
Chapter 7
Statistical Testing of Single and Multiple
Endpoint Hypotheses in Group
Sequential Clinical Trials

Mohammad Huque, Sirisha Mushti and Mohamed Alosh

7.1 Introduction

It is well recognized that a clinical trial of fixed-sample design planned without
interim looks can falsely reject a hypothesis of no treatment effect on an endpoint by
chance alone. This error commonly known as the false positive error or the Type I
error can be excessive if the trial testsmore than one hypothesis in the same study.This
inflation of theType I error is of concern as it can lead to false conclusions of treatment
benefits in a trial. However, many statistical approaches for confirmatory clinical
trials are now available for keeping the probability of falsely rejecting any hypothesis
in testing a family of hypotheses (i.e., the familywise Type I error rate) controlled to
a specified level; see, for example, a recently released FDA draft guidance “Multiple
Endpoints in Clinical Trials,” and Alosh et al. (2014).

However, many confirmatory clinical trials accrue patients over manymonths and
enroll hundreds to thousands of patients; this is a widespread practice, for example,
for some cardiovascular and oncology trials. Investigators, bound by ethical and
economic constraints, usually design these large trials with interim looks, with the
possibility of stopping the trial early at an interim stage if the study treatment has the
desired efficacy that is clinically relevant, or if it is futile to continue the study, either
for lack of efficacy of the study treatment or for safety concerns. These clinical trials
are normally recognized as group sequential (GS) clinical trials. The Type I error rate
for GS trials, even for the simplest case of testing a single hypothesis, can be inflated

M. Huque (B)
Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA, USA
e-mail: huque.stat@gmail.com

S. Mushti
Division of Biometrics V, Office of Biostatistics, OTS, CDER, FDA, Silver Spring, MD, USA

M. Alosh
Division of Biometrics III, Office of Biostatistics, OTS, CDER, FDA, Silver Spring, MD, USA

© Springer Nature Singapore Pte Ltd. 2018
K. E. Peace et al. (eds.), Biopharmaceutical Applied Statistics Symposium ,
ICSA Book Series in Statistics, https://doi.org/10.1007/978-981-10-7820-0_7

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7820-0_7&domain=pdf


120 M. Huque et al.

if there are no adjustments for multiple looks, as compared to conventional non-GS
trials, because of the repeated tests of the same hypothesis at interim looks. In GS
trials, the same hypothesis is tested at different looks as the trial data accumulates
over the time course of the trial, until the hypothesis is rejected or the trial reaches the
final look for the last test of the hypothesis. Consequently, for assuring the credibility
of a treatment benefit result even for a single-hypothesis GS trial, it is considered
necessary to use a statistical adjustment method for controlling the probability of a
Type I error at a pre-specified level through proper design and analysis methods that
are prospectively planned.

There is an extensive literature for GS trials with plans to test a single primary
hypothesis of a trial with repeated testing on accumulating data observed at different
looks, and to stop the trial early at a look either for efficacy or for futility reasons.
This literature covers in detail the technical and operational aspects of such trials,
explaining how to plan, conduct, and analyze accumulating data of such trials. Emer-
son (2007) is an excellent review article on this topic. Also, there are useful books on
this topic, including Whitehead (1997), Jennison and Turnbull (2000), and Proschan
et al. (2006). Also, there are classical papers on this topic that are of historical impor-
tance, such as Armitage et al. (1969), Pocock (1977), O’Brien and Fleming (1979),
and Lan and DeMets (1983). In addition, there are some extensions of the methods
for multi-arm group sequential trials, e.g., comparison of multiple doses of the same
treatment to a common control on a single primary endpoint with interim looks; see,
for example, Follmann et al. (1994), Jennison and Turnbull (2000), Hellmich (2001),
and Stallard and Friede (2008).

However, modern clinical trials are designed with multiple endpoints; some of
these endpoints are given primary and secondary designations. The primary endpoint
family along with their hypotheses holds a special position: If the study wins on one
or more of its primary endpoint hypotheses then, depending on the level of evidence
desired for this win, one can characterize a clinically relevant benefit of the study
treatment. In this regard, O’Neill (1997), based on clinical and statistical considera-
tions, made the case that secondary endpoint hypotheses need to be tested only when
there is at least one rejection of the primary endpoint hypotheses leading to a clini-
cally relevant benefit of the study treatment. Several innovative statistical procedures
for confirmatory clinical trials were proposed that maximize the power for the tests of
the primary hypotheses. In doing so, these approaches consider O’Neill’s stipulation
along with possibility of assigning weights to the different endpoint hypotheses and
other logical restrictions. Further, these test procedures control the familywise Type
I error rate (FWER) in the “strong sense” (see, e.g., Hochberg and Tamhane 1987),
so that the conclusion of treatment efficacy can be made at the individual endpoints
or hypotheses levels.

There is a fair amount of literature regarding these novel procedures for fixed-
sample clinical trials but not so for GS clinical trials which are frequent for car-
diovascular and oncology trials. Examples of such procedures for fixed-sample trial
designs include the gatekeeping procedures (see, e.g., Dmitrienko et al. 2003, 2008;
Dmitrienko and Tamhane 2009; and Huque et al. 2013 among others) and the graph-
ical procedures (see, e.g., Bretz et al. 2009, 2011, 2014). The development of the
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gatekeeping procedures and the graphical method have relied, either explicitly or
implicitly, on shortcuts to the closed test procedure, as discussed by Hommel et al.
(2007). These developments that utilize short-cut testing have been possible for
weighted Bonferroni tests of the intersection hypotheses that satisfy “consonance”
property (Hommel et al. 2007). Thereafter, the interest has been as to whether a
similar approach for testing multiple hypotheses is possible for GS clinical trials.
Recent publications, including Glimm et al. (2010), Tamhane et al. (2010), Maurer
and Bretz (2013), Ye et al. (2013), Xi and Tamhane (2015), and Xi et al. (2016), have
made this possible and have advanced multiple hypotheses testing methods for GS
trials.

Tang and Geller (1999) proposed a general closed testing scheme for testing mul-
tiple hypotheses for GS clinical trials. This scheme, though conceptually simple to
follow, seems complex to apply in practice, except for certain special situations. By
taking advantage of the Hommel et al.’s findings and those of others, we make the
case that that Tang and Geller’s scheme can be simplified for application purposes by
developing short-cut closed test procedures using, for example, the weighted Bonfer-
roni tests. These short-cut procedures for testing multiple hypotheses in GS clinical
trials also allow, indirectly, recycling the unused significance level of a rejected
hypothesis to testing other hypotheses in a trial.

In this chapter, we first review the classical O’Brien-Fleming (OF) and Pocock
(PK) approaches as well as the α-spending function methods, for setting the bound-
aries in a standard GS clinical trial for repeated testing of a single primary hypoth-
esis. We will call herewith the α-spending function methods as spending function
methods. As we will see later, these boundaries computed from the spending func-
tion approaches for testing a single hypothesis can still be used for testing multiple
hypotheses in GS trials. Consequently, software developed for standard GS trials
with a single-hypothesis test can also be used for multiple hypotheses tests. We also
touch on the Tang and Geller (1999) closed testing approach as it is of historical
importance and show that for testing two primary hypotheses of a trial, this approach
simplifies when the weighted Bonferroni test is used for testing the intersection
hypothesis. We then visit the graphical approach, for testing multiple primary and
secondary hypotheses of GS trials, as discussed by Mauer and Bretz (2013), and
present an illustrative example for testing two primary and two secondary endpoints
of a trial. Thereafter, we consider the case that when the trial stops after the rejection
of a primary hypothesis at a look say for ethical reasons, then other hypotheses need
to be tested at the same look, as discussed by Tamhane et al. (2010). We close this
chapter with some concluding remarks. Finally, we should point out that in all the
discussions and methods presented for deriving boundaries of the GS trials and all
tests considered are 1-sided comparing a study treatment to control.
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7.2 Testing of a Single Hypothesis in a GS Trial

As in fixed-sample trials, the endpoints in a GS trial can be continuous, binary, or
time-to-event. Although the associated test statistics for these endpoints may appear
dissimilar, they share a common property: They can be expressed in terms of the
standardized sums of independent observations of a random variable. Consequently,
they span asymptotically the same joint distribution across time points of multiple
looks of the data. Therefore, for the sake of simplicity in this chapter, we assume that
the multiple endpoints considered are continuous, and the sample size for each arm
of a 2-arm trial designed to compare the study treatment to control remains equal for
each endpoint at each look. This case of equal sample size can be easily extended to
the case when the sample size for the treated and control arms of the trial at a look
can be of different sizes. Also, we consider the case that the total sample size for the
final look is fixed in advance. In our discussion of GS trials, we do not consider them
adaptive when the investigator continues to modifying the trial design based on the
earlier results or what is known as adaptive study design. Adaptive study designs
may allow for the possibility of adjusting the sample size of the trial, redefining the
endpoint, or modifying the patient population based on the results of an interim look
of the data of the trial.Methodological approaches for GS trials with such adaptations
are more complex, and some of the assumptions and statements made here may not
be valid. With these considerations, we first consider the case of testing a single
endpoint hypothesis H0 : δ ≤ 0 against the alternative hypothesis Ha : δ > 0 for a
trial with K − 1 interim looks and a final look, for a total of K ≥ 2 looks. A positive
value of δ indicates that the test treatment is better than the control.

