into account the number of tests increases the overall
probability of incorrectly rejecting the null hypothesis H0 and claiming an interven-
tion effect. If the repeated testing continues indefinitely, the null hypothesis is certain
to be rejected eventually, but even five or ten tests can lead to a misinterpretation of
the results of a trial if the multiple testing issues are ignored.

As an example, in a clinical trial where the participant response is known rela-
tively soon after entry the difference in rates between two groups may be compared
repeatedly as participants are recruited. The usual test statistic for comparing two
proportions is the chi-square test or the equivalent normal test statistic. The null
hypothesis is that the true response rates or proportions are equal. If a significance
level of 5% is selected and the null hypothesis,H0, is tested only once, the probability
of rejecting H0 if it is true is 5% by definition. However, if H0 is tested twice, first
when one-half of the data are known and then when all the data are available, the
probability of incorrectly rejecting H0 is increased from 5 to 8% (Armitage et al.
1969). If the hypothesis is tested five times, with one-fifth of the participants added
between tests, the probability of finding a significant result if the usual statistic for the
5% significance level is used becomes 14%. For ten tests, this probability increases
to almost 20%. The methods below describe ways to adjust for this inflation of type 1
error that were developed initially for means and proportions, but they can be validly
applied to most common trial designs. Under very general conditions, any statistic
used for repeated testing of a single parameter from a parametric or semiparametric
statistical model has a normal or asymptotically normal distribution with a known
correlation structure over time (Jennison and Turnbull 1997; Scharfstein et al. 1997).
Besides logrank and other survival tests, comparisons of means, comparison of pro-
portions (Kim and DeMets 1992; Pocock 1977) and comparison of linear regression
slopes (Lee 1994; Lee and DeMets 1991, 1992; Su and Lachin 1992;Wei et al. 1990;
Wu and Gordon Lan 1992) can be monitored with the same methods.

A classic illustration of the repeated testing problem is provided by the Coronary
Drug Project (CDP) for the clofibrate versus placebo mortality comparison, shown
in Fig. 9.1 (Canner 1981; The Coronary Drug Project Research Group 1975). The
CDPwas a long-term randomized, double-blind, multicenter study that compared the
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Fig. 9.1 Interim survival analyses comparing mortality in clofibrate- and placebo-treated partici-
pants in the Coronary Drug Project (Canner 1981). A positive Z value favors placebo

effect on total mortality of several lipid-lowering drugs (high- and low-dose estro-
gen, dextrothyroxine, clofibrate, nicotinic acid) against placebo. Figure 9.1 presents
the standardized mortality comparisons over the follow-up or calendar time of the
trial. The two horizontal lines indicate the conventional value of the test statistic,
corresponding to a two-sided 0.05 significance level, used to judge statistical signif-
icance for studies where the comparison is made just one time. It is evident that the
trends in this comparison emerge andweaken throughout, coming close or exceeding
the conventional critical values on five monitoring occasions. However, as shown in
Fig. 9.2, the mortality curves at the end of the trial are nearly identical, correspond-
ing to the very small standardized statistic at the end of the Fig. 9.1. The monitoring
committee for this trial took into consideration the repeated testing problem and did
not terminate this trial early just because the conventional significance values were
exceeded.

Group Sequential Methods

Classical sequential methods were developed to minimize the number of par-
ticipants required for a study. Continued enrollment of participants depends on
results from those already entered. Most of these sequential methods assume that
the response variable outcome is known in a short time relative to the duration of the
trial, as is true for many trials involving acute illness. For studies involving chronic
diseases, classical sequential methods have not been as useful. Detailed discussions
of classical sequential methods are given, for example, by Armitage (1975), White-
head (1997), and Wald (2013).
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Fig. 9.2 Cumulative mortality curves comparing clofibrate- and placebo treated participants in the
Coronary Drug Project (Canner 1981)

The limitations of classical sequential methods led to the development of other
approaches to the repeated testing problem. Ad hoc rules have been suggested that
attempt to ensure a conservative interpretation of interim results. One such method is
to use a critical value of 2.6 for the normal test statistic Z-value at each interim look
as well as in the final analyses (Canner 1981). Another approach (Haybittle 1971;
Peto et al. 1976) referred to as the Haybittle–Peto procedure, favors using a large
critical value such as 3.0 for all interim tests. With this procedure any adjustment
needed for repeated testing at the final test is negligible and the conventional critical
value can be used. These methods are ad hoc in the sense that no precise Type I error
level is guaranteed.

Pocock (1977, 1978, 1982) modified the repeated testing methods of McPherson
and Armitage (1971) and developed a group sequential method for clinical trials
which avoids many of the limitations of classical methods and guarantees a pre-
specified type 1 error level. He discusses two cases of special interest; one for com-
paring two proportions and another for comparing mean levels of response. Pocock’s
method divides the participants into a series of K equal-sized groups with 2n partic-
ipants in each, n assigned to intervention and n to control. K is the number of times
the data will be monitored during the course of the trial. The total expected sample
size is 2nK . The test statistic used to compare control and intervention is computed
as soon as data for the first group of 2n participants are available, and recomputed
when data from each successive group of 2n participants become known. Under the
null hypothesis, the distribution of the test statistic Zi is assumed to be approximately
normal with zero mean and unit variance, where i indicates the group number (i ≤
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K). This statistic is compared to the stopping boundaries, ±ZNK where ZNK has
been determined to assure that the overall (two sided) significance level for the trial
will be α when up to K repeated tests are done. For example, if K=5 and α=0.05
(two-sided), ZNK =2.413. This critical value is larger than the critical value of 1.96
used in a single test of hypothesis with α=0.05. If the statistic Zi falls outside the
boundaries on the “i”-th repeated test, indicating rejection of the null hypothesis and
suggesting that the trial should be terminated. If the statistic never falls outside the
boundaries, the trial should be continued until i=K (the maximum number of tests).
When i=K , the trial would stop and the investigator would “accept” H0. O’Brien
and Fleming (1979) discuss a similar group sequential procedure. Using the above
notation, their stopping rule compares the statistic Zi with Z*

√
(K/i) where Z* is

determined so as to achieve the desired significance level. For example, if K=5 and
a=0.05, Z*�2.04. If K ≤ 5, Z* may be approximated by the usual critical values
for the normal distribution. One attractive feature is that the critical value used at the
last test (i=K) is approximately the same as that used if a single test were done.

These group sequential methods have an advantage over the classical methods
in that the data do not have to be continuously tested and individual participants do
not have to be enrolled in pairs. This concept suits the data review activity of most
large clinical trials where monitoring committees meet periodically. Furthermore,
in many trials continuous consideration of early stopping is unnecessary. Pocock
(1977, 1978, 1982) discusses the benefits of the group sequential approach in more
detail and other authors describe variations (DeMets 1987; Fleming 1990; Fleming
and Watelet 1989; Freedman et al. 1983; Jennison and Turnbull 1990).

In Fig. 9.3 boundaries for the Haybittle-Peto, Pocock and O’Brien-Fleming meth-
ods described are given for K=5 and α=0.05 (two-sided). If for i<5 the test statistic
falls outside the boundaries, the trial is terminated and the null hypothesis rejected.
Otherwise, the trial is continued until i=5, at which time the null hypothesis is either
rejected or “accepted”. The three boundaries have different early stopping properties.
The O’Brien–Fleming model is unlikely to lead to stopping in the early stages. Later
on, however, this procedure leads to a greater chance of stopping prior to the end
of the study than the other two. Both the Haybittle–Peto and the O’Brien–Fleming
boundaries avoid the awkward situation of accepting the null hypothesis when the
observed statistic at the end of the trial is much larger than the conventional critical
value (i.e., 1.96 for a two-sided 5% significance level). If the observed statistic in
Fig. 9.3 is 2.3 when i=5 the result would not be significant using the Pocock bound-
ary. The large critical values used at the first few analyses for the O’Brien–Fleming
boundary can be adjusted to some less extreme values (e.g. 3.5) without noticeably
changing the interim and final critical values used later.

Many monitoring committees often wish to be somewhat conservative in their
interpretation of early results because of the uncertainties discussed earlier and
because a few additional events can alter the results substantially. Yet, most investiga-
tors would like to use conventional critical values in the final analyses, not requiring
any penalty for interim analyses. This means that the critical value used in a conven-
tional fixed sample methods would be the same for that used in a sequential plan,
resulting in no increase in sample size. With that in mind, the O’Brien–Fleming pro-
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Fig. 9.3 Three group sequential stopping boundaries for the standardized normal statistic (Zi) for
up to five sequential groups with two-sided significance level of 0.05 (DeMets and Lan 1994)

cedure has considerable appeal, perhaps with the adjusted or modified boundary as
described.

The Beta-Blocker Heart Attack Trial (BHAT) provides an example where sequen-
tial monitoring led to early termination (DeMets et al. 1984; Beta-Blocker Heart
Attack Trial Research Group 1982). This randomized placebo control trial enrolled
over 3800 participants with a recent myocardial infarction to evaluate the effec-
tiveness of propranolol in reducing mortality. Interim log-rank tests were evaluated
using theO’Brien–Fleming group sequential procedure (O’Brien and Fleming 1979).
Sevenmeetings had been scheduled to review interim data. The trial was designed for
a two-sided 5% significance level. These specifications produce the group sequential
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Fig. 9.4 Six interim log rank statistics plotted for the time of data monitoring committee meetings
with a two-sided O’Brien-Fleming significance level boundary in the Beta-Blocker Heart Attack
Trial (DeMets et al. 1984). Dashed line represents Z �1.96

boundary shown in Fig. 9.4. In addition, the interim results of the log-rank statistic are
also shown for the first six meetings. From the second analysis on, the conventional
significance value of 1.96was exceeded. Nevertheless, the trial was continued. At the
sixth meeting, after an average of a little over 2 years of a planned 3 year follow-up, a
mortality difference was observed, and the O’Brien–Fleming boundary was crossed
as shown in Fig. 9.4. The results were statistically significant, allowing for repeated
testing, andwith high probabilitywould, not be reversed during the next year (DeMets
et al. 1984). However, it should be emphasized that crossing the boundary was not
the only factor in this decision. The data monitoring committee debated whether the
additional year of follow-up would add valuable information. It was argued that there
would be too few events in the last year of the trial to provide a good estimate of
the effect of propranolol treatment in the third and fourth year of therapy. Thus, the
committee decided that prompt publication of the observed benefit was more impor-
tant than waiting for the marginal information yet to be obtained. This trial was one
of the early trials to implement group sequential monitoring boundaries discussed
below and will be used as an example to illustrate the method.

Flexible Group Sequential Procedures: Alpha Spending Functions

While the group sequential methods described above are an important advance in
data monitoring, the Beta-blocker Heart Attack Trial (BHAT) (DeMets et al. 1984;
Beta-Blocker Heart Attack Trial Research Group 1982) experience suggested two
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limitations. One was the need to specify the numberK of planned interim analyses in
advance. The second was the requirement for equal numbers of either participants or
events between each analysis. In the BHAT example, the numbers of deaths between
analyses were not equal and exactly seven analyses of the data had been specified. If
the monitoring committee had requested an additional analysis between the fifth and
sixth scheduled meetings, the O’Brien–Fleming group sequential procedure would
not have directly accommodated such a modification. Yet such a request could easily
have happened. In order to accommodate the unequal numbers of participants or
events between analyses and the possibility of larger or fewer numbers of interim
analyses than pre-specified, flexible procedures eliminating those restrictions were
developed (DeMets and Lan 1994; Kim and DeMets 1987; Lan and DeMets 1989;
Lan and DeMets 1983; Lan et al. 1984, 1993, 1994; Lan and Zucker 1993). The
authors proposed a so-called alpha spending function which allows investigators to
determine how they want to allocate or “spend” the Type I error or alpha during the
course of the trial. This function guarantees that at the end of the trial, the overall Type
I error will equal the prespecified value of α. As will be described, this approach is
a generalization of the previous group sequential methods so that the Pocock (1977)
and O’Brien and Fleming (1979) monitoring procedures become special cases.

To understand how this flexibility is incorporated, we must distinguish between
calendar time and information fraction (Lan and DeMets 1989; Lan et al. 1994). The
information expected from all participants at the planned end of the trial is the total
information. At any particular calendar time t during the study, a certain fraction
t* of the total information is observed. The fraction of total information may be
approximated as a fraction of participants randomized at that point (n randomized
divided by the total number of expected randomizations, N) or in survival studies
by a fraction of observed events (d observed events divided by the total number of
expected events,D). Thus the value for t* must be between 0 and 1. The information
fraction is more generally defined in terms of ratio of the inverse of the variance of
the test statistic at the particular interim analysis and the final analysis. The alpha
spending function, α(t*), determines how the prespecified α is allocated at each
interim analyses as a function of the information fraction. At the beginning of a
trial, t*�0 and α(t*)�0, while at the end of the trial, t*�1 and α(t*)�α. Alpha-
spending functions that correspond to the Pocock and O’Brien–Fleming boundaries
in Fig. 9.3 are shown in Fig. 9.5 for a two-sided 0.05 α level and five interim analyses.
These spending functions correspond to interim analyses at information fractions at
0.2, 0.4, 0.6, 0.8, and 1.0. However, in practice the information fractions need not be
equally spaced.
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Fig. 9.5 Alpha-spending
functions for K �5 with
two-sided α �0.05 at
information fractions 0.2,
0.4, 0.6, 0.8, and 1 (DeMets
and Lan 1995).
α1(t*)~O’Brien-Fleming;
α2(t*)~Pocock;
α3(t*)~uniform

Many different spending functions can be specified. TheO’Brien–Flemingα1(t*),
Pocock α2(t*) and uniform α3(t*) type spending functions are specified as follows:

O’Brien-Fleming α1(t∗) � 2 − 2�
(
Zα/2/

√
t∗

)

Pocock α2(t∗) � α ln(1 + (e − 1)t∗)
Uniform α3(t∗) � α t∗ θ for θ> 0

The spending function α3(t*) spends alpha uniformly during the trial for θ �
1, at a rate between α1(t*) and α2(t*). Other spending functions have also been
defined (Hwang et al. 1990; Wang and Tsiatis 1987). The Pocock-type spending
function allocates a greater proportion of the alpha earlier than the O’Brien–Fleming
type spending function. For the O’Brien–Fleming-type spending function at t*�0.2,
α(0.2) is less than 0.0001 which corresponds approximately to the very large critical
value or boundary value of 4.56 in Fig. 9.3. At t*�0.4, the amount of α which
can be spent is α(0.4)−α(0.2) which is approximately 0.0006, corresponding to the
boundary value 3.23 in Fig. 9.3. Obtaining these critical values requires numerical
integration and is described elsewhere in detail (Lan and DeMets 1983). Programs
are available for these calculations (Reboussin et al. 2000, 2003).

The advantage of the alpha-spending function is that neither the number nor the
time of the interim analyses needs to be specified in advance. Once the particular
spending function is selected, the information fractions t1*, t2*, … determine the
critical or boundary values exactly. In addition, the frequency of the interim analyses
can be changed during the trial and still preserve the prespecified α level. Even if
the rationale for changing the frequency is dependent on the emerging trends, the
impact on the overall Type I error rate is almost negligible (Lan and DeMets 1989;
Proschan et al. 1992). These advantages give the spending function approach to group
sequential monitoring the flexibility in analysis times that is often required in actual
clinical trial settings (Geller 1994). It must be emphasized that no change of the
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spending function itself is permitted during the trial. Other authors have discussed
further aspects of this approach (Falissard and Lellouch 1992; Lan and Lachin 1990;
Li and Geller 1991).

p-values and Confidence Intervals for Group Sequential Procedures

If the trial continues to the scheduled termination point, a p value is often com-
puted to indicate the extremeness of the result. If the standardized statistical test
exceeds the critical value, the p value would be less than the corresponding signifi-
cance level (e.g. p <0.05). If a trial is terminated early or continues to the end with
the standardized test exceeding or crossing the boundary value, a p value can also be
computed (Gange and DeMets 1996). These p values must account for the repeated
statistical testing of the outcome measure and for the particular monitoring bound-
ary employed. Calculation of the p value is relatively straightforward with existing
software packages (Reboussin et al. 2000, 2003).

Statistical tests of hypotheses are but one of the methods used to evaluate the
results of a clinical trial. Once trials are terminated, either on schedule or earlier,
confidence intervals (CIs) are often used to give some sense of the uncertainty in the
estimated treatment or intervention effect. For a fixed sample study, CIs are typically
constructed as

(effect estimate) ± Z (α) SE(estimate)

where SE is the standard error of the estimate. In the group sequential monitoring
setting, thisCI is referred to as the naïve estimate since it does not take into account the
sequential testing aspects. In general, construction of CIs following the termination
of a clinical trial is not as straightforward (Chang andO’Brien 1986; DeMets and Lan
1989; Emerson and Fleming 1990; Hughes and Pocock 1988; Jennison and Turnbull
1984, 1989;Kim1989;Kim andDeMets 1987; Pocock andHughes 1989;Rosner and
Tsiatis 1988; Siegmund 1978; Tsiatis et al. 1984; Whitehead 1986; Whitehead and
Facey 1991), but software exists to aid in the computations (Reboussin et al. 2000).
The major problem with naive CIs is that they may not give proper coverage of the
unknown but estimated treatment effect; that is, they may not include the true effect
with the specified frequency (e.g. 95%). To construct a better interval estimate, a rule
to determine which of two test statistics at different times is more extreme. Such a
rule orders the possible sequential outcomes for a trial, and several different ordering
rules have been proposed (Chang andO’Brien 1986;DeMets and Lan 1989; Emerson
and Fleming 1990; Hughes and Pocock 1988; Jennison and Turnbull 1984, 1989;
Kim 1989; Kim and DeMets 1987; Pocock and Hughes 1989; Rosner and Tsiatis
1988; Siegmund 1978; Tsiatis et al. 1984; Whitehead 1986; Whitehead and Facey
1991). None of the rules proposed appear to be universally superior but the ordering
originally suggested by Siegmund (1978) and adopted by Tsiatis et al. (1984) is
quite adequate in most circumstances. In this ordering, any treatment comparison
statistic which exceeds the group sequential boundary at one time is considered to
be more extreme than any result which exceeds the sequential boundary at a later
time. While construction of CIs using this ordering of possible outcomes can break
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down in certain cases, such cases are quite unusual and not likely to occur in practice
(Whitehead and Facey 1991). It is also interesting that for conservative monitoring
boundaries such as the O’Brien–Fleming method, the naive CI does not perform that
poorly, due primarily to the extreme early conservatism of the boundary (Rosner
and Tsiatis 1988). While more exact CIs can be computed for this case, the naive
estimate may still prove useful as a quick estimate to be recalculated later (Tsiatis
et al. 1984). Pocock and Hughes (1989) have suggested that the point estimate of
the effect of the intervention should also be adjusted, since trials that are terminated
early tend to exaggerate the size of the true treatment difference. Others have also
pointed out the bias in the point estimate Emerson and Fleming (1990; Kim 1989).
Kim (1989) suggested that an estimate of the median effect is less biased.

Asymmetric Boundaries

Inmost trials, themain purpose is to test whether the intervention is superior to the
control. It is rarely ethical to continue a study in order to prove, at the usual levels of
significance, that the intervention is harmful relative to a placebo or standard control.
This point has beenmentioned by authors (DeMets andWare 1980;DeMets andWare
1982) who discuss methods for group sequential designs in which the hypothesis to
be tested is one-sided; that is, to test whether the intervention is superior to the con-
trol. They proposed retaining the group sequential upper boundaries of methods such
as Pocock, Haybittle–Peto, or O’Brien–Fleming for rejection of H0 while suggest-
ing various forms of a lower boundary which would imply “acceptance” of H0. One
simple approach is to set the lower boundary at an arbitrary value of Zi such as −1.5
or −2.0. If the test statistic goes below that value, the data may be sufficiently sug-
gestive of a harmful effect to justify terminating the trial. This asymmetric boundary
attempts to reflect the behavior or attitude of members of many monitoring com-
mittees, who recommend stopping a study once the intervention shows a strong but
non-significant trend in an adverse direction for major events. Emerson and Fleming
(1989) recommend a lower boundary for acceptance of the null hypothesis which
allows the upper boundary to be changed in order to preserve the Type I error exactly.
Work by Gould and Pecore (1982) suggests ways for early acceptance of the null
hypothesis while incorporating costs as well. For new interventions, trials might well
be terminated when the chances of a positive or beneficial result seem remote (see
below). However, if the intervention being is already in widespread use, it may be
important to distinguish between lack of benefit and harm (DeMets et al. 1999). For
example, if the intervention is not useful for the primary outcome, but not harmful, it
may still have benefits such as on other secondary clinical outcomes, quality of life,
or reduction in adverse events that would still make it a therapeutic option. In such
cases, a symmetric boundary for the primary outcome might be appropriate.

An example of asymmetric group sequential boundaries is provided by the Car-
diac Arrhythmia Suppression Trial (CAST). Two arms of the trial (encainide and
flecainide, each vs. placebo) were terminated early using a symmetric two-sided
boundary, although the lower boundary for harm was described as advisory by the
authors (Friedman et al. 1993; Trial and Investigators 1992; Pawitan and Hallstrom
1990). The third comparison (moricizine vs. placebo) continued. However, due to



9 Data Monitoring: Structure for Clinical Trials and Sequential Monitoring Procedures 249

Fig. 9.6 MERIT-HF Group Sequential Monitoring Bounds for Mortality (Feyzi et al. 2006)

the experience with the encainide and flecainide arms, the lower boundary for harm
was revised to be less stringent than originally, i.e. an asymmetric boundary was used
(Trial and Investigators 1992).

MERIT-HF used a modified version of the Haybittle–Peto boundary for benefit,
requiring a critical value near +3.0 and a similar but asymmetric boundary, close
to a critical Z value of −2.5 for harm as shown in Fig. 9.6. In addition, at least
50% of the designed person years of exposure were to be observed before early
termination could be recommended. The planned interim analyses to consider benefit
were at 25, 50, and 75% of the expected target number of events. Because there
was a concern that treating heart failure with a beta blocker might be harmful, the
monitoring committee was required to evaluate safety on a monthly basis using the
lower sequential boundary as a guide. At the 25% interim analyses, the statistic for
the logrank test was +2.8, just short of the boundary for benefit. At the 50% interim
analyses, the observed logrank statistic was +3.8, clearly exceeding the sequential
boundary for benefit. It also met the desired number of person years of exposure
as plotted in Fig. 9.6. Details of this experience are described elsewhere (Feyzi
et al. 2006). A more detailed presentation of group sequential methods for interim
analysis of clinical trials may be found in books by Jennison and Turnbull (Jennison
and Turnbull 1999) and Proschan et al. (2006).

Curtailed Sampling and Conditional Power Procedures

During the course of monitoring accumulating data, one question often posed is
whether the current trend in the data is so impressive that “acceptance” or rejection
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ofH0 is already determined, or at least close to being determined. If the results of the
trial are such that the conclusions are known for certain, no matter what the future
outcomes might be, then consideration of early termination is in order. A helpful
sports analogy is a baseball team “clinching the pennant” after winning a specific
game: at that time, it is known for certain who has won and who has not won the
pennant or league championship, regardless of the outcome of the remaining games.
Playing the remaining games is done for reasons (e.g., fiscal) other than deciding the
winner. This idea has been developed for clinical trials and is often referred to as
deterministic curtailed sampling. It should be noted that group sequential methods
focus on existing data while curtailed sampling in addition considers the data which
have not yet been observed.

In some clinical trials, the final outcome may not be absolutely certain, but almost
so. To use the baseball analogy again, a first place team may not have clinched
the pennant but be so many games in front of the second place team that it is highly
unlikely that it will not, in fact, end up the winner. Another teammay be so far behind
that it cannot “realistically” catch up. In clinical trials, this idea is often referred to
as stochastic curtailed sampling or conditional power. Unconditional power is the
probability at the beginning of the trial of achieving a statistically significant result at
a prespecified alpha level and with a prespecified alternative treatment effect. Ideally,
trials should be designed with a power of 0.80–0.90 or higher. However, once data
begin to accumulate, the probability of attaining a significant result increases or
decreases with emerging positive or negative trends. Calculating the probability of
rejecting the null hypothesis of no effect once some data are available is conditional
power.

Lan et al. (1982) considered the effect of stochastic curtailed or conditional power
procedures on Type I and Type II error rates. If the null hypothesis H0 is tested at
time t using a statistic S(t) then at the scheduled end of a trial at time T , the statistic
would be denoted S(T ). Two cases are considered. First, suppose a trend in favor of
rejecting H0 is observed at time t<T , with intervention doing better than control.
One then computes the conditional probability, γ0 of rejecting H0 at time T ; that
is, S(T ) greater than the final critical value assuming H0 to be true and given the
current value of S(t). If this probability is sufficiently large, one might argue that
the favorable trend is not going to disappear. Second, suppose a negative trend or
data consistent with the null hypothesis of no difference, at some point t. Then, one
computes the conditional probability γ1of rejecting H0 at the end of the trial given
that some alternative H1 is true. This addresses how large the true effect must be to
reverse the observed “negative” trend. If the probability of a trend reversal is very low
for a realistic range of alternative hypotheses, trial termination might be considered.

Because there is a small probability that future data may reverse an interim trend,
a slightly greater risk of a Type I or Type II error will exist than would be if the trial
continued to the scheduled end (Halperin et al. 1982). However, it has been shown
that the Type I error is bounded very conservatively by α/γ0 and the Type II error
by β/γ1. For example, if the probability of rejecting the null hypothesis, given the
existing data were 0.85, then the actual Type I error would be no more than 0.05/0.85
or 0.059, instead of 0.05. The actual upper limit is considerably closer to 0.05,
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Table 9.1 Expressions for the intervention effect θ under different outcomes

Outcome Alternative θ Notes

Survival θ � √
D/4log (λC/λT ) D= total events

λC and λT are the hazard rates
in the control and intervention
arms, respectively

Binomial

θ � PC − PT√
2 p̄(1 − p̄)/(n/2)

� (PC − PT )
√
N/4√

p̄(1 − p̄)

� 1/2
(PC − PT )

√
N√

p̄q̄

2n �N , n/arm or N � total
sample size
PC and PT are the event rates
in the control arm and
intervention arm respectively
and p̄ is the common event
rate

Continuous (means)

θ �
(

μC − μT

σ

)√
N/4

� 1/2

(
μC − μT

σ

)√
N

N= total sample size
μC and μT are the mean
response levels for the control
and the intervention arms,
respectively, and σ is the
common standard deviation

but that calculation requires computer simulation. Calculation of these probabilities
is relatively straightforward and the details have been described by Lan and Wittes
(1988). A summary of these methods, using the approach of DeMets (2006), follows.

Let Z(t) represent the standardized statistic or Z value at information fraction t.
The conditional power (CP) for some alternative intervention effect θ , using a critical
value of Zα for a Type I error of alpha, can be calculated as

P[Z(1) ≥ Zα|Z(t), θ ] � 1 − Φ
{∣∣∣Zα − Z(t)

√
t − θ(1 − t)

∣∣∣/
√
1 − t

}

where θ �E(Z(t=1)), the expected value of the test statistic at the full completion
of the trial. The alternative θ is defined for various outcomes in Table 9.1.

If a particular value of the conditional power γ is selected as a “futility cutoff”
then a boundary can also be produced which would indicate that if the test statistic
fell below that, the chance of finding a significant result at the end of the trial is less
than γ (Halperin et al. 1982). For example, in Fig. 9.7 the lower futility boundary
is based on a specified conditional power γ , ranging from 10 to 30% that might be
used to claim futility of finding a positive beneficial claim at the end of the trial. If
the standardized statistic crosses that 20% lower boundary, the conditional power for
a beneficial result at the end of the trial is less than 0.20 for the specified alternative.

Conditional power calculations are done for a specific alternative but in practice, a
monitoring committee would likely consider a range of possibilities. These specified
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Fig. 9.7 Conditional Power
Boundaries: outer
boundaries represent
symmetric O’Brien-Fleming
type sequential boundaries
(α �0.05). Three lower
boundaries represent
boundaries for 10, 20 and
30% conditional power to
achieve a significant (p
<0.05) result of the trial
conclusion (DeMets 2006)

alternatives may range between the null hypothesis of no effect and the prespecified
design based alternative treatment effect. In some cases, a monitoring committee
may consider even more extreme beneficial effects to determine just howmuch more
effective the treatment would have to be to raise the conditional power to desired
levels. These conditional power results can be summarized in a table or a graph, and
then monitoring committee members can assess whether they believe recovery from
a substantial negative trend is likely.

One of the earliest applications of conditional power was in the Coronary Drug
Project (Canner 1981, 1983). In this trial, several treatment arms for evaluating
cholesterol lowering drugs produced negative trends in the interim results. Through
simulation, the probability of achieving a positive or beneficial result was calculated
given the observed data at the time of the interim analysis.

Conditional power calculations were utilized in the Vesnarinone in Heart Failure
Trial (VEST) (Cohn et al. 1998). In Table 9.2, the test statistics for the logrank test are
provided for the information fractions at a series of monitoring committee meetings.
Table 9.3 provides conditional power for VEST at three of the interim analyses. A
range of intervention effects was used including the beneficial effect (hazard rate less
than 1) seen in a previous vesnarinone trial to the observed negative trend (hazard
rates of 1.3 and 1.5). It is clear that the conditional power for a beneficial effect was
very low by the midpoint of this trial for a null effect or worse. In fact, the conditional
power was not encouraging even for the original assumed effect. As described by
DeMets et al. (1999) the trial continued beyond this point due to the existence of a
previous trial that indicated a large reduction in mortality, rather than the harmful
effect observed in VEST.

The Beta-Blocker Heart Attack Trial (DeMets et al. 1984; Beta-Blocker Heart
Attack Trial Research Group 1982) also made considerable use of this approach.
As discussed, the interim results were impressive with 1 year of follow-up still
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Table 9.2 Accumulating
results for the Vesnarinone in
Heart Failure Trial (Cohn
et al. 1998)

Information fraction Log-rank Z-value (high dose)

0.04 +0.99

0.19 −0.25

0.34 −0.23

0.50 −2.04

0.60 −2.32

0.67 −2.50

0.84 −2.22

0.90 −2.43

0.95 −2.71

1.0 −2.41

Table 9.3 Conditional power
for the Vesnarinone in Heart
Failure Trial (Cohn et al.
1998)

Information fraction

RR 0.50 0.67 0.84

0.50 0.46 <0.01 <0.01

0.70 0.03 <0.01 <0.01

1.0 <0.01 <0.01 <0.01

1.3 <0.01 <0.01 <0.01

1.5 <0.01 <0.01 <0.01

RR relative risk

remaining. One question posed was whether the strong favorable trend (Z=2.82)
could be lost during that year. The probability of rejecting H0 at the scheduled end
of the trial, given the existing trend (γ 0), was approximately 0.90. This meant that
the false positive or Type I error was no more than α/γ 0 �0.05/0.90 or 0.056.

9.3 Deciding to Terminate Early

There are five common reasons to terminate a trial earlier than scheduled (Fleming
and DeMets 1993; Ellenberg et al. 2003; DeMets et al. 2006; Canner 1981, 1983).
First, the trial may show serious adverse effects in the entire intervention group or in a
dominating subgroup. Second, the trial may indicate greater than expected beneficial
effects. Third, it may become clear that a statistically significant difference by the end
of the study is improbable, sometimes referred to as being futile. Fourth, logistical
or data quality problem may be so severe that correction is not feasible or participant
recruitment is far behind and not likely to achieve the target. Fifth, the question
posed may have already been answered elsewhere or may no longer be sufficiently
important. A few trials have been terminated because the sponsor decided the trial
was no longer a priority but this causes serious ethical dilemmas for investigators
and disregards the participants’ contribution.
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A decision to terminate a study early must bemade with caution and in the context
of all pertinent data. A number of issues or factors thatmust be considered thoroughly
as part of the decision process include:

1. Possible differences in prognostic factors between the two groups at baseline.
2. Any chance of bias in the assessment of response variables, especially if the trial

is not double-blind.
3. The possible impact of missing data. For example, could the conclusions be

reversed if the experience of participants with missing data from one group were
different from the experience of participants with missing data from the other
group?

4. Differential concomitant intervention and levels of participant adherence.
5. Potential adverse events and outcomes of secondary response variables in addi-

tion to the outcome of the primary response variable.
6. Internal consistency. Are the results consistent across subgroups and the various

primary and secondary outcome measures? In a multicenter trial, the monitoring
committee should assess whether the results are consistent across centers. Before
stopping, the committee should make certain that the outcome is not due to
unusual experience in only one or two centers.

7. In long-term trials, the experience of the study groups over time.
8. The outcomes of similar trials.
9. The impact of early termination on the credibility of the results and acceptability

by the clinical community.

The early termination of a clinical trial can be difficult (Fleming andDeMets 1993;
Canner 1981, 1983; DeMets 1984, 1990; Freidlin and Korn 2009; Goodman 2009;
Montori et al. 2005; Pocock 1992, 2005), not only because the issues involvedmay be
complex and the study complicated but also because the final decision often lies with
the consensus of a committee. The statistical methods discussed above are useful
guides in this process but should not be viewed as absolute rules. A compilation of
diverse monitoring experiences is available (DeMets et al. 2006). A few examples
are described here to illustrate key points.

One of the earlier clinical trials conducted in the United States illustrates how con-
troversial the decision for early termination may be. The University Group Diabetes
Program (UGDP) was a placebo-control, randomized, double-blind trial designed to
test the effectiveness of four interventions used in the treatment of diabetes (Gilbert
1975; Knatterud et al. 1971; Kolata 1979; Meinert et al. 1970). The primary mea-
sure of efficacy was the degree of retinal damage. The four interventions were: a
fixed dose of insulin, a variable dose of insulin, tolbutamide and phenformin. After
the trial was underway, study leaders formed a committee to review accumulating
safety data. This committee membership consisted of individuals involved in the
UGDP and external consultants. The tolbutamide group was stopped early because
the monitoring committee thought the drug could be harmful and did not appear to
have any benefit (Meinert et al. 1970). An excess in cardiovascular mortality was
observed in the tolbutamide group as compared to the placebo group (12.7% vs.
4.9%) and the total mortality was in the same direction (14.7% vs. 10.2%). Analysis
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of the distribution of the baseline factors known to be associated with cardiovascular
mortality revealed an imbalance, with participants in the tolbutamide group being at
higher risk. This, plus questions about the classification of cause of death, drew con-
siderable criticism. Later, the phenformin group was also stopped because of excess
mortality in the control group (15.2% vs. 9.4%) (Gilbert 1975). The controversy led
to a further review of the data by an independent group of statisticians. Although they
basically concurred with the decisions made by the UGDP monitoring committee
(Gilbert 1975), the debate over the study and its conclusion continued (Kolata 1979).
This trial certainly highlighted the need for an independent review of the interim data
to assess safety.

As discussed earlier, the CDP experience also warns against the dangers of stop-
ping too soon (Canner 1981; The Coronary Drug Project Research Group 1975).
In the early months of the study, clofibrate appeared to be beneficial, with the sig-
nificance level reaching or exceeding 5% on five monitoring occasions (Fig. 9.1).
However, because of the repeated testing issue described earlier, the decision was
made to continue the study and closely monitor the results. The early difference was
not maintained, and at the end of the trial the drug showed no benefit over placebo.
It is notable that the mortality curves shown in Fig. 9.2 do not suggest the wide
swings observed in the interim analyses shown in Fig. 9.1. The fact that participants
were entered over a period of time and thus had various lengths of follow-up at
any given interim analysis, explains the difference between the two types of anal-
yses. The decision-making process during the course of the CDP (The Coronary
Drug Project Research Group 1970) has been reviewed (DeMets et al. 2006; Can-
ner 1981; The Coronary Drug Project Research Group 1975; The Coronary Drug
Project Research Group 1970, 1973). Three of the interventions were terminated
early because of potential adverse effects and no apparent benefit. One of the issues
in the discontinuation of the high dose estrogen and dextrothyroxine interventions
(The Coronary Drug Project Research Group 1970, 1972) concerned subgroups of
participants. In some subgroups, the interventions appeared to cause increased mor-
tality, in addition to having a number of other adverse effects. In others, the adverse
effects were present, but mortality was only slightly reduced or unchanged. The
adverse effects were thought to more than outweigh the minimal benefit in selected
subgroups. Also, positive subgroup trends in the dextrothyroxine armwere not main-
tained over time. After considerable debate, both interventions were discontinued.
The low dose estrogen intervention (The Coronary Drug Project Research Group
1973) was discontinued because concerns over major toxicity. Furthermore, it was
extremely improbable that a significant difference in a favorable direction for the
primary outcome (mortality) could have been obtained had the study continued to
its scheduled termination. Using the data available at the time, the number of future
deaths in the control group was projected. This indicated that there had to be almost
no further deaths in the intervention group for a significance level of 5% to be reached.

Pocock (1992) also warns about the dangers of terminating trials too early for ben-
efit, reflecting on a systematic review of trials stopped early (Montori et al. 2005). At
an early interim analysis, the Candesartan in Heart failure Assessment of Reduction
in Mortality andMorbidity (CHARM) trial (Pocock et al. 2005) had a 25%mortality



256 D. M. Reboussin and D. L. DeMets

benefit (p<0.001) from candesartan compared to a placebo control, but for a vari-
ety of reasons the trial continued and found after a median of 3 years of follow-up
only a 9% nonsignificant difference in mortality. Continuing the trial revealed that
the early mortality benefit was probably exaggerated and allowed other long-term
intervention effects to be discovered. In general, trials stopped early for benefit often
do not report in sufficient detail the rationale for early termination and often show
implausibly large intervention effects based on only a small number of events (Frei-
dlin and Korn 2009). This phenomenon is well recognized (Goodman 2009). Thus,
while there are sound ethical reasons to terminate trials early because of benefit,
these decisions must be cautioned by many examples showing that early trends not
being reliable or sustainable. Nevertheless, there is a natural tension between getting
the estimate of treatment benefit precise and allowing too many participants to be
exposed to the inferior intervention (Freidlin and Korn 2009). Statistical methods
are useful as guidelines but not adequate as rules and the best approach based on
experience is to utilize a properly constituted monitoring committee, charged with
weighing the benefits and risks of early termination.

Some of the most challenging monitoring scenarios involve an emerging negative
trend for the primary outcomes. The PROMISE and PROFILE experiences described
below illustrate this, but they are not unique (DeMets et al. 1999; Furberg et al. 1993;
Pater 1994; Swedberg et al. 1992; Sylvester et al. 1994). Trials with persistent non-
significant negative trends may have no real chance of reversing and indicating a
benefit from intervention. In some circumstances, that observation may be sufficient
to end the trial since if a result falls short of establishing benefit, the intervention
would not be used. For example a new expensive or invasive intervention would
likely need to be more effective than a standard intervention to be used. In other
circumstances, a neutral result may be important, so a small negative trend, still con-
sistent with a neutral result, would argue for continuation. If a treatment is already
in clinical use on the basis of other indications, as in the case of the drugs used in
PROMISE and PROFILE, an emerging negative trendmay not be sufficient evidence
to alter clinical practice. If a trial terminates early without resolving convincingly
the harmful effects of an intervention, that intervention may still continue to be used.
This practice would put future patients at risk, and perhaps even participants in the
trial as they return to their usual healthcare system. In that case, the investment of
participants, investigators, and sponsors would not have resolved an important ques-
tion. There is a serious and delicate balance between the responsibility to safeguard
the participants in the trial and the responsibility for all concurrent and future patients
(DeMets et al. 1999).

