
Chapter 1
Targeted Learning of Optimal
Individualized Treatment Rules Under
Cost Constraints

Boriska Toth and Mark van der Laan

1.1 Introduction

We consider a general resource-allocation problem, namely, to maximize a mean
outcome given a cost constraint, through the choice of a treatment rule that is a
function of an arbitrary fixed subset of an individual’s covariates. In pharmaceutical
applications, we typically think of maximizing a clinical outcome given a monetary
cost constraint, through the allocation of medication to patients, although our model
is much more general. We focus on the setting where unmeasured confounding is
a possibility, but a valid instrumental variable is available. Thus, our setup allows
for consistent estimation of the optimal treatment rule and causal effects in a range
of non-randomized studies, including post-market and other observational studies,
as well as studies involving imperfect randomization due to non-adherence. The
goal is both to: (1) find an optimal intervention d(V ) for maximizing the mean
counterfactual outcome, where V is an arbitrary fixed subset of baseline covariates
W , and (2) estimate the mean counterfactual outcome under this rule d(V ). Wemake
no restrictions on the type of data; however, the case of a continuous or categorical
instrument or treatment variable is discussed in Toth (2016). To our knowledge, this
work is the first to estimate the effect of an optimal individualized treatment regime,
under a non-unit cost constraint, in the instrumental variables setting.

Utilizing instrumental variables. A classic solution for obtaining a consistent esti-
mate of a causal effect under unmeasured confounding is to use an instrumental
variable, assuming one exists. Informally, an instrumental variable, or instrument, is
a variable Z that affects the outcome Y only through its effect on the treatment A, and
the residual (error) term of the instrument is uncorrelatedwith the residual term of the
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outcome (Imbens and Angrist 1994; Angrist et al. 1996; Angrist and Krueger 1991).
Thus, the instrument produces exogenous variation in the treatment. Instrumental
variables have been used widely in biostatistics and pharmaceutics. (See Brookhart
et al. 2010 for a large collection of references.) In these settings, the instrumental
variable is usually some attribute that is related to the health care a patient receives,
but is not at the level of individual patients. For example, Brookhart and Schneeweiss
(2007) exploit variation in physician preference for prescribing NSAID medications
to infer the effect of these medications on gastrointestinal bleeding.

In this work, we solve two versions of the optimal individualized treatment prob-
lem: (1) when the intervention is on the treatment variable A (Sect. 1.7), and (2) when
the intervention is actually on the instrument Z (Sect. 1.6). For example, consider a
study in which HIV-positive patients were encouraged to undergo antiretroviral ther-
apy (ART) with a randomized (or quasi-randomized) encouragement design, but a
number of factors caused non-adherence among some patients (Chesney 2006). The
methods in this chapter allow one to infer what would be the optimal assignment
of patients to ART treatment, based on patient characteristics, to achieve a desirable
outcome (i.e., suppressed viral load, 5-year survival), given a limited budget. One
parameter of interest is the mean outcome under optimal assignment of individu-
als to actually receive ART. This is the problem of finding an optimal treatment
regime. However, in this setting of non-adherence, it might not be possible to inter-
vene directly on the treatment variable. Thus, another parameter of interest is the
mean outcome under the optimal intervention on the instrumental variable. We call
this the problem of finding an optimal intent-to-treat regime, so named because the
instrument is often a randomized assignment to treatment or encouragement mech-
anism. Under our randomization assumption on instrument Z , the optimal intent-
to-treat problem is the same as an optimal treatment problem without unmeasured
confounding, as Z can be seen as a treatment variable that is unconfounded with Y .