7.2.1 Test Statistics and Their Distributions

Consider a 2-arm randomized trial designed to compare a treatment with a control
on a single primary endpoint based on a total sample size of N subjects per arm. Let
Sn1 be the sum statistic for the treatment difference at look 1 based on n1 subjects
per treatment arm. This sum statistics at look 1 is the sum of endpoint observations
on n1 subjects in the treatment arm minus the sum of endpoint observations on n1
subjects in the control arm. Define the B-value at look 1 as

B(t1) � Sn1/
√
VN , where VN � Var(SN ) � 2Nσ 2. (7.2.1)

In (7.2.1), SN is the sum statistic for the final look yet to be observed and σ 2 is
the known variance of individual observations which remains constant throughout
the trial regardless of whether the subject observed is in the treatment arm or in the
control arm. The value t1 at look 1, usually known as the information fraction or the
information time at look 1, is given by
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Var{B(t1)} � n1/N � t1. (7.2.2)

Note that calling here n1/N � t1 as the information fraction or information time
assumes that the sample sizes for the treatment and control groups are equal at each
look and the variance of individual observations remains constant. In general, ifd1 and
d2 denote asymptotically normal estimates of a treatment group difference at interim
and final looks, then the information fraction is defined as I � Var(d2)/Var(d1). For
normal outcomes, information time is the proportion of data available at the interim
look, relative to the planned maximum if the trial is not stopped early. However, in
presenting our results, for simplicity, we maintain our assumptions of equal sample
sizes and constant variance. These results easily extend to the general case (Jennison
and Turnbull 2000).

The standardized test statistic Z(t1) for testingH0 at look 1 can then be expressed
as

Z(t1) � Sn1/
√
Vn1 � (Sn1/

√
VN )

√
VN/Vn1 � B(t1)/

√
t1. (7.2.3)

The relationship in (7.2.3) follows from Var(Sn1 ) � 2n1σ 2 and VN/Vn1 � 1/t1.
Now consider the second look with the sample size of n2 � n1 + r per treatment
arm. Then B(t2) � (Sn1 + Sr)/

√
VN where Sr is the sum statistic for the treatment

difference based on the new data available at look 2. Consequently,

Var{B(t2)} � n2/N � t2,Cov{B(t1),B(t2)} � t1,

and

Corr{B(t1),B(t2)} � Corr{Z(t1),Z(t2)} � √
t1/t2 for t1 ≤ t2. (7.2.4)

Given t1 ≤ t2 ≤ · · · ≤ tk ≤ · · · ≤ tK � 1, we assume that B(t1),B(t2), . . . ,B(tK )

follow a multivariate normal distribution with

E{B(tk)} � 0 underH0 andCov{B(tk),B(tl)} � tk for tk ≤ tl ≤ tK . (7.2.5)

Therefore, the normal Z-statistics {Z(tk) � B(tk)/
√
tk} for k � 1, . . . ,K follow

a multivariate normal distribution with

E{Z(tk)} � 0 underH0 andCov{Z(tk),Z(tl)} � √
tk/tl for tk ≤ tl ≤ tK . (7.2.6)

The non-central expected value of B(tk) in terms of the information fraction tk is
given by:

E{B(tk)} � nkδ/
√
2Nσ 2 � (nk/N )

√
N/2(δ/σ ) � tkθ, (7.2.7)
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where θ � √
N/2(δ/σ ) is the “drift parameter.” Consequently, the non-central

expected value of E{Z(tk)} � √
tkθ.

Note that θ � z1−α + z1−β for a fixed-sample non-GS trial, where for such a
trial, α is the probability of falsely rejecting the null hypothesis H0 : δ ≤ 0 of no
treatment effect in favor of the alternative hypothesis Ha : δ > 0 of treatment effect,
and power 1−β is the probability of rejecting H0 when given the true treatment
difference δ � δ0 > 0. For example, when the trial α �0.025 and power 1−β

�0.90, then θ � 3.2415. Here the notation z1−x stands for the deviate such that
Pr(U ≤ z1−x) � 1−xwith 0≤x ≤1, whereU is the normal N(0, 1) random variable.
More details about B(t) values and Z(t) normal scores can be found in Proschan et al.
(2006) and Lan and Wittes (1988). In the following, we show how the well-known
methods by Pocock (1977) and O’Brien and Fleming (1979) rely on these B-values
and z-scores in finding their local significance levels, i.e., GS-boundary values, for
the repeated testing of H0. For convenience, we will call these historical methods as
PK and OF methods and their boundaries as PK and OF classical boundaries.

7.2.2 Classical PK and OF Boundaries

When analyses of accumulating data of aGS trial occur at equally spaced information
times, then the PKboundary is a constant boundary on the z-scale. That is, if tk � k/K
for k � 1, . . . ,K , the constant PK boundary cPK (α,K) � x for 1-sided tests can
then be obtained by solving for x in the following equation:

Pr[
K⋂

k�1

{Z(tk) ≤ x}|H0] � 1 − αwith tk � k/K for k � 1, . . . ,K, (7.2.8)

such that theType I error rate is controlled at levelα. This equation canbe solvedunder
the assumption that the joint distribution of the test statistics {Z(tk); k � 1, . . . ,K}
is multivariate normal with zero mean vector and correlation matrix (ρkl) � (√

tk/tl
)

with tk ≤ tl . For example, cPK (α,K) � 2.28947 for K � 3, (t1 � 1/3, t2 �
2/3, and t3 � 1), and α�0.025. For solving for x in (7.2.8), we wrote SAS/IML
codes that calculated the left-hand side of the equation using PROBBNRM and
QUAD functions of SAS. PROBBNRM is a SAS function which gives values of
the cumulative distribution functions of a standard bivariate normal distribution on
specifying the value of the two variables and the correlation coefficient between
them. QUAD is a SAS function which integrates numerically a function over an
interval. This calculation expressed the joint distribution of {Z(tk); k � 1, 2, 3} as
the product of the distribution of Z(t1) and the conditional bivariate distribution of
Z(t2) and Z(t3) given Z(t1) � z(t1).

Jennison and Turnbull (2000) and Proschan et al. (2006) include 2-sided PK
boundary values for different values of K , and α�0.01, 0.05, and 0.10. These 2-
sided boundary values at level α, if taken as 1-sided boundary values at level α/2,
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may not be identical to the actual 1-sided boundary values obtained from (7.2.8); see,
for example, Sect. 2.4 inWassmer and Brannath (2016). The PK boundary values for
2-sided tests are obtained by replacing Z(tk) ≤ x by |Z(tk)| ≤ x in (7.2.8). Thus, a
GS trial, designed with PK boundary with looks at equally spaced information times
with given α and K , would reject H0 for efficacy and stop the trial at look k with the
information fraction tk when Z(tk) > cPK (α,K).

Likewise, the OF boundary is a constant boundary on the B-value scale when the
trial looks occur at equally spaced information times. Therefore, when tk � k/K,

for k � 1, . . . ,K , the 1-sided OF boundary value can be obtained by solving for x
in the following equation:

Pr[
K⋂

k�1

{B(tk) ≤ x}|H0] � 1 − αwith tk � k/K for k � 1, . . . ,K .

Using Z(tk) � B(tk)/
√
tk the above equation can be expressed as in (7.2.9) to

solve for x using the joint distribution of the test statistics {Z(tk); k � 1, . . . ,K} as
a multivariate normal with zero mean vector and correlation matrix (ρkl) � (√

tk/tl
)

for tk ≤ tl :

Pr[
K⋂

k�1

{
Z(tk) ≤ x/

√
tk

}|H0] � 1 − αwith tk � k/K for k � 1, . . . ,K . (7.2.9)

For example, when K �2, (t1 � 1/2 and t2 � 1), α �0.025, and the tests are 1-
sided, then solving the equationPROBBNRM(x

√
2, x,

√
1/2)�0.975gives the value

of x=1.97742 which in turn gives the OF boundary values of c1(α,K) � x
√
2 �

2.796494 for the first look at t1 � 1/2 and c2(α,K) � x � 1.97742 for the final look
on the z-score scalewith the corresponding boundary values ofα1(α,K) � 0.002583
and α2(α,K) � 0.023997 on the p-value scale. Thus, if a GS trial is designed with
two looks with an interim look at t1 � 1/2, and α � 0.025, then H0 will be rejected
when the p-value at this look is less than α1(α,K) � 0.002583 stopping the trial
early; otherwise, the trial will continue to the next and final look, and H0 will be
rejected there when the p-value at this look is less than α2(α,K) � 0.023997.

Jennison and Turnbull (2000) and Proschan et al. (2006) provide values of x for
2-sided tests for different values of K and α � 0.01, 0.05, and 0.1. These 2-sided
boundary values at level α, if read as 1-sided boundary values at level α/2, may not
agreewith the actual 1-sided boundary values. Note that themethods described in this
section are of historical importance and are not so frequently used; they lackflexibility
because managing analysis at equally spaced information time can be challenging.
A more flexible approach for GS trials is the spending function approach described
in the next section.
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7.2.3 Spending Function Approach

The classical PK and OF boundaries introduced above require specifying the total
number of looks at equally spaced information times. This can be inconvenient for
clinical trial applications as the Data Safety Monitoring Board (DSMB) or any other
group charged with performing interim looks of the accumulating clinical trial data
may have to postpone a look for logistical reasons, or may decide to have a look at
an unspecified time because of certain concerns. Lan and DeMets (1983) proposed
the spending function approach for this and showed that the construction of GS
boundaries do not require pre-specification of the number or timings of looks.