TheCardiacArrhythmia Suppression Trial (CAST)was amulticenter randomized
double blind placebo-controlled trial evaluating the effects of three drugs on total
mortality and sudden death (The Cardiac Arrhythmia Suppression Trial (CAST)
Investigators 1989). Epidemiological data showed an association between the pres-
ence of irregular ventricular heartbeats or arrhythmias and the incidence of sudden
death, presumably due to serious arrhythmias. Encainide, flecainide, moricizinewere
among the drugs developed to suppress such arrhythmias and they became widely
used after approval by the drug regulatory agency for that indication. At the first
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monitoring committee review, a mortality trend began to appear but the number of
events was relatively small (Friedman et al. 1993). Because the monitoring com-
mittee decided no definitive conclusion could be reached on the basis of so few
events, it elected to remain blinded to the treatment assignment. However, before the
next scheduled meeting, the statistical center alerted the committee that the trends
continued and were now nearing the CAST monitoring criteria for stopping. In a
conference call meeting, the monitoring committee became unblinded and learned
that the trends were in the unexpected direction, that is, toward harm from the active
treatment. A number of confirmatory and exploratory analyses were requested by
the monitoring committee and a meeting was held a few weeks later to discuss fully
these unexpected results. After a thorough review, results were consistent across out-
come variables and participant subgroups, no biases could be identified which would
explain these result, and the encainide and flecainide arms of the trial were termi-
nated after only 15% of the expectedmortality events observed because of an adverse
effect (63 deaths in the two active arms vs. 26 deaths in the corresponding placebo
arms). The third arm (moricizine) continued since there were no convincing trends at
that time, but it too was eventually stopped due to adverse experiences (The Cardiac
Arrhythmia Suppression Trial II Investigators 1992). The CAST experience points
out that monitoring committees must be prepared for the unexpected and that large
trends may emerge quickly. Even in this dramatic result, the decision was not simple
or straightforward. Many of the issues discussed earlier were covered thoroughly
before a decision was reached (Friedman et al. 1993).

The Women’s Health Initiative (WHI) was one of the largest and most complex
trials ever conducted, certainly in women (The Women’s Health Initiative Steering
Committee 2004; Writing Group for the Women’s Health Initiative Investigators
2002). This partial factorial trial evaluated three interventions in postmenopausal
women: (1) hormone replacement therapy (HRT), (2) a low fat diet, and (3) cal-
cium and vitamin D supplementation. Each intervention, in principle, could affect
multiple organ systems, each with multiple outcomes. For example, HRT was being
evaluated for its effect on cardiovascular events such as mortality and fatal and non-
fatal myocardial infarction. HRT can also affect bone density, the risk of fracture,
and breast cancer. The HRT component was also stratified into those with an intact
uterus, who received both estrogen and progestin, and those without a uterus who
received estrogen alone. The estrogen–progestin arm was terminated early due to
increases in deep vein thrombosis, pulmonary embolism, stroke, and breast cancer
and a trend toward increased heart disease as shown in Fig. 9.8 although there was
a benefit in bone fracture as expected (Writing Group for the Women’s Health Ini-
tiative Investigators 2002). There was no observed difference in total mortality or
the overall global index, the composite outcome defined in the protocol, as shown in
Fig. 9.9. TheWHI is an excellent example of the challenges of monitoring trials with
composite outcomes where component trends are not consistent. In such cases, the
most important or most clinically relevant component may have to dominate in the
decision process, even if not completely specified in the protocol or the monitoring
committee charter. Later, the WHI estrogen-alone arm was also terminated, primar-
ily due to increased pulmonary embolus and stroke, though there was no difference
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in myocardial infarction or total mortality (The Women’s Health Initiative Steer-
ing Committee 2004). The formal monitoring process had to account for multiple
interventions, multiple outcomes and repeated testing.

The Justification for the Use of Statin in Prevention: An Intervention Trial Evalu-
ating Rosuvastatin (JUPITER) trial compared a statin agent, which lowers both LDL
cholesterol and C-reactive protein, in 17,802 patients with elevated high-sensitivity
C-reactive protein levels butwithout hyperlipidemia (Ridker et al. 2008). The primary
outcome was the occurrence of the combination of myocardial infarction, stroke,
arterial revascularization, hospitalization for unstable angina, or death from cardio-
vascular causes. The trial, which was stopped about 3 years early after 2 years of
follow-up, found a clear lowering of both LDL and C-reactive protein and demon-
strated a corresponding reduction in the primary outcome (hazard ratio (HR) of 0.56,
p <0.00001). Similar reductions were observed for myocardial infarction (HR, 0.46),
for stroke (HR, 0.52), for revascularization or unstable angina (HR, 0.53), for the
combined end point of myocardial infarction, stroke, or death from cardiovascular
causes (HR, 0.53), and for death from any cause (HR, 0.80), all being statistically
significant. In addition, all of the major predefined subgroups were consistent. Still,
there was criticism that the cardiovascular mortality was not significant even though
overall mortality was (Ridker 2009; Voss et al. 2009). This raises the difficult ques-
tion when using combined outcomes as the primary if each component or at least
some components should also be statistically significant before terminating a trial. In
general, trials are not designed to demonstrate statistically significant results for any
of the components usually due to low events for each of them. To do so would require
trials much larger than the one designed. If a component of the combined outcome
is of paramount importance, then that outcome should be established as the primary
and the trial designed accordingly. In the case of the JUPITER trial, the results for the
primary outcome and nearly all of its components as well as overall mortality appear
to be compelling for a trial to be terminated early. This is especially the case when
total mortality is significantly reduced in addition to the primary. Another approach
to a focus on a component of the primary outcome was in the CHARM program, in
which three trials that comprised the overall program each had cardiovascular death
and heart failure hospitalization as its primary outcome, and the overall program
was powered to assess all-cause mortality. The monitoring committee focused on
the effect on mortality in the overall program as the criterion for early termination
(Ridker 2009).

In some instances, a trial may be terminated because the hypothesis being tested
has been convincingly answered by other ongoing trials. This was the case with trials
evaluating warfarin in the treatment of atrial fibrillation (Tegeler and Furberg 2006).
Between 1985 and 1987, five trials were launched to evaluate warfarin to prevent
strokes in participants with atrial fibrillation. Three of the trials were terminated
early by 1990, reporting significant reductions in embolic complications. One of
the remaining trials was also terminated early, largely due to the ethical aspects of
continuing trials when the clinical question being tested has already been answered.
The window of opportunity to further evaluate the intervention had closed.
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Fig. 9.8 WHI Kaplan-Meier Estimates of Cumulative Hazards for Selected Clinical Outcomes
(Writing Group for the Women’s Health Initiative Investigators 2002). HR�hazard ratio; nCI�
nominal confidence interval; aCI�adjusted confidence interval
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Fig. 9.9 WHIKaplan-Meier Estimates ofCumulativeHazards forGlobal Index andDeath (Writing
Group for the Women’s Health Initiative Investigators 2002). HR�hazard ratio; nCI�nominal
confidence interval; aCI�adjusted confidence interval

As we have already discussed, the decision to terminate a trial is complex. It
is never based on a single outcome and may require more than one monitoring
committee meeting before a recommendation to terminate is reached. Timing of
the recommendation can also be questioned by those external to the trial. In the
Investigation of Lipid Level Management to Understand its Impact in Atheroscle-
rotic Events (ILLUMINATE) trial (Barter et al. 2007), a new agent torcetrapib, a
cholesterylester transfer protein inhibitor that increases HDL cholesterol, was tested
to reduce major cardiovascular events. ILLUMINATE was a randomized, double-
blind study involving 15,067 patients at high cardiovascular risk, receiving either
torcetrapib plus atorvastatin (a statin which lowers LDL cholesterol) or atorvastatin
alone. The primary outcome was defined as time to death from coronary heart dis-
ease, nonfatal myocardial infarction, stroke, or hospitalization for unstable angina,
whichever occurred first. ILLUMINATE clearly demonstrated an increase in HDL,
which would be expected to cause a reduction in cardiovascular risk. However, the
trial was terminated early by the monitoring committee and the investigators because
of an increased risk of death and cardiac events in patients receiving torcetrapib
(Barter et al. 2007). To conclude that torcetrapib improved HDL but caused harmful
clinical effects was of course disappointing since this was the first testing of an excit-
ing new class of drugs. However, the timing of the recommendation to terminate
was challenged by a regulatory agency, which recognized the complexity of such
decisions but argued that the trial could and perhaps should have been terminated
earlier (Hedenmalm et al. 2008). Determining at what point there is sufficient and
compelling evidence to make a recommendation for termination is often challeng-
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ing. Monitoring committees do not have the benefit of hindsight while in process of
monitoring a trial.

On occasion, trials may have achieved a significant benefit, or show strong trends
for benefit, but the monitoring committee recommended early termination for safety
reasons. Two trials, the Thrombin Receptor Antagonist in Secondary Prevention
of Atherothrombotic Ischemic Events (TRA 2P) trial (Morrow et al. 2012) and the
Thrombin Receptor Antagonist for Clinical Event Reduction inAcute Coronary Syn-
drome (TRACER) trial (Tricoci et al. 2011) provide examples of such instances. Both
trials evaluated a new platelet inhibition agent vorapaxar compared with placebo.
TRA2Phad the primary outcome as a composite of death fromcardiovascular causes,
myocardial infarction, or stroke. TRACER had a composite outcome of death from
cardiovascular causes, myocardial infarction, stroke, recurrent ischemia with rehos-
pitalization, or urgent coronary revascularization. Both trials, TRA 2P with 26,449
patients and TRACER with 12,944 patients, had statistically significant beneficial
effects in their respective primary outcomes (HR of 0.87 and 0.89). In TRACER,
there were 1031 primary events in the treated patients and 1102 in the placebo con-
trols. The secondary composite of cardiovascular death, MI and stroke had 822 vs
910 events (p �0.02). However, the rates of intracranial bleeding was 1.2% versus
0.2% yielding a hazard ratio of 3.39 (p <0.001). The monitoring committees for both
trials decided that the serious bleeding risks overwhelmed any emerging benefits and
recommended early termination and/or modification of the protocol for unacceptable
bleeding complications including intracranial hemorrhage.

In all of these studies, the decisions were difficult and involved many analyses,
thorough review of the literature, and an understanding of the biological processes.
As described above, a number of questions must be answered before serious con-
sideration should be given to early termination. As noted elsewhere, the relationship
between clinical trials and practice is very complex and this complexity is evident in
the monitoring process (Liberati 1994; O’Neill 1994).
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Chapter 10
Design and Data Analysis
of Multiregional Clinical Trials
(MRCTs)—Theory and Practice

Chi-Tian Chen, Hsiao-Hui Tsou, Jung-Tzu Liu, Chin-Fu Hsiao, Fei Chen,
Gang Li and K. K. G. Lan

10.1 Introduction

In recent years, multiregional clinical trial (MRCT) has become a preferred strategy
to develop new medicines. Implementing the same protocol to include subjects from
many geographical regions around the world, MRCTs could speed up the patient
enrollment, thus resulted in a quicker drug development and obtain faster approval
of the drug globally. At the same time, the MRCT strategy is expected to main-
tain the sample size at the similar level, i.e., without significantly driving up the
cost and slowing down the speed of the development. As the draft ICH E17 (2016)
states: ‘The underlying assumption of the conduct of MRCTs is that the treatment
effect is clinically meaningful and relevant to all regions being studied’, which is
often referred to as consistency among regions. The proper consistency assessment
is closely related the sample size and the number of regions as well as the approach
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to combine the treatment effects among regions. Thus, how to combine evidence of
treatment effect from different regions is an increasingly important topic for consid-
eration in clinical drug development. In addition, it is of interest to explore how to
incorporate the possible regional differences into trial planning. Three models are
proposed in literature for combining treatment effects from different regions: the
fixed effect model (FEM); the continuous random effects model (CREM); and the
discrete random effects model (DREM).

In this chapter we will discuss these three models, focusing on comparison of
DREM and CREM and their operational characteristics in MRCTs. And review the
drop-min approach for analyzing the data when a region in an MRCT is considered
as inconsistent to the others.

10.2 FEM, CREM and DREM Models

Let us first introduce notations for the three models. Suppose anMRCT is conducted
inM regions for comparing a test product, T, with a placebo control, C. The sample
sizes for groups T and C at region i are NTi and NCi , respectively. The total sample
sizes for groups T and C are NT � ∑M

i�1 NTi and NC � ∑M
i�1 NCi , respectively. We

assume thatNT �NC �N , and thatNTi �NCi �Ni. LetXTij andXCij be the responses
the for the jth subject in ith region of T and C, respectively. They can be expressed
as XTi j � μT i j + εT i j , and XCi j � μCi j + εCi j where εT i j and εCi j are assumed to
be independent normally distributed with mean 0 and variance σ 2, i �1, 2, …, M,
j=1,…, Ni. We denote the treatment effect in the ith region as vi � μT i − μCi , for
i �1, 2,…, M. Naturally, vi is estimated by v̂i � XTi − XCi , where XTi and XCi

are the sample means of T and C, respectively. These three models treat vi in three
different ways as we will illustrate in next subsections.

10.2.1 Fixed Effect Model

Traditionally, a common treatment effect and an equal variability of the primary
endpoint across regions are assumed for the design and evaluation ofMRCTs, such as
an approach to rationalize partitioning the total sample size among the regions (Kawai
et al. 2008), consistency criteria approach (Ko et al. 2010), statistical consideration
from an Asian perspective (Tsou et al. 2010), similarity assessment using Bayesian
most plausible prediction (Tsou et al. 2011), and a consistency approach across all
participating regions (Tsou et al. 2012).

A fixed effect model (FEM) follows the traditional approach and assumes that
all regional treatment effects are equal, i.e., v1 � · · · � vM � v. And v is called
overall treatment effect. Let v̂i be the estimate of vi , We are interested in testing the
following hypothesis of overall treatment effect
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H0 : v � 0 versus HA : v > 0. (10.1)

Then we have a standard two-sample Z test

ZFEM � v̂FEM

σ
√
1/N + 1/N

(10.2)

where v̂FEM � ∑M
i�1 Ni v̂i/N is the estimate of v under FEM. The null hypothesis

would be rejected at the significance level α if the test statistic ZFEM>z1−α , where
z1−α denotes the (1 − α)th percentile of the standard normal distribution. Therefore,
the required total sample size per group, NFEM, for detecting an expected treatment
effect v =� at the significance level α and with power 1 − β for the MRCT under
FEM would be NFEM �2(z1−α+z1−β)2σ2/�2.

10.2.2 Continuous Random Effects Model

In practice, regional variability caused by differences in ethnicity, environment, cul-
ture, andmedical practice has been observed andmay have impact upon amedicine’s
effect. An example regarding the possible impact of ethnic factors on the responses to
therapeutics is the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor
gefitinib (Iressa). The Iressa trials have revealed significant variability in the response
to gefitinib, with higher responses observed in Japanese patients than in a predomi-
nantly European population (27.5% vs. 10.4%) (Fukuoka et al. 2003).

Some insightful articles, such as Hung et al. (2010) and Wang and Hung (2012),
have discussed regional heterogeneity and raised concerns that the assumption of a
homogeneous treatment effect across regions may not be appropriate for MRCTs.
Thus, many statisticians applied random effects model, which was originally
proposed by DerSimonian and Laird for meta-analysis (DerSimonian and Laird
1986) , to MRCTs and assumed that regional treatment effects are random sample
from a normal distribution (Chen et al. 2012; Quan et al. 2010). Here, this random
effects model inMRCTs is denoted as the continuous random effect model (CREM).
Many researchers intended to use CREM for solving the problem of heterogeneous
treatment effects across regions. However, CREM assume that all regional treatment
effects are unconditionally equal. Fundamentally, there is no difference between
CREM and FEM. Therefore, CREM may be inappropriate for MRCTs when
regional heterogeneity is considered (Please see Sect. 10.4.1. for the details).

Under CREM, regional treatment effects are assumed as a random sample from
a normal distribution. That is,

v
∧

i |vi ∼ N
(
vi , 2σ

2/Ni
)
and vi ∼ N

(
v, τ 2

)
, (10.3)

where N(μ, ζ 2) represents a normal distribution with mean μ and variance ζ 2, and
Ni is sample size per group in region i, i=1,…, M. Conditionally, as an estimate of
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vi , v̂i is normally distributed with mean vi and variance 2σ2/Ni. Unconditionally, as
an estimate of vi , v̂i is normally distributed with mean vi and variance 2σ2/Ni +τ 2.

Under CREM, the overall treatment effect is a weighted average of
each regional treatment effects, vCREM � ∑M

i�1 ri vi , where ri �
[var(vi )]

−1/
∑M

i�1 [var(vi )]
−1. It is estimated by v̂CREM � ∑M

i�1 r̂i v̂i . The weights

r̂i � [
var
(
v̂i
)]−1

/
∑M

i�1

[
var
(
v̂i
)]−1

, where var (v̂i ) � 2σ 2/Ni + τ 2. Thus, the
weights r̂i are proportional to the reciprocal sample variance of the regional means.
Under CREM, the test statistic for the above hypothesis is

ZCREM � v̂CREM
√
var
(
v̂CREM

) , (10.4)

where the variance of v̂CREM is var
(
v̂CREM

) � 1/
∑M

i�1

[
var
(
v̂i
)]−1

. The null hypoth-
esis would be rejected at the significance level α if the test statistic ZCREM>z1−α ,
where z1−α denotes the (1 − α)th percentile of the standard normal distribution.
Furthermore, the required sample size per arm, NCREM , for detecting an expected
treatment effect v �� at the significance level α and with power 1 − β for the
MRCT under CREM is obtained by solving the following equation

(
�

z1−α + z1−β

)2

� 1
∑M

i�1

(
2σ2
Ni

+ τ 2
)−1 , (10.5)

Consider that v̂CREM is asymptotically unbiased for v, with variance approxi-
mately equal to 1/

∑M
i�1

[
var
(
v̂i
)]−1

, Chen et al. (2012) modified the test statis-
tic with a t distribution when the number of regions is small. It is taken as
TCREM � v̂/

√
S/(M − 1) ∼ tM−1 with S � ∑M

i�1 r̂i
(
v̂i − v̂CREM

)2
/
∑M

i�1 r̂i under
H0, where tn represents the t distribution with degrees of freedom n. The total sample
size required per group would be derived based on a non-central t distribution under
the alternative hypothesis.

10.2.3 Discrete Random Effects Model (DREM)

Recognizing that regional treatment differences are typically not random samples
from a normal distribution, Lan and Pinheiro (2012) proposed a discrete random
effects model (DREM) to account for between-region variability for continuous
responses. Lan et al. (2014) further applied DREM to time-to-event and binary
responses. In this section, we introduce the discrete random effects model for contin-
uous responses. Suppose that the patient population is divided into disjoint clinical
regions S1, S2,…, SM in an MRCT. The probability of a patient being randomly
assigned to the ith region in the trial is P(Si)�Wi, where

∑M
i�1 Wi � 1, for i=1,
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2,…,M. Theoretically, the sample sizes from the s regions are random, but in practice
they can be replaced by the observed values, i.e., wi � Ni/N .

At ith region, the treatment effect is a fixed number vi � μT i − μCi . Let
F be the treatment. Therefore, the treatment effect follows a discrete distribute
P{F � vi } � Wi . The overall treatment effect, v, is defined as the weighted sum
of the regional treatment effects as vDREM � ∑M

i�1 Wivi . The overall treatment
effect is estimated by v̂DREM � ∑M

i�1 Wi v̂i . Correspondingly, the overall within-
region variation and the between-region variation, are

∑M
i�1 Wi2σ 2 � 2σ 2 and

∑M
i�1 Wi (vi − v)2, respectively.
Considering the same hypothesis in Eq. (10.1), the test statistics is given by

ZDREM � v
∧

DREM
√
var
(
v
∧

DREM
) � v

∧

DREM
√(

2σ 2 + τ 2
)
/N

(10.6)

under H0. The test statistic ZDREM is approximately normally distributed with a
reasonably large sample size. The null hypothesis H0 is rejected at the significance
level α and the treatment T is claimed beneficial if the test statistic ZDREM >z1−α ,
where z1−α denotes the (1 − α)th percentile of the standard normal distribution.
Therefore, the power function for benefit is given by

PB � P[Benefit] � P(Z ≥ z1−α|N , v) � 	

⎛

⎝ v
√(

2σ 2 + τ 2
)
/N

− z1−α

⎞

⎠,

(10.7)

where 	 denotes the cumulative probability function of the standard normal distri-
bution and z1−α ≈ 1.96 if one-sided α � 0.025.

Under DREM, the total required sample size NDREM is planned for detecting an
expected treatment difference v ��>0 at significance level α and power 1 – β,
satisfying

(
�

z1−β + z1−α

)2

� 2σ 2 + τ2

NDREM
. (10.8)

However, the overall treatment difference � is difficult to pre-specify when plan-
ning an MRCT. In practice, all regional treatment effects {vi } are unknown and hard
to pre-specify at design stage. The expected treatment difference � cannot be pre-
assigned. Lan et al. (2014) provided a suggestion to address this issue by assuming
that all the possible values of effects {vi } fall into an interval [A,B]. An over-estimated
τ 2 can be obtained by τ̃ 2 � (B − A)2/4. A possible�may be chosen by (A + B)/2.
Giving values of v, σ 2, using τ̃ 2, a conservative required sample size NDREM can be
acquired.

The right side of Eq. (10.8) is much simpler than that of Eq. (10.5). In other
words, the sample size determination under CREM is more complicated than that
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under DREM. This is the difficulty of designing an MRCT in practice by using
CREM. Thus, the required sample size can be determined by

NDREM �
( z1−β + z1−α

�

)2(
2σ 2 + τ2

)
. (10.9)

10.3 Consistency and Inconsistency

The primary objective of an MRCT is to demonstrate the overall treatment effect
based on data from the whole trial. As we mentioned at the beginning of this chapter,
the underlying assumption of MRCTs is the consistency of the treatment effects
across regions so the trial results are applicable to each region. However, it not easy
to define a criterion to confirm a consistent trend of treatment effects in all regions.
In 2007, the Japanese Ministry of Health, Labour, and Welfare (MHLW) published
the “Basic Principles on Global Clinical Trials” guidance for planning and imple-
mentation of global clinical studies. It focuses on how to assess the efficacy of a drug
in all participating regions (the “probability of benefit” introduced in Sect. 10.2.3)
and how to evaluate the possibility of applying the overall trial results to each region
(the “probability of benefit and consistency”) by conducting an MRCT (Ministry of
Health, Labour and Welfare of Japan (MHLW) 2007). The Japanese MHLW guide-
line provided two criteria for establishing the efficacy in a specific region and the
consistency in efficacy among regions. LetD be the estimated overall treatment differ-
ence of all participants, and Di be the treatment effect of the ith region, respectively;
i=1, 2, …,M.

Method 1 (M1): Di/D >π (with π ≥0.50) for a specific region i.
Method 2 (M2): Di >0 for all i.

Method 1 illustrates the consistency between the results of the Japanese region and
the overall result. If the ratio of the treatment effect estimate of the Japanese region
to that of the overall regions is greater than 0.5, the consistent trend of treatment
effects across regions is confirmed. Method 2 assesses the consistency among all
participating regions in anMRCT. It describes consistency in the sense that in addition
to overall treatment in all regions combined, the estimate of the treatment effect in
each region needs to exceed zero.

A significant overall result in an MRCT would likely be regarded as a successful
global trial. However, local regulatory authorities may want to confirm the consistent
trend of the treatment effect in the region under their administration. If the “proba-
bility of benefit and consistency (PBC)” is considered at the planning stage, the PBC
result can be directly applied in the MRCT. PBC may be a high hurdle for MRCTs.
Therefore, at the planning stage, regional differences that would cause inconsistency
should be examined via genetic and epidemiology research, and regional heterogene-
ity research. Regions that are potentially inconsistent should not be included in the
MRCT.
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Many research articles have discussed approaches to assess a consistent trend
of treatment effects considering methods 1 and 2. Kawai et al. (2008) proposed
an approach to assess the consistency criterion by assuming a uniform treatment
effect across regions; and Tanaka et al. (2012) focused on qualitative consistency.
Both papers are based on method 2 of the MHLW. Other articles have attempted to
describe approaches to assess the consistency of treatment effects based on method
1 of the MHLW, such as Chen et al. (2012), Quan et al. (2010), Uesaka (2009),
Chen et al. (2010), Ko et al. (2010), Tsou et al. (2010, 2011, 2012), and Quan et al.
(2010, 2013). Next, we assume that treatment effects follow the DREM, and extend
the consistency consideration based on method 2 of the MHLW to construct the
“probability of benefit and consistency.”

10.3.1 Probability for Consistency (PC) Under DREM

In Sect. 10.2.3, we introduced the power for benefit (PB). Here, we extend this to
the power for benefit and consistency. Let us define the following notation.

PC � P[Consistency (M2)|N , θ ] � P(v̂i > 0, for all i |N , v),

where θ � (σ 2, τ 2, v1, . . . , vM , W1, . . . , WM ); Wi denotes the proportion of
patients; i �1, 2, …, M; and

∑
Wi �1.

Kawai et al. (2008) derived the probability of consistency based on method 2
under the uniform treatment effect across regions as follows.

PCFIX � P[v̂1 > 0, . . . , v̂M > 0] �
M∏

i�1

	
(√

Wi · (z1−α + z1−β

))

Here, PCFIX depends only on the number of regions M and the proportion of
patients Wi in all regions.

Under DREM, the power of the consistency based on method 2 can be derived as
follows. For the ith region, i=1,…, M, the test statistic is

Zi � v̂i
√(

2σ2 + τ2
)
/NWi

,

and Zmin denotes the minimum of the M statistics, Zmin �min{Z1, Z2,…, ZM}.
Therefore, the power for consistency (PC) under DREM is given by

PC � P[Consistency (M2)|N , θ ] � P(v̂i > 0, for all i |N , θ ) � P(Zmin > 0)
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⎧
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⎩
	

⎛

⎝ vi
√

2σ2+τ2

N ·Wi

⎞

⎠

⎫
⎬

⎭
, (10.10)

where Z � ∑M
i�1

√
Wi Zi and 	 denotes the cumulative probability function of the

standard normal distribution. If we replace N as NDREM in Eq. (10.9), the PC in
Eq. (10.10) can be rewritten as

PC �
M∏

i�1

	

(√
Wi · vi

�
· (z1−α + z1−β

)
)

. (10.11)

Under DREM, Eqs. (10.10) and (10.11) show that PC depends on the number of
regions, sample size proportions {Wi}, and treatment effects {vi} in all regions,
within-group variance σ 2, and between-region variance τ 2. Moreover, PC is an
increasing function of the effect size vi/(σ 2 + τ 2) for a fixed N .

10.3.2 Optimal Allocation Among Regions to Maximize PC

When planning an MRCT, the weights Wi should be determined for efficientively
demonstrating the efficacy and consistency of the test drug. The determination of
weights {Wi, i=1,…, M} is a better approach than relying on a decision-maker’s
preferences. By maximizing power for consistency (PC) under DREM, an optimal
allocation of patients among regions can be obtained. Liu et al. (2016) showed that
PC under DREM is maximized when

√
W1 · v1 � · · · � √

WM · vM (Liu et al.
2016). As we have seen, the optimal allocation {Wi} only depends on the values of
{
√
Wi · vi} under DREM. A special case is that all regional effects are equal and

PC is maximized when W1 � · · · � WM � 1/M , which is reduced to the finding in
Kawai et al. (2008).

10.3.3 Probability for Benefit and Consistency (PBC)

Now we consider a more complex issue on consistency assessment, which is the
evaluation of probability for benefit and consistency (PBC). Obviously, this is more
difficult than considering only probability for benefit (PB) or the probability for
consistency (PC). In this section, we define the PBC using M2 consistent criterion
of MHLW (2007).

For a fixed N , the power for benefit and consistency (PBC) is denoted by
PBC(N)�P[Z > z1−α & Zmin >0 | N]. Let parameter space ��{All θ � (Wi,
vi , i �1, 2,…, M) under consideration}. The theoretical formula of PBC(N , θ ) is
derived as
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PBC(N , θ ) �

⎧
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dk uk
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⎫
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(10.12)

where ci � −vi√
(2σ2+τ2)/Ni

, di � √
Wi , A � z1−α − v√

(2σ2+τ2)/N
, and i �1, 2, …, M

(Liu et al. 2016). The theoretical formula of PBC(N , θ ) shows that PBC increases
with N for any fixed θ . Liu et al. (2016) pointed out that PBC(N , θ )�PC(N , θ ) ×
P[Z > z1−α | N , θ , Zmin >0], where P[Z > z1−α | N , θ , Zmin >0] indicates the statistical
power conditioning on Zmin >0. On the other hand, when PBC and PC are known the
conditional power P[Z > z1–α | N , θ , Zmin >0] could be calculated. Table 10.1 shows
the PBC and PC, along with the conditional power P[Z > z1−α | N , θ , Zmin >0] under
DREM for various values of θ , including theoretical and simulated values. Simulated
values are in brackets with 100,000 simulation times. The simulated values are very
close to the theoretical values in this case. Moreover, we can see that the conditional
power P[Z > z1−α | N , θ , Zmin >0] is not a constant over � and that PBC increases
with PC.

Table 10.1 Powers PBC(N , θ) and PC(N , θ), and conditional power P[Z > z1−α | N , θ , Zmin >0]

W1 W2 W3 ν3 τ 2 PC(N , θ) PBC(N ,
θ)

P[Z
> z1−α |
N , θ , Zmin
>0]

0.1 0.1 0.8 0.22 0.003 0.5055
(0.5112)

0.4784
(0.4868)

0.9465
(0.9523)

0.15 0.15 0.7 0.23 0.004 0.5537
(0.5592)

0.5279
(0.5357)

0.9533
(0.9580)

0.2 0.2 0.6 0.25 0.006 0.5899
(0.5946)

0.5653
(0.5716)

0.9584
(0.9614)

0.25 0.25 0.5 0.28 0.008 0.6179
(0.6230)

0.5948
(0.6023)

0.9625
(0.9668)

0.3 0.3 0.4 0.31 0.012 0.6413
(0.6471)

0.6195
(0.6281)

0.9660
(0.9706)

Let ν1 �0.05, ν2 �ν �0.2,α �0.025,PB=1−β =0.90, desiredPBC level�γ�0.85 forW1 �W2
<W3. Theoretical values of PC(N , θ) and PBC(N , θ) were calculated by Eqs. (10.10) and (10.12),
respectively. Values in parentheses are the corresponding simulated probabilities with simulation
times�100,000
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10.3.4 Iteration Procedures to Derive N* for a Target Level
of PBC

At the beginning of the design stage, we considered the power of benefit to construct
an MRCT and the required sample size N is calculated by satisfying PB(N , θ )�1 −
β for given parameter θ . Then, a sample size N* is derived considering the benefit
and consistency simultaneously, such as PBC(N*, θ )�γ, where γ is a desired level
(e.g., 85% or 90%). If PBC(N , θ ) ≥ γ , then N* �N is the desired sample size.
If PBC(N , θ ) < γ , then we need to find a larger sample size N* >N so that
PBC(N ∗, θ ) ≥ γ . Liu et al. provided three different algorithms for deriving sample
size at the desired level of power for benefit and consistency (Liu et al. 2016). Here,
we introduce the most efficient one.

Efficient algorithm

Weapply the relationship betweenPBC and sample size underDREMas an algorithm
for searching N* at the desired level γ , yielding

N ∗

N0
�
(
z1−α + zγ

z1−α + zγ0

)2

. (10.13)

This is the iteration procedure we adapted for the derivation ofN*. From PB=1−
β �γ0, we find initial sample sizeN0. If PBC(N0, θ )�γ0, thenN* �N0. Otherwise,
replace N0 with the value of N* derived from Eq. (10.13). Repeat the procedure until
PBC(N*, θ )�γ.

10.4 A Comparison of CREM and DREM

10.4.1 Problems with CREM

CREMassumes that heterogeneous treatment effects are random and follow a normal
distribution with mean v and between-region variability τ 2. CREM assumes that
all vi ’s are unconditionally equal. Fundamentally, there is no difference between
CREM’s and FEM’s framework. To properly estimate τ 2, the number of regions
should not be too small or region should be defined at the country level, according
to (Quan et al. 2017). However, when the number of regions is greater than 5, the
consistency may not be properly assessed. This placed CREM in a dilemma. In
addition, the assumption that the regional treatment effects are random samples from
a normal distribution is questionable.

Another point is that the variances of the treatment effect estimates in DREM and
CREM are completely different. Under DREM and CREM, Var

(
υ̂DREM

)� (2σ 2 +
τ 2)/N and Var

(
υ̂CREM

)�1/�i(2σ 2/Ni+τ 2). It should be noticed that the parameter
being estimated by Var

(
υ̂CREM

)
is not the mean of the discrete distribution F, but



10 Design and Data Analysis of Multiregional Clinical Trials … 279

rather a linear combination of the regional means v1, v2, …, vM (with coefficients
depending on the regional sample sizes and the variance components). When taken
as an estimate of υCREM , υ̂CREM is a biased estimator, except on all regions have
the same mean, i.e., the fixed effects model. We use an example with a discrete prior
to illustrate this. Suppose that we have an MRCT with 600 subjects per arm (total
sample size�1200) in 3 regions. We assume that the within-region variations are
identical for all regions and equal to 25, i.e. σ 2 �25. The following table gives further
assumptions on the underlying parameters and distributions.

i Ni Wi vi

1 120 0.2 8

2 240 0.4 10

3 240 0.4 12

It follows that the overall treatment effect is vDREM=10.4 and the between-region
variation is τ 2 �2.24. Then, the variance of υ̂DREM is Var (υ̂DREM )�0.0908. Under
CREM, the variance of sample means would be 2.66, 2.45, and 2.45, giving the
weights of CREM as ri=(0.3154, 0.3423, 0.3423). For CREM, the overall mean,
vCREM , is 10.05 and the corresponding variance is Var (υ̂CREM )�0.8380. In this
case, vCREM is closed to vDREM , but biased. Hung et al. (2010) mention that the use
of relative sample size weights will provide an unbiased estimator for the population
mean. In addition, the variance of overall mean under CREM is higher than that
under DREM. It means that DREM provides an estimate of the overall treatment
effect with more appropriate precision.

Other possible problems of CREM are simply listed as follows.

(a) The overall mean in CREM may not be easily interpreted or defined in gen-
eral cases, especially to those who lack training in statistics, because of the
complicated weight structure.

(b) When conducting anMRCT, it is possible that some regions join theMRCT one
or two years later or some regions are combined at the end of the trial. Under
CREM, all weights {Wi} are pushed to 1/M as regional sample size Ni tend to
infinity. In such cases, theweights at the endof a trial could be very different from
the pre-determined weights. This violates the one-patient-one-vote principle.

(c) The power for sample size determination under CREMwill never reach 1 when
regional sample size Ni tends infinity.

10.4.2 Comparison Between CREM and DREM: Sample Size
Determination

In practice, the sample size determination plays an important role in implementation
of a clinical trial. For discovering the difficulty in application of CREM, we compare
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Fig. 10.1 Sample-size ratio NCREM/NDREM versus �/σ at τ /σ �0.2 and 0.5

Fig. 10.2 Sample-size ratio NCREM/NDREM versus τ /�

the required sample size in CREMwith that in DREM. We use a numerical example
to compare sample sizes in CREM andDREM. Assume anMRCTwith three regions
and given p1 �p2 �0.3, p3 �0.4, σ =20, α=0.05, and 1 − β =0.9.

Figure 10.1 displays the sample-size ratio as a function of effect size �/σ for
CREM compared with DREM, for ratio τ /σ �0.2 and 0.5. It is clear that the
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Fig. 10.3 Sample-size ratio NCREM/NDREM versus τ /σ

ratio (NCREM /NDREM ) decreases with increasing value of �/σ and increases with
increasing value of τ /σ . The ratio (NCREM /NDREM ) is always higher than 1 when
the between-region variation exists. Moreover, CREM needs a larger sample size
than DREM when the between-region variance is large relative to the within-region
variance, such as τ /σ �0.5.

Figure 10.2 shows the sample-size ratio as a function of effect size�/σ for CREM
compared with DREM. Given fixed value δ, the ratio NCREM/NDREM increases as the
ratio τ /�, while the values of between-region variance τ are increased. In Fig. 10.2,
the sample-size ratio NCREM/NDREM is always larger than 1. The required sample
size in CREM increases much faster than the sample size in DREM with high value
of between-region variance τ . For example, NCREM is almost eight times larger than
NDREM when τ /�>0.5.

For 0≤ τ /σ ≤0.5, and given ��20, σ =20, p1 �p2 �0.3, p3 �0.4, σ =20, α �
0.05, and 1 − β �0.9, the plots of sample-size ratios of CREM and DREM against
values of τ /σ are given in Fig. 10.3. As shown in that figure, NCREM increases
greatly compared with NDREM as between-region variance increases. For instance,
for τ /σ �0.5 the sample size of CREM reaches 6.7-fold compared with that of
DREM. Therefore, high heterogeneity among regions requires higher samples sizes
with CREM than with DREM; this should be taken into account when planning an
MRCT considering regional difference.

As explored in the numerical example, using CREM to estimate sample size
may be inappropriate for designing an MRCT and make it difficult to implement an
MRCT, especially when the between-region variance τ 2 is relatively large. Sample
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size estimated under DREM (NDREM) may be more applicable for detecting the
overall treatment effect �>0.

10.5 Drop-Min Data Analysis

Inconsistency among regions in multi-regional clinical trials (MRCT) is noted in
some drug development programs. The inconsistency may be due to differences
in extrinsic factors; for example, the clopidogrel trial COMMIT (EMA 2015) was
intended to evaluate clopidogrel plus aspirin in comparison with placebo plus aspirin
in treatment of patients with acute myocardial infarction but the use of beta-blockers
caused concerns for the Committee for Medicinal Products for Human Use (CHMP)
regarding relevance of the EU clinical setting because most European patients got
beta blockers. Results thus might not be relevant to European population. Therefore,
CHMP considered the COMMIT trial as supportive rather than pivotal. The incon-
sistency may also be due to intrinsic factors. In the gefitinib development program,
survival effect was only seen in Asian patients which was probably due to different
tumor genetics among Asian and European patients. As a result, gefitinib was only
approved in Japan not in the European Union (Dunder 2009).

Inconsistency may be defined in many different ways. Regardless of the use of the
definitions, the inconsistent regions are the ones with minimum observed treatment
effect. Therefore, the “drop-min”‘ approach is to estimate the treatment effects when
the region with minimum observed treatment effect is excluded from data analysis.
Similar to selecting the winner as a screening process, dropping the loser naturally
introduces bias to naïve statistical inference for the remaining subgroups, centers or
regions.

For an MRCT with M regions, assume that the treatment effect in ith region is
Xi, for i=1, 2,…, M, and Xi follows a normal distribution. Let wi � Ni

N . Denote
that X (i) is the order statistics of Xi, i.e., X (1) <X (2) <…<X (M). If the minimum is
inconsistent to {X (2), …, X (M)} and be dropped, the over treatment result would be
estimated by {X (2),…,X (M)}. However, the estimate of the treatment effect is a biased
estimator based on the remaining regions {X (2), …, X (M)}, because X (1) is dropped.
For example,M=2, letXi~N(0, 1), for i=1, 2.Define thatX (1) is theminimumof {X1,
X2} andX (2) is themaximum of {X1,X2}. If we dropX (1) and the overall meanwould
be estimated by X (2). The expectation and variance of X (2) are E[X (2)]�0.5642 and
Var[X (2)]�0.6817 (1 − 0.59422), respectively. This example shows that E[X (2)] 
�0
and Var[X (2)] 
�1, the biased estimator and variance result in an inappropriate test
statistics. For data analysis, the test statistics should be modified. Shun et al. (2008)
shows that the adjusted Z statistic has a skew normal distribution. Next, we introduce
the drop-min approach for the bias and variance calculation for FEM and DREM.
CREM involves estimating τ 2, which may not be properly estimated due to a small
number of regions in anMRCT. Therefore, we do not recommend for implementation
although a similar drop-min approach applies to CREM.
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Drop-min for FEM. Recall that the fixed effects model assumes v1 � · · · � vM �
v. The estimator of v with X(1) excluded is

ṽ− �
M∑

i�2

N

N − N(i)
w(i)X (i),

where N(i) and w(i) are the sample size and weight associated with X (i), respectively.
Its bias is calculated as

BM � E
[
ṽ− − v

] � E

[
M∑

i�2

N

N − N(i)
w(i)

(
X(i) − v

)
]

.

Denote VM � Var
[
ṽ−
]
. The test statistic for the drop-min approach is

Z∗
M � ṽ− − BM√

VM
.