Any non-decreasing function f (α, t) in the information time t, over the interval
0≤ t ≤1 and parameterized by the overall significance level α for testing H0, can
be a spending function if it satisfies the following conditions: f (α, t) ≤ f

(
α, t′

)
for

0 ≤ t ≤ t′ ≤ 1; f (α, t � 0) � 0; and f (α, t � 1) � α. A commonly used spending
function for clinical trials is the OF-like:

f1(α, t) � 2{1 − Φ(z1−α/2/
√
t)},

whereΦ(.) is the cumulative distribution function of the standard normal distribution.
Note that f1(α, 0) � 0 and f1(α, 1) � α. If the trial had only 2 looks,

one at t=1/2 and the other at t=1, and α � 0.025, then f1(α � 0.025, t � 1/2) �
2(1 − Φ(2.241403/0.70711)) � 2{1 − Φ(3.1698)} � 0.001525 and
f1(α � 0.025, t � 1) � α. One can then find the significance level x for the
final look by solving the equation Pr {(P1 <0.001525) ∪ (P2 <x)}�0.025. The
next section shows how these equations are solved. The advantage of using the
OF-like spending function for clinical trials is its shape which is convex. This allows
spending very little of the total α for early looks and saves most of it for latter looks
when the trial has sufficient number of patients exposed to the new treatment. The
idea is to stop the trial early only when the treatment effect size is sufficiently large
and clinically convincing.

Table 7.1 includes a few other spending functions. These and other spending
functions give the cumulative Type I error rate spent at look k with the associated
information fraction tk . This cumulative value does not give directly the local sig-
nificance level αk(α, tk) (i.e., the boundary value) for testing H0 at look k, except
when k � 1 (the first look). Note that these boundary values are on the p-value scale
and need to be converted for presentation on the z-scale. Finding αk(α, tk) requires
additional calculations which we describe in the following with an example. These
calculations usually require solving equations in multiple integrals and are not easy
when K≥3. Special computer software is normally used for this.
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Table 7.1 Examples of spending functions

Linear Pocock-like Hwang-Shi-Decani (1990)

f2(α, t) � αt f3(α, t) � α loge{1 + (e − 1)t} f4(α, t) �
α
[{1 − exp(−λt)}/{1 − exp(−λ)}],

for λ �� 0

7.2.4 Calculations of Boundary Values Using Spending
Functions

We illustrate the use of spending functions for finding the local significance level
αk(α, tk) at look k with the information fraction tk , so that H0 will be rejected when
the 1-sided p-value pk at this look is less than αk(α, tk). Suppose a trial uses the OF-
like spending function to control the Type I error rate at level α � 0.025. Suppose
that the first look occurs at t1 � 0.30. Then at this look, we spend

f1(α � 0.025, t1 � 0.30) � 2
{
1 − Φ

(
z1−α/2/

√
0.30

)}

� 2

{
1 − Φ

(
2.2414027√

0.30

)}
� 0.0000427

Therefore, at this look, α1(α, t1) � 0.0000427 and the critical value c1(α, t1) �
3.9285725 from Pr{Z(t1) > c1(α, t1)} � 0.0000427; one will reject H0 and stop the
trial at the first look if p1 < 0.0000427 or Z(t1) > 3.9285725. Thus, at this look the
investigator spends very little of the total α � 0.025.

Suppose that the trial did not stop at the first look and the investigator decides to
have the second look at t2 � 0.65. Then the cumulative alpha spent at this look is

f1(α � 0.025, t � 0.65) � 2
{
1 − Φ

(
z1−α/2/

√
0.65

)}

� 2

{
1 − Φ

(
2.2414027√

0.65

)}
� 0.0054339

Therefore, we determine the boundary critical values of c2(α, t2) � 2.5479 or
α2(α, t2) � 0.0054187 by solving the equation: Pr[{(Z(t1) > 3.9285725}∪{(Z(t2) >

c2(α, t2)}] � 0.0054339. Therefore, one can reject H0 at the second look and stop
the trial, if at this look, the observed p-value p2 < 0.005187 or Z(t2) > 2.5479.

Suppose the trial did not stop at this second look and the investigator moves to the
final look at t3 � 1. Then the cumulative alpha spent at the final look is α � 0.025.
One can then find c3(α, t3) by solving the equation:

Pr[{(Z(t1) > 3.9285725} ∪ {(Z(t2) > 2.5479} ∪ {(Z(t3) > c3(α, t3)}] � 0.025
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Table 7.2 Examples for the OF-like spending function with α�0.025, 0.0125, K �3, and 1-sided
tests

Look # Information fraction Cumulative α spent Boundaries

α �0.025

1 0.30 0.00004 0.00004

2 0.65 0.00543 0.00542

3 1.00 0.025 0.02331

α �0.0125

1 0.30 0.00001 0.00001

2 0.65 0.00194 0.00194

3 1.00 0.0125 0.01188

Solving this equation gives c3(α, t3) � 1.9897 and α3(α, t3) � 0.023312. There-
fore, one can reject H0 at the final look if at this look the p-value p3 < 0.023312 or
Z(t3) > 1.9897.

A general recursive equation for finding ck(α, tk) and αk(α, tk)
for a spending function f (α, t) is given by f (α, tk) � f (α, tk−1) +

Pr
[
{⋂k−1

i�1 Z(ti) ≤ ci(α, ti)} ∩ {Z(tk) > ck(α, tk)}
]

for k ≥ 2. There are soft-

ware available that give values of ck(α, tk) and αk(α, tk) for OF-like and other
spending functions, see Zhu et al. (2011) for a review of these software. Table 7.2
shows the results from such a software. We show in Sect. 7.3 that such boundaries
can also be used for testing multiple hypotheses of GS trials.

7.3 Testing of Multiple Hypotheses in GS Trials

Many GS trials are designed for testing multiple endpoint hypotheses, frequently,
for testing two endpoint hypotheses. Two situations generally arise. Consider, for
example, a GS trial for testing two endpoint hypotheses. The first case arises when
after the rejection of one of the two hypotheses at an interim look the trial does
not stop but continues to later looks for testing the other hypothesis. The second
case arises when the two hypotheses are hierarchically ordered, e.g., one is primary
and the other is secondary. The first hypothesis in the hierarchy (i.e., the primary
hypothesis) is allocated first using the full trial α (e.g., α�0.025). If this hypothesis
is rejected at an interim look, then the trial stops because of ethical considerations.
For example, if the first hypothesis is associated with the mortality endpoint and the
second hypothesis with a quality of life measure, then if the trial wins at a look for
the mortality endpoint then the trial would generally discontinue for ethical reasons.
In that case, the second hypothesis (i.e., the secondary hypothesis) is tested at the
same look at which the first hypothesis was rejected. The remainder of this section
considers the first case and Sect. 7.4 considers the second case. In the following,
we first address methods based on the Bonferroni inequality and then move on to
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α-recycling approaches based on the closed testing principle (CTP) of Marcus et al.
(1976), and finally to themore recent graphical approach ofMaurer andBretz (2013).

7.3.1 Methods Based on the Bonferroni Inequality

Consider, for example, a trial which for the demonstration of superiority of a new
treatment to control specifies two null hypotheses: H1 and H2. Rejection of either of
the two hypotheses at a look can establish efficacy of the new treatment. However, if
the trial rejects one of the two hypotheses at an interim look, the trial can continue to
later looks for testing the other hypothesis. For such a trial, the use of the Bonferroni
inequality leads to two approaches for a stronger claim. The first approach splits the
significance level α as α1 + α2 ≤ α for testing H1 at level α1 and H2 at level α2. For
example, it may assign α1 � 0.005 for testing H1 and α2 � 0.02 for testing H2 for
controlling the overall Type I error rate at α � 0.025. Tests for H1 and H2 can then
separately follow in a univariate GS testing framework for the separate control of
the Type I error rates at levels α1 and α2, respectively, using the same or different
spending functions for each. In Sect. 7.3.2, we show that this approach extends to
an α-recycling approach, such that, if one of the multiple hypotheses is rejected at a
look then the boundary value for testing other hypotheses is updated to larger values.

The second approach uses the Bonferroni inequality differently. It specifies
the rejection boundary values as α′

k(tk) > 0 for looks k � 1, . . . ,K such that∑K
k�1 α′

k (tk ) � α. It then applies a conventional multiple hypothesis testing method
at a look for the control of the Type I error rate at the local level α′

k(tk) at that look.
Suppose that K � 2, i.e., the trial is designed with two looks, and α′

1(t1) � 0.005
and α′

2(t2 � 1) � 0.02, for the first and second looks, respectively. One can then
apply, for example, the conventional Hochberg procedure (1988) for testing H1 and
H2 at level 0.005 at the first look, and similarly, can apply the same procedure for
testing these hypotheses at the final look at level 0.02. The methods discussed in this
section for testing two hypotheses generalize to testing more than two hypotheses.