Although the explicit formula for BM and VM are not available, they can be
calculated via the resampling approach. The confidence intervals of v will also be
constructed.

Suppose σ̂ 2 is an estimate of σ 2. In simulation, set σ 2 � σ̂ 2. The simulation takes
two steps.

Step 1, generate S sets of random samples of X1 ∼ N
(
0, σ 2

N1

)
, . . . , XM ∼

N
(
0, σ 2/NM

)
. For each set of random sample, let x(1), . . . , x(M) be the ordered

x1, . . . , xM . Let N(i) and w(i) are the sample size and weight associated with x(i),
respectively. Calculate

bM �
M∑

i�2

N

N − N(i)
w(i)x(i).

Step 2, obtain the empirical distribution of these bM ’s. Calculate its (α/2)th- and
(1 − α/2)th-quantiles and denote them by qα/2 and q1−α/2, respectively. A 2-sided
α-confidence interval of v is

(
ṽ− + qα/2, ṽ− + q1−α/2

)
. BM and VM are calculated the

mean and variance of bM ’s, respectively.
Drop-min for DREM. DREM is fundamentally different from the FEM. Rather

than assuming a common treatment effect v, DREM treats the M regional effects
v1, . . . , vM and their corresponding sample size (N1, . . . , NM) as population param-
eters. The overall treatment effect is the combined effect of all regions � ṽ− �∑M

i�1 wi Xi , where wi � Ni
N . However, suppose Xm of regionm is the observed min-

imum treatment effect, and is dropped from the analysis. This means that, under the
DREM assumption, changing the components of an MRCT, e.g., the drop-minimum
analysis, will change the combined effect definition. The combined effect among
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the rest of regions v−m � ∑M
i�1,i 
�m wimvi , where wim � Ni

N−Nm
� N

N−Nm
wi . The

combined effect is conditional one. Naturally, v−m is estimated by

ṽ−m � I{Xm�X (1)}
M∑

i�1,i 
�m

wim Xi ,

Its bias is calculated as

B−m � E
[
ṽ−m − υ−m |Xm � X(1)

] � N

N − Nm
E

⎡

⎣
M∑

i�1,i 
�m

wi (Xi − vi )|Xm � X (1)

⎤

⎦.

Denote V−m � Var
[
ṽ−m

]
. The test statistic for the drop-min approach is

Z∗
−m � ṽ−m − B−m√

V−m
.

Again, the explicit formula for B−m and V−m are not available, they can be cal-
culated via the resampling approach and the confidence intervals of v−m will also be
constructed.

Suppose σ̂ 2 is an estimate ofσ 2. In simulation, setσ 2 � σ̂ 2. The observed regional
treatment effects Xi will be used as the regional effects vi and sample sizes Ni as
population weights wi , i.e., set vi � Xi and as population weights wi � Ni/N , The
simulations takes two steps.

Step 1, generate S sets of random samples of X1 ∼ N
(
v1,

σ 2

N1

)
, . . . , XM ∼

N
(
vM , σ 2/NM

)
. For each set of random sample, if xm is the minimum, calculate

b−m � N

N − Nm

M∑

i�1,i 
�m

wi (Xi − vi ).

Step 2, obtain the empirical distribution of these b−m’s. Calculate its (α/2)th- and
(1 − α/2)th-quantiles and denote them by qα/2 and q1−α/2, respectively. A 2-sided α-
confidence interval of v−m is

(
ṽ−m + qα/2, ṽ−m + q1−α/2

)
. BM and VM are calculated

the mean and variance of b−m’s, respectively.

10.6 Discussion

In anMRCT, the primary objective is to demonstrate the overall treatment effect based
on data from all participating regions. How to combine evidence of treatment effects
from different regions is an important problem in MRCTs, especially when regional
heterogeneity is marked. In this chapter, we review three models (FEM, CREM, and
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DREM) for estimating overall treatment effect and interpreting the trial results. In
addition, local regulatory authorities may request to evaluate the consistency among
regions after the overall treatment effect is demonstrated in an MRCT. Thus, we
explore the impact on sample size requirement by prospectively taking consistency
among regions into account when designing an MRCT. We further compare CREM
and DREM on different aspects (e.g., model assumption, weights for combining
treatment effects among regions, one-patient-one vote principle) to understand the
possible dilemma of regular random effects model. We also review a “drop-min”
approach for analyzing data when a region with minimum observed treatment effect
is excluded from data analysis.

There is no perfect model for combining treatment effects among regions. There
is no best approach for the design, implement, analysis and interpretation of result
of MRCTs, either. Through accumulating knowledge on the features of different
approaches and experiences on conductingMRCTs,wemayapply amore appropriate
approach to improve the efficiency of an MRCT.
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Chapter 11
Multi-Regional Clinical Trials, ICH-E17,
and Subpopulations

Yoko Tanaka, Bruce Binkowitz and Bill Wang

11.1 Introduction

Drug development has rapidly been globalized, and multi-regional clinical trials
(MRCTs) have widely been conducted for the purpose of regulatory filing in mul-
tiple regions using the same trial data in inside and outside of ICH (international
council of harmonization) regions (Regions considered as ICH are European Union,
US, Japan, Canada, and Switzerland). Regulatory agencies face challenges in eval-
uating data from MRCTs for drug approval. Although the Q&A of the ICH E5
guideline (ICH E5 1998, 2006) partially covers issues relating to MRCTs, there was
no harmonized ICH Guideline on MRCTs, especially focusing on scientific issues
in planning/designing MRCTs. A lack of harmonization on this topic may cause
additional burden for sponsor and difficult situation for conducting MRCTs (ICH
E17 2014). Therefore, an expert working group (EWG) was established in 2014 to
develop a new guideline, ICH-E17 (2016, General principles for planning and design
of multi-regional clinical trials). ICH-E17 EWGmembers and observers consisted of
regulatory/Industry membership from EU, Japan, US, Canada, WHO, GCC (Saudi),
Brazil, Singapore, Taiwan, and Korea.

Themain objective of ICH-E17 (2016) is to provide common points to consider in
planning/designingMRCTs and minimize conflicting opinions from regulatory bod-
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ies, hence increasing the acceptability of MRCTs in global regulatory submissions.
As discussed in the draft ICH-E17 guidance (2016), ethnic factors are a major point
of consideration when planning MRCTs. They should be identified during the plan-
ning stage, and information about them should also be collected when conducting
MRCTs. Here, ethnic factors include both Intrinsic and extrinsic factors, and they are
well described in ICH-E5 (Ethnic Factors in the Acceptability of Foreign Clinical
Data). Briefly, intrinsic factors are the subject’s characteristics represented within
themselves such as age, gender, race, gene, height, weight. Extrinsic factors are
the subject’s environment and culture (something outside themselves) which could
influence the subject’s behavior, practice, and preferences such as tobacco/alcohol
use, diet, socio-economic status, and medical practice/standard of care. Based on
the understanding of accumulated knowledge about these intrinsic and extrinsic fac-
tors, MRCTs should be designed to provide information to support an evaluation of
whether the overall treatment effect applies to subjects from participating regions. It
is worth noting that such factors are often the reason that regional differences appear.
Regions are often a surrogate for information that is unknown. As such, the more
that is planned regarding intrinsic and extrinsic factors at the design stage, the more
focused examinations of study heterogeneity can be, with less post hoc data dredging
to find reasons for a regional difference finding.

Towards the concept of de-emphasizing geographic region in favor of more rel-
evant factors, ICH-E17 (2016) introduces the concept of subpopulation, which is
described as a subset of subjects across the regions who are thought to be similar
with respect to intrinsic, and/or extrinsic factors relevant to the disease area and/or
drug under study. In order to further evaluate consistency of treatment effects, a
pooled subpopulation whose members share one or more intrinsic or extrinsic fac-
tors deemed important for the drug development program may be particularly useful
when regulators (looking to leverage additional data from beyond their local pop-
ulation) would like additional data to be available from a relevant subpopulation
to allow generalizability to a specific population within their regulatory country or
region. MRCTs conducted according to ICH-E17 (2016) will enable investigation
of treatment effects in overall populations with (1) multiple ethnic/intrinsic factors,
(2) extrinsic factors, as intrinsic/extrinsic factors described in the ICH-E5 guideline,
and (3) geographic region hence enable investigating consistency in treatment effects
across populations.

In this chapter, we will pay particular attention to the subpopulation concept
introduced in ICH-E17 (2016) and probe the deeper questions such as ‘Do we ana-
lyze subpopulation differently?’, ‘Are questions different for ‘subpopulation’ from
‘pooled region’ and ‘subgroup’?’ Then we will review the examples of subpopula-
tion, and finally offer suggestions for the best practice in defining, analyzing, and
interpreting subpopulation.
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11.2 Definition of Subpopulation

In ICH-E17 (2016), a subpopulation is defined as pooling a subset of the subjects
from a particular region with similarly defined subsets from other regions to form
a pooled subpopulation whose members share one or more intrinsic or extrinsic
factors important for the drug development program. It goes on to say this approach
may allow generalizability to a specific population within a regulatory agency’s
jurisdiction, and hence provide a stronger basis for regulatory decision-making, and
the pooled subpopulations may provide a basis for regulatory decision-making for
relevant regulatory authorities.

Subpopulation should account for factors within or across geographic regions
that may affect the response to the treatment. Such potential intrinsic and extrinsic
factors are race, gene, local clinical practice, locally available concomitant medi-
cations, and culture. Documenting the definition of subpopulation and the plan for
assessment of subpopulation effects at the time of study design also provides appro-
priate perspectives for both anticipated and any unanticipated regional findings at the
study conclusion. Resulting subpopulation accounting for such intrinsic and extrin-
sic factors together with early data and scientific understanding should more likely
be scientifically justifiable and less heterogeneous.

Subpopulation should be defined with the consideration of the outcome of the
study. If the objective is to study the pharmacokinetics of the drug (i.e. PK study),
intrinsic factors such as race and genetics may be more important than the extrinsic
factors to understand how the drug is processed in the subject’s body. If the objective
is to evaluate efficacy and safety of the drug, extrinsic factors may be more impor-
tant since local clinical guideline and medical practice, and culture may have more
impact on the subject’s response to the certain drug of investigation. In fact, a drug’s
sensitivity to intrinsic and extrinsic factors are well described in ICH-E5 including
properties such as linear pharmacokinetics, flat dose-response, a wide therapeutic
dose range among others.

ICH-E17 (2016) also mentions that subpopulations should be thoroughly defined
and evaluated at the protocol design stage and how this prespecification should help
for the relevant regulatory authorities.

11.3 Example

An example of subpopulation using an intrinsic factor is the phenotype of CYP2D6
enzyme that is an important determinant of treatment response for a particular drug.
CYP2D6 is responsible for the metabolism and elimination of approximately 25% of
clinically used drugs, and if the phenotype is identified as poor metabolizer opposed
to an extensive metabolizer, the drug will stay in the body system longer, and it may
affect the response to that drug treatment. Therefore, CYP2D6 may be an important
intrinsic factor to consider subpopulation for a certain drug.
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Another example of a subpopulation using as intrinsic factor, is related to diag-
nosed ADHD subtype (inattention, hyperactivity, combined) which is an important
factor to understand themagnitude of responses to treatment in evaluating theADHD
medications. Patients diagnosed with ADHD inattentive subtype typically exhibits
notably smaller response relative to the hyperactive subtype as hyperactivity behav-
iors are easier to detect (Tanaka et al. 2013). In defining subpopulation, consideration
may need to be given to the subject’s ADHD subtype across geographic regions.

A well-known example where medical practice played a significant role in result-
ing regional differences was from the PLATO trial (Wallentin et al. 2009) in evalu-
ating ticagrelor versus clopidogrel in patients with acute coronary syndromes. The
study showed an overall statistically significant efficacy effect. However, results in
North America and, in particular, in the United States showed a trend in the oppo-
site direction. One potential confounder based on post hoc analysis was the dose of
maintenance aspirin that was used at much higher dosage in the US than in the rest
of the world. Analyses controlling for aspirin dose (low, medium, high) revealed that
what was initially discovered as a region effect could be attributed to differences
in aspirin doses being confounded with region. Having considered aspirin dose in
the design of the study may have avoided much work to try to explain the regional
finding. Indeed, in the follow-up PEGASUS trial, ticagrelor effect with a low-dose
aspirin was studied to confirm the efficacy to reduce the risk of cardiovascular death,
myocardial infarction, or stroke (Bonaca et al. 2015). Furthermore, no apparent het-
erogeneity in the efficacy was observed across geographic region including North
America (Fig S2 Supplementary Appendix, Bonaca et al. 2015).

ICH-E17 (2016) also recommends that when applicable, PK investigations should
be undertaken in subjects frommajor subpopulations that are intended to be included
inMRCTs. For example,Hispanics living inNorth andSouthAmerica, or Caucasians
living in Europe and North America as an ICH-E17 (2016) subpopulation example.
This seems appropriate for a PK study since the objective is to study such an intrinsic
factor, in this case, race, to study PK characteristics of the drug. Race is inherent to
the subject, and it is not expected to be impacted by external factors. However, for
evaluating efficacy and safety of the drug, caution is needed for the extrinsic factors
to decide subpopulation since response to the drug may be impacted by external
factors. For example, medical practice such as concomitant medications can play a
significant role in heterogeneity of treatment outcomes as in the PLATO trial. Another
example may be a cultural/societal difference that could impact a subject’s response
to treatment. For example, a culture may be stoic nature limiting the expression of
pain compared to another non-stoic culture. Such a cultural difference may impact
the results of a trial that requires measurement of subjective pain scores. Apparent
regional differences may actually be cultural differences. An understanding of such
cultural differences would be very useful at the design stage of the study as well
as in designing the trial to account for such differences (e.g. through a pre-defined
subpopulation or through stratification, etc.).

An important parallel to the idea of a subpopulation comes from the book by the
National Research Council (2011) on precision medicine. It notes that “Precision
Medicine refers to the tailoring of medical treatment to the individual characteristics
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of each patient. It does not literally mean the creation of drugs or medical devices that
are unique to a patient, but rather the ability to classify individuals into subpopulations
that differ in their susceptibility to a particular disease, in the biology and/or prognosis
of those diseases they may develop, or in their response to a specific treatment”. Note
the word “subpopulation” used by the NRC, in an analogous fashion to the idea put
forth in the draft ICH E17 guidance (ICH E17 2016).

When considered carefully, intrinsic and extrinsic factors can provide insight for
estimating the treatment outcome among the different groups that are identified by
those factors. Identifying these factors in the planning stage can help to anticipate,
plan for, and provide proper perspectives in trial results across regions. Based on
accumulated information about intrinsic and/or extrinsic factors and the use of pooled
subpopulations may provide useful ways to study different responses to the drug
treatment in the context of its intrinsic and extrinsic factors. In fact, subpopulations
may be more informative than geographic regions when they identify factors that
will be confounded with region. In addition to pooling for subpopulations, ICH-E17
draft guidance (ICH E17 2016) discusses the concept of pooled regions, discussed
more in the next section.

11.4 Contrast from Pooled Regions, and Subgroups

ICH-E17 (2016) uses other terms similar to subpopulation, namely, pooled regions
and subgroup. Pooled regions are defined as a subset of subjects where data can be
pooled together within and/or across geographical regions, countries or regulatory
regions based on a commonality of intrinsic and/or extrinsic factors for purpose of
regulatory decision-making. Here, the focus appears more for the regulatory review
and approvability in the region where the regulatory authority is responsible.

US FDA is known to conduct their own analyses using the trial data that the
sponsor submitted, and one of the typical US FDA analyses is to evaluate by-region
data such as US vs outside US. In fact, US FDA is not alone, as other regulatory
agencies often request by-region data, also dichotomizing the data into two regions,
one that is the regionwhere the authority is responsible for and the other being outside
of that region. While this evaluation certainly is relevant for the region to understand
and describe the efficacy and safety of the drug for the people in the region, it becomes
challenging or problematic if the region did not participate in the clinical trial or the
sample size in that region is very small. From the statistical perspective, this sets up
a series of “us versus the rest of the world” one degree of freedom contrasts, each
from a different regulatory agency perspective. Such multiple testing will invite false
positives, meanings finding of regional inconsistency where such inconsistency does
not actually exist.

To address this case, instead of repeating the clinical trial to include the subjects
from the concerned region, if the regions in the completed trial data can be pooled
to provide more sample size, or if the characteristics of pooled regions defined by
intrinsic and extrinsic factors that are considered similar to the concerned region,
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the data from the pooled regions can be a basis for the regulatory review for the
concerned region (whether the concerned region did not participate in the trial or the
sample size is not sufficient). Pooled data from East Asia, for example, Japan and
Taiwan, can possibly be submitted to other regulatory agency in East Asia such as
Korea when the subject’s response to the drug is considered similar within the subset
of subjects, in this case East Asia. It is also common for North America to be pooled
region formed from Canada and the United States.

From this perspective, the pooled regions and the subpopulation are indeed dis-
tinctive as the pooled regions are driven by the authority’s jurisdiction (and often
geography) where the subpopulation is more driven by the intrinsic and extrinsic
factors that potentially impacts the subject’s response to the drug, with the added
advantage that the subpopulation will cross common geographical boundaries.

The concept of subgroup is the more familiar terminology than pooled region
or subpopulation, as a subgroup analysis to assess consistency of the primary trial
result performed among different subset of subjects defined by patient demographics
(ex. age, gender) or baseline clinical characteristics (ex. different severity). ICH-E17
(2016) describes that ‘of most interest are subgroups defined according to intrinsic
and extrinsic factors likely to be prognostic for the course of the disease or plausi-
bly predictive of differential response to treatment’. Examples in ICH-E17 (2016)
include subgroups defined by ethnicity (e.g., Asian, Black or Caucasian), medi-
cal practice/therapeutic approach (e.g., different doses used in clinical practice) or
genetic factors (e.g., polymorphisms of drug metabolizing enzymes).

Guidance is also available from the EMA Guideline on the investigation of sub-
groups in confirmatory clinical trials (EMA 2014): “In recent years the experience
has grown that country (or region) can be similar important prognostic factors cover-
ing important intrinsic and extrinsic factors, including different attitudes to diagnosis,
co-medication and other aspects of the concomitant setting. Although it is recom-
mended to address these aspects by directly addressing the respective variables,
country (or region) as an entity for checking the context-sensitivity (or robustness)
of the treatment effect is of importance to regional drug licensing bodies and as
a plausible source for learning about the robustness of the treatment effect.” The
guidance in Sect. 5.3 goes on to discuss the importance of intrinsic and extrinsic
factors, aligning with the E17 (ICH E17 2016) concept of creating subpopulations.
Further, the EMA guideline goes on to describe three scenarios for examining sub-
groups. Scenario 1 (Sect. 6.3 of the guideline and Annex (1)) describes the scenario
where the clinical data presented are overall statistically persuasive with therapeutic
efficacy demonstrated globally. It is of interest to verify that the conclusions of ther-
apeutic efficacy and safety apply consistently across subgroups of the clinical trial
population. Prespecified subpopulations fall into this category. Scenario 2 (Sect. 6.4
of the guidance and Annex (2)) addresses the scenario where the clinical data pre-
sented are overall statistically persuasive but with therapeutic efficacy or benefit/risk
which is borderline or unconvincing and it is of interest to identify a subgroup that
has not been pre-specified as part of the confirmatory testing strategy, where efficacy
and risk-benefit would be convincing. Post hoc subpopulations grounded in good
scientific rationale (external to the clinical trial including successful results in other
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trials) with a biologically plausible explanation and a large benefit could fall into this
scenario. Scenario 3 addresses the situation where the clinical data presented fail to
establish statistically persuasive evidence but there is interest in identifying a sub-
group, where a relevant treatment effect is evident and there is compelling evidence
of a favorable risk-benefit. Scenario 3 could be a situation where a subpopulation is
established to be further tested in future trials.

There may be an overlap when trying to distinguish between subgroup and sub-
population. However, it appears that the subpopulation is a specific type of subgroup
that is a pooled subset of the subjects across regions sharing one or more intrinsic or
extrinsic factors that may be associated with differential treatment response. Indeed,
ICH-E17 (2016) describes that the pre-specified subgroup analyses for study sub-
populations that are defined beyond geographical boundaries and based on common
intrinsic and/or extrinsic factors may be useful for generating key scientific evidence
to support a regional marketing authorization. From the PLATO study example, it
was discovered and labeled in the US that the dose of maintenance aspirin (high, low)
was associated with differential treatment response. This aspirin dose was explored
when the by-region analysis resulted in qualitative interaction indicating the treat-
ment effect in North America was much smaller than other regions. In this example,
both geographic region and aspirin dose were subgroups, but the aspirin dose per-
haps could have been considered more as a subpopulation since the determination
of aspirin dose is related to local clinical practice in different regions, can be recog-
nized at the design stage, can be pooled across regions, and the effect on the treatment
response has biological plausibility.

In summary, subgroup analyses should be pre-specified with the type of subgroup
including pooled regions and pooled subpopulation. In identifying a pooled sub-
population, cautious scientific investigation is needed to evaluate a list of relevant
intrinsic and extrinsic factors to delineate the ones that have the potential to influ-
ence a subject’s response to the concerned drug. Pooled regions are more related to
geographical and political boundaries of the concerned regulatory authority.

If subgroup differences are observed unexpectedly, then a post hoc examination
of subgroup differences across regions (or pooled regions) is warranted. To help
give integrity to such post hoc examinations, things to consider are the biological
plausibility, internal/external consistency (different endpoints, different trials, same
drug class), strength of evidence (marginal or overwhelming), and the statistical
uncertainty (Possibly random chance?).

11.5 Best Practice

The goal of ICH-E17 (2016) is to minimize the occurrence of unexpected results
driven by regional heterogeneity, hence to increase the acceptability of the trial data
in global regulatory submissions. While the current public draft of the ICH E17
guidance (ICH E17 2016) does not give specific methodology, the EMA subgroup
guideline (EMA 2014) offers various scenarios for subgroup analyses, and the con-
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cept of subpopulation to strengthen understanding of a trial’s results falls within
scenario 1 and 2 of the subgroup guideline. Disparate, inconsistent regional find-
ings in a trial that is overall successful makes interpretation of the trial difficult for
health authorities in the region. Throughout the ICH-E17 draft guidance (ICH E17
2016), emphasis was given to intrinsic and extrinsic factors in planning and design-
ing the multi-regional clinical trials. In particular, the concept of a subpopulation
was introduced in defining a particular subgroup by pooling a subset of the subjects
across regions who share one or more intrinsic and extrinsic factors that potentially
influence a subject’s response to the drug.

To operationalize this concept, hierarchical layout may enable to sort out the steps
to form the subpopulation and analysis plan. First, intrinsic and extrinsic factors can
be listed as a checklist that enables the structured assessment of factors to identify the
ones that potentially contribute to heterogeneity in the subject’s treatment response.
While the study protocol standardizes the study population and conduct of the study,
the sensitivity of subject’s response to the treatment still needs to be examined in
multi-regional clinical trials by a thorough consideration of intrinsic and extrinsic
factors.

The second step is to examine the geographic regions expected to participate
in the trial to form the pooled regions. Since the pooled regions are more related
to geographical and political boundaries of the concerned regulatory authority to
evaluate the approvability of the drug, consideration needs to be given to the region
that is not participating the trial to see if the pooled regions can provide the sufficient
data that can be the basis for approvability. The illustrated example was to use the
pooled data from Japan and Taiwan, for the regulatory review for Korea (which did
not participate in the trial) when the subject’s response to the drug is considered
similar within the subset of subjects in East Asia.

The third step is to form the subgroup, which consists of intrinsic, and extrinsic
factors or geographic regions that are not accounted for in the subpopulation or
pooled regions in the previous two steps. Ideally prespecification of the subgroup is
preferred, but the findings from the trial may necessitate the ad hoc subgroup to be
formed.

Once the subpopulation, the pooled regions, and the subgroup are identified, the
next step is to take preventative actions, for example, by modifying the study design
to accommodate particular factors for certain country/region or a priori plan analyses
using these factors. In addition, this can be useful to target country-specific training
or, in extreme cases, while at the design stage to choose to exclude a country or
region from the trial.

It should be noted that the E17 guidance (ICH E17 2016) focuses on the design of
MRCTs; the EMA subgroup guidance (EMA 2014) offers specific guideline on the
subgroup analyses in several different scenarios. These include the analyses of con-
firmatory subpopulation, regional consistency, supportive subgroup and exploratory
subgroup evaluations.
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Chapter 12
Adaptive Group-Sequential
Multi-regional Outcome Studies
in Vaccines

Inna Perevozskaya

12.1 Background: Case Study

This work was motivated by the need to design and de-risk a very large study
evaluating safety and efficacy of an experimental vaccine designed to prevent post-
operative invasive infections with Staphylococcus aureus (S aureus). S aureus is a
leading cause of healthcare-associated infections, resulting in a substantial burden to
health care systems. It is a particularly challenging pathogen, resistant to antibiotics
and capable of causing a wide spectrum of symptoms, ranging from mild skin infec-
tions to deep wound and surgical site infections, bacteremia and sepsis, potentially
leading to death (Pfizer, 2015).

In theUS, about 20%of all post-surgical infections at the incision site are attributed
to S aureus. Patients who suffer such infections due to antibiotic resistant (MRSA)
or antibiotic sensitive (MSSA) S aureus have worse clinical outcomes, including
increased mortality in comparison with non-infected patients (Pfizer, 2015).

At the time this study was designed, there were no licensed vaccines to prevent
S aureus infection, so it was a serious and unmet medical need. Therefore, the vac-
cine under investigation was granted Fast Track designation by the U.S. Food and
Drug Administration (FDA) in February 2014 (Pfizer, 2015). In such situations, a
submission based on one pivotal study (rather than two typically required) may be
sufficient to get approval if the evidence is compelling. The competitive landscape
also made time-to-market a crucial factor in the development. All of the above con-
tributed to pressure on the study team to accelerate clinical development of this
vaccine candidate using innovative techniques, to use resources wisely and manage
risks appropriately. This presented a prime opportunity to explore adaptive design
strategies, both at the study and at the program levels.
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The primary outcome of this study was defined as postoperative S aureus blood
stream infections and/or deep incisional or organ/space surgical site infections occur-
ring within 90 days after elective posterior instrumented lumbar spinal fusion (Clin-
icalTrials.gov: https://clinicaltrials.gov/show/NCT02388). About 10–60 days prior
to their scheduled surgery, patients would be randomized (in a 1:1 ratio) to either
the A aureus vaccine (also labeled SA4Ag) or placebo. The primary objective of the
study was demonstrating that the number of patients developing above-mentioned
type of infections is lower in the vaccine group compared to the placebo group.

12.2 Overview of Statistical Approaches to Vaccine Efficacy
Studies

In a randomized placebo-controlled trial where the endpoint of interest is occurrence
of infection, vaccine efficacy (VE) is defined in terms of relative risk (RR):

V E � 1 − RR (12.1)

There are three classes of commonly used methods for design and analysis of
vaccine efficacy studies (Nauta, 2010); they differ in how relative risk is defined and
how a subject’s follow-up is accounted for. We will describe them briefly to allow
understanding of the subsequent material. For more statistical details, we refer the
reader to Chap. 7 of Nauta (2010).

1. RR as a ratio of 2 attack rates (“binomial model”): The attack rate is the risk
of an infection-free subject getting infected during a fixed follow-up period. This
method assumes all subjects are followed up for a fixed pre-defined amount of
time. So the incidence of infection can be simply characterized by presence or
absence (binary endpoint) of the event of interest at the end of the pre-defined
follow up time period. The attack rate π is defined as ratio of number of subjects
developing infection (over pre-specified follow-up period) to the total number of
subjects exposed and initially infection-free. Let πtrt and πpbo represent attack
rates in the vaccine and placebo treatment groups, respectively. Under this set-
ting RR � θ � πtrt /πpbo and both πtrt and πpbo can be interpreted as binomial
proportions (i.e. incidences of infection in the two treatment groups follow their
respective binomial distributions).

2. RR as ratio of two infection rates (“Poisson model”): The infection rate is
the risk of experiencing an infection during a given time unit, such as month or
a year. Relative risk RR is defined the same way as in the previous model, i.e.
RR � θ � πtrt /πpbo, but the rates πtrt and πpbo are now rates per person-years,
accounting for variable exposure. For example, πtrt � s/T , where s is number of
cases in the vaccine group and T is total person-time of all subjects in the vaccine
group, which in turn is defined as sum of follow-up times for all subjects in that
group (from enrollment until event or termination of the study or a drop-out). This

https://clinicaltrials.gov/show/NCT02388
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method of capturing and describing the incidence of infection is more tailored
to practical applications when subject’s time of entry into the study and length
of follow-up vary. It is usually assumed that number of cases in each treatment
group follows a Poisson distribution. The cornerstone assumption underlying
this model is that the risk of infection is constant over the time of follow-up.
This, in turn requires that the event rate is low and the infectious disease does not
have seasonality. It’s important to note that under fixed follow-up scenario (and
low event rate) this model becomes very similar to the binomial model described
earlier. In other words, if the infection rate is low, it will approximately equal to
the attack rate. We will use that assumption in our trial design to facilitate the
interpretation of vaccine efficacy estimates.

3. RR is ratio of two forces of infection rates (“time-to-event model”). This
approach is based on classical survival analysis, where survival function S(t)
is modeling time from enrollment to infection. Force of infection is equivalent
to hazard function, which is typically used in survival analysis to compare two
treatment groups. The relative riskRR is defined as a ratio of two force of infection
rates between the two treatment groups: RR � htrt(t)/hpbo(t). This approach is
the most complicated of all; it is recommended for use when constant attack rate
over time cannot be assumed.

In this study, the background occurrence of staph infections post-surgery without
vaccine (i.e. placebo attack rate) was expected to be fairly low: about 2–3% in the
selected patient population. Also, fixed surveillance period (90 days post-surgery)
was employed, making the second approach utilizing Poisson assumptions suitable
for this study design. Specifically, if we express vaccine efficacy using percentage
scale (0–100%), as often done by clinicians, rather than probability scale (0,1), we
can formulate the problem the following way:

V E � (1 − θ ) ∗ 100% �
(
1 − π1

π0

)
∗ 100% (12.2)

π1 � s1
T1

, π0 � s0
T0

(12.3)

where s0, s1 are number of events (i.e. cases of staph infection) in the placebo and
vaccine treatment groups, respectively, andT0, T1 are exposures expressed in person-
years. Under this setting, the number of cases in each treatment group follows a
Poisson distribution:

s1 ∼ Poi(λ1), s0 ∼ Poi(λ0) (12.4)

Both rates λ0 and λ1 are unknown, but the question of interest is to estimate only
the ratio λ1/λ0, making λ0 a nuisance parameter. To get around that, it is a standard
practice in vaccine trials to use exact binomial inference based on conditional dis-
tribution for trial planning and inference: conditioning on the total number of events
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s � s0+s1, the number of events coming from the vaccine group follows a binomial
distribution Nauta (2010) with parameter π :

s1 ∼ Bin(s, π ), π � T1λ1

T1λ1 + T0λ0
(12.5)

If we recall that our parameter of interest is relative risk θ � λ1/λ0, denote r
� T1/T0 and apply equal randomization ratio in combination with fixed follow up
periods (i.e. T1 � T0), we can re-write (12.5) as:

π � T1θ

T1θ + T0
� rθ

rθ + 1
� {r � 1} � θ

θ + 1
(12.6)

or, alternatively:

θ � π

1 − π
, V E �

(
1 − π

1 − π

)
∗ 100% (12.7)

Equations (12.6) and (12.7) are key to understanding the relationship between
vaccine efficacy and parameter π . They provide an easy “switch” between two-
sample Poisson problem and one-sample binomial problem formulations. The latter
is used to power the trial and to perform statistical inference. However, it is not very
useful for final results presentation. Since parameter π is hard to interpret clinically,
its point estimates and confidence intervals need to be “back-transformed” to the
corresponding quantities for VE (via θ ) using Eq. (12.7). Such exercise provides
results on the same scale as the original research question, i.e. expressed in terms of
vaccine efficacy rather than abstract conditional distribution parameter.

Clinicians usually prefer to state study hypotheses in terms of vaccine efficacy.
Vaccine trials are unique in the sense that they often carry an additional requirement
of “super-efficacy”, i.e. it’s not enough to demonstrate that vaccine is simply better
than control, it needs to be better by a certain amount:

1. H0 : V E ≤ 0 versus HA : V E > 0(without “super − efficacy” )

2. H0 : V E ≤ δ versus HA : V E > δ(e.g. δ � 30% for “super − efficacy”)

Given relationship between VE and π described in (7), these hypotheses can be
re-written as:

1. H0 : π ≥ 0.50 versus HA : π < 0.50(without “super − efficacy”)

2. H0 : π ≥ 0.41 versus HA : π < 0.41(e.g. δ � 30% for “super − efficacy”)

When conditional distribution is used in power calculations, the process becomes
an iterative search for the “optimal” pair (s, s1), satisfying desired Type 1 error and
power requirements. Various values of s are examined in increasing order; for each
s, an “optimal” cut-off s1 is determined such that (1−α) × 100% lower confidence
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interval bound (LCB) for VE exceeds δ (super-efficacy threshold) and power is at the
desired level, e.g. 80%. Power is computed as probability to observe ≤s1/s events in
the vaccine group under the alternative hypothesis HA, (e.g. assuming VE � 80%).
All calculations are carried out using Bin(s, π) distribution described in (12.5). In
this process, the power is driven by total number of events s accrued. Smaller values
of s may be too crude to achieve required Type 1/Type 2 error levels; the search
continues by increasing s until such conditions can be met. It’s important to note that
the placebo background event rate λ0 does not impact these power calculations at all.
By conditioning on total number of events s, we have eliminated the need to worry
about nuisance parameter placebo event rate λ0 in our power calculations. However,
the trade-off is that the study sample size of N patients now becomes a random
variable following a Poisson distribution, which depends on λ0, i.e. its dependency
on a nuisance parameter cannot be eliminated. This phenomenon is similar to survival
studies where the information is driven by number of events accumulated rather than
number of patients. Similar to survival studies, the placebo event rate can be very
impactful on the actual sample size N . In our case the expected number of patients
N required to accrue s events would depend on VE and λ0, in addition to s:

E(N ) � 2 ∗ s

λ0 ∗ (2 − V E)
(12.8)

If λ0 is small, the sample size N becomes very large; that’s why “rare” diseases
like the one in our study pose a challenge. On the other hand, if vaccine is very
effective, i.e. VE close to 100%, the sample size increases as well because it will
be harder to accrue required s events because the vaccine will prevent them from
occurring in the vaccine group. Both VE and λ0 are unknown at the time of study
design and both can impact the sample size N quite dramatically. Usually there is a
great deal of uncertainty about them. In this study, the plausible values of VE were
50–80% with VE � 60% being the “target” commercially viable value; the plausible
values for λ0 ranged from 0.06 to 3%, according to the literature.

We will illustrate the impact of relationship (12.8) on actual sample size by
computing expected sample sizes for various plausible values of these parameters
(Table 12.1).

It is evident from Table 12.1 that in order to demonstrate super-efficacy of SA4Ag
vaccine a very large multi-center trial would be required. Both placebo event rate and
true vaccine efficacy were highly influential in sample size calculation and unknown
at the time of study design.

In addition to that challenge, study population heterogeneity presented a separate
challenge of its own:

• Placebo attack rateλ0 varied considerably across patient sub-populations (surgical
subgroups) because it depends on type of surgery performed and other underlying
co-morbidities.

• Multiple centers/regions contribute to variability in primary outcome (infection).
• As with any surgical procedure, surgeon’s skill level and quality of post-operative
care could affect the primary outcome (infection) and contribute to its variability.
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Table 12.1 Impact of VE and Placebo attack rate on sample size

(α � 0.05, power 90%, super-efficacy δ � 30%)

Sc#a VE λ0 s s1 s0 n1 n0

1 0.6 0.03 154 51 103 3667 3667

2 0.6 0.02 154 51 103 5501 5501

3 0.6 0.01 154 51 103 11,001 11,001

4 0.7 0.03 69 20 49 1770 1770

5 0.7 0.02 69 20 49 2654 2654

6 0.7 0.01 69 20 49 5308 5308

7 0.8 0.03 38 9 29 1056 1056

8 0.8 0.02 38 9 29 1584 1584

9 0.8 0.01 38 9 29 3167 3167

aScenario number

Since the proposed study would be the first one to evaluate efficacy in patients
where underlying parameters were poorly known and would further require a large
sample size, the study team was challenged to “de-risk” development by utilizing an
adaptive design.

The initial adaptive design was very complicated and had multiple objectives: it
was attempting to address multiple surgical sub-populations in one study as well as
uncertainty in treatment effect and placebo attack rate via sample size re-estimation
and population enrichment. After many deliberations, it was decided to separate
the heterogeneity issue from parameter uncertainty and put the former one aside,
focusing on one surgical sub-population only (elective spinal fusion), which was
believed to have the highest background event rate according to the literature. This
strategywould allow the team to study and confirmvaccine efficacymore quickly and
then augment the population in a separate study, should the vaccine efficacy turn out
to be promising. Such stage-wise investment was necessary because previous studies
of this vaccine provided only immunogenicity data, not actual VE in patients, so all
assumptions on vaccine efficacy were based on translation of immunogenicity data
into perceived VE and needed to be confirmed by an actual clinical study data. Even
this “fast” study focusing on spinal fusion subpopulation would have been long and
expensive, so additional de-risking options, including sample size re-estimation and
early futility stop, were examined. We will review the evolution of various adaptive
design options in the following section.
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12.3 Clinical Development Strategy Options

12.3.1 Adaptive Phase 2/3 Design

In an attempt to accelerate time to market, one initial program development option
included skipping Phase 2 study entirely, i.e. proceeding straight to Phase 3 after
immunogenicity studies. The objectives typically addressed in Phase 2, such as ini-
tial evaluation of vaccine efficacy and getting a firmer estimate on the background
infection rate, and objectives typically addressed in Phase 3 (e.g. confirming vaccine
efficacy with super efficacy alternative) were combined within a single study simi-
lar to a seamless Phase 2/3 design. It was proposed to address these objectives via
multiple interim analyses with options for unblinded sample size re-estimation and
early futility stops.

The study was designed assuming VE � 60%, super-efficacy threshold δ � 30%,
desired power of 90% and type 1 error of α � 0.05 (two-sided). The underlying
placebo event ratewas assumed to beλ0 �0.02. Following the sample size calculation
procedure based on conditional distribution described in Sect. 12.2, a fixed trial to
establish super-efficacyof the vaccine over placebo at a given super-efficacy threshold
δwould require approximatelyN �5501patients enrolledper treatment arm to accrue
s � 154 total events required to achieve the desired power. The high sample size was
primarily driven by low placebo rate and super-efficacy threshold of 30%. At the end
of the study, if at most 51 cases of infection (out of total s � 154) were observed in
the vaccine treatment arm, the null hypothesis could be rejected and the study would
be declared a success. The cut-off point of ≤51/154 for the observed proportion
is equivalent to (1−α) × 100% LCB on VE to be above 30%, using relationship
between VE and π in Eq. (12.7).

To de-risk this large study and fill-in the placeholder of a “skipped” phase 2 study,
an early interim analysis (IA) for futility based on conditional power was proposed
after s � 16 total events would be observed (~10% of total information planned for
this study).

Conditional power is a widely used concept to make interim decisions in an
adaptive clinical trial. It quantifies the probability of achieving final study success
criterion, given observed interim data and initial assumptions about the treatment
effect. The basic principle of futility assessment is early study termination if con-
ditional power is low (<30%), proceed without modification it is high (>80%) and
possibly increase sample size after interim analysis (IA) if the probability of final
success is modest (30–80%), given the current (interim) data. The team has consid-
ered this and other types of adaptation (such as population enrichment) at later time
points in the study (IA ≥ 2). At the time of the 1st IA only early futility stop would
be considered.