7.3.2 Method Based on the Closed Testing Principle

The closed testing principle ofMarcus et al. (1976) provides a general framework for
constructing powerful closed test procedures (CTPs) for testing individual hypothe-
ses based on tests of intersection hypotheses of different orders. One starts with a
family of individual hypotheses H1, . . . ,Hh and constructs a closed set H̃ of 2h − 1
non-empty intersection hypotheses as follows:

H̃ �
{
HJ �

⋂

j∈J Hj, J ⊆ I � {1, . . . , h}
}
.
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One then performs an α-level test for each hypothesis HJ in H̃ by using, for
example, the weighted Bonferroni test. One then rejects an individual hypothesis Hj

when all HJ for j ∈ J are rejected by their corresponding α-level tests.
For example, when h �2, the closed set H̃ � {H12,H1,H2}. A CTP will reject

the individual hypothesis H1 only when H1 and H12 are both rejected, each by an
α-level test. If one uses, for example, the weighted Bonferroni test for H12, then the
procedure cuts down the extra step of testing H1 after rejecting H12. The weighted
Bonferroni test rejects H12, when pj < wjα for at least one j ∈ {1, 2}, where w1

and w2 are the nonnegative weights assigned to H1 and H2, respectively, such that
w1 + w2 ≤ 1, and pj are the observed p-values associated with Hj for j ∈ {1, 2}.
Suppose that this test rejects H12 for j � 1 on observing p1 < w1α, then H1 is
automatically rejected, as the significance level α for the test ofH1 satisfies α ≥ w1α.
This property in its general form, known as the consonance property, when satisfied
for testing intersection hypotheses in a closed testing procedure, leads to short-cuts
of closed test procedures and allows recycling of the significance level of a rejected
hypothesis to other hypotheses (Hommel et al. 2007). This property basically means
that the rejection of an intersection hypothesis HJ by an α-level test implies the
rejection of at least one individual hypothesis Hj for j ∈ J.

As a numerical example, consider testing the two hypotheses H1 and H2 with
α � 0.025, and suppose that weights assigned to H1 and H2 are w1 � 0.8 and
w2 � 0.2, respectively, so that w1 + w2 � 1. Further, supposed that the associated
observed p-values for the tests ofH1 andH2 were p1 � 0.024 forH1 and p2 � 0.004
for H2. The simple weighted Bonferroni test would reject only H2, as p1 > w1α �
0.020 and p2 < w2α � 0.005. However, the weighted Bonferroni based CTP with
these weights would reject both hypotheses. This CTP, in its initial step, would
reject the intersection hypothesis H12 as pj < wjα for j � 2. Consequently, as the
procedure assigns theweights of one for testing each singleton hypotheses, satisfying
consonance, it would then reject each of the two hypotheses as pj < 1.α � 0.025
for each j ∈ {1, 2}.

In the following, we first visit the GS closed test procedure by Tang and Geller
(1999) for testing multiple hypotheses and show that this procedure leads to α-
recycling procedures by using weighted Bonferroni tests of intersection hypotheses
that satisfy consonance. The Tang and Geller procedure is of historical importance
with respect to using the closed testing procedure for testing multiple hypotheses in
group sequential trials. Although the procedure sounds complicated in its original
form, it can be simplified if the weighted Bonferroni tests, with weights satisfying
the consonance property, are used for testing its intersection hypotheses. However,
selection of such weights can be cumbersome for testing more than three hypotheses.
Section 7.3.3 toward the end illustrates how to find these weights when testing two
primary hypotheses and a secondary hypothesis. In general, the graphical approach
(Sect. 7.3.5) in this regard is easier to use when testing multiple hypotheses.

Consider testing h ≥ 2 endpoint hypotheses in a GS trial designed to compare
a new treatment to control. Consider, as before, the intersection hypotheses HJ for
J ⊆ I � {1, . . . , h}, i.e., the new treatment to control treatment difference δj ≤ 0
for all endpoints j ∈ J ⊆ I. Also, consider that multiple looks for the trial occur at
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different information times t ∈ {t1, t2, . . . , tK } such that t1 ≤ t2 ≤ · · · ≤ tK � 1. Let
ZJ be a test statistic for testing HJ (e.g., by a weighted Bonferroni test) and let ZJ(t)
be the test statistic value of ZJ at a look with information fraction t. Further, let cJ(t)
be the critical value for performing an α-level test of HJ at this look by using ZJ(t).
That is, for each J ⊆ I, the cJ(t) values for different t (at which times repeated tests
occur) satisfy Pr{ZJ(t) > cJ(t) for some t|HJ} ≤ α. Then a closed test procedure for
GS trials as proposed by Tang and Geller (1999) can be stated as follows:

Step 1: Start testing HI as in a univariate case of a GS trial but using the group
sequential boundary values cI(t) for the test statistics ZI(t), where I �
{1, . . . , h}.

Step 2: Suppose that HI is rejected first time at the look with t � t∗. Then, for
rejecting at least one individual hypothesis at this look, apply a CTP to
test HJ with J ⊆ I using ZJ(t∗) and its critical value cJ(t∗). Note that
cJ(t∗) can be different for different HJ’s. In applying this CTP at t � t∗
either (a) none of the individual hypotheses will be rejected, or (b) at
least one individual hypothesis Hj will be rejected for j ∈ I.

Step 3(a): In Step 2, if none of the individual hypotheses are rejected at t � t∗ then
continue to the next look; however, if t∗ � 1 and none of the individual
hypotheses are rejected, the trial will stop without the rejection of any
hypothesis.

Step 3(b): In Step 2, if at least one hypothesis is rejected at t � t∗, then exclude
the indices of the rejected hypotheses from the index set I. With this
updated index set I, continue to the next look and repeat Step 1 and
Step 2. Note that in this process, all previously rejected hypotheses are
assumed rejected at later looks and are removed for further testing.

Step 4: Reiterate the above steps until all hypotheses are rejected or the trial
reaches the final look.

Implementing the Tang and Geller (1999) approach for the general case can be
complicated because of the computational difficulties in finding cJ(t) values for
testing HJ for different J and different looks. However, this approach simplifies on
using univariate tests for HJ that satisfy consonance. Examples, of such tests, are
the max-T or min-p test, and the un-weighted Bonferroni test. Weighted Bonferroni
test which is more useful for clinical trial applications also serves this purpose,
but the weights for the weighted Bonferroni tests need to be pre-selected to satisfy
consonance. This may be difficult when testing more than three hypotheses. An
alternative to thiswhich does not have this issue is the graphical approach addressed in
Sect. 7.3.4. The following, however, addresses theweightedBonferroni test approach
and illustrates its application for testing two hypotheses in a GS trial.

In the weighted Bonferroni test approach, to satisfy consonance for the tests of
HJ for J ⊆ I, one pre-selects weights wj(J) for j ∈ J with

∑
j∈J wj(J) ≤ 1 so that

wj(J∗) ≥ wj(J) for every J∗ ⊆ J. For these cases, standard software developed for
testing a single hypothesis with a spending function approach can still be used for
testing multiple hypotheses. The following is an illustrative example for testing two
hypotheses H1 and H2 in a GS trial.
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In the case of testing twohypotheses, aCTP considers a single intersection hypoth-
esis HJ with J � {1, 2}, written as H12, and two individual hypotheses H1 and H2.
Suppose that for testing H12 one assigns weights w1{1, 2} � 0.8 and w2{1, 2} � 0.2
so that w1{1, 2}α � 0.02 and w2{1, 2}α � 0.005 with the trial α � 0.025. Conso-
nance is satisfied, because after H12 is rejected, the weights for testing each of the
two individual hypotheses in the CTP is one. The following illustrates how one will
test H1 and H2 in a GS trial with such initial weights.

Tests at the First Look
Suppose that the first look for the trial occurs at t � t1 � 0.30, and suppose
that at this look the unadjusted p-values associated with H1 and H2 are p1(t1)
and p2(t1), respectively. The CTP will reject H12 by the weighted Bonferroni
test if either p1(t1) < α1(w1{1, 2}α � 0.02, t1 � 0.30) � α1(0.02, t1 � 0.30) or
p2(t1) < α2(0.005, t1 � 0.30), where these boundary critical values can be obtained
by specifying spending functions f1 and f2. If f1 and f2 are each OF-like, then

α1(0.020, t1 � 0.30) � f1(w1{1, 2}α � 0.02, t1 � 0.30) � 0.00002

α2(0.005, t1 � 0.30) � f2(w2{1, 2}α � 0.005, t1 � 0.30) � 2.977E − 07

Suppose that H12 is not rejected at this look with t1 � 0.30 and the trial continues to
the second look.

Tests at the Second Look
Suppose that the second look occurs at t2 � 0.65. Further, suppose that at this
look the unadjusted p-values associated with H1 and H2 are p1(t2) and p2(t2),
respectively. Consequently, the CTP will reject H12 at this look if either p1(t2) <

α1(0.02, t2 � 0.65) or p2(t2) < α1(0.005, t2 � 0.65). The use of the spending func-
tions f1 and f2 as OF-like for this look gives the boundary values

α1(0.020, t1 � 0.65) � 0.0039 andα2(0.005, t1 � 0.65) � 0.000498.

Section 7.2.4 has addressed how these boundary values are calculated. As indicated
before, computer software is used to calculate such boundary values.

Now, suppose that p2(t2) < 0.000498, then H12 will be rejected leading to the
automatic rejection ofH2 because of the consonance condition being satisfied. There-
fore, as H12 and H2 are rejected at t∗ � t2 � 0.65, the CTP will test the remaining
hypothesis H1 at the same look with (t∗ � t2 � 0.65) with the updated boundary
value of α1(0.025, t2 � 0.65) � 0.00542 by the same OF-like spending function.
Thus, there is a recycling of alpha of 0.005 form the rejected H2 to H1, updating the
alpha of 0.02 to 0.02+0.005�0.025 which is incorporated in the first argument of
α1(0.025, t2 � 0.65). Thus, a CTP with consonance allows recycling of alpha for
GS trials, but here, this recycling updates the boundary values for testing H1 starting
from at t∗ � t2 � 0.65 using a spending function. Suppose that p1(t2) � 0.015
which is greater than 0.00542, then H1 at this second look remains not rejected. The
trial then continues to the final look with t3 � 1 for testing H1.
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Test at the Final Look
The final look occurs with t3 � 1 for testing H1 with the assumption that H2 (which
was rejected at the second look) remain rejected at this look. Therefore, H1 would
be tested at this look at level α1(0.025, t3 � 1) � 0.02331 by the same OF-like
spending function.

7.3.3 Some Key Considerations and Comments

For applications, the spending functions to be used for testing different hypotheses
need to be pre-specified, and for interpreting study findings, it is good practice to use
the same spending functions for testing different hypotheses. It should be noted that
although the total number of looks may not be pre-specified, however, specifying it
may help reducing concerns about unnecessary looks of the data. In addition, in our
previous discussion, including the illustrative example in Sect. 7.3.2, we assumed
that information fractions for the two endpoints are equal at each look. This can be
the case for continuous or binary endpoints; however, this may be not the general
case. That is, if tk(E1) and tk(E2) are information fraction for two endpoints at looks
k � 1, ..,K then it is possible that tk(E1) �� tk(E2) for at least one k. This can occur,
for example, when E1 or E2 are time-to-event endpoints; it may also occur for other
situations. Then the question may arise as how to adopt the above procedure for this
general case.

In this regard, we note that the above procedure can be easily adopted to
address this general case. To illustrate, suppose that in the above example, at
the first look t1(E1) � t1(E2) � 0.30, but at the second look t2(E1) � 0.40
and t2(E2) � 0.65 and assume that H12 is not rejected at the first look; yet, it
can be rejected at the second look if either p1(t2) < α1(0.02, t2(E1) � 0.40) or
p2(t2) < α1(0.005, t2(E2) � 0.65). Now, suppose that at this stage H12 is rejected
by observing that p2(t2) < α1(0.005, t2(E2) � 0.65), leading to the rejection of H2

as before. Therefore, the alpha of 0.005 for the rejected H2 will now be recycled for
testing H1, that is by updating the old boundary value of α1(0.02, t2(E1) � 0.40)
to a new boundary value α1(0.025, t2(E1) � 0.40) at this second look, and to
α1(0.025, t3(E1) � 1) at the final look.

Note that in above after rejecting H2 at the second look, the significance level for
testing for H1 is α1(0.025, t2(E1) � 0.40) which is not equal to α � 0.025. Wrong-
fully, testing H1 at α � 0.025 instead of testing it at level α1(0.025, t2(E1) � 0.40)
after the rejection of H2 can inflate the overall Type I error rate. Also, if the trial
stops at a look after rejecting a hypothesis for ethical reasons, say after the rejection
of H2, then one cannot test a second hypothesis such as H1 at the full significance
level of α � 0.025. Doing this can inflate the overall Type I error rate, except for
the special case when the test statistics for the two hypotheses are independent. We
consider this type of GS trials in Sect. 7.4.

The spending functions used to test each hypothesis needs to satisfy a monotonic-
ity property. That is, the difference function f (λ, tk) − f (λ, tk−1) is monotonically
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non-decreasing in λ for k � 1, . . . ,K . For example, the OF-like α-spending function
satisfies this condition for λ < 0.318 (Maurer and Bretz 2013).

The above weighted Bonferroni-based CTP for testing two hypotheses can be
extended to testing more than two hypotheses if weights assigned for testing inter-
section hypotheses in a CTP are such that consonance property is guaranteed, that
is, weights assigned are such that rejection of an intersection hypothesis in the CTP
leads to the rejection of at least one individual hypothesis in that intersection hypoth-
esis. For example, for testing two primary hypotheses H1 and H2 and a secondary
hypothesis H3 of a trial, the CTP would consider four intersection hypotheses H123,
H12, H13 and H23 and three individual hypotheses.

The following selection of weights for performing Bonferroni-based tests of inter-
section hypotheses in the CTP would then satisfy consonance property. Assign non-
negative weights of w1, w2, and w3 associated with indices (1, 2, and 3) of H123 to
test this hypothesis with w1 + w2 � 1 and w3 � 0; the selection of w3 � 0 indicates
thatH3 is tested only after at least one of the two primary hypotheses is first rejected.
Assign weights of {w1,w2} toH1 andH2, respectively to testH12. Similarly, weights
of {w1 + δ2w2, (1 − δ2)w2} to test H13, and weights of {w2 + δ1w1, (1 − δ1)w1} to
test H23, where 0 ≤ δ1 ≤ 1 and 0 ≤ δ2 ≤ 1. The weights assigned to each of the
individual hypotheses will be one. The selection of these weight and the recycling
parameter δ1 and δ2, for example, can be based on the trial objectives. Once such
weights for performing the weighted Bonferroni tests satisfy consonance, a CTP for
testing the above three hypotheses in a GS trial can be proposed.

GS trials that are not properly conducted have the potential of unblinding the
trial prematurely, and consequently, this may impact the integrity of the trial and
its results. To address this important issue, usually an Independent Data Monitoring
Committees (DMC) along with a charter is setup for GS trials. As our focus for this
chapter is to overview the general multiple testing approaches for group sequential
trials, we do not discuss this issue here. The interested reader may consult relevant
literature in this regard, see, e.g., Ellenberg et al. (2017). The concerns about potential
unblinding for testing single hypothesis over the course of GS trials remain the same
for GS trials with testing multiple hypotheses related to multiple endpoints.

For a GS trial that include testing of multiple hypotheses, a Statistical Analysis
Plan (SAP) that explains in sufficient details the design, the analyses method, and
the DMC charter, is essential for proper interpretation of study findings. Such a SAP
should in general be developed a priori and agreed upon by those involved before
launching the trial.

7.3.4 Graphical Approach

The above weighted Bonferroni-based CTP for testing multiple hypotheses of a
GS trial, though possible, can be challenging in finding appropriate weights that
guarantee consonance when the number of hypotheses tested are more than a few.
The graphical approach of Bretz et al. (2009) which includes a special algorithm for
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(a) Initial Graph for testing H1, H2, and H3

along with their weights
(c) Graph after rejecting H1 in (a), for testing H2

and H3 along with their weights

Fig. 7.1 Graphical representation of testing with two primary hypotheses H1 and H2, and one
secondary hypothesis H3

doing this solves this problem. In this approach, one can graphically visualize the
weighted Bonferroni tests for multiple hypotheses along with an α-propagation rule
bywhich the procedure recycles the significance level of a rejected hypothesis to other
remaining unrejected hypotheses. This graphical approach, originally developed for
testingmultiple hypotheses of non-GS trials, can also be conveniently used for testing
multiple hypotheses of GS trials; see, for example, Maurer and Bretz (2013). The
following explains the key concepts of this approach for testing multiple hypotheses.

In this graphical approach, the h individual hypotheses are represented initially
by a set of h nodes with nonnegative weight of wi at node i(i � 1, . . . , h) such that∑h

i�1 wi ≤ 1. These weights when multiplied by α represent the local significance
levels at those respective nodes. The weight gij (with 0 ≤ gij ≤ 1) associated with a
directed edge connecting the node i to the node j indicates the fraction of the local
significance level at the tail node i that is added to the significance level at the terminal
node j, if the hypothesis at the tail node i is rejected. For convenience, we will call
these directed edges as “arrows” running from one node to the other, and the weight
gij as the “transition weight” on the arrow running from node i to node j.

Figure 7.1 illustrates key concepts of this graphical approach for testing two
primary hypotheses H1 and H2 and a secondary hypothesis H3 of a trial. In this
figure, the initial Graph (a) shows three nodes. Two nodes represent H1 and H2 with
weights w1 � 3/4 and w2 � (1 − w1) � 1/4, respectively. The node forH3 shows a
weight w3 � 0, which can increase only after the rejection of a primary hypothesis.
The nonnegative number g12 � 1/4 is the transition weight on the arrow going from
H1 to H2; similarly, g21 � 1/4 is the transition weight on the arrow going from H2

to H1. The transition weight on the arrow going from H1 to H3 is 3/4 and that on
the arrow going from H2 to H3 is also 3/4 satisfying the condition that sum of the
transition weights of all outgoing arrows from a single node must be bounded above
by 1.
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Graph (b) of Fig. 7.1 represents the resulting graph after H2 is rejected in Graph
(a). The rejection of this hypothesis frees its weight w2 which is then recycled to H1

andH3 according to an α-propagation rule addressed in the following for the general
case. This rule also calculates new transition weights going from one node to the
other for the new graph. Graph (c) of Fig. 7.1 similarly shows the resulting graph if
H1 is rejected in Graph (a). The following shows the general graphical procedure for
testing h individual hypotheses H1, . . . ,Hh for a non-GS trial given their individual
unadjusted p-values pj for j � 1, . . . , h.

(0) Set I � {1, . . . , h}. The set of weights {wj(I), j ∈ I} are such that 0 ≤ wj(I) ≤ 1
with the sum

∑
j∈I wj(I) ≤ 1.

(i) Select a j ∈ I such that pj < {wj(I)}α and reject Hj; otherwise stop.
(ii) Update the graph as:

(a) I � I\{j}, i.e., the index set I without the index j
(b)

wl(I) � wl(I) + wj(I)gjl, l ∈ I; 0, otherwise (7.3.1)
(c)

glk � glk + gljgjk
1 − gljgjl

, where (l, k) ∈ I, l �� k and gljgjl < 1; 0, otherwise

(7.3.2)

(iii) If |I| ≥ 1 then go to step (i); otherwise stop

After rejecting Hj, the Eq. (7.3.1) for a new graph updates the weight for Hl to a
newweight which is its old weightwl(I) plus the weightwj(I) atHj multiplied by the
transition weight gjl on the arrow connectingHj toHl . Also, the transition weights glk
for the new graph are obtained by the algorithm (7.3.2) whose numerator glk + gljgjk
is the transition weight on the arrow connecting Hl to Hk plus the product of the
transition weights on arrows going fromHl toHk through the rejected hypothesisHj.
The term gljgjl in (7.3.2) is the product of transition weights on arrows connectingHl

to Hj and then returning to Hl . The approach produces weights wl(I) which satisfy
consonance.