For simplicity, let’s assume this first futility look is the only interim look in the
study. It is common to refer to “event split” in vaccine efficacy trials based on total
event count. That is, if the total number of events is s� 16, the “split” is characterized
by a pair (s1, s0) where s1 and s0 describe number of those events occurring in the
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vaccine and placebo groups, respectively. Since s0 + s1 � 16, its sufficient to track s1
(vaccine cases) only. In other words, given total number of cases, the “split” tells the
story of how effective the vaccine is: the lower is s1, the more effective the vaccine
is. The final success criteria for this study was defined as observing ≤51/154 events
at the end of the trial. So, using the notation above the conditional power (CP) can
be defined 2 ways:

CP1 � Pr(to see ≤ (51 − s1)/(154 − 16) events in vaccine group |VE � 0.6)
(12.9)

CP2 � Pr(to see ≤ (51 − s1)/(154 − 16) events in vaccine group |VE estimated)

(12.10)

Both CP expressions depend on assumptions and observed interim data but to a
different degree: CP1 is more dominated by “belief” that VE is consistent with what
was hypothesized, i.e. VE � 0.6 in our case, which was the alternative hypothesis
used to power the study. The CP2 rule is more sensitive to the interim data and its
departures from assumed values because that data enters the equation twice: first in
the final success criteria part highlighted in bold in both equations and second as
a part of estimated VE used to calculate the probability of “success”. The futility
stop is triggered if CP falls below 30%. The two CP rules can “induce” 2 different
designs:

• Design 1: if CP1<30% after 16 events then stop for futility
• Design 2: if CP2 < 30% after 16 events then stop for futility

A sample illustration of what kind of “split” (among 16 cases) would be required
to trigger a futility stop under each of these designs is given in Table 12.2. We can
quickly see that CP1 rule which “believes” in VE � 60% would require quite an
extreme split going into direction of vaccine harm [e.g. (15,1)] to declare futility,
while the CP2 rule, which places more emphasis on the interim data, would stop
for futility at much less extreme split of (6,10). The latter split corresponds to an
estimated VE � 40%. The reason CP2 rule appears more aggressive is because it
incorporates interim data suggesting efficacy is not much more than 30%; since the
final VE estimate must be significantly greater than 30%, a VE point estimate below
40% means the super-efficacy goal is unlikely to be achieved.

A simple table like this one illustrates how decision rules based on CP translate
into subsequent estimates of VE observed, helping the team to make some sense of
the rules they were proposing. It became quite obvious that a decision rule based on
10% of information can be a very crude one (either not stopping at all when needed or
stopping too aggressively, depending on which CP rule we use). The reason for this
lies in highly variable interim estimates of treatment effect at the early information
time point. To see how stability of interim estimates can be improved, the team
considered IA at later time points such as s � 24 and s � 40. Following the same
procedure as for s � 16, the resulting interim decision rules for these designs would
have been as follows:
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Table 12.2 Illustration of CP1 and CP2 decision rules for total S � 16 cases and various split
scenarios

Total
s1-
(vac)

s0-
(pbo) ve-alt pi-alt CP1 pi est ve est CP2

16 0 16 0.6 0.29 0.99 0.00 1.0 1.00
16 1 15 0.6 0.29 0.98 0.06 0.9 1.00
16 2 14 0.6 0.29 0.97 0.13 0.9 1.00
16 3 13 0.6 0.29 0.95 0.19 0.8 1.00
16 4 12 0.6 0.29 0.93 0.25 0.7 0.99
16 5 11 0.6 0.29 0.91 0.31 0.5 0.73
16 6 10 0.6 0.29 0.87 0.38 0.4 0.14
16 7 9 0.6 0.29 0.83 0.44 0.2 0.0
16 8 8 0.6 0.29 0.78 0.50 0.0 0.0
16 9 7 0.6 0.29 0.72 0.56 -0.3 0.0
16 10 6 0.6 0.29 0.66 0.63 -0.7 0.0
16 11 5 0.6 0.29 0.59 0.69 -1.2 0.0
16 12 4 0.6 0.29 0.51 0.75 -2.0 0.0
16 13 3 0.6 0.29 0.44 0.81 -3.3 0.0
16 14 2 0.6 0.29 0.36 0.88 -6.0 0.0
16 15 1 0.6 0.29 0.29 0.94 -14.0 0.0
16 16 0 0.6 0.29 0.23 1.00 0.0

FUTILITY STOP

If IA is conducted after s = 24 cases:

• CP1 rule: terminate if ≥18/24 in vaccine group
• CP2 rule: terminate if ≥9/24 in vaccine group

If IA is conducted after s = 40 cases:

• CP1 rule: terminate if ≥22/40 in vaccine group
• CP2 rule: terminate if ≥15/40 in vaccine group

The resulting operating characteristics of these decision rules are summarized in
Table 12.3.

This exercise of quantifying operating characteristics of 2 possible designs and
varying the time of interim analysis helped to convince the team that 10% of infor-
mation (16 total events) was too early for an interim review. Futility criteria for such
designs did not performwell across the range of vaccine efficacy scenarios: it stopped
too infrequently for a non-efficacious vaccine in case of CP1 (VE ≤30% is all part
of the “null hypothesis” parameter space here) or terminating efficacious vaccine too
easily in case of CP2 (VE ≥30% is desired efficacy range). The only way to get a
reasonable performance with these kind of rules was to increase the timing of 1st IA



306 I. Perevozskaya

Table 12.3 Operating characteristics of 2 CP rules, by VE scenario and IA timing

Probability of interim stop under various scenarios of IA1 timing and true VE

Futility
interim
timing
(total
events)

True
VE � 0

True
VE � 0.1

True
VE � 0.2

True
VE � 0.3

True
VE � 0.4

True
VE � 0.5

True
VE � 0.6

Using CP1 rule (based on effect size in alternative hypothesis)

S � 16 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S � 24 0.01 0.01 0.00 0.00 0.00 0.00 0.00

S � 40
(24%
info)

0.32 0.21 0.12 0.05 0.02 0.00 0.00

Using CP2 rule (based on effect size in alternative hypothesis)

S � 16 0.90 0.85 0.79 0.70 0.59 0.46 0.29

S � 24 0.93 0.87 0.81 0.71 0.58 0.41 0.22

S � 40 0.96 0.92 0.85 0.74 0.57 0.34 0.14

S � 60 0.98 0.97 0.91 0.79 0.60 0.34 0.11

to 40% of information, i.e. at least s� 60 total cases. That finally convinced the team
that a proper phase 2 study separate from a phase 3 may be needed. The seamless
Phase 2/3 option with early futility look at s � 16 events was rejected due to poor
performance and the team moved on to designing the next option with a separate
Phase 2 study.

12.3.2 Simple Group-Sequential Phase 2b Design Followed
by Pivotal Phase 3 Study

After the seamless Phase 2/3 option was rejected, the team focused on a single
objective of demonstration a “proof-of-principle” with respect to vaccine efficacy
while acknowledging that robust evaluation of vaccine efficacy would be performed
later (conditional on proof-of principle success) in a separate pivotal Phase 3 study.
More complex adaptations such as unblinded sample size reassessment would be
saved for that Phase 3 study while the current Phase 2 study would utilize simpler
group-sequential design methodology of Jennison and Turnbull (2000).

The new study was designed using less rigid criteria (as it would be customary
for any Phase 2):

• No super-efficacy requirement (δ � 0)
• More relaxed power assumptions (α � 0.10, 1 sided, power � 80%)
• Same VE� 60% and placebo background rate λ0 � 0.02 as in the previous design
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These assumptions led to a fixed design sample size of N � 1858 patients (total)
in order to obtain s � 26 overall events. At the end of the study, if ≤9/26 events
were observed in the vaccine group, the null hypothesis could be rejected (i.e. 90%
LCB on VE would be above zero and “proof-of-principle” would be established),
triggering Phase 3 development. Even this relatively “small” study would require
~2000 patients to establish proof of principle. That’s why adding an interim analysis
for futility was considered necessary to further de-risk the study.

Aswith any interim look, final hypothesis testing had to be adjusted to reflect mul-
tiplicity arising from an early interim look. We followed the framework described in
Jennison and Turnbull (2000) Chap. 12, utilizing classical group-sequential method-
ology which is considered “well-understood” by draft FDA guidance (FDA, 2010).
Initially, the futility stopping boundary was derived using the normal approximation
to binomial distribution. In case of small sample size like the one in this design, the
actual power and type 1 error may not hold as “promised” by calculated boundary
and the latter needs to be refined using exact binomial calculations. The next section
will illustrate this with a working example.

12.3.2.1 Derivation of Exact Binomial Stopping Boundaries
and Related Operating Characteristics

The starting sample size s � 26 (total events) was obtained for a fixed design using
exact binomial calculations (iterative procedure described in Sect. 12.2) to guarantee
80% power and α � 0.10 type 1 error. We took that design as a starting point and
added 1 interim look at 50% of information with early stopping for efficacy or
futility. It is illustrated using EAST 6.4 software below but can be done using any
other software of choice. A summary of input parameters is given in Fig. 12.1. It is
important to remember that the null and alternative hypotheses have to be stated in
terms of parameter π when using conditional distribution setting. The sample size
of s � 26 was kept fixed and power computed as a function of it, which turned out
to be slightly different (0.821) than originally specified 0.8. That happened because
the calculations in EAST were based on normal approximation. The main purpose
of going through this exercise was not to confirm power but rather to obtain stopping
boundaries for a group-sequential design with one look. O’Brien-Fleming type of
boundaries were used for both efficacy and futility stopping. They are summarized
in Figs. 12.1 and 12.2.

From this group-sequential designwith one interim look,we can obtain the numer-
ical values of stopping boundaries (on the proportion scale) which are reproduced in
Fig. 12.2 and Table 12.4.

Boundaries obtained from EAST on the proportion scale were converted to num-
ber of events (using s � 13 or s � 26 events, respectively). Obviously, the number
of events should be integers, so these intermediate values were rounded-off to the
nearest integer in the direction of “outside” of the boundary, i.e. more extreme and
difficult to stop. For example, at the efficacy boundary at interim look, 2.798 was
rounded-off to 2, while for the futility boundary at the same look, 6.270 was rounded

https://doi.org/10.1007/978-981-10-7829-3_12
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Fig. 12.1 Summary of input parameters in EAST 6.4 for initial group-sequential design (based on
normal approximation to binomial distribution)

Fig. 12.2 Boundaries of group-sequential design based on normal approximation

off to 7. There are no hard rules about how to round-off: one could have chosen values
of 3 or 6 instead and evaluate respective operating characteristics. Our choices were
driven by the desire to stop conservatively both for efficacy and for futility. At the
final analysis, unlike the continuous case where two boundaries converge to a single
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Table 12.4 Boundary values

Boundary: (prop.) Boundary (events) Boundary
(GsDesigna)

Look # S. Size Efficacy Futility Efficacy Futility Efficacy a
(lower)

Futility b
(upper)

1 S � 13 0.215 0.482 2.798 6.270 2 7

2 (final) S � 26 0.371 0.371 9.644 9.644 9 10

aSee text below for explanation of GsDesign

Final Efficacy ≤9/26
events ↔
VE ≥ 47%

Part 1 
(S=13 events)

Early Efficacy ≤2/13 ↔  
VE ≥ 82% 

Continue

Early Futility ≥7/13 ↔
VE ≤ -17% 

Final Futility
≥10/26 events ↔

VE ≤ 38%

Fig. 12.3 Phase 2 group-sequential design with early stopping for efficacy/futility

point, the discrete boundary values must differ by one, reflecting the discrete nature
of the event counts. The discreteness eliminates the “indecision zone”, allowing the
trial to always come to some conclusion (either success or failure).

The ‘discretized’ boundaries (last 2 columns of Table 12.3) formed the basis of a
new group sequential design, where decision would be based on observed number
of events rather than observed proportion of events. Operating characteristics of
the former were evaluated using gsDesign R-package (Anderson, 2016) with the
following call:

Gsbin < −gsBinomialExact(k � 2, theta � c(0.5, 0.285),

n.I � c(13, 26), a � c(2, 9), b � c(7, 10).

The function gsBinomialExact in the gsDesign package calculates probabilities of
crossing boundaries a or b (“discretized” boundaries from Table 12.3). The timing
of interim analysis and total sample size are specified by vector n.I. The vector
theta captures null and the alternative hypotheses for the proportion parameter π.
The flow-chart of the resulting design with associated decision rules and operating
characteristics (computed via above call to gsDesign) are summarized in Fig. 12.3
and Table 12.5, respectively.

In contrast with the original Phase 2/3 proposal described in Sect. 3.1, this new
“Phase 2 only” design was very simple: it had only group-sequential early stopping
and no sample size re-estimation/population updates. The new study proposal was
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Table 12.5 Operating characteristics of Ph2 GSD under variety of VE scenarios

Pr 
(early 

eff. 
Stop)

Pr 
(early 

fut. 
Stop)

Pr (final 
success)

Pr (final 
failure)

Overall 
PR of 

Success
Ave # 
Events

VE=0% 0.500 0.011 0.500 0.073 0.415 0.085 19
VE=10% 0.474 0.018 0.424 0.115 0.443 0.133 20
VE=30% 0.412 0.049 0.257 0.267 0.428 0.315 22
VE=50% 0.333 0.139 0.103 0.498 0.260 0.638 23
VE=60% 0.286 0.235 0.049 0.575 0.141 0.810 22
VE=70% 0.231 0.393 0.016 0.545 0.046 0.938 21
VE=80% 0.167 0.627 0.002 0.365 0.006 0.992 18

Type 1 ErrorPower

also less ambitious in its goals than the previous Phase 3 version by having looser
Type 1 error control and no super-efficacy requirement. Even though the first proposal
was formally called a “Phase 3 study” and did not have a dose selection part typically
present in Phase 2/3, it was similar in spirit to a seamless Phase 2/3 design because
the 1st part of the study (prior to the futility analysis) was playing a role of Phase 2. It
was helpful to separate that part into a stand-alone Ph2b trial with its own objective
in order to demonstrate proof of minimal efficacy in a select sub-population and also
to size it appropriately to make a scientifically robust decision (s � 26 events rather
than initial s � 16 which was too low). With this new simplified Ph2b design, a more
ambitious claim of super-efficacy as well as multiple surgery type sub-populations
would be addressed in a separate phase 3 study.

During team review and discussions, the proposed group sequential design
was generally well-accepted. It was considered to have lower regulatory risk (at
least in perception) because group-sequential methodology was considered “well-
understood”, while more complex adaptations such as unblinded sample size re-
estimation were considered “less well understood” (FDA, 2010). The most impor-
tant implication of this exercise was that such design consideration has prompted
the team to formally evaluate operating characteristics of an early stopping deci-
sion rather than rely on some ad-hoc rules (as it was the case with initial Phase 3
proposal). Even though the newly proposed Phase 2 study was relatively modest in
size (~2 K vs. ~10 K patients in the first proposal), it was still a huge investment. In
such situations, teams are often asked to look for ways to accomplish more with that
investment. So, during the internal review and discussions, the Phase 2/3 idea got
re-introduced again, but this time with a different twist: the intention was to keep the
general idea of the proposed Phase 2 design but make it more of a “pivotal” quality.

The discussion was prompted by the question whether early stopping for efficacy
after 13 events should be part of the design. The study did not have efficacy stopping
objective, but having a formal efficacy stopping boundary was considered beneficial
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just in case the efficacy was so compelling that the independent data monitoring
committee (iDMC) monitoring the study (for safety and futility) would recommend
termination because of overwhelming efficacy. Although unlikely, such situationwas
not completely impossible and having a properly evaluated boundary with quantified
operating characteristics was thought to be a better option than relying on iDMC’s
judgement alone. But once that possibility of early stop for efficacywas introduced, it
raised the question: what should the sponsor do with the efficacy results if the study
were terminated early for success? Would that data “stand on its own” in a filing
package without the support of another large, expensive pivotal trial? The answer
was: most definitely no, given very loose power/type 1 error requirements used for
this study, not to mention too small of a sample size to provide sufficient safety
information. That consideration lead to the team being asked to make the design
“pivotal” quality while keeping its main elements. The main objective of the design
revision was to be able to stop for efficacy early (in case the latter is overwhelming)
and also make a super-efficacy claim at that point as well. The interim data resulting
from such early stop would need to be of “pivotal quality” so that the study could be
used in a filing package on its own, should the results look really compelling.

12.3.3 Semi-pivotal Phase 2b Followed by Pivotal Phase 3

With that new re-formulated objective, a new Phase 2b study was designed follow-
ing the same procedure as outlined in the previous section. The following parame-
ters/assumptions were used to design the new study:

• α � 0.025 and 80% power for δ � 0
• The primary focus of adding an interim look was futility stopping but, since data
would have to be looked at in an unblinded fashion anyway, a formal boundary
for efficacy look was included as well.

• An additional objective was added: if the minimal efficacy testing (Ho: VE <= 0
is rejected, then testing for super efficacy (δ � 0.30) would be performed, with
appropriate multiplicity adjustment via hierarchical testing.

The new study diagram is given in Fig. 12.4.
For this study design, a sample size of approximately N� 2594 patients would be

required to achieve 42 total cases of S aureus infection. This number is approximate
because in such setting, the actual sample size is a randomvariablewhose expectation
depends on underlying vaccine efficacy and background placebo rate. The N� 2594
was selected to balance primary and secondary objectives of this study and also to
address the uncertainty about true underlying vaccine efficacy.

To achieve the primary objective of rejecting Ho: VE <= 0 (no super efficacy
claim), N � 2224 subjects would be sufficient to guarantee 97.5% one-sided LCB
to be above 0% with 80% power. This calculation was performed using the “base”
assumption of VE � 60 and 3% placebo attack rate.
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Early Efficacy Stop if 
≤3/21 events in 

vaccine group VE≥83%

Final Analysis Primary 1 

Hypothesis #1
Final Analysis Primary 2 

Hypothesis #2

Continue if 4 -10/21 
Events in Vaccine 

Group (25%VE ≤ 76%)

Interim Analysis 1 

(21 Events)
Final Efficacy if ≤14/42 

Events in Vaccine 
Group (VE ≥ 50%)

Final Efficacy if ≤10/42 
Events in Vaccine 
Group ( VE ≥ 69%)

Early Futility Stop if 
≥10/21 Events in 

Vaccine Group VE ≤ 9%

Final Futility if ≥ 15/42 
Events in Vaccine 
Group ( VE ≤44%)

Hierarhical Testing

1. Testing for Minimal Efficacy 0%
2. Testing for Minimal Efficacy 30%

Study Design with Interim Analysis

Fig. 12.4 Revised phase 2b study design with interim analysis

However, if slightly larger sample size of N � 2594 was used to achieve the same
s � 42 events in case true vaccine efficacy was better than originally hypothesized,
e.g. if VE � 80%, then the design would have 90% power to show 97.5% one-sided
LCB > 30% (super-efficacy claim), assuming same placebo attack rate of 3%.

The highest of these two numbers was selected as enrollment target to balance
both objectives.

Once the total sample size was fixed, an interim look for efficacy/futility was
added after accrual of s � 21 events using group-sequential procedure described
in the previous section. The resulting design is shown in Fig. 12.4. The operating
characteristics of that design are shown in Table 12.6. These operating characteristics
capture decisions related to the primary efficacy objective only (i.e. no super-efficacy
claim). The probability of success/failure reported in that table describes the proba-
bility of demonstrating minimal efficacy.

12.4 Discussion

We have presented a story of clinical study design for vaccine efficacy study in a rare
disease. Such studies are often complicated by very low background incidence rate
of events in the population. The latter can be very uncertain and highly influential
parameter which drives the sample size to be very large, even in cases of moderate to
large treatment effect. Another factor driving large samples size is a super-efficacy
requirement typical of vaccine studies: it is not enough to demonstrate that the vaccine
is simply better than control (i.e.. VE>0%) but it has to be better by certain amount. A
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Table 12.6 Operating characteristics of final proposed Ph2b design

Pr (Early
eff. stop)

Pr (Early
futility
Stop)

PR (Final
success)

PR (Final
failure)

Overall
prob of
success

Ave # of
events

VE � 0% 0.001 0.668 0.021 0.311 0.021 28.0

VE � 10% 0.002 0.576 0.044 0.379 0.046 29.9

VE � 20% 0.004 0.468 0.091 0.438 0.095 32.1

VE � 30% 0.008 0.349 0.179 0.464 0.187 34.5

VE � 50% 0.046 0.125 0.516 0.313 0.563 38.4

VE � 60% 0.109 0.050 0.687 0.154 0.797 38.7

VE � 70% 0.251 0.012 0.700 0.036 0.952 36.5

VE � 80% 0.527 0.001 0.470 0.002 0.997 30.9

Note
• Testing HO: VE ≤ 0% versus Ha: VE > 0%, assuming true VE � 60% and 1-sided α � 0.025

• Decision Criteria (at interim analysis): Early Futility Stop if ≥10/21 Events in vaccine group;
Early Efficacy Stop if ≤3/21 events in vaccine group

• Decision Criteria (at final analysis): Final efficacy if ≤14/42 Events in Vaccine; Final futility if
≥15/42 Events in Vaccine

non-zero null hypothesis, i.e.. H0 ≤ 30% orH0 ≤ 40% is often required for regulatory
approvals of vaccine efficacy studies.

Two statistical approaches are commonly used in vaccine efficacy studies: mod-
eling events via binomial distribution, i.e. 2-sample binomial problem or modeling
events via Poisson distribution, then conditioning on total number events, thus reduc-
ing the problem to a one-sample binomial problem. This is often called “an event
driven design”.

The second approach is attractive (and more commonly used in practice) because
it eliminates the dependency on the nuisance parameter (placebo event rate) by con-
ditioning on the overall number of events in the power calculation. That is, the total
number of events required to achieve desired type 1/2 error control does not depend
on background event rate. However, the total number of patients will depend on the
background rate. Therefore, this design should be interpreted with caution: the study
size may look deceptively small (compared to 2-sample binomial design if used for
the same problem), especially if one focuses on expected sample size without taking
into account its variability. Even the expected sample size cannot be treated as a hard
number, because it depends on vaccine efficacy-the very parameter we are trying to
estimate. That is not to say though that this design should not be used: it can be useful
and helpful as long as one realizes the variations in actual sample size enrollment and
is prepared to handle them via increased complexity of study logistics (enrollment,
flexible budget, timing etc.).

Regardless of which statistical approach is used, vaccine efficacy studies in rare
disease present a unique challenge (due to uncertainty and high impact of assumption
parameters) making them good candidates for exploring adaptive design options. In
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such large trials, even small deviations from assumptions (VE and/or event rate lower
than assumed) made at the design stage can lead to costly consequences. Clinical
development program in such cases need to properly account for uncertainty about
parameters of interest rather than just focusing on 2 values: Ve corresponding to
the null and alternative hypotheses. In our study, the uncertainty about VE and λ0

were only part of the problem. Other challenges included heterogeneity of population
arising from multiple surgery types.

To tackle these challenges, the teamwent through 3 clinical development options:

1. (Extreme) Very complex “Phase 2/3-like” design attempting to address sub-
population issue and uncertainty about parameters all at once via adaptation.

2. (Extreme) Very simple and small Phase 2b focusing on proof of minimal efficacy
only and dropping sub-population and super-efficacy issues. Phase 3 would be a
separate study.

3. (Middle-ground) Larger Phase 2b group-sequential trial keeping other elements
of option 2 the same. The study was sized so that it could possibly be “pivotal”
quality, should the data turn out to be really compelling. A separate Phase 3 study
would include group-sequential elements (i.e. early futility stop) alongwithmore
complex adaptations such as sample size re-estimation.

The lesson learned from this story was that adaptive design cannot be used as
a miracle answer in situations with competing multiple goals and high uncertainty
about assumptions governing the study design: adaptive design is very unlikely to
solve these problems at once, as we have seen with poor operating characteristics
of option 1. By definition, adaptive designs are highly tailored tool to offer solu-
tions for specific objectives. And to design a good adaptive study (i.e. having good
operating characteristics and not just adaptive for the sake of being adaptive), one
needs somewhat firm knowledge about underlying “truth” scenarios. Vaccine effi-
cacy range of 0–100% as it was in option 1 was too ambitious of a goal to come up
with adaptive design that would perform uniformly better than fixed design across
the whole range of possible VE scenarios. In our consideration, it proved to be useful
to break the problem into steps and assign priorities (i.e. to look at separate popula-
tions, to firm up VE and event rate before attempting to design a study with sample
size re-estimation). This way the operating characteristics could be evaluated more
thoroughly and the decisions were more transparent. In clinical program option #3
(which was selected) there still may be room for adaptation later (in Phase 3) but it
will be done in a more thorough manner (unlike option 1) and after proper Phase 2b
data readout. It is well known that unblinded sample size re-estimation works well
only over narrow range of VE (close to alternative) and it does not eliminate “total”
uncertainty about these parameters. In other words, one needs some data to design
a good adaptive design, it can’t be designed using guessed values only and perform
well.

One final note on regulatory attitudes on this designs: the study was designed
over 3 years ago when actual examples of adaptive designs in confirmatory settings
were scarce. Significant progress has been made since then in that area, with some
examples including vaccines case studies (Bauer et al. 2016; Lin et al. 2015). Even
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though unblinded sample size re-estimation still remains classified as “less well
understood” by draft FDA guidance (2010), it wouldn’t be too much of an exagger-
ation to say that it is likely to change in the subsequent revisions of the guidance,
based on recent experiences accumulated and regulatory attitudes “warming” up to
such type of designs. Development programs like the one presented can be a good
starting point for further incorporation of more sophisticated designs.
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Chapter 13
Patient-Reported Outcome
Measures: Development
and Psychometric Evaluation

Lori D. McLeod, Sheri E. Fehnel and Joseph C. Cappelleri

13.1 Introduction

This chapter has been created to provide an accessible introduction to the devel-
opment and psychometric evaluation of patient-reported outcome (PRO) measures
specifically designed to assess key endpoints in clinical trials, with the ultimate goal
of supporting approval and/or labeling claims for pharmaceutical products. While
many of our recommendations are broadly applicable to the development of PRO
measures for use in clinical trials in any country and in other types of patient-based
research (such as observational studies), this chapter will primarily focus on assem-
bling and documenting the types of evidence needed to facilitate reviews of key study
endpoints by the United States (US) Food and Drug Administration (FDA).

Figure 13.1 provides an overview of the steps described in this chapter and
is adapted from the original “wheel-and-spokes” diagram provided in the FDA’s
Patient-Reported Outcome (PRO) Guidance, Patient-Reported Outcome Measures:
Use in Medical Product Development to Support Labeling Claims (FDA 2009). The
PRO Guidance and a subsequent document, The Roadmap to Patient-Focused Out-
come Measurement in Clinical Trials (FDA 2013a), outline the information that the
FDA recommends and reviews for both existing and newly created or modified mea-
sures used to support the assessment and computation of key study endpoints. This
chapter provides an overview of the steps involved in the development and evaluation
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Fig. 13.1 Development, psychometric evaluation, and regulatory support of PRO measures (This
figure provides a visualization of the process of developing and evaluating a patient-reported out-
come (PRO) measure and submitting the measure for review. The figure is based on the original
wheel-and-spokes outlined in the PRO Guidance (FDA 2009).)

of PRO measures, with a focus on meeting the review criteria described in each of
these guidance documents. Rather than providing comprehensive instructions, we
hope that this chapter will help readers learn to critically evaluate information about
existing PRO measures and better understand the necessary steps when planning the
development of a new PRO measure.

For more detailed descriptions of instrument development and psychometric eval-
uation processes, readers are encouraged to study full-length works by Nunnally
and Bernstein (1994), Streiner et al. (2015), Fayers and Hays (2005), de Vet et al.
(2011), Cappelleri et al. (2013), and Fayers and Machin (2016), as well as task
force reports from the International Society for Pharmacoeconomics and Outcomes
Research (ISPOR) (Patrick et al. 2011a, b; Coons et al. 2009;Walton et al. 2015;Wild
et al. 2005) and the International Society for Quality of Life Research (ISOQOL)
(Reeve et al. 2013; Wyrwich et al. 2013) which are cited throughout the chapter.

While this chapter is focused on measures for which the assessment relies on
patients’ direct responses to a question or series of questions (i.e., patient-reported
outcome measures), the steps and types of evidence described here are generally
appropriate for the development and psychometric evaluation of other types of
clinical outcome assessments (COAs) that may be used in clinical trials, includ-
ing clinician-reported outcome (ClinRO), observer-reported outcome (ObsRO), and
performance-based outcome (PerfO) measures (FDA 2013a; Cappelleri and Spiel-
berg 2015). The FDA has provided a useful glossary for these and other COA terms
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at https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentTo
olsQualificationProgram/ucm370262.htm.

Ultimately, the objective of this chapter is to describe the process of developing
and documenting the psychometric properties of a PRO measure in order to ensure
that the patient perspective is appropriately represented in the drug development
process with the rigor necessary to ultimately support product approval or labeling
claims.

13.1.1 Defining a Patient-Reported Outcome

The FDA defines a PRO as “any report of the status of a patient’s health condition
that comes directly from the patient without interpretation of the patient’s response
by a clinician or anyone else” (FDA 2009). This definition is similar to the European
Medicines Agency’s (EMA’s) description, which was provided in a reflection paper
on the RegulatoryGuidance for theUse of Health-relatedQuality of LifeMeasures in
the Evaluation of Medicinal Products (EMA 2005): “any outcome directly evaluated
by the patient and based on patient’s perception of a disease and its treatment(s).”
A PRO measure that will be used to collect self-reported information from patients
may be as simple as a single item or as complex as a multidimensional instrument.

13.2 PRO Measure Development

13.2.1 Concept Identification

The first step in the development of a PRO measure is to identify the concept(s)
to be assessed, or concept of interest (Walton et al. 2015). Concepts selected for
assessment in a PRO measure should be aspects of the illness or potential benefits of
treatment that both are important to patients and have the potential for meaningful
change within the context of a clinical trial. Importantly, there may be symptoms
or impacts of a disease that are important to patients but are either not possible to
measure within the context of a clinical trial or unlikely to change with treatment.
While the collection of data pertaining to such concepts is important for understand-
ing disease burden, key study endpoints in clinical trials should be based solely on
measures with the potential to detect treatment benefits.

Examples of commonly assessed concepts of interest include signs and symptoms
of the disease or condition, physical functioning, psychological well-being, activi-
ties of daily living, and health-related quality of life (HRQoL). While all of these
concepts may be appropriate for measurement in clinical trials in order to demon-
strate treatment benefits that are important to patients, product approvals and labeling
claims based on PRO data in the US are more likely to relate to improvements in

https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugDevelopmentToolsQualificationProgram/ucm370262.htm
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symptoms which are proximal to the disease and the drug’s mechanism of action
(e.g., pain, itch) than those that are more distal and complex (e.g., HRQoL). For
the purpose of product labeling, concepts that can be measured more objectively,
such as symptom frequency and physical function, also tend to be favored over more
subjective concepts, such as satisfaction and self-esteem (Gnanasakthy et al. 2012,
2017).

Patrick and colleagues (2011a) recommend that the overall context of use for
the PRO measure and the resulting endpoint(s) be considered during the concept
identification step. For example, even during the early stages of development, it
can be extremely beneficial to determine how the measure fits within a preliminary
endpointmodel, a visualizationwhich presents the hierarchy of endpoints to be tested
within a clinical trial to support targeted labeling claims. Another potential exercise
to consider during this step is the development of an overall disease model to help
organize key aspects of the disease and treatment. For the purpose of this chapter,
we focus on the identification of concepts that will provide the content for the items
(questions) to be administered within the PRO measure.

Patients should generally be the primary sources of information for identifying
concepts to be measured within a PRO measure; supportive sources may include the
literature, clinical experts, and other stakeholders (e.g., caregivers, patient advocates),
where appropriate. Concepts are generally elicited through qualitative research con-
ducted with reasonably representative samples of patients drawn from the target
patient population. Reviews of existing literature and instruments, as well as the
solicitation of input from clinical experts, can help instrument developers identify
important aspects of the disease and facilitate the collection of data from patients.
Based on this information, an informed determination can be made as to whether it
is preferable to adopt or modify an existing measure or to develop a new measure.
If it is determined that a new measure should be developed, it is essential that the
background information gathered at this early stage does not influence the qualitative
research that forms the basis for the new measure.

13.2.1.1 Literature and Instrument Review

A review of medical literature in the relevant therapeutic area can provide a robust
background for clinical aspects of the condition, symptoms and impacts that have
already been identified, and existing measures that are available. In some cases,
results of qualitative research or surveysmay be available to help begin the process of
identifying concepts that are important from the perspective of patients. Furthermore,
the literature can provide information related to existing therapies, potential benefits
of these therapies, common side effects, and the standard of care, including the role
of parents or other caregivers (if relevant).

In addition to the published literature, sources such as meeting abstracts, clinical
trials, product labels, practice guidelines, and any regulatory guidance documents in
the therapeutic area of interest should be reviewed to identify concepts related to the
target condition and its impact on patients. While never a substitute for the conduct
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of methodologically rigorous qualitative research, social media can also be a source
of relevant patient-reported information (Baldwin et al. 2011; Rothman et al. 2015).

As potentially important concepts begin to emerge, instruments addressing these
concepts should also be reviewed. In addition to instruments identified from pre-
viously described sources, the FDA’s COA Compendium (FDA 2016) is an excel-
lent resource for identifying measures with the potential to support labeling claims.
While inclusion of a PRO measure in this compendium does not guarantee a mea-
sure’s acceptability for supporting labeling claims (and, similarly, exclusion does not
preclude acceptability), the FDA has provided this very useful resource to help spon-
sors identify PRO measures and other COAs that the FDA is willing to consider and
discuss in a wide variety of therapeutic areas; often these measures have been used
previously to support labeling claims. There are also instrument databases that can be
reviewed to identify potentially relevant measures as well as information regarding
the development of these measures and evidence supporting their use, such as the
Patient-Reported Outcome and Quality of Life Instruments Database (PROQOLID;
https://eprovide.mapi-trust.org/); Patient-Reported Health Instruments (PHI; http://
phi.uhce.ox.ac.uk/home.php), a database maintained by the University of Oxford;
and the Measurement Instrument Database for the Social Sciences (MIDSS; http://
www.midss.org/). Instrument databases and compendia are also available in various
therapeutic areas.

13.2.1.2 Clinical Expert Input

While patient input reigns supreme in the development of a PRO measure, input
from experts in the therapeutic area or condition under study can be extremely useful
throughout the development process. For example, clinical experts can facilitate con-
cept identification by providing additional background about the condition, offering
insight regarding key symptoms and impacts based on interactions with patients, and
identifying unmet needs and desirable treatment attributes based on their experience.

The optimal number of clinical experts and the extent of their involvement varies
based on the degree of clinical expertise within the instrument development team,
the complexity/nature of the PRO measure, and logistical concerns such as budget
and timeline. Commonly, the involvement of clinical experts begins with individual
interviews or an expert panel meeting to gather pertinent background information
and identify patient-reported concepts that are important from the perspective of
clinicians, as well as any potentially relevant PRO measures with which the experts
may be familiar. Additional input solicited during the course of the study may relate
to plans for the qualitative research, including input or feedback on the screening
criteria and interview/focus group guide; review of qualitative results to identify
clinically relevant concepts with the potential for change within the context of a
clinical trial; and clinical guidance pertinent to the psychometric evaluation process,
such as the assessment of clinical characteristics and input into the study design.

https://eprovide.mapi-trust.org/
http://phi.uhce.ox.ac.uk/home.php
http://www.midss.org/
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13.2.1.3 Direct Patient Input

While reviews of existing information and guidance from clinical experts can con-
tribute information to the concept identification process and facilitate the conduct of
patient-based research, the most important step in identifying concepts for measure-
ment is the elicitation of input directly from patients.

Direct patient input is generally gathered during semi-structured qualitative inter-
views; participants are asked a series of open-ended questions aimed at furthering the
researchers’ understanding of the disease, identifying concepts important to patients,
and observing patients’ word choice when describing these concepts to inform item
development. For example, when developing a symptom-based measure, interview
participants will be informed that the goal of the interview is to identify a compre-
hensive set of symptoms and to fully understand how the patient experiences and
perceives each of these symptoms. Participants are then asked to describe each of
their symptoms and encouraged to be as explicit and inclusive as possible.

Additional questions are generally posed to gather specific information that may
not be mentioned spontaneously, such as the frequency, duration, and severity of
each symptom. In order to hear the words patients use to describe improvement and
worsening of their symptoms and to inform the selection of an appropriate recall
period for the PRO measure, the variability in the experience of each symptom (e.g.,
during the day, from day-to-day) is also queried. Symptoms that are not reported
spontaneously but that have been identified as important or common in the literature
or based on clinician input will also be explored to determine the potential relevance
and importance of these concepts to patients.

Generally speaking, symptoms that patients mention spontaneously tend to be
the most salient compared to those symptoms that are only endorsed in response
to follow-up questions; as such, spontaneously reported symptoms may be the most
important targets for measurement. Additional techniques, such as importance rating
and symptom ranking, may also be used to further elucidate the relative importance
of concepts elicited from patients.

While group discussions, often referred to as focus groups, offer a reasonable
and, in some regards, more efficient alternative to patient interviews (i.e., permit the
simultaneous solicitation of information from multiple patients), individual inter-
views are generally preferred for the purpose of concept elicitation, as this setting
allows each individual to provide detailed information about his or her own experi-
ences without the influence of others. Individual interviews are particularly valuable
when working with special populations (e.g., children, sensory impaired, very ill)
or discussing sensitive topics, and they allow greater flexibility to accommodate
participants’ schedules.

Regardless of the qualitative data collectionmethod chosen, participants should be
selected based on criteria that are consistent with the future clinical trial screening
criteria and provide a broad representation of patients in terms of relevant demo-
graphic variables (e.g., age, gender, race) and clinical characteristics (e.g., subtypes
of disease, varying levels of symptom severity). While patients receiving efficacious
treatment are typically excluded from clinical trials, inclusion of such patients in
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qualitative research can be beneficial, particularly when discussing the meaningful-
ness of treatment-related changes.

For prevalent conditions in which screening criteria can be self-reported, the iden-
tification of patients is often possible through qualitative research firms (commonly
called focus group facilities), many of which employ medical recruiters and have
extensive databases that include health-related information. However, the involve-
ment of clinical sites may be necessary if the screening criteria are complex or
require information that potential participants may not have readily available (e.g.,
test results). For rare conditions, recruitment through clinical sites and/or patient
advocacy organizations is often necessary.

The number of patients needed for the concept identification stage varies depend-
ing on the amount known about the condition, the variability of disease characteristics
and symptoms, the number of subgroups of interest, and the potential complexity
of the PRO measure. For example, the elicitation of concepts for a measure being
developed to address the severity of a single symptom experienced by all (or nearly
all) patients with a given disease will require a smaller sample size than a measure
being developed to assess HRQoL within a diverse patient population. As a general
rule, the concept elicitation process should continue until concept saturation, the
point at which no new information is being elicited, is reached. The achievement of
concept saturation should also be documented by developing a detailed table that
shows the concepts elicited in each interview (or focus group) and the number of
new concepts elicited in later interviews compared with earlier ones.

To ensure that the qualitative research process is appropriately documented and
systematic, a qualitative research protocol (including recruitment and enrollment
details, an informed consent form, and an interview guide to help structure the dis-
cussions) should be developed prior to initiating patient interactions. This document
should be approved by the appropriate institutional review board (IBR) or ethics
review committee before any patients are recruited. Throughout the development
process, it is important to create transcripts to document the concepts of interest as
described by the patients in their own words. Having two members of the project
teamwith qualitative research experience is also recommended; this allows one inter-
viewer to take the primary role of facilitating the interview or focus group while the
other takes field notes that will be supplemented by the transcripts for later data anal-
ysis and documentation. Careful documentation is particularly important, since the
FDA commonly requests the opportunity to review both the qualitative research pro-
tocol and the transcripts when reviewing requests for product approvals and labeling
claims based on PRO measures.

13.2.1.4 Finalization of Concepts

Using both transcripts and field notes, the PRO measure development team reviews
the results of the interviews. Terms, phrases, and statements made by participants
are generally coded to facilitate analysis of the qualitative data. While such a coding
scheme is generally constructed prior to analysis, additional codes are commonly
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added during the analysis process as new concepts are identified. The coded results
are then compared across interviews or focus groups (or both) to generate themes
or patterns in the way participants describe the concepts, as well as to identify the
concepts reported most commonly and deemed most important by participants.

Software such as Atlas (www.atlasti.com) can be used to facilitate the analysis
process by organizing the data according to assigned codes but does not replace
the need for experienced qualitative researchers to synthesize the information. In
addition to detailed descriptions of the results, tables are typically developed to
summarize the concept elicitation results, support the development of items, and
document concept saturation. While all concepts deemed important by patients and
relevant to the goals of the PRO measure are potential candidates for measurement,
the input of clinical experts can be very valuable at this stage to ensure that each of
the concepts selected for item development is clinically relevant within the context
of use. For example, when developing a symptom-based measure, the symptoms
selected for measurement should be plausibly related to the condition under study
from a clinical or physiological standpoint.

13.2.2 Item Development

Once the concept or set of concepts to be assessed by the PRO measure has been
identified, items should be drafted to address each concept of interest using patient-
friendly language and methodological principles grounded in survey research (Sud-
man and Bradburn 1982); the focus of the question-writing process should be on
facilitating patient understanding, yielding proper response, and minimizing mea-
surement error. For example, questions should be succinct and based on the lan-
guage used by patients, maintain an accessible reading level, and naturally relate to
the response options. Item developers should be careful to avoid “double-barreled”
questions or items that address more than one concept that might have different or
conflicting answers. For example, an item may ask if a person has trouble walking
or jogging. When answering this item, an individual who can walk but not jog must
determine which component to answer and which to ignore.

Response options should be both comprehensive and mutually exclusive; it is also
important that patients be able to clearly differentiate among each option. Careful
attention must also be given to the recall period to ensure that patients are able
to accurately remember relevant information and formulate an accurate response
without complex computations. While very short recall periods (e.g., past 24 h) and
frequent administration have been recommended by the FDA for assessing symptoms
with the potential to vary from day to day, there may be situations in which a longer
recall period and less frequent administration are more appropriate (Norquist et al.
2012). Longer recall periods may be appropriate for the assessment of symptoms that
are slow to change, for example, or for determining the impact of chronic conditions
on patients’ functioning and HRQOL.

http://www.atlasti.com
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When developing items for a PRO measure to be administered in clinical trials,
it is also vitally important to consider the context. Specifically, these measures need
to be designed to evaluate treatment benefit. As such, patients’ experiences (and,
consequently, their responses to thePRO items)must have thepotential to changeover
the course and within the context of a clinical trial. The items and the PRO measure
itself should be brief in order to minimize patient burden and allow for flexibility
in the mode of administration. For example, a PRO measure being developed for
electronic administration on a daily basis should not includemore items than patients
will be willing to answer consistently and the individual items must be brief enough
to display clearly on a small screen (e.g., hand-held device or smart phone). Finally,
items should be applicable to and generalizable across the target patient population.

Multiple items are typically drafted for each concept of interest so that variable
question wording and response scales (e.g., numerical rating scales, verbal response
scales) can be tested in cognitive debriefing interviews to identify the version of the
item that is most easily understood and answered by patients. It is also helpful to
consider potential scoring rules during item development. For example, including
a category for “no pain” can be justified as the lowest (most favorable) score for a
pain severity item; however, if a “not applicable” response option is included, this
response may be chosen by patients who did not experience pain or by patients who
restricted their activity to avoid pain, creating measurement error in the item score.
Instructions for completion of the PROmeasure should also be drafted at this step so
that patient input can be gathered to refine instructions andmaximize comprehension
of the item(s) as an organized unit.

13.2.3 Cognitive Debriefing

Draft versions of the instructions and items are refined based on additional patient
input gathered during iterative sets of interviews, commonly called cognitive inter-
views. In addition to cognitive debriefing of the PRO measure, these interviews typ-
ically involve the collection of supplemental data to further support content validity
and inform future use of the final measure. Additional information on the conduct
and analysis of data collected during cognitive interviews can be found in Willis
(2005, 2015), respectively.

In general, cognitive debriefing focuses on the cognitive processing involvedwhen
participants read, interpret, and determine their responses to the draft questions.
The insights gained through evaluating this processing step are then used to refine
instructions, question wording, response categories, formatting, and other aspects
of the PRO measure to remove aspects that are unclear or influence participants to
understand the items in a way that was not intended. The process is iterative and
should continue until evidence is established that no further revisions are warranted.

Typically, the cognitive debriefing sample is independent of the concept elicitation
sample, although some overlap may be reasonable, particularly when working in rare
diseases. Similarly, it is best practice to conduct cognitive interviews in person to
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facilitate item review and behavioral observation; however, web-based or telephone
interviews may be needed in some circumstances. While the patient sample should
also be reasonably representative of the expected clinical trial participants, thosewith
lower education may be oversampled to ensure that items are easily understood with
lower levels of literacy.

Aswith the concept elicitation interviews or focus groups, a semi-structured inter-
viewguide should be developed to ensure consistency across the cognitive interviews.
Commonly, the guide (and the interview) begins with a brief concept elicitation
section to identify concepts important to these additional patients prior to reviewing
the draft items; congruence among the concepts identified in the prior interviews,
addressed in the draft PROmeasure, and reported by cognitive interview participants
further supports the content validity of the final measure.

During cognitive debriefing, participants are generally asked to “think aloud,”
describing their thought processes as they read, interpret, recall necessary informa-
tion, and respond to the draft items. It is often helpful to provide an example and
explain to participants that it is important for interviewers to hear this process across
patients to identify any differences in interpretation or difficulties associated with
recall or response which may suggest revision of the items. If not offered during the
think-aloud process, participants are typically asked to paraphrase the question in
their own words and to describe how they arrived at their response. A series of addi-
tional questions follows (as needed) to gather further information to fully elucidate
the question-answering process. Patrick and colleagues (2011b) describe the goals
of these interviews as two-fold: (1) to ensure that the most important concepts are
included in the final PRO measure; and (2) to ensure that respondents understand
how to answer each item based on clear instructions, the appropriate recall period,
itemmeaning, response scale, and any other features, such as paper versus electronic
mode of administration.

As mentioned previously, it is important to take the time to assess the clarity and
appropriateness of instructions, question wording, response categories, and aspects
of formatting with each individual to guide the finalization of the PRO measure. In
addition, if subscales are desired for specific concepts of interest, gaining an under-
standing of how patients perceive relationships among the items will help inform
the development of initial scoring algorithms. It is also useful to pose specific ques-
tions to ascertain what amount of change on the individual items and sets of items is
meaningful to patients in order to facilitate the development of responder definitions
for application in future clinical trials.

As with the concept elicitation step, the number of patients needed for cognitive
debriefing will vary depending on the complexity of the concepts to be measured and
variability across the patient population. In general, however, three or four iterative
sets of interviews each comprised of six to 10 patients (for a total of 18–40 additional
patients) are typically sufficient to help refine and finalize the items. As a general rule,
the cognitive interviews are complete when no additional item changes are identified
by subsequent interviews.

As with the concept elicitation interviews, cognitive interviews should be guided
by a brief protocol. IRB or ethics approval must be obtained prior to patient engage-
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ment, and transcripts should also be created to support revisions and document this
step of development.

Immediately following each cognitive interview, the researchers conducting the
interviews begin the refinement process by reviewing the field notes and discussing
the patient feedback for each item. Generally speaking, the modifications made
between sets of interviews will be based on the field notes to meet development
timelines. However, these initial findings will be followed by a more formal analysis
facilitated by interview transcripts from which patient quotes are identified that best
identify and support the refinements needed.

An item tracking matrix, a log that provides the chronology of events for item
generation, modification, and finalization, is typically created to document the refine-
ment process and rationale for modifications. This item tracking matrix is commonly
requested by FDA reviewers and describes the item wording for each version of each
item tested, reasons for revisions to retained items, and reasons for the omission
of items during the process. The item tracking matrix also provides evidence that
further refinements are not needed by documenting subsequent interviews in which
there was no feedback identifying weaknesses or suggesting revisions to clarify the
question wording or response choices.

13.2.4 Potential Exceptions and Additional Considerations

It should be noted that the steps outlined in the preceding sections are those recom-
mended for the “typical” instrument development process (if, indeed, there is such a
thing). There are many instances in which alterations or additions to these steps are
either necessary or advisable. For example, if a PRO measure is meant to address a
single concept (such as the frequency of a particular symptom) or if a great deal is
already known about the concepts that need to be measured based on prior research,
it may be reasonable to combine the concept elicitation and cognitive debriefing
steps. Specifically, items may be drafted and tested as described in Sects. 13.2.2 and
13.2.3. In that case, however, the interviews would begin with a comprehensive con-
cept elicitation phase to support the content validity of the final measure in addition
to refining the item set. Such an approachmay also be appropriate if one is modifying
an existing PRO measure rather than developing a new measure.

Just as the nature and mode of administration need to take into consideration
the characteristics of the target patient population, the development process often
needs to be tailored when working with special populations, such as children and
individualswith cognitive or sensory impairments.Recommendations for the conduct
of qualitative research in such patient populations have been provided by DeMuro
and her colleagues (2012).

If a PRO measure is meant to be administered in international trials, the develop-
ment process should ideally be completed in multiple countries. Much like qualita-
tive research, samples should be representative of the patient population in terms of
demographic and clinical characteristics; development of a PRO measure involving
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patients from different countries allows for diversity in geographical and cultural
characteristics. It is very common, however, for the initial development of a PRO
measure to be limited to a single country. In such cases, translation and cultural
adaptation are then performed later, in preparation for administration in international
studies.

When instrument development takes place in a single country but the measure
is expected to be used in international trials, it is often useful to conduct a trans-
latability assessment. This assessment includes an evaluation of the draft items by
translation experts to identify any potential issues with the item wording (language
or concepts) and response options/scales. The objectives of this assessment are to
increase the likelihood of cultural equivalence across languages and reduce the poten-
tial for translation issues caused by items or phrases that are difficult to translate.
Translatability assessments should be conducted during the item refinement process
so that modifications suggested by translators can be tested with additional cognitive
debriefing participants. The recommended methodology for these activities has been
detailed by Wild and her colleagues (2005).

Considerations related to the development of a PROmeasure for electronic admin-
istration (ePRO) are analogous to those pertaining to development in multiple lan-
guages. Ideally, the development process involves cognitive debriefing of ePRO ver-
sions of the items with patients using the device slated for use in the clinical trials.
This process negates the need to demonstrate measurement equivalence between dif-
ferent modes of administration (e.g., ePRO with paper), because the ePRO version
is the original and only version of the measure. However, development of a paper-
based PRO measure which is later migrated to an electronic platform or migration
from one type of electronic platform to another (e.g., web-based to hand-held) is not
unusual.Much like the translation and cultural adaptation processes, ePROmigration
must follow a rigorous process to ensure that the content validity and psychometric
properties of the final version are maintained. The evidence required to support mea-
surement equivalence between paper-based and ePRO versions of PROmeasures has
been described by Coons and his colleagues (2009).

13.2.5 Documentation of the Development Process

Whether separately or in a comprehensive development report, it is important to
document all steps involved in the literature review, expert involvement, qualita-
tive research for concept elicitation, final concept selection, item development, and
item refinement. In addition, a conceptual framework for the new measure should be
developed. The conceptual framework depicts the concept that each item (potentially
in conjunction with other items) is meant to assess in the version of the PRO mea-
sure being taken forward for psychometric evaluation. This framework could be as
simple as a single item addressing the severity of a single symptom or as complex as
groupings of items underlying various domains of HRQoL. The conceptual frame-
work provides an initial glimpse into possible scoring for the PROmeasure based on



13 Patient-Reported Outcome Measures: Development and Psychometric … 329

the development phase and may be refined based on the results of the quantitative
phase in which the relationships among item scores are evaluated empirically. These
documents will serve as the basis for regulatory packages to facilitate review and
agreement that the PRO measure is fit for purpose—that it is an appropriate measure
in the proposed context of use for supporting medical product labeling.

13.3 Psychometric Evaluation

The PRO guidance (FDA 2009) describes the important psychometric properties that
must be demonstrated for PRO measures used in pivotal clinical trials in order to
support product approvals and labeling claims in the US. Specifically, the guidance
describes the evaluation of the reliability, validity, and ability to detect change (often
referred to as responsiveness) as the psychometric groundwork for the PROmeasure.
In general, the quantitative assessment of these measurement properties (the “vali-
dation”) should be made within the same context of use as planned for the pivotal
clinical trials to support labeling claims.

At the most basic level, the purpose of the psychometric evaluation is to gather
evidence that the PRO measure is reliable and valid within the intended context of
use. Generally, the same properties should be evaluated regardless of the intent of the
PROmeasure orwhether the PROmeasure is newly developed or an existingmeasure
being used in a different condition or for a different purpose. For a PROmeasure that
is intended to support product approval or labeling, the amount of evidence required
is substantial in order to ensure that the concepts important to patients are reliably and
accurately captured and that the measure is capable of detecting treatment benefit.
For the evaluation of an existing PROmeasure, the evidence requiredwill include that
the measure’s psychometric properties indicate that the scores behave adequately in
the new context. In the next sections, each of the psychometric properties is defined
and a method for evaluating the property is described. Rather than being exhaus-
tive, the methods provided here are intended to be examples of how each property
is commonly assessed. For more detailed information on psychometric evaluations,
readers are encouraged to consult the in-depth literature recommended at the begin-
ning of this chapter as well as consortium recommendations (Frost et al. 2007; Reeve
et al. 2013) and publically available summaries based on FDA review (FDA 2013b).
Althoughwe describe approaches that are recognized as best practices for conducting
psychometric evaluations, practical constraints should be acknowledged and consid-
ered, especially for conditions such as rare diseases, where the FDA often shows
flexibility in terms of the sample sizes, number of studies, and amount of supportive
evidence required.
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13.3.1 Psychometric Evaluation Data

Preliminary psychometric evaluations may be planned using cross-sectional data
outside of the clinical trial program, especially if additional item reduction is planned.
However, evaluation through cross-sectional data is not sufficient to assess all of the
key properties. If a PROmeasure has been developed rigorously and substantial item
reduction is not planned, the most efficient way to gather data for a comprehensive
psychometric evaluation is to administer the PROmeasure as an exploratorymeasure
within a planned phase 2 study. When planning the phase 2 study, it is important
to include additional measures that can support the psychometric evaluation (i.e.,
measures of similar constructs and measures that provide a global assessment of
disease status and/or of change in disease status from baseline). The PRO measure
should be administered at key time points aligned to the intended time points for
future pivotal studies. These time points should provide opportunities to evaluate
change in the proposed scores where change is anticipated and to evaluate stability
of scores where change is not expected. The number of additional measures and the
frequency of their administration should be taken into consideration, however, to
avoid increasing patient burden unnecessarily. Finally, blinded phase 2 study data
should be used for psychometric evaluation of the PRO measure.

If phase 2 data are not available for the longitudinal evaluation, an independent
study may be conducted to collect appropriate data for the psychometric evaluation.
In such cases, it is important to ensure that the sample is representative of the intended
pivotal studies and that the study design facilitates the collection of data at time points
where change is expected (e.g., prior to and after treatment) and where stability is
expected for at least a subgroup of patients (e.g., prior to treatment or after treatment
benefit has been maximized). In addition, it is important that the selected study has
adequate sample size for the methods planned (Chen et al. 2014).

13.3.2 Psychometric Properties

The psychometric evaluation should be guided by a formal psychometric analysis
plan. If the psychometric evaluation is performed using phase 2 data, the psycho-
metric analysis plan should be a separate document from the statistical analysis plan
designed to guide the evaluation of efficacy based on the phase 2 data. The psy-
chometric analysis plan should describe the psychometric and statistical methods
to be conducted (including prespecified analytic sample and subgroups of interest),
and provide detailed hypotheses to support reliability and construct validity as well
as the ability to detect known differences between distinct groups, and meaningful
change for each score derived from the PRO measure. Blinded data should be used.
Table 13.1 provides an overview of typical analysis methods for each of the key
psychometric properties.
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Table 13.1 Key psychometric properties assessed

Psychometric property Measures used: examples Evaluation method: examples

Distributional characteristics

The target PRO measure
item-level and scale-level
scores at key time points.
Scores on supporting measures
(e.g., measures intended for
construct validity and
known-groups comparisons) at
key time points

Mean, median, SD, minimum,
maximum, percentage
missing, frequency
distribution

Structure

Item-level scores at baseline
and/or follow-up time points

Factor analysis

Reliability

Internal consistency Item-level scores at key time
points

Cronbach’s coefficient alpha

Test-retest Item- and/or scale-level scores
at two time points for a
subgroup of patients whose
disease status should be stable

Weighted kappa; Intraclass
correlation coefficient

Validity

Construct Item- and scale-level scores
for the target measure and
supportive measures at
multiple time points

Correlation

Known groups Classification of patients into
groups (for which PRO scores
are expected to differ) based
on an external variable at one
or multiple time points

Analysis of variance or
nonparametric test comparing
item- and/or scale-level scores
for these groups

Ability to detect change

Item- and scale-level change
scores for the target measure
and supportive measures

Correlation, effect size,
standardized response mean,
responsiveness statistics

Interpretation of change scores

Candidate anchor measure
scores at multiple time points

Descriptive, correlation,
regression, and cumulative
distribution function plots

PRO measure scores at
baseline

One-half SD of the PRO
measure scores at baseline

Note SD � standard deviation; PRO � patient-reported outcome
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13.3.2.1 Distributional Characteristics

Key demographic and sample characteristics at baseline should be tabulated to
describe the sample used in the psychometric evaluation. Standard descriptive statis-
tics (including means, medians, standard deviations, minimums, maximums, and
percentages missing) should be reported for the PRO measure scores as well as
the supporting measures included for comparison at baseline and key time points.
Item-level frequencies should also be tabulated for these time points.

Review of the distributional characteristics provides a general evaluation of com-
pliance and appropriateness of the PRO measure. Evidence of good compliance
(i.e., minimal missing data across items and time points) provides support that
patients are capable of completing the measure and that the patient burden of com-
pletion is acceptable. Scale- and item-level appropriateness are judged by the dis-
tribution of response categories across time points. Supportive evidence is defined
by distributions where all categories are selected by at least a small proportion of
subjects without evidence of floor and ceiling effects.

For the present chapter, a floor effect is defined by a high proportion of subjects
selecting the minimum category or score for the measured construct (e.g., more than
80% select the minimum category). Alternatively, a ceiling effect is defined by a high
proportion of subjects selecting themaximum category or score (e.g., more than 80%
select the maximum category). Both floor and ceiling effects can indicate that the
PRO measure may not have the measurement range necessary to differentiate and
show change. For example, if a majority of subjects select the extreme category for
low symptom severity at baseline, it is plausible that the symptom measured is not
relevant for the majority of the intended population. Careful review of the concept
addressed by the item and the characteristics of subjects who endorse the extreme
category should be examined to more accurately determine whether this item is only
applicable to the most severe patients. This exploration of potential reasons for the
observed floor effect will inform decisions regarding whether to remove, revise,
or retain this item. Ceiling effects are of less concern at baseline when efficacious
treatment should facilitate lower (here defined as more favorable) item scores.

Evidence that the distributions for the supporting measures behave as expected
provide an initial quantitative context for the target PRO measure. For example, if
there is little variability in both the target PRO measure and in a related supportive
measure, then the concern may shift to the relevance of the sample or overall context
of use. On the other hand, if the supporting measures have the expected distributions
but the target PRO measure does not—especially during post-baseline assessments
with a beneficial intervention—the initial descriptive statistics for the target PRO
measure may foreshadow problems with other properties.

13.3.2.2 Structure

For multiple items with the potential for subscales, the conceptual framework pro-
vides a description of the item-level relationship based on the qualitative phase of
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the development process and how the items form potential domains. To inform scor-
ing, this framework is further refined by evaluating the quantitative relationships
among the items through inter-item correlation coefficients and dimensionality anal-
ysis (e.g., factor analysis). Methods such as exploratory factor analysis (EFA) are
recommended when these frameworks are preliminary and alternative item group-
ings have been considered (e.g., consideration of one general grouping including all
items versus grouping of item subsets intomultiple domains). EFA seeks to “explore”
the underlying factor structure of a set of variables (i.e., item scores) and therefore
does not impose a structure. In this type of analysis, the inter-item relationships are
generally used to evaluate the number of possible factors representing constructs or
domains for which subscale scores may be warranted. Items are allowed to freely
load on the factors (that is, correlate with other items so that they group to form
factors) based on relationships that meet prespecified fit criteria. Multiple structures
(e.g., 3 factors, 4 factors) are then compared in terms of factor loadings, variance
explained by a factor, and overall model fit. The “best” structure is one where each
item loads (correlates) highly (e.g., factor loading of 0.4 or above) on one and only
one factor. Different EFA estimation techniques are recommended depending on
the type of item response and the hypothesized relations among the items (Gorsuch
1983). Methods may vary based on, for example, rules for extracting (or forming)
factors or determining the optimal number of factors, or based on the correlation
allowed among factors (rotation).

Alternatively, confirmatory factor analysis (CFA) facilitates the evaluation of a
proposed structure. In this type of analysis, the number of factors and the items
that should load on each factor are prespecified. Items are grouped based on previ-
ous qualitative or quantitative results to form hypothesized domains. In addition to
the groupings, the magnitude of the loadings and correlation among factors can be
prespecified. For structures that are nested (i.e., one structure is a modification of
another through the elimination of specific loadings or paths between factors), com-
parisons are facilitated through a likelihood ratio test of model fit. The general fit of
the model can also be assessed using a variety of fit indices, such as the Comparative
Fit Index (Bentler 1989); the Non-Normed Fit Index (Tucker and Lewis 1973); and
a root-mean square error of approximation (Browne and Cudeck 1993). Figure 13.2
provides an example of the parameters estimated for an EFA for a 7-item measure;
Fig. 13.3 presents a CFA where two factors are proposed a priori.

Results from the inter-item correlations and factor analysis can be used to pro-
pose or refine the preliminary domain construct for the PROmeasure (i.e., which item
scores are combined to form domain-level scores and to identify potential redundan-
cies).

In addition to factor analysis, methods such as Rasch modeling and item response
theory (IRT)modeling are useful tools to evaluate the performance of individual items
and the structure of a multi-item PRO measure (Andrich 1988; Edelen and Reeve
2007; Cappelleri et al. 2014). These methods can be used to assess the relationships
among items, how the items relate to an underlying construct, and redundancy in item
content, making the methods extremely informative for item reduction and subscale
(domain-level) refinement. Related methods, such as differential item functioning,
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Fig. 13.2 Example exploratory factor analysis path diagram (Example exploratory factor analysis
diagram for a 7-item measure. In this analysis, a 2-factor solution is fit with each item allowed to
load on each factor. The correlation between the factors and a uniqueness for each item are also
modeled. Note: y represents the observed item score. ε is the item’s unique or error component that
is not correlated with the factors. λ is the item’s factor loading. η is the factor score. Φ is the factor
correlation.)

are beyond the scope of this chapter but can be used to statistically test item scores
for the presence of bias that is not related to the intended construct (e.g., gender or
ethnicity bias in scores) (Thissen et al. 1993). Item-level results can be used to inform
item selection or item revision while retaining the intended content. Furthermore,
at this step it is important to consider scoring for multi-item scales. A simple score
should be selected over a complicated score when the necessary precision is not
compromised. In addition, when possible, reporting scale-level scores on the same
scale as item-level scores will provide context for the scale-level interpretations.

13.3.2.3 Reliability

Reliability is defined as the extent to which an instrument is free of measurement
error and can consistently measure a subject’s true score, which is the average score
that would be expected if the subject completed parallel forms of the instrument
many times (Hays and Revicki 2005). It is important to evaluate the reliability of
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Fig. 13.3 Example confirmatory factor analysis diagram (Example confirmatory factor analysis
diagram for a 7-item measure. In this analysis, a 2-factor solution is fit with specific items allowed
to load on one and only one factor (and the specific factor is predefined). These loadings are identified
by the solid lines and those not fit are identified by the dashed lines. The correlation between the
factors and a uniqueness for each item are also modeled. Note: y represents the observed item score.
ε is the item’s unique or error component that is not correlated with the factors. λ is the item’s factor
loading. η is the factor score. Φ is the factor correlation.)

a PRO measure in order to provide evidence for the reproducibility of its reported
scores. Two types of reliability assessments are recommended in the FDA’s PRO
guidance (2009): internal consistency and test-retest reliability.

Internal Consistency Reliability Internal consistency reliability explores the
degree to which the items constituting a scale or subscale are associated and their
ability to measure a single underlying construct. If items are highly related to one
another, then less unassociated measurement error is present. Internal consistency
reliability is typically estimated for each group of items proposed to form a single
score using Cronbach’s (1951) coefficient alpha, with alpha values between 0.70
and 0.95 providing evidence in support of adequate internal consistency reliability
for outcomes measures designed for group-level comparisons. (Alpha higher than
0.90 suggests item-level redundancy and may not be desirable when balancing score
precision and patient burden.) For measures intended to summarize distinct aspects
of a condition that may not be related (e.g., differing symptoms that may not typi-
cally present together but are indicative of a condition), internal consistency is not
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an appropriate type of reliability to evaluate, as these items are not indicators of the
same underlying construct.

Test-Retest Reliability Test-retest reliability provides an evaluation of reliability by
comparing scores for subjects who are classified as stable in the measured constructs
across two time periods where no change is anticipated. For example, the subgroup
may be defined as the group of patients who have been assigned to placebo and
use time points where the placebo effect has resolved. Alternatively, the subgroup
may be defined at the end of the treatment period using the pooled sample where
additional treatment-based improvements are not anticipated. More commonly, sta-
ble subgroups are predefined as exhibiting no change based on a criterion measure
that is judged to be able to adequately assess patients’ status. Intraclass correlation
coefficients (ICCs) are then computed using the scores for the “stable” subgroup
at the two time points (Deyo et al. 1991; McGraw and Wong 1996; Shuck 2004).
The “test” data are scores at the first of these two time points and the “retest” data
are scores at the second time point. The ICC is the ratio of the between-subject
variability and total variability; if this ratio is high, there is little measurement error
to be accounted for by the measurements on the two different occasions, and the
reproducibility (i.e., test-retest reliability) of the measure is high. ICC values of at
least 0.70 formulti-item scales are recommended to support adequate test-retest (e.g.,
Nunnally and Bernstein 1994). For single items, methods such as ICCs and weighted
kappa coefficients provide information related to test-retest reliability.

13.3.2.4 Construct Validity

Validity is traditionally defined as the extent to which an assessment measures what
it purports to measure, but the term is also more broadly intended to convey the
appropriateness of inferences based on item scores, subscale or domain scores, or
total scores (Messick 1989). Within the context of PRO measures, regulatory bodies
have focused primarily on content validity (as described in the Sect. 13.2). Without
adequate evidence to support content validity, most regulatory reviewers will dismiss
ameasure from further reviewof the other aspects of validity. These additional aspects
of validity use quantitative data and methods to build upon the qualitative evidence
to further support the content validity. Construct validity describes the relationships
among multiple indicators of a construct and the degree to which the scores on these
indicators follow predictable patterns.

Convergent/Divergent Validity Technically speaking, convergent/divergent valid-
ity describes the relationships amongmultiple indicators of constructs and the degree
to which the scores from these indicators follow predictable patterns. The goal of
these analyses is to demonstrate stronger relationships among measures addressing
similar constructs (defined as “convergent” validity) compared to measures address-
ing more disparate constructs (defined as “divergent” validity). Typically, correla-
tional analyses are conducted to examine these relationships using data from baseline
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and other key time points. Specifically, the psychometric analysis plan should outline
a priori hypotheses that specify the anticipated direction and magnitude of correla-
tions between scores on the target PRO measure and scores on other supporting
measures included in the trial (i.e., other measures of both similar and different con-
structs, relevant clinical measures). Correlation analyses are then conducted and the
patterns are compared against the a priori hypotheses.

Known-Groups Validity Known-groups validity evaluations focus on whether
scores on the PRO measure differentiate (or “discriminate”) among subgroups that
should have different scores if the PRO measure is performing as intended. Again,
these assessments begin with a priori hypotheses that are then evaluated. Analyses of
variance or nonparametric tests can be used to examine mean differences in the PRO
measure scores for the subgroups. Providing evidence to support different means for
the different subgroups supports known-groups validity.

13.3.2.5 Ability to Detect Change (Responsiveness)

While it is important to provide evidence that the measure is assessing the concepts
of interest, it is equally important within the clinical trial environment to provide
evidence that scores on the PRO measure show adequate responsiveness—that is,
that the PRO measure scores have the ability to detect within-subject change where
change is expected. If a measure is not capable of measuring change within the time
period anticipated in a clinical trial setting, the measure will not be useful for its
intended purpose.

Various methods are used to evaluate responsiveness. These include correlational
analyses, computation of effect sizes (standardized measures of effect or change),
and reporting of standardized response means (McLeod et al. 2016). Correlational
analyses can build upon the correlations computed within the construct validity eval-
uations. Specifically, a priori hypotheses are defined that outline the direction and
magnitude of correlation coefficients for change scores based on the PRO measure
and change scores for other supporting measures, where larger and positive corre-
lation values are anticipated for similar construct pairs based on time points where
change is expected (e.g., change from baseline to end of treatment using an effica-
cious treatment).

In addition to the correlational evaluations, effect size estimates of change are
often computed to provide a standard unit to report within-group change on the new
PRO measure. McLeod et al. (2016) provide an overview of the types of effect sizes
that can be used when evaluating change. For example, one standard effect size of
change is defined as the mean change from baseline to the end of the key evaluation
period divided by the standard deviation (SD) of the baseline score. Another effect
size used to evaluate responsiveness is Guyatt’s responsiveness statistic, which is
computed using the same numerator (mean change from baseline to the end of the
key evaluation period) but the denominator is the standard deviation of the stable
subgroup. Standardized response means provide a further metric to describe respon-
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siveness. This statistic is often computed as themean change in the newPROmeasure
score frombaseline to the end of the evaluation period divided by the SDof the change
score.

When reviewing responsiveness evidence based on effect sizes, it is important to
understand the unit used in the denominator. It is also important to provide evidence
that the change scores are different for groups that are hypothesized to be different.
For example, showing that change scores are statistically different between groups
identified as different by supporting measures such as a patient global impression of
change provides evidence for the measure’s ability to detect change.

13.3.3 Other Considerations for Psychometric Evaluation

As outlined in the preceding section, a typical psychometric evaluation focuses on
cross-sectional methods for construct validity and two time points for the evalua-
tion of test-retest reliability and responsiveness. Given the longitudinal nature of
clinical trials and the need for PRO measures to measure change over time, longi-
tudinal methods are evolving to incorporate data from more than two time points
and include depictions of individual trajectories of change for multiple measures,
where appropriate (Williams et al. 2015). In addition to the focus on the psycho-
metric properties, methods like joint mixed models for repeated measures can also
help researchers understand how changes in PRO scores relate to other clinical end-
points; this approach can provide valuable insight into treatment efficacy, especially
for conditions where the relationships between these measures change over time
(Odom et al. 2017).

The amount of missing data should be evaluated within the context of the psycho-
metric evaluation as well as within the context of the future use of the PROmeasure.
There is no statistical method that can be used to handle all types of missing data.
However, if a large number of item-level responses are missing within the psycho-
metric evaluation data, the feasibility of utilizing the PROmeasure in a pivotal study
should be questioned. Given the relationships among the items, rules should be deter-
mined both for how to score the PROmeasure when item-level responses are missing
and for how much missing item-level data is “too much” and the PROmeasure score
should be set to missing. These rules must be justified (Chen et al. 2014).

13.3.4 Meaningful Score Change

While key endpoints in clinical trials are commonly assessed through the statistical
comparison of group means, the results of these comparisons are not always easy
to interpret. In addition, statistical significance alone is not sufficient to demonstrate
clinically important benefit.As such, characterizingmeaningful change for individual
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patients and at a group level provides the ability to further evaluate, interpret, and
communicate PRO results to regulators, patients, and prescribers.

The FDAguidance recommends that researchers identify themagnitude of change
that is meaningful on the PRO measure at the individual level (responder definition
or threshold); as such, key endpoints based on a PRO measure commonly involve
comparing the proportion of patients who achieve this level of change (character-
ized as responders) while on an active treatment to the proportion of responders in
the placebo or comparative treatment group. Other regulatory reviews may focus on
determining whether the difference in benefit achieved between treatment groups
(group-level means) is both statistically significant and clinically meaningful. The
literature related to interpreting change on PRO measures is vast and many terms
have been used to refer to this change. For individuals, the terms “responder defini-
tion,” “responder threshold,” and “clinically important difference” have been used;
for groups, suggestions include “minimal important difference,” “minimal clinically
important difference,” and “clinically important difference” (Coon and Cappelleri
2016; Cook et al. 2015; Fayers and Hays 2014; King 2011; Marquis et al. 2004;
Revicki et al. 2007). Given the variety of methods and labels, it is essential to under-
stand how the “level of change” was defined on a specific PRO measure prior to
drawing conclusions on results.

13.3.4.1 Methods for Interpreting Individual-Level Meaningful Change

The PRO guidance (FDA 2009) outlines three methods related to establishing a
responder definition or threshold for meaningful change at the patient level (“within-
person meaningful change”): anchor-based, distribution-based, and cumulative dis-
tribution plots. The application of these methods has evolved and is influenced by
the constructs measured and the available supporting measures within the data used
to define the threshold. The reader is encouraged to consult Chap. 6 of Volume 2
(Cappelleri and Bushmakin 2018) of this series for an in-depth discussion of both
traditional and emerging methods. For the purposes of this chapter, we outline one
approach to defining a responder threshold intended to inform future pivotal clinical
trial endpoints based on the current regulatory environment.

The primarymethod to estimate a responder threshold is the anchor-basedmethod
(Coon andCappelleri 2016; FDA2009;Guyatt et al. 2002; Cella et al. 2002;Wyrwich
et al. 2013; McLeod et al. 2011). Given that the target measure is patient-reported, it
is generally preferable for the primary anchor to be patient-reported; however, other
types of measures with commonly accepted thresholds are also used. For example,
responder definitions for PRO measures of patient functioning related to improve-
ments in depression orweight lossmay be developed by examining scores for patients
with a 50% reduction in Hamilton Depression Rating Scale scores or 5%weight loss,
respectively (Bobo et al. 2016; FDA 2007).

Patient Global Impression of Severity (PGIS) and Patient Global Impression of
Change (PGIC) items are commonly used as anchor measures. A typical PGIS item
asks patients to rate their current disease severity at the beginning of a study and at
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key time points using, for instance, a 4- or 5-point response scale (e.g., “Overall,
how would you rate your psoriasis symptoms now?” with response options “none,”
“mild,” “moderate,” “severe,” or “very severe”). A typical PGIC item asks patients
to rate change in their disease severity in comparison to the start of the study using
a 7-point response scale that includes categories for improvement and worsening
(e.g., “Overall, compared to the start of the study, how would you rate your psoriasis
symptoms now?” with response options “much better,” “moderately better,” “a little
better,” “no change,” “a little worse,” “moderately worse,” or “much worse”). To
minimize measurement error associated with the PGIC’s lengthy recall period, the
PGIS is generally preferred by the FDA as the primary anchor measure. However, the
PGIC and other supportive anchors (including as other established PRO measures,
global items completed by clinicians or caregivers, and clinical outcomes) should
be included in the analysis as appropriate to provide relevant information about
meaningful change.

An anchormeasure should be easier to interpret than the target PROmeasure (FDA
2009) and should be evaluated for its appropriateness before it is used to estimate a
responder threshold. Methods to evaluate appropriateness include descriptive statis-
tics of the change in the PRO measure scores, correlation coefficients for change,
cumulative distribution function (CDF) plots, and probability density function (PDF;
also referred to as kernel density) plots for each level defined by the anchor. For an
appropriate anchor, the size and direction of the mean (or median) change on the
PRO measure scores should follow a predictable pattern for the anchor levels—that
is, the largest positive change (improvement) in the PRO measure scores should be
achieved by patients who report that they have improved the most as defined by
the PGIS change and the largest negative change (decline) in PRO measure scores
should be associated with patients who report that they have worsened the most as
defined by the PGIS change. In addition to evidence based on the descriptive statis-
tics pattern, appropriate anchor measures should have appreciable correlation with
the target PROmeasure (correlation >0.3; Revicki et al. 2008). Finally, for an appro-
priate anchor, the CDF and PDF plots of change in the PRO measure by the anchor
categories should not overlap and, again, greater change on the anchor should align
with greater change on the PRO measure scores.

After a candidate anchor measure has been evaluated and deemed appropriate, it
can be applied to estimate a responder threshold. For regulatory purposes, one way
that has been used to define a responder threshold is as the mean (median) change
score for the subgroup reporting, for example, a single-category improvement on
the PGIS between baseline and a key time point. Supportive threshold estimates are
computed similarly using supportive anchors that have been evaluated and deter-
mined to be appropriate. For example, a supportive threshold based on the PGIC
may be defined as the mean (median) change scores for patients reporting “moder-
ately better” on the PGIC, one-category improvement on the clinician-rated CGI-S,
or “moderately better” on the CGI-I.

In addition to the anchor-based method, it is important to include a distribution-
based method when defining a responder threshold, as outlined in the FDA PRO
guidance (FDA 2009). These thresholds provide additional support to the primary
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anchor-based threshold by including information related to the variability within
the PRO measure scores and the statistical significance of individual change. For
example, a commonly computed supportive threshold is one-half standard deviation
of the PRO measure scores at baseline, which corresponds to a moderate effect size
(Norman et al. 2003; McLeod et al. 2011; Wyrwich et al. 2015).

Another relevant distribution-based threshold is the standard error of measure-
ment (SEM) which is computed as SEM � SD

√
(1 − r), where SD is the standard

deviation of the PRO measure scores at baseline and r is the test-retest (or internal
consistency) reliability estimate of the PROmeasure (Wyrwich et al. 1999). Because
it includes reliability in its computation, the SEM-based threshold provides an esti-
mate influenced by the measurement precision of the PRO measure. Finally, the
reliable change index (RCI) is another supplemental, distribution-based method to
consider. The RCI is computed as

√
(2) × SEM, which provides an adjustment to

the SEM and provides a z-test of the change (Hays et al. 2005).
Although not mentioned in the PRO guidance, additional supportive thresholds

can be identified based on qualitative information as mentioned in Sect. 13.2. Spe-
cific questions can be asked to ascertain the amount of change on a PRO measure’s
individual items and sets of items that is deemed meaningful to patients in order to
provide supportive evidence for responder definitions.

After the various thresholds have been estimated, it is typical to report these
together, with the primary threshold based on the primary anchor informing the
endpoint for the subsequent pivotal trial. The supportive threshold values should
be relatively close to the primary threshold value, but it is extremely unlikely that
they will have the same value. Rather, the supportive anchors provide the regulatory
reviewers with an indication of the “robustness” of the proposed anchor. The regu-
latory reviewers may ask, for example, that one of the supportive anchor values be
applied to the pivotal data as a check of the strength of the treatment’s efficacy as
measured by the PRO measure.

To utilize the responder definition within the pivotal trials, a statistical evaluation
may be performed that compares the proportion of responders based on the PRO
measure scores by treatment groups at the key time point. For this comparison, a
statistically significantly larger proportion of responders within the treatment group
would provide evidence for treatment benefit.

To provide additional information surrounding the responder threshold, it is also
typical to provide CDFs by treatment group, with reference lines plotted for the
primary and supportive threshold values. These plots facilitate the evaluation of
treatment response across a range of potential responder definitions. For this appli-
cation, a CDF is plotted for each treatment group and portrays the percentage of
patients in each group who achieve a given change from baseline on the PRO mea-
sure. Differences between the treatment groups are depicted by the lack of overlap
in the curves (the difference on the vertical axis for each PRO measure difference as
represented for a score difference defined by the horizontal axis). If negative change
on the PRO measure indicates improvement over time, a more efficacious treatment
group’s curve will be observed to the left of the placebo or comparator treatment
group.
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13.3.4.2 Methods for Interpreting Group-Level Meaningful Change

While the FDA has encouraged the use of methods focused on the meaningfulness of
individual change, additional stakeholders (including European regulatory bodies)
have encouraged methods related to group-level meaningful change. Multiple meth-
ods have been proposed for establishing this unit, including mapping PRO score
differences to clinically relevant outcomes (Revicki et al. 2008; Cappelleri et al.
2013), distribution-based methods such as effect sizes, comparisons of cumulative
distribution functions, mediationmodels, and probability of relative benefit (McLeod
et al. 2016).