For explaining this procedure, consider a trial,which for demonstrating superiority
of a new treatment A+Standard of Care (SOC) to placebo +SOC, plans to test two
primary hypotheses H1 and H2 and two secondary hypotheses H3 and H4, where the
pairs (H1, H3) and (H2, H4) being considered as parent–descendant (Maurer et al.
2011). That is, H3 is tested only when H1 is rejected, and similarly, H4 is tested only
when H2 is rejected. Suppose that the trial specifies a graphical test strategy as in
Fig. 7.2 for testing these four hypotheses. The initial Graph (a) in Fig. 7.2 gives a
smaller weight of w1 � 1/5 to H1 as compared to a weight of w2 � 4/5 to H2 based
on the prior experience that the trial may win easily for H1 at the significance level
of w1α � 0.005, but the trial may require a larger significance level of w2α � 0.02
for winning for H2. As stated before, we assume that all tests in the procedure are
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(e) Graph for tes ng H1 and H3 along with 
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(f) Graph for tes ng H3 and H4 along with their 
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Fig. 7.2 Graphical test procedure for two primary hypotheses H1 and H2, and two secondary
hypotheses H3 and H4, where pairs (H1, H3) and (H2, H4) are parent–descendant

1-sided and the control of the overall Type I error rate is at level α � 0.025. The
Graph (a) assigns zero-weights to the two secondary hypotheses indicating that we
do not want to reject a secondary hypothesis until its parent primary hypothesis is
first rejected.

In Graph (a) of Fig. 7.2, g12 � g21 � g13 � g24 � 1/2 and g32 � g41 � 1. These
settings mean that if H1 was rejected in Graph (a) then a fraction 1/2 of w1 would
be recycled to H2 so that the weight at H2 would become w2 + (1/2)w1 � 9/10 and
the remainder (1/2)w1 � 1/10 would go to H3; the weight at H4 would remain 0
because there is no arrow going from H1 to H4 meaning that g14 � 0. The rejection
of H1 in Graph (a) would lead to Graph (b) with new transition weights obtained
from (7.3.2) as: g23 � 1/3, g24 � 2/3, g42 � g43 � 1/2 and g32 � 1. Similarly, if
H2 was initially rejected in Graph (a), then a fraction 1/2 of w2 would be recycled to
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H1 so that the weight at H1 would become w1 + (1/2)w2 � 3/5 and the remainder
(1/2)w2 � 2/5 would go to H4; the weight at H3 would remain 0 as there is no
arrow going from H2 to H3 giving g23 � 0. The rejection of H2 in Graph (a) would
lead to Graph (c) with transition weights obtained from (7.3.2) as: g13 � 2/3, g14 �
1/3, g34 � g31 � 1/2 and g41 � 1.

The value g32 � 1 in this Graph (b) indicates that if H3 was rejected after the
rejection of H1 then the entire weight of (1/2)w1 � 1/10 at H3 would be recycled
to H2, so that the total weight at H2 after the rejection of both H1 and H3 would be
(w2+(1/2)w1 � 9/10)+((1/2)w1 � 1/10) � 1; the weight atH4 would remain zero
as in this graph there is no arrow going from H3 to H4. Therefore, after the rejection
of both H1 and H3, the Graph (b) would reduce to Graph (d). Similarly, g41 � 1 in
Graph (c) indicates that if H4 was rejected after the rejection of H2 then the entire
weight (1/2)w2 � 2/5 at H4 would be recycled to H1, so that the total weight at H1

after the rejection of both H2 and H4 would be (w1 + (1/2)w2)) + ((1/2)w2) � 1;
the weight at H3 would remain zero. Therefore, after the rejection of both H2 and
H4, the Graph (c) would reduce to Graph (e). However, if either H2 was rejected in
Graph (b) or H1 was rejected in Graph (c), then these graphs would reduce to Graph
(f).

7.3.5 Illustrative Example of the Graphical Approach for GS
Trials

The above graphical approach originally developed for testing multiple hypotheses
of non-GS trials also applies to GS trials. Recycling of alpha of a rejected hypothesis
to other hypotheses occurs similarly, but boundary values for testing the unrejected
hypotheses are calculated using spending functions. For example, consider the above
trial for testing two primary hypotheses H1 and H2 and two secondary hypotheses
H3 and H4, where pairs (H1, H3) and (H2, H4) are parent–descendant.

In the beginning, we start with Graph (a) of Fig. 7.2 with four hypothe-
ses

{
Hj, j ∈ I1 � {1, 2, 3, 4}} identified by four nodes and the associated weights

{wj(I1), j ∈ I1} � {1/5, 4/5, 0, 0}. These weights give the starting overall signifi-
cance levels

{
wj(I1)α, j ∈ I1;α � 0.025

} � {0.005, 0.02, 0, 0}, and the j-th one for
testing of Hj by using its spending function fj for determining its boundary values
for testing. That is, in the beginning, with Graph (a), we test each Hj (j ∈ I1) in the
univariate GS testing framework for the control of the overall Type I error rate at
level wj(I1)α so that the total overall Type I error rate control for the trial is at level∑

j∈I1 wj(I1)α � α.

For this example, we assume that fj’s are all equal to f (γ, t) � 2{1 −
Φ(z1−γ /2/

√
t)}, which is OF-like, and γ is the overall significance level for the

repeated testing of a hypothesis. The weights w3(I1) � w4(I1) � 0 indicate that H3

andH4 are not tested in Graph (a); if they were tested, they would remain unrejected.
The following describes how the procedure performs tests of these hypotheses at
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Table 7.3 Tests information at the first look at t1 � 1/2 according to Graph (a)

Overall trial α 0.025

j ∈ I1 1 2 3 4

wj(I1) 1/5 4/5 0 0

wj(I1)α 0.005 0.02 0 0

αj
(
wj(I1)α, t1

)
0.00007 0.0010 0 0

Note As the p-values {pj(t1), j ∈ I1} exceed their corresponding boundary values, there is no
rejection of a hypothesis at this look

different looks and how it recycles the unused alpha of a rejected hypothesis to other
unrejected hypotheses.

Tests at the First Interim Look:
Suppose that at the first look, the information fraction is t1 � 1/2. For this exam-
ple, we assume that the information fraction at a look remains the same for dif-
ferent hypotheses. If this is not the case, the procedure will proceed as discussed
in Sect. 7.3.3. The univariate group sequential procedure for testing a hypothesis
in a single-hypothesis trial calculates the boundary values for interim looks given
the overall significance level α. However, in our case, there are more than one sig-
nificance levels as

{
wj(I)α, j ∈ I1;α � 0.025

} � {0.005, 0.02, 0, 0} assigned to
{Hj, j ∈ I1}. These overall significance levels, and the use of the OF-like spend-
ing function at t1 � 0.5, then give the boundary values {αj

(
wj(I1)α, t1

)
, j ∈ I1} �

{0.00007, 0.0010, 0, 0} for testing {Hj, j ∈ I1} at the first look. Note that the sub-
script of t identifies the look number and the subscript j for the hypothesis Hj being
tested. Also note that the boundary value of αj

(
wj(I1)α, tk

)
is a function of the overall

significance level wj(I1)α assigned to Hj and the information fraction tk at look k;
here k � 1.

Suppose that at the first look, the unadjusted p-values {pj(t1), j ∈ I1} associate
with {Hj, j ∈ I1} are such that pj(t1) ≥ αj

(
wj(I1)α, t1

)
for j ∈ I1; consequently, the

trial will continue to the second look without rejection of a hypothesis at the first
look. For recording purposes, one can summarize the above testing information at
the first look as in Table 7.3.

Tests at the Second Look:
Suppose that the trial conducts the second look when the information fraction

is t2 � 3/4. Since none of the hypotheses was rejected at the first look, we begin
with Graph (a) at the second look, by using the same overall significance levels of
{wj(I1)α, j ∈ I1}) � {0.005, 0.02, 0, 0} that were used at the first look. However,
as t2 � 3/4 at the second look, the use OF-like spending function leads to the
boundary values of {αj

(
wj(I1)α, t2

)
, j ∈ I1} � {0.00117, 0.0069, 0, 0} for testingHj

for j ∈ I1. The boundary values for testing H3 and H4 remain zero, as there is no
rejection of a primary hypothesis so far. Suppose that at this second look, the observed
p-values associated with for H1, H3, H2, and H4 are p1(t2) � 0.001, p2(t2) � 0.020,
p3(t2) � 0.040, and p4(t2) � 0.091, respectively. These results lead to the rejection
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Table 7.4 a Tests information at the second look at t2 � 3/4 according to Graph (a) after no
rejection at the first look. b Tests information at the second look at t2 � 3/4 according to Graph
(b) after the rejection of H1 at this look

Overall trial α 0.025 (Table 7.4a)

j ∈ I1 1 2 3 4

wj(I1) 1/5 4/5 0 0

wj(I1)α 0.005 0.02 0 0

αj
(
wj(I1)α, t2

)
0.00117 0.0069 0 0

p-values: pj(t2) 0.001 0.020 0.040 0.091

Overall trial α 0.025 (Table 7.4b)

j ∈ I2 – 2 3 4

wj(I2) – 9/10 1/10 0

wj(I2)α – 0.0225 0.00255 0

αj
(
wj(I2)α, t2

)
– 0.00802 0.00047 0

p-values: pj(t2) 0.001 0.020 0.040 0.091

Note H1 is rejected as p1(t2) � 0.001 is less than its boundary value of 0.00117 (Table 7.4a)
Note As p2(t2) � 0.020 > 0.00802 and p3(t2) � 0.040 > 0.00047, there is no additional rejection
at the second look (Table 7.4b)

ofH1 at the second look as p1(t2) � 0.001 is less than its boundary value of 0.00117;
see Table 7.4a.