13.3.5 Documentation of the Psychometric Evaluation
Process and Final PRO Measure

As with the development process, it is important to document all steps involved in
the psychometric evaluation either separately or in a single report which covers both
the development and evaluation. The documentation should include a comprehensive
description of the study design used for the psychometric evaluation, participants,
methodology, and results. In addition to documenting the psychometric evaluation,
a formal user’s manual is recommended to describe the concept(s) addressed by
the PRO measure, specific information about how it should be administered, and
the method for scoring (including the proposed responder threshold, as appropriate,
based on the type of planned endpoint). This information will facilitate an easier
application of the measure for use within a clinical trial. The manual should provide
explicit instructions related to how the measure should be displayed (if on paper or
electronically), including a copy of the final itemwording and response category lay-
out. In addition, any training that patients or sites will need related to administration
timing or instructions should be documented in a manner that permits inclusion in
a protocol appendix and regulatory briefing book. Scoring should also be described,
including the handling of missing item-level responses.

In addition to summarizing all of the qualitative and quantitative evidence pertain-
ing to the development and psychometric evaluation of the PRO measure and a copy
of the PRO measure itself (complete with scoring details), regulatory submissions
should include additional information pertaining to the analysis of the PRO data
within the context of the pivotal trials and desired labeling claims. The inclusion of
all of these items will help to facilitate regulatory review and decisions regarding the
ability of the PRO measure to support product approval and labeling.
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Chapter 14
Interim Analyses: Design and Analysis
Considerations for Survival Trials When
Hazards May Be Nonproportional

Edward Lakatos

14.1 Introduction

In the decade following the introduction of the group-sequential concept by Pocock
(1977), many publications emerged investigating and furthering this concept. In
the late 1980s publications by Bauer (1989) (“Multistage Testing with Adaptive
Design”), Wittes and Brittain (1990) (“The role of internal pilot studies in increasing
the efficiency of clinical trials”), as well as Gould and Shih (1992), Gould (1992)
and Shih (1993) ushered in the era of adaptive designs—statistical research in this
area flourished for the next two decades. Group-sequential methods became viewed
as part of the broader category of adaptive methods.

Non-proportional hazards was recognized as an important factor for the design
of survival trials as far back as 1968 (Halperin et al., for sample size methodology
for a comparison of proportions for two types of treatment lags). Lakatos (1986,
1988) further contributed to sample size methodology providing methodology for
the logrank statistic for unrestricted non-proportional hazards alternatives.

For survival analysis, methodology for weighting the logrank statistic to deal with
NPH was proposed by Tarone and Ware (1977), Harrington and Fleming (1982),
Zucker and Lakatos (1990), Self (1991) and Yang and Prentice (2010).

In contrast, except for publications by Lakatos (2002, 2015, 2016), there has been
relatively little mention of non-proportional hazards in the adaptive arena.

The focus of this chapterwill be on survival trials, especiallywhen the proportional
hazards assumption is suspect. Nonproportional hazards can occur in many areas of
medicine.

Earlier publications by the author focusing on trials with non-proportional haz-
ards, dealt with developing statistical methods, as well as answering such questions
as “why it is important to recognize and address non-proportionality”, and howmeth-
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ods work. This chapter focuses on which methods to use, and when and how to apply
such methods.

The chapter begins (Sect. 14.2) with a published oncology trial, designed using
exponential assumptions, that turned out to have strongly non-proportional hazards.
One of the interesting features of that non-proportionality is that it possesses both a
delayed treatment effect, and a treatment effect that disappears: the survival curves
coincide for periods both at the beginning and before the end of the trial. When
separated survival curves come together, the hazard ratio is in the wrong direction,
and the logrank statistic is negatively affected. This does not necessarily indicate an
untoward effect of treatment, but could simply reflect that the treatment successfully
delayed an event in the sickest patients, resulting in an imbalance, with more sick
patients remaining at risk in the experimental arm. Depending on how the trial is
designed (for example, the lengths of the recruitment and total trial), the survival
experience can put more weight on the earlier or later portions of the survival curves.
For example, if a small number of patients is enrolled, and one simply waits until
enough events occur, this could end up with most of the patients residing for long
periods in the no treatment effect zone after the curves come back together. This will
have a detrimental effect on the logrank statistic. The situation of the trial discussed
in the next section is more complex. That section shows, in a series of steps, how
a “designer” group sequential boundary can enhance the trial’s chances of ending
successfully early, with a far smaller sample size compared with the original.

Section 14.3 discusses spending functions for designer boundaries.
The concept of a “Binding Boundary” emerged in the early 2000s. This term

was used to challenge the legitimacy of a large number of designs that had been the
mainstay of much of the group-sequential literature. The concept does not appear to
have been discussed in the literature. In addition, the basic problem is not restricted
group-sequential methods. Section 14.4 discusses the concept, and points to a history
and recurrence of designs that share the same basic flaw of the binding boundary.

If one wishes to stop a trial early for futility, there is a choice between futility
boundaries and conditional power. Section 14.5 discusses pros and cons.

When hazards are non-proportional, power can often be improved through the
use of a weighted logrank statistic. Section 14.6 discusses optimal weighting for a
delayed treatment effect.

14.2 Designer Boundaries

In this section, given a prior similar trial, the design of a new trial is discussed. The
survival curves from the prior trial are quite non-proportional, leading to a variety of
design considerations. A non-standard group-sequential boundary is constructed to
address those considerations. A stepwise approach leading to that boundary is now
described.

In designing the International Collaboration on Ovarian Neoplasms trial (ICON
7), Perren et al. (2011) assumed exponential hazards with a control group median
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survival of 18 months [Progression-Free Survival (PFS)] and 43 months [Overall
Survival(OS)], and an increase due to therapy to 23 months (hazard ratio 0.78)
(PFS), and to 53 months (hazard ratio 0.81) (OS). For 90% power at a 2-sided 0.05
significance level, they calculated 684 PFS (715 OS) events would be needed. With
1520 women randomly assigned to treatment over a period of 2 years, the required
684 PFS events were expected to occur 3 years after study start.

The PFS analysis took place after 759 PFS events occurred; PFS was significant,
while OS was not close.

Consistent with a visual inspection of the KM curves in Fig. 14.1, the results
paper stated that a test showed that the hazards were not proportional. We note
here that, in contrast to the proportional hazards model, the logrank test does not
require proportional hazards. Although the ordinary logrank test is not optimal when
proportional hazards is violated, for a given non-proportions hazards alternative, an
optimal weighting for the logrank exists.

The ICON 7 trial (Perren et al. 2011) was designed to evaluate both PFS and
OS. With the PFS KM curves now available, I show how the design of a new PFS
trial could be approached. Analysis will use the logrank statistic (although a case for
the use of a weighted logrank statistic could be made, the simpler standard logrank
statistic will be used).

Fig. 14.1 Kaplan-Meier survival curves from Perren et al. (2011)
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Table 14.1 presents time-dependent failure rates captured from thePFSKMcurves
of Fig. 14.1. These time-dependent rates were extracted from the published survival
curves using a method developed by Lakatos (US Patent US20100063741 A1)

Table 14.2 presents sample size calculations for a fixed-sample design (no interim
analyses) based on the time-dependent failure rates extracted from Fig. 14.1 as pre-
sented in Table 14.1. These sample size calculations assume 90% power, and a
significance level of 0.05, 2-sided.

From the Perrin publication, the original sample size calculations, based on
exponential assumptions, for a trial lasting 36 months with a recruitment period
of 24 months, led to the 684 events required for the PFS endpoint. The same assump-
tions, except for using the time dependent rates of Table 14.1, leads to 877 required
events (Lakatos 1988 as implemented in STOPP®). Under the exponential assump-
tion, the number of events is independent of the recruitment and trial lengths, i.e., all
of the entries in the “events” panel of Table 14.3 would be 877.

But the number of events in that upper panel range from 122 to 2063. For a 12-
month trial, the 122 events is paired with a sample size of 1226 in the lower panel.

Table 14.1 Annual failure rates for the designated periods, derived from Fig. 14.1

Month Standard Bevacizumab Hazard ratio

0–6 0.1177 0.0815 0.6827

6–12 0.5037 0.2873 0.4829

12–18 0.4638 0.4669 1.0096

18–24 0.3108 0.5089 1.9129

24–30 0.2387 a0.2387 1.4969

30–36 0.1962 a0.1962 0.7066

aThe survival curves appear to be identical during months 24–36

Table 14.2 Sample size calculations (PFS) based on time-dependent failure rates in Table 14.1
(unweighted logrank)

Recruitment
length (months)

Trial length (months)

12 18 24 36

Events

12 122 164 395 2063

18 168 303 1457

24 303 877

36 675

Sample size

12 1226 597 867 3213

18 872 839 2402

24 1089 1597

36 1691
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Table 14.3 Designing a boundary for PFS based on the time-dependent survival curves of Fig. 14.1
from Perron et al. Step 1

Markov projectionsa Group-sequential
calculations

Month InfoFrac Events Patients Upper boundary Power

Exper Cntrl Total Recruit Z Prob

9.4 0.2 13.1 19.6 32.7 482 4.875 5.39E−07 0.02

12.3 0.4 26.2 39.2 65.4 598 3.3571 0.0004 14.5

14.5 0.6 39.3 58.8 98.1 598 2.6803 0.0038 54.4

16.2 0.8 52.4 78.5 131.0 598 2.2898 0.0122 78.9

18.0 1 65.6 98.2 163.8 598 2.0310 0.0250 90.0

aRecruitment: 12 months, total trial: 18

While less than the 1520 of the actual trial, a much smaller sample size paired with
a larger number of events is possible with an 18 month trial in which recruitment is
complete in 12months: sample size 597,with 164 events. This is a dramatic reduction
from the original sample size calculations.

The reduction in the required number of events with a shorter trial runs counter
to usual expectations. Under the clearly violated exponential model, the number of
events is independent of the trial or recruitment length. The smaller number of events
for shorter trials can be explained by examining the survival curves. In particular,
they initially separate, but then start coming together at about 12–15 months. From
the discussion of the logrank statistic in Sect. 14.6, it is easy to see that events which
occur during periods in which there is no treatment effect, or the effect is in the
wrong direction, decrease the significance of the logrank statistic. The number of
events that occur in such periods generally increases with trial length for the ICON
7 trial (Fig. 14.1), which explains why the required number of events increases as
trial length increases.

When the recruitment period is shortened, on average, patients move to the latter
part of the trial more quickly, and reside there longer. This, in turn, results in more
events occurring when there is no treatment effect, or the treatment effect is in the
wrong direction. As above, this decreases the significance of the logrank statistic.

In designing the new PFS trial, due to variability, caution should be used to avoid
over-reliance on the survival curves from Perrin presented in Fig. 14.1. However, it is
reasonable to expect the underlying PFS curves for the new trial will be much more
likely to resemble the non-exponential shapes of Fig. 14.1 than being exponential.
And the curves in Fig. 14.1 are based on a large number of patients (1520) and events
(759).

One of the design challenges is as follows. Referring to Table 14.2, if the
12/18months (recruitment/trial length) design is implemented, and recruitment takes
24 months, then a larger number of events would have been appropriate. One way to
address this problem of uncertainty is through Designer Group-Sequential Bound-
aries.
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The discussion now turns to developing such a “Designer Boundary” to improve
the design. This will be achieved through judiciously varying the lengths trial and
recruitment periods, and modifying the spending function to take advantage of peri-
ods of strong treatment effect.

A sequence of tables, each providing projected operating characteristics of a
group-sequential design is now presented. Each such table represents a modification
of the design of the preceding tables,with the intent of addressing some issue. It shows
how one could achieve objectives by modifying the group-sequential procedure in
atypical ways.

Table 14.3 presents results of calculations based on the time-dependent failure
rates of Table 14.1. The Group-Sequential module of STOPP® was used throughout.
Assumptions are the usual two-sided 0.05 significance level, 90% for the fixed-
sample design power, and additionally, 5 looks to occur at equally spaced incre-
ments of information fractions. The design assumes 12 months uniform recruitment,
18 months total trial length.

The Markov model is used to project all of the columns labeled “Markov Projec-
tions”. The software allows the user to specify the interim plan in terms of either (1)
desired months, or (2) desired information fractions, and the Markov portion of the
program will calculate the remaining columns under “Markov Projections” (Lakatos
2002).

The group-sequential plan can be specified through a variety of possible spending
functions or a custom spending function (discussed below); the cumulative alphas
appear in the column labeled “Prob” (cumulative probability of a Type I error).When
the spending function is formula-based, that formula applied, to the information
fractions in column 2, determines the values in the “Prob” column. For a custom
spending function, any cumulative alpha values can be manually entered, provided
they satisfy the criteria for a spending function (defined in Sect. 14.3). The Z-values
for the boundary are calculated from the information fractions and corresponding
cumulative alphas.

With uniform information fractions, the 4th interim will occur only 1.8 months
before the final, which is too close to be of practical value. Table 14.4 explores the
option of performing the interim in relatively uniform increments of calendar time.

Table 14.5 explores the implications of the recruitment taking 18 months, here
using uniform information fractions.

These sample sizes and numbers of events are far less than the published prior
trial. If the survival curves of the new trial deviate from those of Fig. 14.1, a longer
trial may be needed. Table 14.6 explores the operating characteristics of a trial lasting
24 months, with recruitment complete in 18.

The required number of events for this trial, 287, has increased substantially over
the 164 of Tables 14.3 and 14.4. Table 14.6 trial is likely (83.9% power) to end at
the 0.8 information fraction look, at 230 events. But it is only 2.5 months short of
the maximum 24 months for this trial, which again is not practical.

Table 14.7 reduces the number of interims to 4, replacing the interims at 0.6 and
0.8 with a single interim at information fraction 0.7. The timing of the next-to-last
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Table 14.4 Designing a boundary for PFS based on the time-dependent survival curves of Fig. 14.1
from Perron et al. Step 2

Markov projectionsa Group-sequential
calculations

Month InfoFrac Events Patients Upper boundary Power

Exper Cntrl Total Recruit Z Prob

4 0.02 1.55 2.32 3.87 199.02 6 0 0

7 0.08 4.96 7.42 12.38 348.29 6 2.22E−15 0

11 0.29 18.77 28.09 46.86 547.32 4.0010 3.15E−05 2.0

14 0.55 35.83 53.65 89.48 597.07 2.8074 0.0025 45.0

18 1 65.59 98.2 163.79 597.07 1.9740 0.0250 90.0

aRecruitment: 12 months, total trial: 18

Table 14.5 Designing a boundary for PFS based on the time-dependent survival curves of Fig. 14.1
from Perron et al. Step 3

Markov projectionsa Group-sequential
calculations

Month InfoFrac Events Patients Upper boundary Power

Exper Cntrl Total Recruit Z Prob SS�
875

9.9 0.2 13.4 20.0 33.4 480 4.875 5.39E−07 0

12.6 0.4 26.8 40.1 66.9 614 3.3571 0.0004 15.2

14.7 0.6 40.3 60.2 100.5 715 2.6803 0.0038 54.6

16.4 0.8 53.7 80.4 134.1 800 2.2898 0.0122 78.9

18.0 1 67.2 100.5 167.7 875 2.0310 0.0250 90

aRecruitment: 18 months, total trial: 18

Table 14.6 Designing a boundary for PFS based on the time-dependent survival curves of Fig. 14.1
from Perron et al. Step 4

Markov projectionsa Group-sequential
calculations

Month InfoFrac Events Patients Upper boundary Power

Exper Cntrl Total Recruit Z Prob SS�
796

12.3 0.2 25.1 32.2 57.3 545 4.875 5.39E−07 0.26

16.1 0.4 50.2 64.5 114.7 709 3.3571 0.0004 29.8

18.9 0.6 75.4 96.8 172.2 795 2.6803 0.0038 68.1

21.5 0.8 100.6 129.2 229.8 795 2.2898 0.0122 83.9

24.0 1 125.8 287.3 287.3 795 2.0310 0.0250 90.0

aRecruitment: 18 months, total trial: 24
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Table 14.7 Designing a boundary for PFS based on the time-dependent survival curves of Fig. 14.1
from Perron et al. Step 5

Markov projectionsa Group-sequential
calculations

Month InfoFrac Events Patients Upper boundary Power

Exper Cntrl Total Recruit Z Prob

12.3 0.2 25.3 32.5 57.9 550 4.875 5.39E−07 0.27

16.0 0.4 50.8 65.2 115.9 716 3.3570 0.00039 30.29

20.2 0.7 88.9 114.2 203.1 803 2.445 0.00738 78.16

24.0 1 127.1 163.2 290.3 803 2.0005 0.025 90.0

aRecruitment: 18 months, total trial: 24

Table 14.8 Designing a boundary for PFS based on the time-dependent survival curves of Fig. 14.1
from Perron et al. Step 6

Markov projectionsa Group-sequential
calculations

Month InfoFrac Events Patients Upper boundary Power

Exper Cntrl Total Recruit Z Prob

12. 0.2 25.4 32.6 57.9 551 4.875 5.39E−07 0.25

16.1 0.4 50.8 65.2 116.1 717 3.357 0.000394 29.2

20.3 0.7 89.0 114.3 203.4 804 2.172 0.015 84.5

24.0 1 127.3 163.4 290.7 804 2.111 0.025 90.0

aRecruitment: 18 months, total trial: 24

interim is better, being nearly 4 months from the final; but the power at that interim
is only 78% compared to 83.9 of Table 14.6.

Table 14.8 increases this power by allocating more alpha to the 3rd look: the
cumulative alpha is increased from 0.00738 to 0.015. The probability of stopping by
the 3rd look is now 84.5% at 203 events.

One further adjustment would be to replace the 0.7 information fraction look by
one at 0.6, but still allocating 0.015 cumulative alpha to the 3rd look.

The power of the 3rd look in Table 14.9 is relatively close to the corresponding
power in Table 14.8 (83.1% vs. 84.5%), but the interim occurs substantially earlier,
both in months and number of events. In fact, there is now 83% power of stopping for
significance after 170 events, very close to the designs of Tables 14.3 and 14.4. The
advantage of Table 14.9 is that if the trial does not stop at the 3rd look, it will naturally
go on to 284 events. This provides some protection against the uncertainty inherent in
the survival curves observed in ICON7, and over-reliance on those observed survival
curves.

Designer Boundaries Summary. If the methods employed for the original sample
size were used, the resulting design would require 1520 patients and 684 PFS events.
Fixed sample calculations based on the unusually shaped survival curves observed
in Perrin et al. show that the sample size requirements can vary dramatically when
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Table 14.9 Designing a boundary for PFS based on the time-dependent survival curves of Fig. 14.1
from Perron et al. Step 7

Markov projectionsa Group-sequential
calculations

Month InfoFrac Events Patients Upper boundary Power

Exper Cntrl Total Recruit Z Prob

12.3 0.2 24.7 31.8 56.5 537 4.875 5.39E−07 0.25

16.1 0.4 49.5 63.6 113.1 699 3.357 0.000394 29.1

18.9 0.6 74.4 95.5 169.9 784 2.172 0.015 83.1

24.0 1 124.1 159.3 283.4 784 2.111 0.025 90.0

aRecruitment: 18 months, total trial: 24

the length of the total trial and recruitment periods are varied: 1597 patients and 877
events for a 36 month trial with recruitment planned for 24 months. However, if the
recruitment can be completed in 12 months for an 18 month trial, the requirement
drops to 597 patients and 164 events. If recruitment takes 18months, then the number
of patients needed increases to 875 with 168 events. If recruitment takes longer than
18 months, the required number of patients and events can be even larger.

Some of the uncertainty of how long the actual recruitment will take can be
addressed using a Designer Group-Sequential Boundary. With the group-sequential
design in Table 14.9, if the trial does take the full 18 months to complete recruitment
of the 784 patients, and the trial goes to the maximum 24 months to accrue 283
events, then the power is 90%. And even if recruitment takes 18 months, there is
83% power at the 60% interim if it takes 18 months to accrue 170 events. So with
the design of Table 14.9, which is much smaller (784 vs. 1520 patients original; a
maximum of 283 events vs. 684 events original), and shorter (24 months maximum
vs. 36 months original), the power is about 83% to end by 170 events depending on
the length of recruitment.

The “custom” or “designer” boundary developed in Table 14.9 is presented in
Table 14.10 and Figs. 14.2 and 14.3. Note that the O’Brien-Fleming boundary pro-
vides less (cumulative) power at the final analysis as compared to the designer bound-
ary in spite of the fact that that last critical value for the Designer (Z�2.15) is higher
than for the O’Brien-Fleming (Z�1.98). The reason is that the Designer boundary
takes better advantage of the 60% interim analysis, by allocating more alpha to the
time when the treatment effect is stronger. This is consistent with an example given
by Lakatos (2015, Example 3, p. 149) in which the fixed-sample design requires a
larger sample size than the group-sequential.

For comparison, the O’Brien-Fleming boundary for the designated information
fractions is displayed in Table 14.10 and Fig. 14.2. Figure 14.3 presents a custom
spending function giving rise to this custom boundary; this is discussed in the next
section.
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Table 14.10 Adesigner boundary for PFS based on the time-dependent survival curves of Fig. 14.1
from Perron et al.

Interim 1 2 3 4

Information
fractiona

0.2 0.4 0.6 1

Cumulative alpha
spent

5.39E−07 0.000394 0.015 0.025

Incremental
alpha spent

5.39E−07 0.0000394 0.0146 0.01039

Z-value designer
boundary

4.875 3.357 2.172 2.15134

Z-value O’Brien-
Flemingb

4.875 3.357 2.68028 1.98139

Power designer
boundaryc

0.25 29 83 90

Power O’Brien-
Flemingc

0 0.12 57 88

Events designer
boundary

57 113 170 283

Events
O’Brien-Fleming

7 52 151 283

aNote that the information fractions here are not uniformly spaced
bO’Brien-Fleming provided for reference
cPower based on designer boundary sample size, with 283 events, 784 patients

Fig. 14.2 Designer (custom) spending function compared with the O’Brien-Fleming
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Fig. 14.3 Designer boundary compared with O’Brien-Fleming

14.3 Spending Functions for Designer Boundaries

In the publications that introduced the Pocock (1977) and O’Brien-Fleming (1979)
boundaries, the procedureswere based on interims taking place at equal increments of
patients (e.g., 200, 400, 600, 800, 1000 patients). In addition, immediate responsewas
implicitly assumed—that is, as soon as the patient was randomized, the response to
treatment could be evaluated. At the time, an urgent need for group-sequential meth-
ods was for survival trials, for which efficacy for a given patient emerged slowly after
randomization. For survival trials, the number of events, rather than patients, provides
the information (Lan and Zucker 1993), and hence the timing of interim analyses.
With DSMB meetings typically scheduled in equal increments of calendar time, for
example—every six months, there was a disconnect between the occurrence of meet-
ings and the accumulation of information. Both the Pocock and O’Brien-Fleming
procedures were explicitly posited in equal increments of patients, with no modifi-
cations provided or discussed to accommodate deviations from those increments.

To address this problem, Lan and DeMets (1983) introduced the spending func-
tion, which generalized the group-sequential procedure to allow interims at unequal
increments of information. The spending function can be viewed as a way to allo-
cate portions of the alpha to the interim analyses, similar to the way the Bonferroni
procedure can be used to allocate alpha to simultaneous tests of multiple hypotheses.
An important feature of the spending function is that the increments did not have
to be prespecified. So, if an efficacy analysis was to be performed at some DSMB
meeting scheduled in calendar time, the number of events available at that interim
could be used to allocate the alpha. The spending function must be prespecified so
that the allocation of alpha is determined by the spending function and the fraction of
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Table 14.11 O’Brien-Fleming boundary calculated using the spending function

Patients 200 400 600 800 1000

Information
fractions

0.2 0.4 0.6 0.8 1.0

Bndry
Z-values OBF
Spend Fcn

4.875 3.3569 2.6803 2.2898 2.0301

information available, and cannot be manipulated by user at the time of the interim,
as that could inflate the Type I error. Over time, interims for survival trials became
event-driven. Still, due to the logistics of data collection and analysis, as well as the
scheduling of meetings, the spending function plays an essential role in allocating
alpha for the data available at the time of a DSMB meeting.

For each increment in the number of patients, the Pocock and O’Brien-Fleming
boundaries provide a Z-value for testing at that interim. The Lan-DeMets spending
functions corresponding to those boundaries are designed to give the same Z-values
as the original procedures if the interims occur exactly at those predefined increments
of patients. Because the O’Brien-Fleming boundary is an implementation of the hor-
izontal Brownian motion boundary, the formula is well-known, and the spending
function provides values that exactly match those in the O’Brien-Fleming publica-
tion. For the Pocock procedure, which specifies equal Z-values at the interims, there
is no known corresponding theoretical formula—the formula is ad hoc, and does not
provide exactly equal Z-values at the interims. This is immaterial, as long as one
adheres to the prespecified spending function.

After the introduction of the spending function, a number of additional spending
functions were proposed in the literature [for example, Kim and DeMets (1987),
Hwang, Shih and DeCani (1990)]. The designer boundaries discussed in the previous
section are not likely to fit into any of these previously-defined spending functions.
Designer boundaries are designed to meet specific objectives and conditions that do
not fit nicely within the confines of predefined spending functions.

But spending functions are easily constructed for designer boundaries. First, a
spending function is defined as a monotone increasing function of the information
α(x) that provides cumulative alpha to be spent based on the currently available
fraction of information x.Whenx�0,α(0) � 0, andα(1) � the alpha level (typically
0.025, 1-sided). For a spending function to be consistent with a boundary such as
was defined in the original Pocock or O’Brien-Fleming publications, that spending
function must go through each of the coordinate pairs identified for that boundary.

For example, for a 5-interim group-sequential boundary (the 5th “interim” being
the final analysis), the five Z-values for the O’Brien-Fleming boundary can be calcu-
lated using theO’Brien-Fleming spending function and the five information fractions
in the second row of Table 14.11. This matches closely with the Z-values obtained
using the numbers of patients in the first row and the approach presented in the
original O’Brien-Fleming publication.
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The Designer Boundary developed in Tables 14.3, 14.4, 14.5, 14.6, 14.7, 14.8 and
14.9 is presented in Table 14.10. TheO’Brien-Fleming boundary at those information
fractions is provided in Table 14.10 for comparison.

A spending function that is consistent with theDesigner Boundarywith 4 prespec-
ified interims must go through the 4 coordinate pairs {(0.2, 0.000), (0.4, 0.000), (0.6,
0.015), (1.0, 0.025)} at the designated information fractions specified in Table 14.10;
it can be any monotone increasing function that goes through those coordinate pairs.
It is easiest to simply use straight line segments to connect the coordinate pairs. Such
a function satisfies all of the criteria for a spending function.

The fact that the Z-values of the designer boundary do not exactly fit one of the
published functional forms of a spending function is not an issue. The spending
function for the Pocock boundary given by Lan-DeMets (1983) does not lead to
exactly equal Z-values as was the specification in Pocock’s original paper. If interim
analyses take place at unequal information fractions, the Z-values arising from the
spending function can be quite unequal. The continuity of the spending function is
of great importance. If the Z-value is near the boundary at some given interim, it may
seem tempting to perform another interim in rapid succession, even though this data-
driven modification is not an allowable feature of the spending function. Because
of the continuity of the spending function, a small increment in time will result in
a correspondingly small increment in alpha, resulting in a larger Z-boundary value.
This feature of the spending function provides strong protection from “cheating”,
even if the interims are data-driven (Proschan et al 1992).

14.4 Binding Boundaries

During the years approximately 2000–2010, the term “binding boundary” was com-
monly used to refer to a type of group-sequential procedure that would inflate the
Type I error, and consequently was not considered valid. There has not been much,
if any attention to this concept in the literature. The term “binding boundary” was
introduced to describe the situation in which the validity of the Type 1 error requires
strict adherence to the crossing of a lower boundary. A more detailed explanation
follows.

The situation arises when the calculation of an efficacy boundary takes into
account possible crossings of a futility boundary. In this case, the critical values
defining the efficacy boundary can be relaxed while still maintaining the overall
Type I error. The more aggressive the futility boundary, the more the efficacy critical
values can be relaxed. The concept is presented diagrammatically.

Since focus will be on the Type I error, the null hypothesis will be assumed for
the remainder of this section.

Begin with a fixed-sample trial (Fig. 14.4) for which the only analysis will occur
at the single time of the designated end of trial. If trials are performed and analyzed
a large number of times, and the Z-value computed for each trial, then some of those
trials will have Z-values exceeding 1.96 (Trial B, for example), and some less than
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Fig. 14.4 Binding boundaries Example Part 1: fixed-sample design

Fig. 14.5 Binding boundaries Example Part 2: A group-sequential design with no futility boundary

1.96 (Trial A, for example). Since the Z-value for Trial B exceeds 1.96, Trial B results
in a Type I error, while Trial A does not. The proportion of trials exceeding 1.96 will
be 0.025.

Now consider the same large number of trials, but designed as group-sequential,
for which 5 interims (including the final) are planned to occur at information fractions
{0.2, 0.4, 0.6, 0.8, 1.0}. An actual trial with interims (Fig. 14.5) gives rise to a
sequence of potential coordinate pairs: {(0.2, Z1), (0.4, Z2), (0.6, Z3), (0.8, Z4), (1.0,
Z5)}, (lines connect these points for illustration only) where the Z-values of the
primary endpoint are calculated at each of those interim analysis times.
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Fig. 14.6 Binding boundaries Example Part 3: group-sequential design with futility boundary

TrialAhas squares designating each of the coordinate pairs at the interim analyses;
diamonds for Trial B. If significance is claimed at the first interim for which the Z-
value exceeds the 1.96 line, it is well-known that the Type I error will be inflated. If
2.41 (the Pocock boundary for 5 looks) is used rather than 1.96, the overall probability
of a Type I error for exceeding this boundary is restored to 0.025. NowTrial A crosses
the 2.41 line at the 4th interim, and thus is now a Type I error. Trial B remains a Type
I error.

The Z-values for Fig. 14.6 are identical to those in Fig. 14.5. Figure 14.6 addi-
tionally has a “futility” boundary at y�−0.2. For Trial B, the futility boundary is
crossed at the 3rd interim analysis, so Trial B should be terminated for futility at
information fraction 0.4. Trial B no longer results in a Type I error at the end of the
trial because the futility boundary terminates the trial before that Type I error can
occur.

So futility boundaries reduce the probability of a Type I error, in this case below
0.025. To compensate, the group-sequential boundary (corresponding, for example,
to the horizontal line at 2.41) can be lowered, until the Type I error is restored to
0.025. For example, the horizontal line might drop from 2.41 to 2.36.

Suppose an efficacy boundary has been lowered, as just described, by including
a futility boundary in the design. Suppose further, that in the actual implementation
of the trial, a crossing of the futility boundary is ignored. Then the lowered group-
sequential boundary no longer maintains the Type I error.

When there is a futility boundary, and the group-sequential efficacy boundary has
been lowered to compensate, in order to maintain the Type I error, any crossing of
the futility boundary must be rigidly adhered to, and the trial stopped if that futility
boundary has been crossed. A pair of boundaries consisting of a futility boundary
and an efficacy boundary that has had a compensatory lowering are designated a
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Fig. 14.7 Survival curve
from CARE trial—a delayed
treatment effect

“binding boundary”, because the Type I error is only maintained if a crossing of the
futility boundary is binding, requiring termination of the trial.

Such rigidity is difficult if not impossible to enforce. Some statisticians may not
fully comprehend the immutable nature of the algorithm. But even if they do, will
all those involved in the decision process also understand? For example, consider a
statement such as: “agree to terminate the trial if the results are not in the promising
zone”. Such statements may seem less rigid and eminently reasonable at the kick-off
meeting of a DSMB. Assume, optimistically, that the statistician and all other mem-
bers of a DMSB fully understand the ironclad nature of the rule. DSMBs typically
make recommendations that the Sponsor is not bound to follow. Often, a high level
executive who is not associated directly with the study may make the final decision.
The DSMB generally never meets this person. When a recommendation is made
to terminate the trial because the “results are not in the promising zone”, but the
results do not look too bad to that executive (most futility boundaries can stop a trial
with a positive Z-value at some point), will that executive understand the immutable
nature of the algorithm and automatically declare futility? The reason people are
involved in the decision making, rather than robotically adhering to a calculated
number, is because of the tacit understanding that such decisions may involve other
considerations.

As an example, the sponsor may decide to carry the trial to full length even if
there appears to be no chance that significance will be achieved at the end of the trial.
This could happen if the sponsor decides to cease development and sell the drug to
a third party for further development. The act of terminating the trial for futility can
dramatically reduce the price that could be obtained since the drug will now carry
the stigma that “the trial was stopped early for futility”. The sponsor may decide
to overrule such a futility boundary crossing, and allow the trial to go to natural
termination. This is just one of many possible ways in which futility boundaries
crossings end up being ignored. This would invalidate the Type I error.
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It is important to realize that it is not the actual act of overruling a futility boundary
crossing that invalidates the Type I error. It is the probability that a futility boundary
will be overruled that is crucial for determining the Type I error. And, as the above
example reveals, that probability can never be known.

Binding boundaries or variants seemed to have escaped notice for many years or
decades in many scholarly and important publications. For group-sequential bound-
aries, the impact on the Type I error is generally small if the lower boundary is
symmetric to the upper boundary in which both are O’Brien-Fleming boundaries
with 0.025 1-sided significance level for the lower boundary as well as for the upper
boundary. But for those group-sequential boundaries in which the upper and lower
meet at the end of the trial, the impact can be substantial. Such boundaries occur
frequently in the books of Whitehead (1997), and Jennison and Turnbull (2000).
Snapinn (1992), who develops conditional power for proportions in a very useful
way, proposed using those conditional power calculations in a binding way (“This
paper describes a conditional probability procedure which attempts to maintain the
overall significance level by balancing the probabilities of false early rejection and
false early acceptance”). In their seminal paper introducing the conditional error func-
tion for adaptive designs, Proschan and Hunsberger (1995) take a similar approach
stating that the increase in “the Type I error rate can be avoided by… agreeing not to
continue the study unless the p value after the first n observations is less than” some
prespecified value. They continue by stating that “the idea of reducing the Type I
error rate by allowing early termination in favor of [the null] is not new. Gould and
Pecore (1982) adopted this approach in a group sequential context.” The concept of
“Binding Boundaries”, in which such approaches were no longer deemed acceptable,
appears to have emerged years later. The same basic problem forms the basis for the
adaptive methods more recently proposed by Mehta and Pocock (2011)—these are
again based on conditional power calculations, this time “agreeing to not continue
unless the conditional power is in the promising zone”.

14.5 Futility

14.5.1 Futility Boundaries

Thepreceding sectionmentioned “futility boundaries”, but did not define the concept.
Curiously, in perusing the literature of futility boundaries for clinical trials, I could
find no mention of a mathematical objective. A Google search led to the following
definition of futile: “incapable of producing a useful result”. This could be restated
statistically as “the probability of a useful result is very low”. At the time of an
interim of a clinical trial, that probability depends on the data collect thus far, and
assumptions regarding the future course during the remainder of the trial. This is
actually the definition of conditional power, and the comparison of that power with
some quantification of “very low” can be used to assess futility.

But futility boundaries are advocated as an alternative to conditional power. And
without a defined goal, or providing any relationship between a given boundary and
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the end-trial probability of success, futility boundaries appear to be ad hoc rules. It
is sometimes stated that, like efficacy boundaries which preserve the Type I error,
futility boundaries preserve the Type II error. Given the null, efficacy boundaries
precisely define the critical region and in turn, the probability of a false positive can
be calculated precisely. The Type II error is based on an alternative hypothesis which
includes an assumed treatment effect. That treatment effect is only a guess, often
with little or no data as basis. And it is often a biased guess to accommodate cost and
funding as well as other considerations. If the Type II error is wrong at the outset,
the rationale for preserving it is not clear. If, at an interim, a futility boundary is
crossed, is that a true reflection of a “futile” trial (in the above definition), or of an
assumed treatment effect that is far off the mark? With the ability now to increase
the trial sample size at the time of an interim, in many cases, a “futile” trial can be
transformed into one with good prospects (provided the funding exists to support
such an increase). The ad hoc nature of the futility boundary does not provide any
quantitative means of making an educated decision as to whether the trial should be
terminated for futility; either the futility boundary is crossed, or it is not.

Often, futility boundaries are set up to meet the efficacy boundary at end of trial,
the rationale being that if the z-value at the end of the trial is less than, say 2.03
(corresponding to the 5th look under a standard 5-look O’Brien-Fleming efficacy
boundary), the trial has failed. But a trial with a final z-value of 1.90 can often be
used as supportive, or as mentioned above, as evidence, to a prospective buyer, that
a properly designed trial could succeed. The futility boundary is not set up to make
exceptions.

The discussion of futility boundaries thus far focused on general properties. In the
case of non-proportional hazards, futility boundaries can lead to the wrong decision,
and should be avoided. Figure 14.7 from the CARE trial (Sacks et al. 1996) presents
estimated KM survival curves for fatal coronary heart disease or nonfatal myocardial
infarction. The active treatment is a statin. The overlapping of these survival curves
for the first 2 to 2¼ years is indicative of a delayed treatment effect. Similar delays
have been observed in survival curves from other statin trials.

Group-sequential and futility boundaries are usually presented in terms of Z-
values: Fig. 14.8 gives the O’Brien-Fleming boundary for 5 looks.

Figure 14.9 presents a typical futility boundary and expected z-values from the
time-dependent survival curves extracted from theCAREsurvival curves of Fig. 14.7.
Because the recruitment pattern can have a substantial effect on how the expected
Z-value evolves with time from study start, expected Z-values are presented for
several different recruitment patterns. Expected Z-values assuming an exponential
model, rather than the time-dependent failure curves of Fig. 14.7 are also provided
for comparison.

Because of the delayed treatment effect, all 3 of the expected Z curves based on
the CARE model remain completely horizontal until the end of the delay. By this
point, all 3 curves have crossed the futility boundary and remain well below that
boundary for most of the trial. Note that the time frame of the expected Z-value is
given in calendar time, in which the trial is monitored (i.e., the meetings of the Data
Monitoring Committee (DMC) are scheduled in calendar time.) The KM curves of
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Fig. 14.8 O’Brien-Fleming Boundary for 5 Looks

Fig. 14.7 are given in time from randomization. Had typical futility boundaries been
used for monitoring the CARE (or other statin trials) the futility boundaries would
undoubtedly have been crossed, with the potential abandonment of this life-saving
class of drugs.

Continuingwith Fig. 14.9, under the exponential assumption, and uniform recruit-
ment of 3500 patients over 24 months, the expected Z value curve would have
remained above the futility boundary until just before the very end of the trial—the
futility boundary would have failed to predict the ultimate failure of that trial. In
contrast, using the actual time-dependent failure curves from CARE with the same
recruitment of 3500 patients over 24 months, the expected Z-value curve crosses
the futility boundary with likely early termination for futility. But this curve in the
end reaches statistical significance. Suppose, however, with the same initial recruit-
ment pattern of 3500 patients over 24 months, it is decided at the 24-month interim,
to increase the sample size by 5000 patients, to be randomized over the period
25–42 months. The trial now fails. The reason is that by adding the massive bolus
of patients starting at 25 months, all of the patients starting at or after month 25 will
experience the delayed treatment effect until at least 50 months. Thus adding these
patients beginning at month 25 will serve to drag down the expected Z-value for
most of the remainder of the trial.