The above rejection of H1 at the second look then frees its overall significance
level of w1(I1)α) � 0.005 as unused alpha which is recycled to the remain-
ing three hypotheses for their tests according to Graph (b). This revised graph,
constructed after the rejection of H1, allows retesting of the remaining hypothe-
ses {Hj, j ∈ I2 � {2, 3, 4}} at their corresponding overall significance levels of{
wj(I2)α, j ∈ I2

} � {−, (9/10)α, (1/10)α, (0)α} � {−, 0.0225, 0.00255, 0}. Note
that the overall significance levels for testing H2, H3 are now increased creating
the possibility of additional rejections of hypotheses at the second look according
to Graph (b). The use OF-like spending function with these updated overall signifi-
cance levels and t2 � 3/4, then produces the boundary values of {αj

(
wj(I2)α, t2

)
, j ∈

I2} � {−, 0.00802, 0.00047, 0} for testingHj for j ∈ I2; see Table 7.4b. However, in
this table, as p2(t2) � 0.020 > 0.00802 and p3(t2) � 0.040 > 0.00047, there is no
additional rejections at the second look. Therefore, the trial moves to the next look
which is the final look.

Tests at the Final Look:
After the rejection ofH1 at the second look, the tests for the remaining three hypothe-
ses {Hj, j ∈ I2} at the final look start with the same Graph (b) and the same
overall significance levels of

{
wj(I2)α, j ∈ I2

} � {−, (9/10)α, (1/10)α, (0)α} �
{−, 0.0225, 0.00255, 0} for testing {Hj, j ∈ I2 � {2, 3, 4}}. However, as t3 � 1 at
this look, the use of the same OF-like spending function produces the boundary val-
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Table 7.5 a Tests information at the final look at t3 � 1 according to Graph (b) after the rejection
of H1 at the second look. b Tests information at the final look at t3 � 1 according to Graph (f) after
the rejection of H1 at the second look and the rejection of H2 at the final look

Overall trial α 0.025 (Table 7.5a)

j ∈ I2 – 2 3 4

wj(I2) – 9/10 1/10 0

wj(I2)α – 0.0225 0.00255 0

αj
(
wj(I2)α, t3

)
– 0.01988 0.00234 0

p-values: pj(t3) – 0.012 0.008 0.041

Overall trial α 0.025 (Table 7.5b)

j ∈ I2 – 2 3 4

wj(I2) – – 2/5 3/5

wj(I2)α – – 0.010 0.015

αj
(
wj(I2)α, t3

)
– – 0.00907 0.013440

p-values: pj(t3) – 0.012 0.008 0.041

Note As p2(t3) � 0.0120 < 0.01988 and p3(t2) � 0.008 > 0.00234, there is a rejection of H2 at
this look (Table 7.5a)
Note As p3(t2) � 0.008 < 0.00907, H3 is also rejected at this look (Table 7.5b)

ues of {αj
(
wj(I2)α, t3

)
, j ∈ I2} � {−, 0.01988, 0.00234, 0} for testing of {Hj, j ∈ I2}

at this look. Suppose that at this final look, the observed p-values associated with for
H3,H2, andH4 are p2(t3) � 0.012, p3(t3) � 0.008, and p4(t3) � 0.041, respectively.
These results then lead to the rejection of H2 at the final look as its p2(t2) � 0.012
is less than its corresponding boundary value of 0.01988; see Table 7.5a.

Now, as H1 was rejected at the second look and as H2 is rejected at the final
look, the tests of hypotheses H3 and H4 at the final look will be at the increased
overall significance levels of {wj(I3)α, j ∈ I3 � {3, 4}} � {(2/5)α, (3/5)α} �
{0.010, 0.015} according toGraph (f). These with theOF-like spending function give
the boundary values of {–, –, 0.00907, 0.01344} for testing {Hj, j ∈ I3}, rejecting
also H3 in this final look, as p3(t2) � 0.008 is less than 0.00907; see Table 7.5b.
Consequently, the remaining H4 can be tested at this look the at the full overall
significance level of α�0.025 which gives the boundary value of 0.0220 for its
testing. Therefore, as p4(t2) � 0.041 > 0.0220 for H4, the trial stops without the
rejection of this hypothesis.
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7.4 Testing a Secondary Hypothesis When the Trial Stops
After the Rejection of a Primary Hypothesis

Consider, for example, a trial with two looks for testing a primary hypothesis H1

and a secondary hypothesis H2 with one interim look and a final look at information
fractions t1 and t2 � 1(0 < t1 < t2), respectively. The trial, if it rejects H1 at the
interim look, stops at that look for ethical reasons. This will in general be the case
when H1 is associated with an endpoint such as mortality. Therefore, H2 must be
tested at the same interim look when H1 is rejected, and this test for H2 must occur
after the rejection of H1.

A question often arises: Can the test of H2 at the interim look, after the rejection
of H1 at that look, be at the full significance level α (e.g., α � 0.025)? This ques-
tion may arise based on the considerations that H2 is not tested unless H1 is first
rejected and there is no repeated testing of H2 after the rejection of H1. Tamhane
et al. (2010) (also Xi and Tamhane 2015) showed that the answer of this question
is affirmative, only for the special case when the test statistics for testing H1 and
H2 are independent. However, this can inflate the overall Type I error rate if the test
statistics are correlated. They show that with certain distributional assumptions of
the test statistics, the exact adjusted significance level for testing H2 can be found
if this correlation is known. However, if this correlation is unknown, then an upper
bound of the adjusted significance levels can be set that covers all correlations. The
following revisits this work in some detail because of its importance for clinical trial
applications.

We assume that the trial is designed to demonstrate superiority of a new treatment
to control such that Hi : δi ≤ 0(i � 1, 2), where δ is the treatment difference param-
eter. Also, X and Y are the test statistics for testing H1 and H2, respectively, which
become (X (tk),Y (tk)) at information times tk(k � 1, 2). Also, following the results
of Sect. 7.2, we assume that each pair (X (t1),X (t2)) and (Y (t1),Y (t2)) follows a
standard bivariate normal distribution with the same correlation of

√
t1. Further, we

assume that each pair (X (t1),Y (t1)) and (X (t2),Y (t2)) follows a standard bivariate
normal distribution with correlation coefficient of ρ ≥ 0. Furthermore, we assume
that (c1, c2) and (d1, d2) are boundary values for testing H1 and H2, respectively, so
that d1 is used only when H1 is rejected at the first look; similarly, d2 is used only
when H1 being retained at the first look is rejected at the final look. The test strategy
for this 2-stage design can then be stated as follows:
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Step 1: 

 If Go to Step 2

 If Reject and test 

If Reject ; else, retain it

(In either case terminate the trial)

Step 2: 

 If Terminate the trial without any rejection

 If Reject and test 

If Reject ; else, retain it.

Determining the Boundary Values of the Procedure
Tests for H1 and H2 for the above 2-stage design can be carried out by the method
based on the closed testing for GS trials as addressed in Sect. 7.3.2. The intersection
hypothesis H12 would be tested by the weighted Bonferroni tests with weights of
w1 � 1 and w2 � 0 associated with the tests of H1 and H2, respectively; w2 � 0
for H2 implies that this weight can increase only after H1 is rejected. Therefore, for
this design, the rejection of H1 at level α implies the rejection of H12 at level α.
Consequently, H2 can be tested at the full significance level α. But as the trial is a
GS trial with one interim look, the boundary values c1 and c2 for testing H1 can then
be found from the following two equations:

Pr{X (t1) > c1|H1} � f1(α, t1(X ))

and

f1(α, t1(X )) + Pr{X (t1) ≤ c1 ∩ X (t2) > c2|H1} � f1(α, t2(X ) � 1),

where f1(α, t) is the spending function for testing H1, and t1(X ) and t2(X ) are the
information fractions for testing H1 at the first and final looks, respectively. For
example,when f1(α, t) isOF-like,α�0.025, and t1(X ) � 0.5, then c1 � 2.95901 and
c2 � 1.96869 on the normal z-scale which translates to α1(0.025, t1(X ) � 0.5) �
0.00153 and α2(0.025, t2(X ) � 1) � 0.02449 on the p-value scale.

Since the significance level α for the test of H1 after its rejection recycles to test
H2, the boundary values (d1, d2) for H2 need to be calculated also by a GS method
but at the same level α. Reason for this is that, though H2 is tested after the rejection
of H1, the rejection of H2, similar to that for H1, can occur either at the first look
or at the final look. Thus, if one uses the Pocock (1977) method for calculating the
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boundary values for testing H2, then at α�0.025, t1(Y ) � 0.5 and t2(Y ) � 1, the
value d � d1 � d2 � 2.17828 (on the z-scale) which is 0.01469 on the p-value scale.
However, the test statisticsX andY inmany applicationswill be positively correlated.
Therefore, if this correlation is ρ, and remains the same for the two looks, then it is
natural to ask a key question: Is it possible to take advantage of this correlation and
find d∗ ≤ d while maintaining the control of the overall Type I error rate at level α�
0.025?