Suppose that, instead of enrolling 3500 patients, re-estimating the sample size,
and then adding 5000 patients (for which the trial ends in failure), all 8500 patients
are enrolled over 24months. The best result is obtained, with likely early stopping for
superior efficacy. But with this scenario, and a futility boundary in place, that futility
boundary would be crossed early in the trial, with the expected Z-value remaining
below that boundary for most of the trial. Again, early termination for futility is
likely.
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14.5.2 Conditional Power

Conditional power does not suffer any of the issues discussed above for futility
boundaries. However, conditional power calculations are often approached from
a too simplistic viewpoint. At first, the following discussion will be restricted to
proportional hazards, ormore generally, treatment effects that are not time-dependent
in non-survival settings.

1. The unreliability of the interim estimate.

At the time of an interim, define conditional power as the probability of end-
trial success given the data collected thus far, and given assumptions regarding the
remainder of the trial [refer to those assumptions as the Future Treatment Effect
(FTE)]. For proportional hazards, the FTE is a single number.

The “data collected thus far” serves two roles:

• In terms of population sampled, it is usually the most representative sample of
data from the full data set of the trial that can be obtained (assuming proportional
hazards).

• It will be a subset of the final data, and as such, the interim results will have to
be “overcome” for the end-trial results to differ meaningfully from those at the
interim. The further along the trial, as the ratio of information of pre- to post-
interim data increases, the less likely the final analysis will differ meaningfully
from that of the interim.

The estimate of efficacy from the data collected thus far will be referred to as
the “current trend” [=Current Treatment Effect (CTE)]. Because of the two factors
mentioned above, the CTE may appear to be a good choice for basing assumptions
for the remainder of the trial.

Still, there is good reason to be skeptical of analyses that blindly use the CTE
for the assumed FTE. Take for example, sample size re-estimation. Sample size re-
estimation is usually planned because there is concern that an estimate based on
the design sample size (see “Design Sample Size” and its confidence interval in
Fig. 14.10) lacks the precision to be a convincing estimate. The task is to increase
the sample size sufficiently that that re-estimated sample sizewill provide an estimate
with convincing precision. The heuristic rationale for seeking this increased sample
size can be envisioned by comparing the widths of the design and re-estimated
confidence intervals in Fig. 14.10. At the interim, typically based on 50% or less of
the design sample size, the interim estimate has a very large confidence interval. This
is an inescapable consequence of the setup depicted in Fig. 14.10. Interim estimates
in these situations are highly unreliable.

2. Alternatives to the Current Treatment Effect (CTE).

Figure 14.11 displays a few options for the FTE (the dashed lines beginning at
the interim, at month 6). Here, the True Treatment Effect (TTE) is 3. Clearly, the
desired choice for the FTE is also 3, the TTE.
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Fig. 14.9 Z-trajectories for CARE trial: the failure of futility boundaries

Fig. 14.10 Relative reliability of estimates for sample size re-estimation

Although the CTE is often an unbiased estimate of the TTE, due to its very wide
confidence interval, it can easily differ substantially from the TTE. If the CTE (5.5
in Fig. 14.11) is substantially higher than the TTE, then setting the FTE�CTE
will compound this error by assuming that the overestimate will continue for the
remainder of the trial, an unlikely assumption. This will result in a highly biased
estimated conditional power. If the DTE (Design Treatment Effect) is lower than the
CTE, there is reason to believe that the CTE is an overestimate.

Rather than relying exclusively on an inherently unreliable estimate, a better
strategy is to balance that unreliability against the known weaknesses of the Design
Treatment Effect (DTE). Figure 14.11 displays projections based on the CTE alone,
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Fig. 14.11 Conditional power: some options for assumptions for the remainder of the trial

theDTE alone, and the average of CTE andDTE. This trio of assumptions underlying
conditional power estimates provide a basis for each of the DSMB members (and
others who may be involved in the decision making process) to form opinions, based
on their individual beliefs regarding the relative strengths of the CTE and DTE.
Interim estimates that appear overly optimistic should be tempered. Assumptions
other than the dashed lines in Fig. 14.11 are possible.

Arguments similar to the above apply when the CTE is less than the TTE. And
similarly, interim estimates that appear overly pessimistic should be tempered.

Mid-trial modifications, such as sample size re-estimation and futility have broad
implications. For example, increasing the sample size may convey to investors that
the treatment effect is smaller than assumed during the planning stage. This in turn
can lead to financial problems. Because of such issues,mid-trialmodifications should
only be undertaken if the impact is deemed important. In turn, interim trial modifica-
tions are likely to occur only if the CTE differs substantially from the DTE, and it is
exactly in this situation that the CTE is most likely to be badly biased. Consequently,
it is in this situation that one should be most skeptical of assuming that the FTE�
CTE.

Some sample size re-estimation procedures rely exclusively on assuming FTE�
CTE.This is particularly perniciouswithmethods that fallwithin the “binding bound-
ary” concept. The reason is that the Type I error is calculated assuming that FTE�
CTE (see, e.g., Mehta and Pocock). Consequently, when there is a binding boundary,
the CTE must be used, even if a reasoned judgment would conclude that it is very
biased.
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14.5.3 Conditional Power When Hazards Are
Non-proportional

While the issues discussed above with conditional power when hazards are pro-
portional persist when the hazard are nonproportional, considerably more difficult
problems exist for NPH. When hazards are non-proportional, the treatment effect
changes with time. Consequently, the horizontal dashed lines in Fig. 14.11 will no
longer be straight lines, but rather must reflect the time-dependent nature of the treat-
ment effect. In the very simple case of a delayed treatment effect, the treatment effect
has two levels: it is 0 during the no-treatment-effect zone, and δ � const �� 0 after
that.

In Sect. 14.5.1, the failure of futility boundaries to provide a basis for reasonable
decisions when hazards are nonproportional was examined. In this section, difficul-
ties with conditional power in the presence of NHP are discussed. The problems
resulting from NPH are very different for conditional power as compared to futil-
ity boundaries. With NPH, futility boundaries may fail because there is no known
relationship between the crossing of the boundary and the end-trial probability of
success. In contrast, conditional power is the end-trial probability of success. Prob-
lems arise in the calculation of conditional power; one of the most important is the
difficulty in obtaining a reasonable interim estimate of the treatment effect for use
as the FTE.

Lakatos (2016) provides a detailed explanation of why obtaining an interim esti-
mate of the treatment effect in the simple case of a delayed treatment effect can
be so difficult. The CARE trial of Figs. 14.7 and 14.9 provides a good example. In
Fig. 14.7, a delay of about 2 years is readily apparent. This, of course, is based on full
end-of-trial data. CARE compared a statin with placebo for reducing fatal coronary
heart disease or non-fatal myocardial infarction (“MI” will be used to refer to this
endpoint) through the reduction of cholesterol. Because this delay has been observed
with other treatments that lower cholesterol, the delay appears to be more a func-
tion of cholesterol lowering than the specific treatment. It is thought that cholesterol
lowering itself does not immediately reduce MI, but rather inhibits plaque accumu-
lation. As the plaque continues to accumulate in the placebo group, eventually there
is enough to differentially increase MI in the placebo group. Thus the length of delay
has more to do with the placebo group than the active. Certainly, different methods
of cholesterol lowering may differentially effect the accumulation of plaque in the
active group which will affect the delay as well. Different lengths of delay have been
observed.

Suppose, then, that there is interest in designing a trial with a new type of choles-
terol lowering treatment. A delayed treatment effect is suspected. But the length of
the delay, and even if the treatment is actually effective is unknown—that is why the
trial is being performed.

Like the CARE trial, the new trial is planned to last 5 years. An interim for
sample size re-estimation after the 3rd year is not of much use. An example of why
an increase in sample size after the 3rd year was given in Sect. 14.5.1 (see Fig. 14.9
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and the corresponding discussion). With a treatment effect that is delayed 2 years,
any patients enrolled after the 3rd year will remain in the no-treatment-effect zone
for most of the remainder of the trial, decreasing the power. The remainder of the
discussion in this section is limited to interims that take place during the period
24–36 months.

The Cox proportional hazards model will undoubtedly be used to get an estimate
of the treatment effect. Even though the proportional hazards assumption is clearly
violatedwhen there is a delayed treatment effect, it is used extensively is such settings.
The treatment effect that appears on the graph of Fig. 14.7 was obtained using the
Cox model.

The expected value of the treatment effect will be 0 (equivalent to a hazard ratio
of 1) during the delay. The question is: how long after the delay will it take for
the estimated treatment effect to approach a treatment effect that can be expected
during the remainder of the trial. The question is complicated by the fact that the
treatment effect expected during the remainder of the trial will be determined not
only by patients who were randomized early enough that they no longer reside in the
no-treatment-effect zone, but also those enrolled more recently, as well as those who
have yet to be enrolled. The length of recruitment plays a critical role in the ability
to get a reasonable estimate of the treatment effect.

For the Coxmodel, the ratio of events occurring after the no-treatment-effect zone
to events occurring during the NTE zone is central to that model’s ability to provide
a reasonable estimate of the treatment effect to serve as the FTE in the conditional
power calculation. For an interim performed 36 months after study start, Lakatos
(2016) gives an example in which more than 95% of the events occur during the
NTE zone, with less than 5% supporting the alternative. In such a situation, the Cox
model estimate will be dominated by the 0 treatment effect events. In actuality, it is
typically the treatment effect of the alternative that dominates the remainder of the
trial, when there is a delayed treatment effect. The main driver of that 95:5 ratio is the
recruitment; in that example, the recruitment pattern is nothing out of the ordinary.

The bottom line is that when the delay is around 2 years, and decisions after
3 years are too late, the events generated under the null will dwarf those generated
under the alternative, leading to gross underestimation of the treatment effect to be
used for the FTE, the treatment effect that is expected to be in effect for the remainder
of the trial.

Some useful references for calculating conditional power are Lan and Wittes
(1988), and Snapinn (1992).

14.6 Weighted Logrank Statistic

When hazards are non-proportional, the usual logrank statistic is not optimal; in turn,
the question of whether to use a weighted version of the logrank arises. A number of
weightings for the logrank have been proposed. In this section, we examine a specific
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type of non-proportional hazards alternative, the delayed treatment effect, which can
provide insight into the broader class of non-proportional hazards.

The CARE trial (Fig. 14.7) exhibits characteristics of a delayed treatment effect:
the survival curves coincide for some period, called the no-treatment-effect zone, fol-
lowed by a separation that appears to be increasing at a constant rate, i.e., proportional
hazards is in effect after the no-treatment-effect zone.

Zucker and Lakatos (1990) studied a more general class of alternatives. Rather
than restricting the survival curves to coincide during the no-treatment effect zone,
there can be gradual separation, with the treatment being fully effective by the end of
the no treatment effect zone. After the NTE, the treatment was assumed to be fully
effective, i.e., proportional hazards. They also referred to a special class of treatment
lags call a “threshold lag”, which is the same as a delayed treatment effect.

Focusing on delayed treatment effects offers some advantages, particularly sim-
plicity, over the broader class of general treatment lags. In addition, this restriction
may be less important from a practical perspective. It is usually quite easy to identify
when survival curves coincide for some period, as in Fig. 14.6, and attribute that coin-
cidence to a period of no treatment effect. In contrast, when survival curves appear
to separate slowly, assessing whether the underlying true survival distributions come
from either proportional hazards, a delayed treatment effect, or a more gradual sepa-
ration, may be quite difficult. Distinguishing between these three possibilities in the
presence of variability typical in such curves is difficult and error-prone.

Zucker and Lakatos (1990) refer to a weighting that is optimal with respect to a
delayed treatment effect (“threshold lag”). That weighting gives 0 weight during the
no-treatment-effect zone, and constant weight for the remainder of the trial (during
which proportional hazards is assumed). For a delayed treatment effect, define an
optimal weighting as one that maximizes the Z-value (ZL use a different definition
of optimality). Assume without loss of generality, that a positive Z-value indicates
superior efficacy.

It is easy to see why assigning 0 weight to events occurring during the no treat-
ment effect zone, and constant weight during the remainder of the trial maximizes
Z. Without loss of generality, assume no ties. Here, as in the calculation of KM
estimates of survival, recorded calendar times are converted to time from random-
ization. Consider the following 2×2 table at the kth ordered event timewhere Xk is

Event Event free Total

Group A Xk mk − Xk mk

Group B 1 − Xk nk − 1 + Xk nk

Total 1 nk + mk − 1 mk + nk

the indicator that the event has occurred in group A,mk and nk are the numbers at risk
just before the kth event in groups A and B, respectively. This table is conditional on
the patients at risk just prior to the kth ordered event. The weighted logrank statistic
(Mantel 1966; Lakatos 1988; Schoenfeld 1981) is
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Table 14.12 Consequences of guessing the length of the delay

Power

Actual delay Guessed delay—(diagonal—correct guess)

Months 0 1 2 2.5 3

Std LR Opt-1 Opt-2 Opt-2.5 Opt-3

0 92.0 87.1 80.2 77.1 72.9

1 76.7 85.7 78.7 75.9 71.2

2 57.2 66.6 76.9 73.1 69.0

2.5 47.5 57.0 66.2 72.3 67.7

3 38.8 46.7 56.2 61.7 67.3

Z �
∑d

k�1 wk

(
Xk − mk

mk+nk

)

√
∑d

k�1 w2
k

(
mknk

(mk+nk )2

) (14.1)

Here,wk ≥ 0 is the weight corresponding to the kth (conditional) 2×2 table. The
term

Xk − mk

mk + nk
(14.2)

in the numerator of (14.1) is in the form of observed minus expected for the kth 2×
2 table. For any event occurring in the no-treatment-effect zone, the expected value
of the observed minus expected is 0. However, apparent from the denominator, the
variance corresponding to this same event is never 0. If a non-zero weight wk �� 0
is assigned, then the contribution corresponding to the numerator of (14.1) from
the kth event will be 0, while the contribution to the denominator will be greater
than 0. Consequently, Z in (14.1) will be decreased. The only weighting that will not
decrease Z iswk � 0 for all events k occurring in the NTE zone. Proportional hazards
is assumed to be in effect for the remainder of the trial, so constant weighting, known
to be optimal for proportional hazards is also optimal here. Because w2

k appears in
the denominator, any constant will do. Gill (1980) provides a more general theory
and optimal weighting for the logrank. That weighting, as well as the weighting wk

in (14.1), is a function of the treatment effect, and not the survival function.
The above discussion assumes that the length of the delay is known. But it rarely if

ever is known. Unfortunately, the length of the delay is very difficult to estimate, par-
ticularly at an interim. One approach is to guess the length of the delay. Table 14.12,
based on simulations used in the design of a recent trial, shows the price of guessing
incorrectly. In this trial, all patients were to be followed for 1 full year.

In the “0” column, the “guess” is that there is no delay, so the standard logrank is
in effect. If the actual delay is also 0, the power is 92%. But if there truly is 1 month
delay, the power of the standard logrank drops to 76.7, and if the true is 3 months,
the power drops to 39%. So the price, in this study, of ignoring a delayed treatment
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effect when there is an actual delay can be quite high. From the other perspective, the
price of adjusting for a delay when there is no delay (row “0”) is that the 92% power
drops to 87% if the weighting is set for 1 month, down to 73% if the weighting is set
for 3 months.

The diagonal shows how the power declines even if the guess happens to coincide
with the true delay. Itmay seemsurprising that even if one correctly guesses a 3-month
delay, the optimal power is 67.3%. The reason is that, as shown above, the optimal
weighting gives 0 weight to any event occurring during the no treatment effect zone,
so all the events occurring during the first 3 months are lost to the analysis. But, as
the argument above shows, if those events are given non-zero weight, the power is
further eroded.

Comparing powers off the diagonal to those on the diagonal reveals the price of
guessing incorrectly. For example, if the true delay is 2 months, and the guess for
weighting is 1 month, then the power drops from an optimal of 76.9 to 66.6. The
price of an incorrect guess can be very high.

The above discussion shows the perils of guessing incorrectly. One way to min-
imize that loss is to optimize for a range. For discussion and derivation of the opti-
mization, see Zucker and Lakatos (1990). In addition to the exact solution, Zucker
and Lakatos propose a simplified version, which performs almost as well as the exact
solution. That simplified version is very easy to calculate. Consider two statistics:
the standard logrank

(
Zstd lgrnk

)
and the logrank statistic calculated on the sorted data

beginning at the end of the delay
(
Zpost delay

)
. The simplified statistic is

Z � Zstd lgrnk + Zpost delay
√
2
(
1 + ρ̂

) (14.3)

where ρ is the correlation between these two statistics, given by

ρ̂ � √
dpost delay/dstd logrank (14.4)

where dstd lgrnk is the number of events for the entire trial, and dpost delay is the number
after the delay.

While the statistic in (14.3) is given in the form of a standardized sum of Z-values,
it is easy to see that it can be converted into the usual form of a weighted logrank
statistic (14.1). The form presented in (14.3) is easier to calculate, since one only has
to calculate the Z-value for the usual logrank and the Z-value for the usual logrank
restricted to the sorted data whose times exceed tdelay, and substitute in (14.3). This
calculation can be performed using standard software for calculating the logrank
statistic. There is no need for special software to evaluate (14.1).

The critical nature of targeting the weighting to the length of the delay is apparent
from Table 14.12. For weightings that are based on the estimated survival curve [e.g.,
Tarone and Ware (1977), Harrington and Fleming (1982, 1991)], there is no way to
target the length of the delay. In fact, the treatment effect, which was shown above
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to be the sole determinant of the optimal weighting for a delayed treatment effect, is
independent of the survival distribution of the control group.

14.7 Concluding Remarks

This chapter dealt with some standard methods for addressing issues that arise when
interim analyses are performed. The presentation critically examines these methods
to reveal strengths and weaknesses. The section on Designer Boundaries begins with
survival curves from a recently completed trial that was designed using the very
standard approach of assuming exponential survival. It develops a group-sequential
“Designer” boundary that dramatically reduces the length of the trial and the sample
size. It is also “self-adapting” in the sense that there is good power for the trial to
end early; if it does not, it can continue to a larger number of events. This Designer
Boundary gives rise to a spending function that is not likely to fit within the confines
of the many formula-based spending functions. Unfortunately, currently available
commercial software for group-sequential methods does not appear to accommodate
any variation of spending functions from those formulas.

The next section dealt with “Binding Boundaries”, a concept which was popu-
lar in the statistical community a dozen years ago, but seems to have disappeared
into the nether. The binding boundary concept pointed to flaws in the approach to
combinations of efficacy and futility boundaries that inflated the Type I error. Many
group-sequentialmethods proposed prior to the recognition of this concept did indeed
incorporate this flaw. But as time has passed, the concept seems largely forgotten,
and the flaw again is present in currently-used statistical methods.

The topic of futility was discussed next. The futility boundary appears to be ad
hoc, possessing no quantifiable relationship as to whether or not a trial is futile. Con-
ditional power is designed to quantify the probability that a trial will be successful,
and should always be chosen in preference to a futility boundary. However, condi-
tional power requires an assumption as to what the treatment effect will be for the
remainder of the trial. This is not a weakness of the conditional power concept. It is
consequence of attempting quantify the probability that a trial will be successful at
some future time. The fact that futility boundaries do not incorporate assumptions
about the treatment effect for the remainder of the trial, is not an advantage, but rather
the basis for its inability to quantify the end-trial chances of success. The discussion
of conditional power challenges the statistician to go beyond simply assuming that
the current estimate of the treatment is a good choice for the future treatment effect.
For doing so may lead to poor decisions. Alternate approaches were recommended.
All of the considerations of this paragraph thus far apply to proportional hazards
(i.e., constant treatment effects). When alternatives are nonproportional, the situa-
tion is far more complex, and adequate methods for most situations have yet to be
developed. In cases when the statistical methodology is questionable, it is usually
better to forego making a decision rather than offer one that may be badly flawed.



14 Interim Analyses: Design and Analysis Considerations … 375

With nonproportional hazards, the use of a weighted logrank statistic could be
considered. One of the simplest forms of nonproportional hazards is the delayed
treatment effect. Section 14.6 discusses optimal weighting for a delayed treatment
effect. The optimal weighting in this case is also simple, as is the proof of optimality.
The weighting depends entirely on the time-dependent nature of the treatment effect,
not the form of the survival curve.
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Chapter 15
On Design and Analysis
of Dose-Response Trials
for Early Clinical Development

Qing Liu

15.1 Introduction

15.1.1 Regulatory Principles

To develop a new drug for non-life threatening medical conditions, conducting
placebo controlled dose response trials at the early stage of a clinical development
may reduce the number of failed phase 3 trials. It is essential that an early trial
provides

I. dose-response information for short term desirable and potentially undesirable
effects, and

II. a reliable estimate of the full dose range to carry forward to phase 3 dose-response
trials.

Objective I plays a critical role in decisions to continue the clinical development.
This objective is well served for trials which employ the triple trends test developed
by Capizzi et al. (1992) for efficacy analysis and early work by Tukey et al. (1985)
for safety analysis.

For new drugs with potential long-term safety concerns, objective II is vital for
the success of phase 3 trials and post-approval patient care. It is all too common to
discover that an approved drug has a high long-term safety risk, that regulatory agen-
cies have to withdraw marketing approvals or to require black-box safety warning
restrictions. Occasionally, regulatory agencies would approve a drug with question-
able efficacy and issue black-box safety warning restrictions to limit the drug’s usage
only to patients who may have failed other drugs. Because early dose response trials
are often designed with short or intermediate treatment and follow-up, the results of
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early trials cannot reliably predict the phase 3 dose with optimal long term benefit-
to-risk profile. Rather, the early trials should be designed and analyzed in such a way
that identifies a reliable lower effective bound (LEB) for effective doses, which along
with a lower less than fully effective dose and the highest short-term safe dose form
the full dose range for carrying forward to phase 3 clinical development programs.

While the importance of phase 3 dose-response trials has not been broadly incor-
porated in clinical development programs by the pharmaceutical industry, the con-
sequence of limited phase 3 dose-response information has been well recognized by
regulatory agencies. Temple (2004) states that “The impression that dose-finding is
largely completed in phase 2 is a terrible error. Phase 2 studies almost never can
detect small differences in effect, and cannot give useful information on safety except
for the most common events.” Temple (2004) further suggests to “study a full range
of doses in phase 3 to establish dose response for both favorable and unfavorable
effects and to locate less than fully effective dose that may still be useful.” The need
for phase 3 dose response trials is also clearly elaborated byHemmings (2006, pp. 30,
46–47), who details various clinical issues and regulatory ramifications of selecting
one dose for phase 3 trials. In particular, Hemmings (2006, p. 47) states that “Where
data on outcome are required for submission, it is considered that the continuation
of dose-finding into phase III would usually be highly beneficial, using phase II trials
with a surrogate only to narrow the potential dose range rather than to select a single
dose for the phase III study.”

15.1.2 Motivation

For the design and analysis of early dose-response trials, these regulatory principles
have been traditionally addressed by step-down trend tests. In particular, Quan and
Capizzi (1999), following Tukey et al. (1985), apply a triple trends test in a step-
down fashion to identify a no-statistical-significance-of-trend (NOSTASOT) dose for
a two-way dose-response designs. They show that this step-down trend test is more
powerful than a commonly used step-down ANOVA test. The triple trends test is
also robust against various shapes of the dose-response relationship. For objective II,
the step-down trend test has been successfully applied for phase 2 as well as phase
3 dose-response trials.

It is known that a trend test is limited only to doses that are studied in a trial.
In addition, the step-down trend test reduces to a pair-wise test for the lowest dose
studied in the trial. Thus, the power for testing the lowest dose is substantially reduced.
For many applications, inference of treatment effect for doses not studied in the trial
is also important. For example, suvorexant was shown effective for patients with
insomnia with 20/15 and 40/30mg regimens in phase 3 trials. Because of safety
concerns of the 40/30mg regimen, the U.S. Food and Drug Administration (FDA)
advised that the efficacy of 10mg is also established, that 10mg should be the starting
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dose for most patients, and furthermore, a 5mg dose would be necessary for patients
taking concomitant moderate CYP3A4 inhibitors. The 10mg dose was not studied
in phase 3 and was considered ineffective by the sponsor from a phase 2 cross-over
study, while the 5mg dose does not appear to have been studied at all in the clinical
program. One potential approach for inference on a dose that has not been studied
is through the traditional pharmacokinetics (PK) and pharmacodynamics (PD) dose-
response modeling approach proposed by Sheiner et al. (1989). With dose-response
modeling, such inference is conceptually feasible through interpolation within the
dosing range of the study.

Note that this interpolative inference is different from another use of the dose-
response modeling to identify a minimum effective dose (MED) for an effect size,
say δ, of interest. For example, Lockwood et al. (2003) study the performance of
a dose-response modeling approach for estimating the MED. They report that “the
identification of the selected dose-response feature with any real precision from the
trial design paradigm is borderline.” Furthermore, “The marginal precision raises
the question as to what is the best dose to study to ensure a clinical outcome of at least
a one-point change in pain score, given the dosing options available.” At the funda-
mental level, the statistical idea of MED, which are commonly attributed to Ruberg
(1989), does not work well with dose-response modeling in clinical pharmacology.
When the maximum treatment effect �max attributable to the drug is below the spec-
ified effect δ, then the MED does not exist. Thus, the MED for a given non-zero δ

is not an intrinsic characteristic of the dose response model. In contrast, an efficacy
threshold (e.g., ED90, the lowest dose at which the dose-response curve achieves
90% of the maximum efficacy �max) is an intrinsic characteristic of interest.

A potential issue of relying only on the models of a triple trends test is the ability
to correctly estimate the dose-response relationship. This happens when there is
a discrepancy between the shape dose-response curve and the three trend scales of
Tukey et al. (1985). The problem is addressed in the two-stage adaptive dose-response
design by Liu and Pledger (2005) where a sigmoidal Emax model is used to fit the
first stage data. The fitted model is used to derive an adaptive trend test statistic for
the second stage and then combined with the first period pair-wise test statistic. The
combination trend test is applied in a step-down fashion to identify a NOSTASOT
dose. By construction, their combination test is robust and has the ability to identify
an effect size of interest with high probabilities over a broad range of models (see
Tables1 and 2 of Liu and Pledger 2005).

A third and more fundamental issue is that a step-down test procedure inherits the
classical difficulty of hypothesis testing, which is the lack of concordance between
statistically significant and clinicallymeaningful difference.A statistically significant
difference may not be clinically meaningful; a clinical meaningful difference may
not be statistically significant.

To our best knowledge, there is no procedure that resolves these problems for
parallel group dose-response designs. These are the motivations of the research.
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15.1.3 Approach

We consider the classical parallel group design where patients are randomized to
receive a placebo or one of several doses of an investigational drug. We consider in
Sect. 15.2 a general framework where the clinical endpoint in question follows a dis-
tribution from a broad families of distributions. This permits practical applications
in clinical trials where efficacy (primary and secondary) and safety endpoints have
different types of distributions.We assume that the canonical link follows a nonlinear
dose-response model (e.g., sigmoidal Emax model), and apply the three-step algo-
rithm for obtaining maximum likelihood estimates (MLEs) of the model parameters
considered for the adaptive procedure in Liu and Pledger (2005). This algorithm
takes advantages of existing software packages for a wide variety of linear models,
e.g., ANOVA, generalized linear models, Cox’s proportional hazards model, linear
mixed models, and generalized linear mixed effect models (Breslow and Clayton
1993; Liu and Pierce 1993). The algorithm is also applicable to settings where the
distribution of the endpoint is unknown but regression analysis can be performed
via generalized estimating equations (GEE) models of Liang and Zeger (1986). For
objective I, we develop a generalized multiple trends test to establish dose-response
relationship.We also develop a unified approach for sample size calculation based on
multiple trends test to ensure robust power where the canonical link is described by a
general dose-response model. For objective II, we propose a likelihood inference of
the effect of any given dose, which may not be used in the actual trial. The three-step
algorithm is used to obtain point estimates of effect size. We then apply a bootstrap
method to the algorithm to obtain the confidence intervals. We construct a likelihood
test with superiority margins that are calibrated to achieve the specified minimum
power for detecting an effect size of interest. We refer this as the likelihood test for
statistical significance and clinical meaningfulness (TSSCM), and apply it to iden-
tify the lower effective bound (LEB) with the specified probability of coverage of the
dose with the effect size of interest. The LEB is then used to define the full dose range
for phase 3 trials according to the development strategy by Temple (2004). A key
feature of the strategy is to study “whether sub-effective dose represents some people
responding fully or all people responding a little” (Temple 2004). We describe in
Sect. 15.5 simulation study results to confirm that the proposed methods meet the
specified probability criterion. In addition, we evaluate the probability of success of
the development strategy of Temple (2004) with the proposed LEB approach.

15.1.4 Research History

The methods described in this paper were developed by the author in the context of
the PhRMA working group on dose-finding. The work was presented at the Joint
StatisticalMeeting (JSM) in 2006. Both this paper and the 2006 JSMpresentation use
the identical core three-step algorithm formodelingfitting,whichwas also considered
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for the adaptive procedure in Liu and Pledger (2005). With the introduction of the
superiority margins, the TSSCM is used in this paper to define LEB.

Another difference is the example used for numerical illustrations. The case exam-
ple in osteoarthritis of this paper was not mature in 2006, and thus, an example in
neuropathic painwas used for the 2006 JSMpresentation. The key goal of the author’s
PhRMA working group research was to develop methods with the ability to identify
an efficacy threshold and a full dose-range for carrying over to phase 3 clinical devel-
opment. This was in contrast to the “target-dose” estimation scheme, as described
in the PhRMA working group reports (Bornkamp et al. 2007; Dragalin et al. 2010;
Pinheiro et al. 2010). The problem with the target-dose scheme was pointed out to
the working group following a literature review, which cites work by Lockwood et al.
(2003) who conclude that “the identification of the selected dose-response feature
with any real precision from the trial design paradigm is borderline. Therefore, if
the objective was to confirm the outcome in a future phase 3 study, selecting a dose
based on this single outcome might be ‘risky’.” Thus, the author’s research goal was
apparent given in addition the knowledge of regulatory principles for drug devel-
opment gained from his prior employment at the FDA, and later industry working
experience in trial design and analysis, and licensing and acquisitions of new drugs
with optimal benefit-risk profiles to address unmet medical needs.

The author was extremely familiar with many clinical development programs of
cyclooxygenase-2 (COX-2) inhibitors, and in particular, was interested in the case
example with lumiracoxib for osteoarthritis. At the time the PhRMA working group
was formed in 2005, the drug showed at high dose an increased rate for serious
liver abnormalities with the hazard ratio 1.92 (Schnitzer et al. 2004). This author
hypothesized during that time that the optimal development plan would be to study
the two lowest doses (50 and 100 mg bid) in phase 3 program, rather than the
higher doses (200 mg bid and 400 mg od). The drug was later withdrew from major
markets in 2007 following eight serious liver adverse events, including two deaths
and two liver transplants (Hinz et al. 2009). After the withdrawal, additional long
term safety data of the 100 mg od or bid dose (Sheldon et al. 2008; Fleischmann
et al. 2008) became available. In the dose-response trial in volunteers (Hinz et al.
2009), it was shown that a single dose 50 mg lumiracoxib has a comparable blood
monocyte COX-2 inhibitory profile to a single dose of 100 or 200 mg. This suggests
that doses lower than 100 mg may be sufficient for pain management. By the CHMP
comprehensive assessment report in 2011, it is clear that the author’s initial hypothesis
of the optimal development plan was well founded, and following this plan the
uncertainty concerning the residual risk of hepatotoxicity of the 100 mg od dose
may be better addressed. Given the maturity of the totality of data from this case
example, we now present the proposed LEB approach and its illustration.

Recently, a colleague brought to my attention of the fascinating article by Parker
(2013) of the New Yoker on suvorexant for insomnia. As mentioned early, the
suvorexant example is used to illustrate the need for interpolative inference. More
importantly, the example reinforces the importance of the regulatory principle (Tem-
ple 2004) and show that the proposed LEB approach can in fact fulfill the promise
of properly guiding the phase 3 trial designs. Another addition is the bevacizumab
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example for proposal of a biphasic dose-response model for which hormesis may be
justified on biological ground.

15.1.5 Outline

We provide design and analysis of phase 2 dose-response trials. The main methods
are developed in Sects. 15.2, 15.3 and 15.4.We illustrate the proposed LEB approach
in Sect. 15.5. As a comparison, we also examine the MED or “target-dose” scheme
proposed in the PhRMA working group reports (Bornkamp et al. 2007; Dragalin
et al. 2010; Pinheiro et al. 2010). In Sect. 15.6 we discuss several topics, including
the lack of intrinsic quality of the MED, the law of parsimony in the sigmoidal Emax

model, and the determination of phase 3 full dose-range for both the lumiracoxib
and suvorexant case examples. We also suggest areas of future research.

15.2 Dose-Response Models

15.2.1 Basic Design

Let patients be randomized to receive one of the K + 1 increasing doses d0 < d1 <

· · · < dK , where d0 = 0 is the dose for the placebo group. Let nk be the number of
patients randomized to receive dose dk for k = 0, 1, . . . , K . For a given endpoint, let
δk be the treatment difference between the effects of dosedk andplacebo (i.e.,d0 = 0).
It is important to choose δk on the canonical scale of the underlying distribution so
that it can be easily estimated via existing regressionmethods widely implemented in
commercially available software packages. For the dose response study, it is assumed
that δk follows the nonlinear model

δk = �max f (dk; ν), (15.1)

where �max represents the maximum effect size of treatment with the drug, and
f (dk; ν), for k = 1, 2, . . . , K , is a nonlinear shape functionwith range [0, 1] indexed
by a vector of shape parameters ν.

In this paper, we will present an design to achieve the following seemingly con-
tradictory goals that inference of dose-response must be robust against uncertainties
in dose-response relationship and the sample size be sufficiently small.

15.2.2 Characteristics of Dose-Response Curve

It is easy to systemically describe a dose-response curve as a continuous function

�(d) = �max f (d; ν), (15.2)
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of the dose on a continuous range d ≥ d0 = 0. For a given dose d, which may
not be formulated for clinical trials or marketing approval, �(d) is the difference of
treatment effect on the canonical scale between dosed and dosed0 = 0.Bydefinition,
�(d0) = 0.

A monotone shape function f (d; ν) is adequate for most small molecular drugs.
Fromclinical pharmacology, a standard dose response curve, in terms of the treatment
difference model in Eq. (15.2), is defined by three parameters: the maximum effect
�max, the dose, dE50 , at which �(dE50) = �max/2, and the slope ρ (i.e., tangent)
of the curve at dE50 . The maximum effect �max is used to describe the maximum
efficacy attributable to the drug when the dose goes to infinity. Dose dE50 represents
the potency of the drug; a drug with a smaller dE50 has a higher potency than a drug
with a larger dE50 .

A parsimonious model that provides the systemic description of dose-response
relationships is the sigmoidal model

f (d; ν) = d ρ/(d ρ + d ρ

E50
), (15.3)

for ν = (dE50 , ρ), which is a pharmacodynamicmodel derived from a receptor theory
(Wagner 1968). Because of its biological basis and empirical appeal of parsimony,
the sigmoidal model has been widely accepted in clinical pharmacology (Lalonde
1992). The parsimonious nature also leads to simplification of statistical analysis. For
example, Thomas (2006) demonstrates that “the basis functions (Bretz et al. 2005)
can be closelymatched by the expanded Emax model, so the use of the single expanded
model does not practically restrict their choice of contrasts.” See Fig. 2 of Thomas
(2006). Thus, for monotone dose-response problems, the small subset of ad-hoc
models by Bretz et al. (2005) are previously used by Sheiner et al. (1989). Without
the distraction of these seemingly unrelatedmodels and the needlessmultiple contrast
test, research could now focus on the fundamental issues of inference relating to the
sigmoidal Emax model.

Both the slope ρ and dose dE50 define the threshold, for either efficacy or safety, at
a given percentage level (e.g., 90% or 5%). The determination of efficacy and safety
thresholds are important for characterizing benefit-risk profiles of a dose. However,
it is well known that estimation of dE50 can be extremely difficult (Sheiner et al. 1989,
1991; Kirby et al. 2011). For the suvorexant example, analysis using an Emax model
yields a statistically non-significant results for latency to onset of persistent sleep
(LPS), which contradicts the fact that the 10mg dose is already at the plateau of the
dose-response in LPS.

Liao and Liu (2009) propose a 5-parameter model used in bioassays that includes
the sigmoidal Emax model as a special case. Their model permits asymmetry around
dE50 to better reflect the underlying biological processes. Thismodel can be applied to
model dose-response when deviations from the sigmoidal Emax model are expected
on biological ground.
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15.2.3 Biphasic Dose-Response

There are, however, increasing number of cases to support the presence of biphasic
dose-response relationships (Reynolds 2010). This is especially the case for biologic
drugs. For example, in an early phase 2 study Kabbinavar et al. (2003) report that
bevacizumab shows a high tumor response rate at 5mg/kg than 10mg/kg. The expla-
nation is that the reduced effect at high dose may be due to suppressed growth of
new vessels carrying the drug to the tumor (Javaherian et al. 2011). To assist trial
design or analysis, we propose an empirical shape function

f (d; ν) = d ρ1/(d ρ1 + D ρ1
1 ) − τd ρ2/(d ρ2 + D ρ2

2 ). (15.4)

The five parameter shape vector μ = (ρ1, D1, τ, ρ2, D2) provides a family of mix-
tures of sigmoidal and reverse sigmoidal curves. As themodel includes the sigmoidal
curve as a special case (i.e., setting τ = 0), it may have some practical advantages
over the non-monotone model proposed by Sheiner et al. (1991).

15.2.4 Discretized Maximum Likelihood Estimate

The nonlinear model in Eqs. (15.3) and (15.4) fall into the general nonlinear models
by Davidian and Giltinan (1995, pp. 55–56), for which the parameters of the model
could be estimated by a generalized least squares (GLS) method. In our experience,
however, it is difficult to obtain consistently the maximum likelihood estimates of all
parameters. It is especially problematic for many pharmacologically motivated mod-
els (e.g., sigmoidal Emax model) for which the likelihood functions are ill-behaved
for the nuisance vector ν with small �max such that the underlying Newton-Raphson
algorithm of the GLS method often fail to converge. In large simulation studies the
GLS method could fail to converge for a fraction of simulation runs (Kirby et al.
2011), and thus, wasting the time and resource committed to the simulation studies.
The problem also occurs often in safety analysis of low event rates with sigmoidal
Emax model fitted on the logit (i.e., log odds-ratio) scale.

To resolve these difficulties, a three-step algorithm for fitting the first stage dose-
response data of two-stage adaptive design to a sigmoidal Emax model was developed
for use in Liu and Pledger (2005). The goals of the three steps are to obtain the
unconstrained MLE of δk for k = 1, 2, . . . , K , the least squares estimate of �max,
and the best-fitting nuisance vector ν.We now present the details of the the algorithm.

Unconstrained MLE of δk

The first step is straight forward and does not involve development of new statistical
methodologies. The underlying patient level data can be analyzed via an appropriate
linear model, e.g., ANCOVAor logistical regression analysis, that includes treatment
contrasts between dose dk and the placebo (i.e., d0 = 0), for which the coefficients of
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the contrasts are δk for k = 1, 2, . . . , K . Where it is appropriate, the model may also
includes baseline prognostic factors as well as study centers. From such an analysis,
we obtain the MLE δ̂k for k = 1, 2, . . . , K and their variance-covariance matrix �̂.

There are simple situations (e.g., lumiracoxib trial by Schnitzer et al. (2004) that
the first step can be based on summary statistics extracted from published literature.
For normally distributed data, when the summary statistics of mean and standard
deviation are available, one can calculate δ̂k for k = 1, 2, . . . , K . Following the
design of the trial, it is possible to construct the variance-covariance matrix �̂. Thus,
it is possible to evaluate alternative design and analysis without the source data.