The following shows that this is possible. But the extent of the gain depends on
the value of ρ. Larger is the value of ρ on the interval 0 ≤ ρ ≤ 1, lesser is the gain,
and as ρ approaches one, the value of d∗ approaches d determined by the Pocock
(1977) method.

Determining the Value of d∗
Testing ofH1 andH2 gives rise to three null hypotheses configurationsH12 � H1∩H2,
H1 ∩ K2, and K1 ∩ H2, where K1 and K2 are alternatives to H1 and H2, respectively.
The overall Type I error rate for testing H1 and H2 under the first two configurations
is ≤α. That is, tests for H1 control this error rate at level α regardless of whether H2

is true or false. Therefore, we need to find zy � d∗ by solving for zy in the following
equation under K1 ∩ H2.

Pr{X (t1) > c1 ∩ Y (t1) > zy} + Pr{X (t1) ≤ c1 ∩ X (t2) > c2 ∩ Y (t2) > zy} � α.

(7.4.1)

Now, Cov {X (t1),X (t2)} � √
t1, Cov {X (t1),Y (t2)} � √

t1 ρ, and
Cov{X (t1),Y (t1)} � Cov{X (t2),Y (t2)} � ρ. Also, E{X (t1)} � θ

√
t1, E{X (t2)} �

θ , and E{Y (ti)} � 0 for i � 1, 2, because of K1 ∩H2 and θ being the drift parameter
for X. Further, one can show that conditional on X (t2) � x(t2), the test statistics
X (t1) and Y (t2) are independently normally distributed as:

X (t1) is N
{
x(t2)

√
t1, 1 − t1

}
and Y (t2) is N

{
(x(t2) − θ)ρ, 1 − ρ2

}

Therefore, the Eq. (7.4.1) for finding zy � d∗ can be written as:

α � 1 − Φ
(
c1 − θ

√
t1

) − Φ
(
zy

)
+ Φ12

(
c1 − θ

√
t1, zy; ρ

)

+

∞∫

c1−θ

�

(
c1 − θ

√
t1 − u

√
t1√

1 − t1

)
�

(
−zy − uρ
√
1 − ρ2

)

φ(u)du, (7.4.2)

where� andφ are the density and the cumulative distribution functions of theN(0,1)
random variable, and Φ12 is the cumulative distribution function of the standard
bivariate normal distribution with correlation coefficient of ρ.

Therefore, specifying values of ρ, t1, c1, and c2, one can construct a graph zy �
f (θ) over the interval θ>0 that satisfy Eq. (7.4.2). Figure 7.3 shows such graphs
for different values of ρ when α�0.025 (1-sided), t1 � 0.5, and c1 � 2.95901 and
c2 � 1.96869 on using the OF-like α-spending function. Constructing such a graph
for a given ρ then gives d∗ � zy where the maximum occurs for that ρ. Such a
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Fig. 7.3 Graph of zy � f (θ) over the interval θ>0 satisfying Eq. (7.4.2). In this graph, theta�θ

and z � zy . The horizontal dashed line in the graph represents the Pocock boundary

selection of d∗ assures that the right side of (7.4.2) is≤α for all θ>0. Table 7.6, for
the above values of α, t1, c1, and c2, gives d∗ values and the corresponding αd* values
on the p-value scale for values of ρ shown in column 1 of this table. This table also
includes values of θ∗ where the d∗ values occur. Results of this table show that if the
test statistics for testingH1 andH2 are uncorrelated, then the test forH2 at a look after
the rejection ofH1 at that look can be at the full significance level α. However, if these
test statistics are correlated, then this significance level for testing H2 is correlation
dependent. For positive correlations, this significance level for testing decreases with
increasing correlation value and approaches to a value by the Pocock (1977) method.

7.5 Concluding Remarks

Confirmatory clinical trials have been gold standards for establishing efficacy of
new treatments. However, such trials when designed with a single primary endpoint
do not provide sufficient information when one must assess the effect of the new
treatment on different but important multiple characteristics of the disease. For these
situations, trials includemultiple endpoints related to these disease characteristics and
a statistical plan for testing multiple hypotheses on these endpoints for establishing
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Table 7.6 Values of d* for the 2-stage design for different correlations when α�0.025 (1-sided),
t1 � 0.5, and c1 � 2.95901 and c2 � 1.96869 on using the OF-like α-spending function

Correlation
ρ

d*
(Z-scale)

αd*
(p-value scale)

θ � θ∗

0.0 1.95996 0.02500 θ∗ � all θ > 6.5

0.1 1.96958 0.02444 4.54

0.2 1.98063 0.02382 4.12

0.3 1.99160 0.02321 4.00

0.4 2.00497 0.02248 3.43

0.5 2.01872 0.02176 3.11

0.6 2.03407 0.02097 2.78√
0.5 2.05314 0.02003 2.45

0.8 2.07326 0.01907 2.15

0.9 2.10262 0.01775 1.79

0.99 2.15450 0.01560 1.31

0.999 2.17026 0.01499 1.20

PK value d �2.17828 αd = 0.01469 –

Conservative α/2�0.0125 –

Note θ � θ∗ is the value of θ where zy is maximum on the graph zy � f (θ) over the interval θ>0
satisfying Eq. (7.4.2)

efficacy findings of new treatments. However, testing multiple hypotheses in a trial
can raise multiplicity issues causing inflation of the Type I error rate. Fortunately,
many novel new statistical methods, such as gatekeeping and graphical methods,
are now available in the literature for addressing all types of multiplicity issues of
clinical trials. These novel methods have advanced the role of statistical methods in
designing modern clinical trials with multiple endpoints or multiple objectives.

In clinical trials with serious endpoints, such as death, often a new treatment is
added to an existing therapy for detecting a relatively small but clinically relevant
improvement in the treatment effect beyond what the existing therapy provides.
Designing and conducting such andother trials for serious diseases canbe complex, as
these trials may require thousands of patients to enroll and several years to complete.
Ethical and economic reasons may necessitate that these trials be designed with
interim looks for finding the effect of the treatment at an earlier timepoint allowing the
possibility of stopping the trial early when it becomes clear that the study treatment
has the desired efficacy or it is futile to continue the trial further. Such trials that allow
analyses of the accumulated data at interim looks for the possibility of stopping the
trial early for efficacy or futility reasons are commonly known as group sequential
trials.

Obviously, interim analyses of the data in a group sequential trial amounts to
repeated testing of one or more hypotheses and would result in Type I error rate
inflation, so multiplicity adjustment would be required for drawing valid inference.
As mentioned in this chapter, several approaches have been cited in the literature for
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addressing the control of Type I error rate for repeated tests of a single hypothesis
related to a single primary endpoint of the trial. However, approaches for addressing
the multiplicity issues for testing multiple hypotheses related to multiple endpoints
of group sequential trials are less frequent in the literature.

This chapter, in addition to providing a brief review of procedures and citing key
references thereof for the repeated testing procedures of a single endpoint hypothesis
in groups sequential trials, considers procedures for handling multiplicity issues
for repeated testing of multiple endpoint hypotheses of trials. In this regard, we
distinguish two cases of multiple endpoints which guide the approach for handling
the multiplicity issue. The first case arises when after a hypothesis is rejected at an
interim look, the trial can continue to test other hypotheses at subsequent looks for
additional claims. A testing approach for this is to use the Bonferroni inequality
which requires splitting the significance level either among the endpoints or among
the different looks. This approach is now rarely used because of the low power of
the tests.

A better approach (discussed in Sect. 7.3.2) is to consider the use of the closed
testing with the weighted Bonferroni tests of the intersection hypotheses, when the
weights satisfy the consonance property. This approach allows recycling of the sig-
nificance level of a rejected hypothesis to the other hypotheses, thus increasing the
power of the test procedure. However, as discussed, the recycling of the significance
level from a rejected hypothesis to other hypotheses occurs through an α-spending
function and is not simple as with non-group sequential trials.

The closed testing-based approach can be manageable when testing 2–3 hypothe-
ses, but it may be difficult to set up for testing more than three hypotheses, for exam-
ple, when testing two primary and two secondary hypotheses in a trial, as selecting
weights for the weighted Bonferroni tests that satisfy the consonance property can be
complicated. For these advanced cases, a graphical approach is recommended which
is easier to plan, to use, and to communicate to non-statisticians. This chapter illus-
trates the application of these two approaches through illustrative examples, showing
details of the derivations of the significance levels.

The second case arises (discussed in Sect. 7.4), for example, for a group sequential
trial designed for testing a primary and a secondary endpoint hypotheses, and the trial
stops at an interim look for ethical reasons when the primary hypothesis is rejected
at that look in favor of the study treatment. The issue then arises as to what would
be the significance level for testing the secondary hypothesis at that look, given that
that the secondary hypothesis is tested only after the primary one is rejected first.
This issue has been investigated in the literature in detail, but we have revisited it
for increasing its awareness, as group sequential trials are frequently designed with
a single primary hypothesis and multiple secondary hypotheses. A natural way to
address this problem is to use the graphical procedure and recycle the significance
level of the rejected primary hypothesis to secondary hypotheses using the Pocock-
like α-spending function.

Glimm et al. (2010) illustrated that using the Pocock-like group sequential test to
the secondary hypotheses has a power advantage over the O’Brien-Fleming bound-
ary. Other approaches that consider correlation information between the test statistics
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can also be used for simple cases, for example, for the case of testing a single primary
and a single secondary hypothesis.

Power considerations in designing GS trials that tests multiple hypotheses are also
important. However, this topic is beyond the scope of this paper. The power issue
would generally be like those for testing multiple hypotheses in a non-GS trial.
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