Least Squares Estimate of �max

For a given nuisance vector ν, let Sk = f (dk; ν) for k = 1, 2, . . . , K . We call
S = (S1, . . . , SK )T the shape vector as it describes the shape of the dose response
relationship. Let �̂ = (δ̂1, . . . , δ̂K )T be written as following the equation

�̂ = S �max + e,

where the residual vector e is assumed to follow an asymptotic normal distribution
with a zero mean vector and variance-covariance matrix �̂. The the least square
estimate of �max is given by

�̂max = ST �̂−1�̂/ST �̂−1S, (15.5)

for which the estimate of the variance is

Var (�̂max) = 1/ST �̂−1S. (15.6)

Best-fit Estimate of ν

Instead of using a continuous space, let the vector of nuisance parameters ν be
restricted to a carefully chosen fine grid of discrete values. For any given ν from
the grid, we consider test against the null hypothesis H0 : �max ≤ 0 in favor of the
alternative hypothesis HA : �max > 0 by the test statistic

Z = {Var (�̂max)}−1/2�̂max = {(ST �̂−1S)−1/2ST �̂−1}�̂. (15.7)

The test statistic Z implicitly depends on the nuisance vector ν. We then maximize
Z over the grid. This results in the discretized maximum likelihood estimate ν̂ of
the nuisance vector ν. Such estimate provides a “best fit” of the data by the corre-
sponding model �̂max f (dk; ν̂) over all possible models defined by ν over the grid.
For sigmoidal curves given in Eq. (15.3), ν = (dE50 , ρ), and thus, the best-fit model
could be identified over a carefully constructed two-dimensional grid of dE50 and ρ.

Note that the shape vector S = (S1, . . . , SK )T can also be based on other nonlinear
models such as the biphasic dose-response model given in Eq. (15.4).
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15.3 Multiple Trends Test

15.3.1 Maximum Effect

For the endpoint in question, objective I can be formulated as a testing problem
against the null hypothesis H0 : �max ≤ 0 in favor of the alternative hypothesis HA :
�max > 0 at the significance level α (Sheiner et al. 1989).

For monotone dose-response relationship, we use the triple trends test with trend
scales based on sigmoidal curves by Eq. (15.3). For biphasic dose-response relation-
ship, we may select up to five curves according to Eq. (15.4). In this paper, we only
address design and inferencewithmethods that usemonotone dose-responsemodels.
However, through simulation studies, we evaluate the robustness of the design and
inference when the response data are generated with biphasic models. This is impor-
tant as in practice with clinical evaluations, it is possible to observe dose-response
relationship with reversal effects at high dose even though there is no biological
reason to support a biphasic dose-response relationship.

15.3.2 Choice of Triple Trend Scales

For monotone dose-response relationship, scales for the triple trends test are based
on three sigmoidal curves. To directly reflect the notion of the threshold effect, we
consider an alternative parameterization of the shape function in Eq. (15.3):

f (d; ν) = dρ

dρ + dρ

Eη
(1/η − 1)

, (15.8)

where η is the threshold parameter (e.g., 90% or 10%) and dEη
is the dose at which

�(dEη
) = η �max. For many applications, the dose at which the efficacy starts to

plateau, which is commonly defined as a 90% of the maximum efficacy �max with
η = 0.9, is of considerable interest. With a given η, the shape vector is ν = (dEη

, ρ).
We choose three shape vectors to define the trend scales of the triple trends test.

This results in three dose-response curves which are referred to as top, middle and
bottom curves. The top curve is selected to ensure detecting the dose response when
that the lowest dose d1 hits the threshold η, i.e., dEη

= d1. The bottom curve is
selected to reflect the other extreme that the highest dose dK hits the threshold for
which dEη

= dK . The middle curve is selected based on clinical input where a dose
dk between d1 and dK is set to dEη

. The slope parameter is set to be ρT and ρB for
the top and bottom curves, respectively. As will discussed further below, the slope
parameter for the middle curve is calculated to ensure a minimum power criterion
for the triple trends test is met. Figure15.1 plots three dose response curves with the
threshold effect size �(dE90) = 11 for the lumiracoxib case example in Sect. 15.5.
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Fig. 15.1 Sigmoid Emax dose response curves

15.3.3 Triple Trends Test

For the i th curve for i = 1, 2, 3, the trend test statistic following Eq. (15.7) is

Zi = {(Si T �̂−1Si )
−1/2Si

T �̂−1}�̂. (15.9)

where the underlying trend scales are based on the shape vector Si . A robust test
against H0 in favor of HA is based on the triple trends test with

Z∗ = max{Z1, Z2, Z3} (15.10)

For a significance level α, the critical value z∗
α is chosen to satisfy

PM0{Z∗ ≥ z∗
α} = α, (15.11)

for which PM0{·} is the probability of an event under a null model M0 with�max = 0.
Under the null model M0, the trend test statistic Zi follows an asymptotic standard
normal distribution. For two different trend statistics Zi1 and Zi2 , their correlation is
approximately
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Cov (Zi1 , Zi2) = (STi1�̂
−1Si1)

−1/2(STi1�̂
−1Si2)(S

T
i2�̂

−1Si2)
−1/2.

The type 1 error rate of the triple trends test Z ∗ ≥ c for any critical value c can then
by evaluated (Capizzi et al. 1992; Genz 1992). Let z∗ be the observed triple trends
test statistic, then the p-value of the triple trends test is

p∗ = PM0{Z ∗ ≥ z∗}. (15.12)

We reject the null hypothesis H0 in favor of the alternative HA if z∗ ≥ z∗
α or equiva-

lently if p∗ ≤ α.

15.3.4 Sample Size Calculation

To assess the power of the triple trend test, it is necessary to specify the maximum
effect �max as well as the shape vector ν = (dEη

, ρ). This is achieved as follows.
For an effect size δ of interest, we assume that there is a dose dδ ≥ d1 such that
�(dδ) = δ. We then require that the dose-response curve at dδ reaches the threshold
η, i.e., dδ = dEη

. This leads to the equation

�(dEη
) = �maxη = δ,

from which we have the required maximum effect is �max = δ/η. To calculate the
required sample size to achieve a given power 1 − β, say, β = 0.05, we consider the
worst case scenario with the bottom curve of the sigmoidal model with dEη

= dK
and its shape parameter ρB . Let Mδ be the fully parameterized dose-response model.

The expectation of Zi underMδ for i = 1, 2, 3 can then be derived. The asymptotic
variance-covariance matrix of (Z1, Z2, Z3) remains unchanged. Thus, the power of
the triple trends test PMδ

{Z ∗ ≥ z∗
α} can be evaluated.

As mentioned early, the slope ρ of the sigmoidal model for the middle curve
is yet to be determined, resulting in a parameterized trend statistic Z2(ρ) for the
middle curve. Let Z ∗(ρ) = max{Z1, Z2(ρ), Z3}, we require that the sample size nk
for k = 1, 2, . . . , K to satisfy the following equation

min
ρ∈[ρ1,ρ2]

PMδ

{
Z ∗(ρ) ≥ z∗

α

} = 1 − β. (15.13)

For applications that do not require dynamic response or covariate adaptive ran-
domizations, it is often the practice to specify at design the randomization ratios
(r0, r1, . . . , rK ) for which at least one ratio is exactly one. For example, let r0 = 1.
Then nk = n rk for k = 1, 2, . . . , K where n is the sample size for the placebo group.
With this simplification, the power on the left hand side of Eq. (15.13) only depends
on n. Thus, the required n can be easily solved with a standard numerical univariate
root-finding algorithm.
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15.4 Likelihood Inference

15.4.1 Bootstrap Confidence Intervals

For any dose d such that d ∈ (0, dK ], the discretized maximum likelihood estimate
of �(d) = �max f (d; ν) is given by

�̂(d) = �̂max f (d; ν̂) (15.14)

following the three-step algorithm. However, the algorithm does not in itself provide
estimates of standard errors for the estimates �̂(d) for d ∈ (0, dK ]. The problem can
be resolved via a bootstrap method. Specifically, we take parametric bootstrap sam-
ples from a multivariate normal distribution with mean �̂ and variance-covariance
matrix �̂. By the three-step algorithm, these samples are first used to calculate the
bootstrap distributions of the estimates �̃max and ν̃, which are in turn used to calcu-
late the bootstrap estimates of �̃(d) for d ∈ (0, dK ]. Finally, we obtain the percentile
bootstrap confidence intervals of �̂(d) for d ∈ (0, dK ] (Efron and Tibshirani 1993,
p. 170).

15.4.2 Lower Effective Bound

For objective II, let D ⊂ (0, dK ] be the set of all potential doses of the drug for-
mulation such that the dose response curve �(d) = �max f (d; ν) is increasing over
d ∈ D. Following Hemmings (2006, p. 47), we are interested in identifying all doses
d ∈ D whose effect size �(d) are consistent with an effect size δ of clinical interest.
The identification of such doses is achieved as follows.

For any d ∈ D, let �̂L(d; ξ) be the lower bound of the 100(1 − 2 ξ)% confidence
interval for�(d). Provided that the triple trends test is significant, i.e., p∗ ≤ α where
p∗ is given by Eq. (15.12), we would not eliminate dose d for future evaluation if
the test for statistical significance and clinical meaningfulness (TSSCM) by

�̂L(d; ξ) ≥ κd , p∗ ≤ α (15.15)

is positive where κd ≥ 0 is a superiority margin that satisfies

P�(d)=δ

{
�̂L(d; ξ) ≥ κd , p∗ ≤ α

}
≥ 1 − β (15.16)

for which P�(d)=δ{·} is the probability of a positive TSSCM under�(d) = δ for dose
d. The lower effective bound (LEB), d̂LE (α), is given by

d̂LE (α) = min{d : �̂L(d; ξ) ≥ κd , p∗ ≤ α for d ∈ D}. (15.17)
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In case that it does not exist a dose d ∈ D such that �̂L(d; ξ) ≥ κd , d̂LE (α) could be
set to a dose level, greater than dK , that is consistent with the estimated dose response
curve. For simplicity of calculation in simulation studies, we set d̂LE (α) = +∞.

The idea of the superioritymargin κd for d ∈ D is based on a personal conversation
of the author with Dr. Leber of the FDA’s Division of Neurophamacological Drug
Products in 1997. Dr. Leber suggested that there is no need for a statistical multiple
testing procedure to identify a minimum effective dose as once a positive dose-
response is established, the effect of any dose is also a positive; the issue is then
how to identify a dose-range with a meaningful effect size of interest. A positive
superiority margin κd for dose d ∈ D would prevent from choosing d if its effect
size is very small. Following Eq. (15.16) the superioritymargin κd for d ∈ D depends
on the choice of δ. Thus, the lower effective bound d̂LE (α) defined in Eq. (15.17)
is suitable for identifying doses with an observed treatment difference that is both
statistically significant and consistent with a clinically meaningful effect size. This
feature is fundamentally different from that of an estimated “minimum statistically
significant dose” in the statistical literature whose determination only depends on
meeting a statistical significance criterion. The breakthrough is that the lowest effect
bound d̂LE (α) achieves a high probability of coverage for the threshold dose with
clinically meaningful effect while completely avoids the ill-defined MED for dose-
response models considered by the PhRMA working group.

15.4.3 Properties of LEB

For the given effect size δ, let

dδ = min{d : �(d) ≥ δ and d ∈ D} (15.18)

be the minimum dose in D. This implicitly assumes that �max is large enough that
there is at least one dose d in D such that �(d) = �max f (d; ν) ≥ δ. Note that
when �max < δ there is no dose d ∈ D such that �(d) > δ. Thus, dδ is not an
intrinsic characteristics of the dose response curve �(d). For example, under the
null hypothesis H0 : �max ≤ 0, dδ does not exist.

To distinguish different dose response curves with respect to the effect size δ of
interest, let Mδ(dδ; ν) be an effect-δ modelwith dose response curve �(d) for which
�(d) = δ at d = dδ ∈ D. The following theoremestablishes the coverage probability
property of the lower effective bound d̂LE (α) under an effect-δ model.

Theorem 1 Let Dδ = {d : d ≥ dδ, d ∈ D} for the effect-δ model Mδ(dδ; ν) and
PMδ(dδ;ν){·} be the probability of an event under Mδ(dδ; ν). Assume that

PMδ(dδ;ν)

[
∩d∈Dδ

{�̂L(d; ξ) ≥ κd , p∗ ≤ α}
]

= 1 − β. (15.19)

Then
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PMδ(dδ;ν)

{
d̂LE (α) ≤ dδ

}
≥ 1 − β. (15.20)

The proof of the theorem is straightforward. Following the definition of d̂LE (α), it is
clear that �̂L(d; ξ) ≥ κd and p∗ ≤ α for all d ∈ Dδ implies that d̂LE (α) ≤ dδ . Thus,
the power requirement in Eq. (15.19) leads to the coverage property in Eq. (15.20).

The theorem links hypothesis testing by �̂L(d; ξ) ≥ κd for d ∈ Dδ to the identi-
fication of the lower effective bound d̂LE (α) for minimum dose dδ with effect size δ.
The probability requirement by Eq. (15.19) is motivated by the probability require-
ment for a classical screening objective, described by Bechhofer et al. (1995, pp.
126–130), for selecting all doses with treatment effects greater than the control. For
our setting, the screening objective, or objective II can be more specifically stated as
to identify all potential doses with treatment effects greater than the placebo control
by their superiority margins under the effect-δ models by Eq. (15.19).

Another distinction is that the probability requirement by Eq. (15.19) applies to
comparisons of any dose d in D which may or may not be a dose actually studies.
That is d is not required to be from the set of doses {d1, d2, . . . , dK } that is used
in the study. In contrast, the probability requirement by Bechhofer et al. (1995,
pp. 126–130) applies only to doses that are studied in the trial. While the notion
of a minimum effective dose (MED) is widely used, it is surprising that this basic
probability requirement is conspicuously absent from a very recent book on dose
response trials by Ting (2006).

It is important to point out that the lower effective bound d̂LE (α) is not a confi-
dence lower bound for a minimum dose dδ . This is because under the effect-δ model
Mδ(dδ; ν), the coverage probability is specified by the power level 1 − β, rather than
the confidence level 1 − α. However, under a null model M0 with �max = 0 the
coverage probability of d̂LE (α) for any d ∈ D dramatically reduces to α. Formally,
we have the following theorem.

Theorem 2
PM0{d̂LE (α) ≤ d} ≤ α (15.21)

for all d ∈ D.

By construction, d̂LE (α) ≤ d for any d ∈ D implies p∗ ≤ α. Thus, by Eq. (15.12),
the null probability of coverage does not exceed α. We point out early that under the
null hypothesis H0 : �max ≤ 0, dδ does not exist. Therefore, for a given dose response
trial, the probability of controlling the error rate of being able to identify any dose as
dδ needs to be controlled. Thus, the property given by Eq. (15.11) of Theorem 2 is
important because under the null hypothesis H0, the probability of falsely carrying
any dose to phase 3 trials is controlled at the given α level.

Note that the same null probability requirement is used by Tamhane and Logan
(2002). However, their MED does not incorporate the coverage probabilities, as in
Eq. (15.20), under an effect-δ model for a given power 1 − β.
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15.4.4 Criterion for Superiority Margins

The probability requirement by Eq. (15.19) in Theorem 1 is limited to a specific
effect-δ model. In practice, there is little prior information to justify a particular
effect-δ model, and therefore, the superiority margins κd for d ∈ D may be required
to be robust for all potential effect-δ models.

For each d ∈ D, let there be an effect-δ model. The collect of all effect-δ models
is denoted byMδ = {Mδ(dδ; ν) : dδ ∈ D}.We choose the superiority margins κd for
d ∈ D to satisfy the following robust power criterion:

min
Mδ(dδ;ν)∈Mδ

PMδ(dδ;ν)

[
∩d∈Dδ

{�̂L(d; ξ) ≥ κd , p
∗ ≤ α}

]
≥ 1 − β. (15.22)

The determination of the superiority margins requires intensive numerical calcula-
tions and careful calibrations. The method is dependent upon the specific application
in question. We illustrate principles for choosing the superiority margins for the case
example in the following section.

15.5 Case Example

15.5.1 Trial Design

We reconsider the dose-response trial described by Schnitzer et al. (2004) to illustrate
the proposed design. For simplicity, we only use 50 mg, 100 mg and 200 mg bid of
lumiracoxib, in addition to a placebo control. Following the original trial design, we
use 1:1:1:1 ratios to randomize patients to one of the three doses of lumiracoxib or
placebo, and calculate the sample size to detect an 11-mmdifference between the new
drug and placebo for pain assessed on the VAS after 4weeks of treatment, assuming
a 20-mm standard deviation (SD) and a dropout rate of 10%. We use the one-sided
significance level α = 0.025 with a power of 95% (i.e., β = 0.05) to illustrate the
efficiency of the triple trends trend. Following Sect. 15.3.4, we choose dE90 = 50,
100, and 200 mg for the top, middle and bottom curve. The slope parameter ρ is set
to be 1 and 3 for the top and middle curve. The required sample size is 77 patients
per treatment group without adjusting for dropout. The slope parameter ρ for the
middle curve is 2.35. With the specified 10% dropout rate, the adjusted per group
sample size is 86, which is only one patient larger than 85 used for the original trial
design for which the power is only 80%. The three sigmoidal Emax curves are shown
in Fig. 15.1 in Sect. 15.3.4.
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15.5.2 Calibration

In Hinz et al. (2009) it was demonstrated that a single dose 50 mg lumiracoxib
inhibits blood monocyte COX-2 to similar degree as 100 or 200mg. The question
is raised whether doses lower than 100mg are sufficient for pain therapy. Thus, it is
possible that 25 mg bid is the “less than fully effective dose that may still be useful”
(Temple 2004). To illustrate the proposed LEB approach, we assume that the results
by Hinz et al. (2009) were available at the time the statistical analysis plan (SAP) was
finalized. We would then be interested in inference on the efficacy of lumiracoxib at
dose 25, 50, 75, 100, 150 and 200 mg bid. Notice that doses 25, 75 and 150 mg bid
were not studies in the dose-response study.

The tree-step algorithm in Sect. 15.2.4 requires discretization of the shape vector
ν = (dE90 , ρ). We choose dE90 ranging from 6.25 to 300 with the increment 6.25, and
ρ from 0.5 to 10 with the increment 0.25. This leads to a 48-by-39 grid with a total
of 1872 sigmoidal curves. The grid can be further expanded to include the very few
special cases of the sigmoidal curves by Thomas (2006) for the subsets of ad-hoc
models of by Bretz et al. (2005) that are not already covered by the 48-by-39 grid.

The most interesting as well as challenging aspect of the analysis planning is
choosing the superiority margins κd for d = 25, 50, 75, 100, 150 and 200. There are
several considerations.

(1) We want to limit the probability that 25 mg is chosen as the LEB if the effect
size at dose 50 mg is 11-mm; however, the probability would need to be higher
if the effect size at dose 50 mg is large, say, 15-mm.

(2) We require that the LEB has 95% (for β = 0.05) of probability coverage if the
effect size at doses at or above 50 mg is 11-mm.

(3) We also want to limit the probabilities of choosing low doses (i.e., 50 or 75mg)
if the effect size 11-mm is achieved at higher doses.

To meet these requirements, we consider non-increasing superiority margin κd as a
function of the dose d ∈ D. We set κ200 = 0. Other values of the superiority margin
κd are calibrated using the top curve for the triple trends test and a curve with the
same shape function as the top curve but the effect size 15-mm at d1 = 50 mg.
Through trial-and-error with various configurations, we choose the one-sided lower
confidence level 90% (i.e., ξ = 0.1) for the confidence lower bound �̂L(d; ξ) and
obtain the superiority margins κd for d = 25, 50, 75, 100, 150 and 200 mg bid (see
Table15.3).

15.5.3 Simulation Studies

We use simulation studies to both calibrate the superiority margins and evaluate the
operating characteristics of the dose-response analysis. This includes the distribu-
tion of the MED or “target-dose”. Each simulation study has its own objective and
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is conducted with a particular dose-response model. Following the trial design in
Sect. 15.5.1, the sample size per group is 77 for all simulation studies.

We consider sigmoidal models Mδ(dE90 , ρ) with threshold effect δ = 11 at dE90 .
These effect-11 models are the three models used in the triple trends test and
two additional models with dE90 = 75 and 150, which are denoted by M11(50, 1),
M11(75, 1.75), M11(100, 2.35), M11(150, 2.75) and M11(200, 3) in Table15.1. The
effect-11 models are chosen to represent the actual trial design of the case example
for which the effect size δ = 11 is used (Schnitzer et al. 2004). By the actual results
of the trial, the models also reflect worst-case and yet practical settings that are not
often used in the literature, with the exception of Kirby et al. (2011). We also con-
sider the sigmoidal model M15(50, 1) to evaluate the probability of identifying dose

Table 15.1 Power, probability of coverage and distribution of estimated target dose

Dose (mg b.i.d.)

25 50 75 100 150 200 ∞
M11(50, 1), Power = 0.9882

ES 10 11 11.3793 11.5789 11.7857 11.8919

PoCv
LEB

0.4221 0.95 0.9654 0.9783 0.9882 0.9882

Dstr MED 0.3036 0.2324 0.0745 0.0400 0.0241 0.0447 0.2806

M11(75, 1.75), Power = 0.9853

ES 6.9451 9.9700 11 11.4530 11.8313 11.9830

PoCv
LEB

0.3162 0.9301 0.9576 0.9734 0.9853 0.9853

Dstr MED 0.2034 0.2625 0.1038 0.0596 0.0354 0.0555 0.2798

M11(100, 2.35), Power = 0.9776

ES 3.1436 7.8024 10.0309 11 11.7200 11.9615

PoCv
LEB

0.1519 0.8502 0.9410 0.9644 0.9776 0.9776

Dstr MED 0.0632 0.2398 0.1596 0.1134 0.0615 0.0768 0.2857

M11(150, 2.75), Power = 0.9654

ES 1.1319 4.4736 7.5050 9.3572 11 11.5946

PoCv
LEB

0.0402 0.5375 0.8759 0.9375 0.9654 0.9654

Dstr MED 0.0050 0.0766 0.1582 0.1865 0.1304 0.1130 0.3303

M11(200, 3), Power = 0.9481

ES 0.2111 1.5068 3.9338 6.4706 9.6743 11

PoCv
LEB

0.0082 0.1462 0.6811 0.8585 0.9481 0.9481

Dstr MED 0.0003 0.0007 0.0395 0.1958 0.2156 0.1805 0.3615

ES—Effect size
PoCv LEB—Probability of coverage of lower effective bound (LEB)
Dstr MED—Distribution of MED
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25 mg when its effect size is 15-mm. Both M11(50, 1) and M15(50, 1) are used for
calibrating the superiority margins.

An important aspect of simulations studies is to evaluate the type 1 error rates of
the LEB approach. The first and foremost is the numerical verification of Theorem 2,
which addresses the type 1 error rate of falsely identifying a positive dose-response
relationship and hence carrying forward any dose for phase 3 studies. The simulation
study uses the null model M0 with a flat dose-response curve. For a monotone dose-
response model with a positive maximum effect size�max, it is theoretically true that
the effect size at any dose d is also positive. However, the magnitude of the effect
size may be infinitesimal and thus controlling the multiple “type 1 error rates” for
these doses is also important. We investigate this through the simulation study with
models M7(150, 8) and M11(150, 8) such that the effect size for dose d = 25 and 50
mg bid is almost zero. Note that the shape parameter of the sigmoidal Emax model is
ρ = 8, which is near the edge of the grid for ρ.

Occasionally, the observed dose-response curve can be bell-shaped, even though
there is not biological reason that the reversal of effects are expected. This may be
due to variability of the patients sample or imbalance of risk factors. To evaluate
the performance of proposed methods, we also consider a biphasic dose-response
model, denoted byMBi P , whose parameters in Eq. (15.4) are δ = 11 at η = .9, τ = 1,
(D1, ρ1) = (100, 1.5), and (D2, ρ2) = (200, 2).

A simulation study consists of bootstrapping nested within simulation runs. For
each simulation run, a total of 10,000 bootstrap samples are drawn. The number
of simulation runs is 11,000 for calibration and evaluation of power. The total of
simulation runs of 33,000 are used for evaluating type 1 error rates under the null
model. A supercomputer is used to perform all the simulation studies.

15.5.4 Results

Simulation results for effect-11 models are summarized in Table15.1. The proba-
bilities of coverage under model M11(50, 1) are not surprising as the superiority
margins are calibrated with at the specified probability of coverage level 95%. The
probabilities of coverage for the threshold dose dE90 under other models in Table15.1
are all at or above 95%. This is in part due to the three superiority margins criteria
in Sect. 15.5.2.

What is not known from the literature are the full distributions of the MED or
“target-dose”. The probability that the MED is right on-target is low; there is also
a high probability that the MED or “target-dose” is either non-identifiable or above
the largest study dose. This leads to the conclusion that the scheme of carrying over
the MED or “target-dose” for phase 3 confirmative trials is flawed at a fundamental
level; phase 3 trials ought to not be used to confirm the efficacy or safety of an
estimated dose with such an erratic distributional behavior. Note that results on
partial distributions of the MED or “target-dose” were obtained in the context of the
PhRMA dose-ranging working group research and presented by the author at JSM in
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Table 15.2 Special models

Dose (mg b.i.d.)

25 50 75 100 150 200 ∞
M0, Type I Error Rate = 0.0265

ES 0 0 0 0 0 0

PoCv
LEB

0.0019 0.0107 0.0166 0.0199 0.0265 0.0265

Dstr MED 0.0000 0.0000 0.0000 0.0001 0.0001 0.0019 0.9979

M15(50, 1), Power = 0.9999

ES 13.6364 15 15.5172 15.7895 16.0714 16.2162

PoCv
LEB

0.6565 0.9976 0.9987 0.9995 0.9999 0.9999

Dstr MED 0.6345 0.3085 0.0238 0.0070 0.0037 0.0004 0.0186

M7(150, 8), Power = 0.6620

ES 0.0000 0.0107 0.2642 2.0214 7 7.6922

PoCv
LEB

0.0020 0.0180 0.1820 0.3720 0.6620 0.6620

Dstr MED 0.0000 0.0000 0.0000 0.0160 0.0630 0.2470 0.6740

M11(150, 8), Power = 0.9725

ES 0.0000 0.0167 0.4151 3.1765 11 12.0878

PoCv
LEB

0.0012 0.0197 0.2873 0.7805 0.9725 0.9725

Dstr MED 0.0000 0.0000 0.0036 0.1612 0.3528 0.3075 0.1745

MBi P , Power = 0.9853

ES 3.8518 8.1432 10.8832 12.0712 11.5694 9.6085

PoCv
LEB

0.0885 0.9x21 0.9510 0.9556 0.9580 0.9580

Dstr MED 0.0736 0.2827 0.1030 0.0327 0.0146 0.0235 0.4722

2006. However, the negative results were neither reported in Bornkamp et al. (2007)
nor subsequently in Pinheiro et al. (2010).

Simulation results for the specialmodelsM0,M15(50, 1),M7(150, 8),M11(150, 8)
and MBi P are summarized in Table15.2. Under the null model M0, the simulated
type 1 error rate of the triple trends test is 0.0265, which is not statistically significant
from the α = 0.025 level. This assures that both the asymptotic theory as well as the
implementation are correct. Thus, the LEB approach controls the overall type 1 error
rate under model M0 at the significance level α = 0.025. For models M7(150, 8) and
M11(150, 8), the multiple “type 1 error rates” for dose 25 and 50 mg bid are well
below the α = 0.025 level.

Under M15(50, 1), the LEB approach has a sight higher probability of picking up
the 25 mg bid dose than the MED or “target-dose” scheme. This feature is achieved
through the choice of superiority margins according to the calibration criteria in
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Sect. 15.5.2. The probability of coverage 0.6565 does not affect the lowest dose
25mg from being chosen: if the LEB = 25, then apparently 25mg would be used for
phase 3; if the LEB = 50, then 25mg would be used again for phase 3 as the sub-
effective dose of Temple (2004). On the other hand, if the probability of coverage is
allowed to be much higher than 0.6565, then the probability of choosing no effect
dose as the LEB, e.g., 25 or 50mg under model M7(150, 8) or M11(150, 8), would
be substantially higher. This is not a desirable property.

It is worthy of noting that under M7(150, 8)with dE90 = 7, the maximum effect is
�max = 7.7778, which is less than δ = 11. Thus, there is no dose under M7(150, 8)
that would achieve the specified effect size δ = 11. Yet, there is still a high chance
(i.e., 32.6%) to falsely identify the “target-dose” at or below 200mg.

The LEB approach performs well under the biphasic dose-response model MBi P .
The result is important to ensure that the LEB approach that relies solely on the
sigmoidal Emax model is robust against “bell-shaped” occurrences in many clinical
settings that may be due to the nature of the endpoint, imbalance of risk factors, or
variability of the data, even though there is no biologic ground for reversal of efficacy
at the high dose range. Note that if prior to or during the trial a possible biological
ground for hormesis is postulated, modifications of the design and analysis on the
basis of a biphasic dose-response model may be necessary. Of course, it is always
possible to perform post-hoc analysis using a biphasic dose-response model when
there is a justifiable cause.

It is observed that the probabilities of coverage for both 150 and 200mg is exactly
the power of the triple trends test for all monotone dose-response models. This is
because that the superiority margins κ150 and κ200 are zero for both doses. However,
whether a high dose (e.g., 150 or 200 mg) would be selected for phase 3 trials would
depend on whether the dose is safe based on safety as well as laboratory data at hand.
In the absence of these data, the decision would also depend on whether a high dose
would provide additional efficacy benefit. With data that are consistent with model
M7(150, 8), the decision to move forward to phase 3 with a high dose should also
depend on if a subpopulation of patients could potentially have full efficacy benefits.

15.5.5 Probability of Success

The clinical development principles by Temple (2004) and Hemmings (2006, p. 47)
can be numerically illustrated through the overall probability of technical, regulatory
and post-approval success measure that incorporates a long-term benefit-risk profiles
of the drug for a wider patient population. As a comparison, we also evaluate the
probability of success of the “target-dose” scheme in the PhRMA working group
reports (Bornkamp et al. 2007; Dragalin et al. 2010; Pinheiro et al. 2010).

For the top curve M11(50, 1), we assume the probabilities of success of 0.4, 0.8,
0.6, 0.4, 0.1 and 0 for carrying over the single dose of 25, 50, 75, 100, 150 and 200
mg for phase 3 study and marketing approval. Implicitly, the probability of success
for failing to carry over a single dose for phase 3 is also zero. This scenario occurs
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if statistical significance is not reached in phase 2 for a positive dose-response or the
the “target-dose” is beyond 200 mg. For simplicity, the full dose-range is defined by
the lower effective bound (LEB) and the highest dose 200 mgwithout a sub-effective
dose. Then the probabilities of success for carrying over the all doses in the range
[25, 200], [50, 200], [75, 200], [100, 200], [150, 200], and 200 are 0.8, 0.8, 0.6, 0.4,
0.1, and 0. Note that in practice, the probability of success with a full dose range
could be much higher than the maximum of probabilities of success with individual
doses.

With this particular setup, the probability of success of the development plan by
Temple (2004) and Hemmings (2006, p. 47) is 77.54%, which is consistent with
regulatory principles of clinical development. However, the probability of success
of the “target-dose” scheme recommended by the PhRMA working group is only
37.05%. This exceedingly low probability of success is easily explained by the fact
that the “target-dose” simply cannot be reliably identified or estimated when the
threshold effect of 11-mm is already at the plateau of the dose-response (Table15.1).

For the lumiracoxib case example, the choice of these probabilities are consistent
with the development, post-marketing and regulatory history of lumiracoxib, as well
as its totality of scientific and clinical data. In particular, the top curve is consistent
with the results of the phase 2 dose-response study (Schnitzer et al. 2004) where the
observed effect sizes for the physician global pain assessments are 10, 13.9, 13, 14.2
and 13.9-mm for lumiracoxib 50, 100, 200 mg bid, 400 mg od, and diclofenac 75mg
bid. TheLEBapproach is applied to the summary datawith the actual reported sample
size. The p-value for dose-response with the triple trends test is highly significant
1.4773e−7 and the LEB is 50mg bid. The fitted curve as well as its confidence lower
bound are given in Table15.3. Thus, it suffices here to simply evaluate the overall
probability of success of a particular development plan.

In prospective applications, however, different set of probabilities of success for
other efficacy and safety scenarios are needed to ensure that the development plan is
robust. This is illustrated for a neuropathic pain example in this author’s 2006 JSM
presentation, where similar results on identifiability and probability of success were

Table 15.3 Inference (fitted curve, confidence lower bound, and TSSCM)

d Dose (mg b.i.d.)

25 50 75 100 150 200

δ̂d 10 13.9 14.2

�̂(d) 0.0445 9.9698 13.3728 13.4572 13.4626 13.4627

�̂L (d; ξ) 0.0332 6.0098 9.3426 9.9863 10.3311 10.4242

κd 0.1343 0.1343 0.1342 0.0166 0.0000 0.0000

TSSCM 0 1 1 1 1 1

δ̂d—Observed effect size
�̂(d)—Fitted effect size
�̂L (d; ξ)—Confidence lower bound for ξ = 0.1
κd—Superiority margin
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observed for both the LEB approach and the “target-dose” scheme. However, the
negative results of the “target-dose” scheme were absent from the PhRMA working
group reports (Bornkamp et al. 2007; Pinheiro et al. 2010).

15.6 Discussion

15.6.1 Summary

We propose a test for statistical significance and clinical meaningfulness (TSSCM)
for all feasible doses below a maximum dose studied in a phase 2 trial. A triple
trends test is used to establish the overall statistical significance for a positive dose-
response, while a likelihood test with superiority margins is used to detect an effect
size consistent with a clinically meaningful difference. The superiority margins can
be calibrated tomeet a pre-specifiedpower criterion of a threshold effect. TheTSSCM
is applied in a step-down fashion to identify the lower effective bound (LEB), which
is then used to define the full dose-range for carrying forward to phase 3 trials. It
is shown both theoretically and numerically via simulation studies that the LEB has
desirable probabilities of coverage for the threshold dose of a positive dose-response
relationship. The multiple type 1 error rates are also controlled. We stress that the
LEB is not a confidence lower bound because its probability of coverage for the
threshold dose can be maintained at any desirable level, say, 95%, under any effect-δ
model (see Theorem 1) and the probability of coverage for any dose is controlled
under the specified type 1 error rate α under the null model (see Theorem 2).

The LEB approach supports the regulatory principles for clinical development
of Temple (2004) and Hemmings (2006, p. 47). We demonstrate that the idea of
conducting full dose-range phase 3 studies after phase 2 dose-response trials is fun-
damentally sound through simulation evaluation of the overall probability of tech-
nical, regulatory and post-approval success that takes into account of the long-term
benefit-risk profiles of approved dosing regimens for a wider patient population. In
practice, this approach has lead to many successful pharmaceutical products with
optimal benefit-risk profiles.

The likelihood test with superiority margins avoids the well-known difficulties
associated estimating sigmoidal Emax model parameters such as dE50 or threshold
dose dE90 (Sheiner et al. 1989). The core procedure for the likelihood test consists
of calculating discretized maximum likelihood estimates of the maximum treatment
effects with standard generalized linear model methods, selecting a best-fit-model
over a grid of possible shape parameters, and bootstrapping the confidence inter-
vals of treatment effects of individual doses. Not only is the core procedure simple
to implement but also the derived likelihood based inference is robust against ill-
behaved likelihood functions that make traditional likelihood estimates of the shape
parameters difficult.
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The three-step algorithm for fitting dose-response models applies to endpoints
following a broad families of distributions as well as settings where the distributions
cannot be fully specified. To assist trial design, we also provides a unified sample
size procedure for the exponential family of distributions.

15.6.2 Phase 3 Full Dose-Range

Temple (2004) states that “Having all or most phase 3 studies be D/R is usual
for antihypertensives and antidepressants, anti-migraines, and anti-psychotics. This
should be more common.” We illustrate through the two case examples that Tem-
ple’s full dose-range approach should also be extended to other disease areas (e.g.,
osteoarthritis and insomnia) in phase 3 clinical development. Questions still remain
on the determination of the full dose-range and the choice of doses for the phase 3
trials.

The most interesting setting is when there are at least two doses that are iden-
tified to be effective from the phase 2 trial. The easiest dose is the LEB. A dose
lower than the LEB, which is expected to be less than fully effective, should also be
included. Following Temple (2004) the objective is to study “whether sub-effective
dose represents some people responding fully or all people responding a little.” Such
information provide a critical role in drug labeling, which is especially important as
phase 3 trials are often conducted with longer duration of treatment and follow-up
in a more heterogeneous patient population. A dose higher than the LEB should
be based on the evaluation of efficacy and short term safety as well as laboratory
values. Other information from PK/PD analysis, or Biomarker/PD analysis may also
be useful for dose selection.

For the case example with lumiracoxib, the analysis of the phase 2 data identified
50mg bid as the LEB. Following Sect. 15.5.2, the lower dose of 25mg big may be
chosen based on the results by Hinz et al. (2009). There are no dose-response related
adverse events at or above 100mg bid. As doses higher than 100mg bid do not
provide additional efficacy benefits, 100mg bid should be used as the high dose.

A similar analysis with suvorexant is also performed, by which 10mg is the
LEB. The low dose 5mg may be the less than the fully effective dose. Based on
evaluations of available phase 2 safety and laboratory values, the high dose 20mg
should be chosen. This full dose-range is identical to the requirement in the FDA’s
complete letter. However, this decision could be reached much early, i.e., prior to
initiation of the suvorexant phase 3 program.

15.6.3 Future Work

The paper addresses issues on design and inference for phase 2 trials with the focus
to determine the full dose-range and doses for the phase 3 clinical development



15 On Design and Analysis of Dose-Response Trials … 401

program. While the structure of the phase 3 program may vary according the the
disease area or the nature of the new drug, there should be a least one phase 3 trial
with a full dose-range. Themethods developed here in this paper can extended to such
phase 3 trial as well as to meta-analysis of all phase 3 trials. For individual phase
3 dose-response trials, the methods reduce the complexity of multiplicity due to
multiple doses. In addition to being able to identify the lower effective bound (LEB),
additional work is necessary to develop methods for defining the upper safety bound
(USB) with an acceptable safety threshold. Both LEB and USB can then be used to
describe the therapeutic window for the drug. Additional research is also necessary
to address Temple’s question of “whether sub-effective dose represents some people
responding fully or all people responding a little.”We note that the ability to address
this question can be reduced if the phase 3 trial would drop the low dose through
futility analysis. This raises concerns of many “adaptive designs” that may already
be in use.

The paper is limited to settings where parallel group designs may be the only
choice. There are other settings where cross-over designs are often used. However,
for clinical endpoints, rather than pharmacodynamic (PD) endpointswhere the effects
are often tied to the drug concentration, a typical washout window may not prevent
the presence of carry-over effects. This often complicates the analysis and its inter-
pretation (e.g., suvorexant). As a result, analysis and interpretation are then restricted
to data from the first period, which is a parallel group design. In addition, cross-over
designs do not handle informative dropouts, which are common in clinical trials.
The essence of a cross-over design for most clinical settings with possible carry-over
effects and dropouts are to enhance the efficacy of the trial with multiple use of the
same patients so as to reduce the number of patients enrolled. Research is needed
to develop new dose-response designs to achieve this objective while avoiding the
problem of carry-over effects and lessening the impacts of informative dropouts.

The proposed dose-response designs need to be expanded to settingswhere horme-
sis is justified on biological ground. The key is to work with the biphasic dose-
response model proposed in this paper. Issues relating the number of doses, sample
size calculation and test for dose-response relationship need to incorporate more
models that are carefully chosen. The grid for discretized likelihood method also
need to be carefully constructed.

Future work may also consider the setting where an active control is used for
assessing assay sensitivity and evaluation of comparative effectiveness, which may
be similarly defined through lower comparative effective bound (LCEB). We also
envision a broader used of TSSCM for clinical trial designs in general. A nature
setting is non-inferiority trials where a statistical non-inferiority margin is used for
inference that a new drug is effective against a putative placebo while a clinical non-
inferiority margin is used to establish that the new drug is similar to an active control.

Last but not the least, the analytics and supercomputer used for this paper may be
accessible through collaborative research and development for new research projects.
Contingent upon availability of future funding, the author intends to deploy the ana-
lytics and supercomputing through a Software as a Service (SaaS) cloud infrastruc-
ture.
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