Causal effects given arbitrary subgroups of the population.
A key feature of our work is that the optimal intervention d(V ) is a function of a fixed
arbitrary subset V of all baseline covariates W . There is currently great interest and
computational feasibility in designing individualized treatment regimes based on a
patient’s characteristics and biomarkers. The paradigm of precision medicine calls
for incorporating high-dimensional spaces of genetic, environmental, and lifestyle
variables into treatment decisions (Editors: National Research Council Committee
2011). Incorporating many covariates for estimating relevant components of the
data-generating distribution can be helpful in: (1) improving the precision of the
statistical model and (2) ensuring that the instrument induces exogenous variation
given the covariates. However, a physician typically has a smaller set of patient
variables that are available and that he/she considers reliable predictors. Thus, being
able to calculate an optimal treatment (or intent-to-treat) regime as a function of an
arbitrary subset of baseline covariates is of great use.

The targeted minimum loss-based framework.
Our estimators use targeted minimum loss-based estimation (TMLE), which is
a methodology for semiparametric estimation that has very favorable theoretical
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properties and can be superior to other estimators in practice (van der Laan and Rubin
2006; van der Laan and Rose 2011). TMLE guarantees asymptotic efficiency when
certain components of the data-generating distribution are consistently estimated.
Thus, under certain conditions, the TMLE estimator is optimal in having the asymp-
totically lowest variance for a consistent estimator in a general semiparametricmodel,
thereby achieving the semiparametric Cramer–Rao lower bound (Newey 1990). The
TMLEmethod also has a robustness guarantee: It produces consistent estimates even
when the functional form is not known for all relevant components of the parameter of
interest (see Sects. 1.6.3.4 and 1.7.3). Another beneficial property is asymptotic lin-
earity. This ensures that TMLE-based estimates are close to normally distributed for
moderate sample sizes, which makes for accurate coverage of confidence intervals.
Finally, TMLE has the advantage over other semiparametric efficient estimators that
it is a substitution estimator, meaning that the final estimate is made by evaluating the
parameter of interest on the estimates of its relevant components. This property has
been linked to good performance in sparse data in Gruber and van der Laan (2010).

The TMLE methodology uses the following procedure for constructing an esti-
mator:

1. Let P0 denote the true data-generating distribution.Onefirst notes that the param-
eter of interest Ψ (P0) depends on P0 only through certain relevant components
Q0 of the full distribution P0; in other words, Ψ (P0) = Ψ (Q0).1 TMLE targets
these relevant components by only estimating these Q0 and certain nuisance
parameters g02 that are needed for updating the relevant components. An initial
estimate (Q0

n, gn) is formed of the relevant components and nuisance parame-
ters. This is typically done using the Super Learner approach described in van
der Laan et al. (2007), in which the best combination of learning algorithms is
chosen from a library using cross-validation.

2. Then, the relevant components Q0
n are fluctuated, possibly in an iterative process,

in an optimal direction for removing bias efficiently. To do so, one defines a
fluctuation function ε → Q(ε|gn) and a loss function L(. . . ), wherewe fluctuate
Q0

n to Q0
n(ε|gn) by solving for fluctuation ε = argminε

1
n

∑n
i=1 L(Q0

n(ε|gn), gn)
(Oi ). For example, the loss function might be the mean squared error or the
negative log likelihood function.

3. Finally, one evaluates the statistical target parameter on the updated relevant
components Q∗

n and arrives at estimate ψ∗
n = Ψ (Q∗

n).

The key requirement is to choose the fluctuation and loss functions so that, upon
convergence of the components to their final estimate Q∗

n and g∗
n , the efficient influ-

ence curve equation is solved:

Pn D∗(Q∗
n, g

∗
n) = 0

1We are abusing notation here for the sake of convenience by using Ψ (·) to denote the mapping
both from the full distribution to R

d and from the relevant components to Rd .
2The nuisance parameters are those components g0 of the efficient influence curve D∗(Q0, g0) that
Ψ (Q0) does not depend on.
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Above, Pn denotes the empirical distribution (O1, . . . , On), and we use the short-
hand notation Pn f = 1

n

∑n
i=1 f (Oi ) · D∗ denotes the efficient influence curve.

1.2 Prior Work

Luedtke and van der Laan (2016a) is a recent work that gives a TMLE estimator for
the mean outcome under optimal treatment given a cost constraint. That problem is
very similar to the one we solve in Sect. 1.6, with the main difference being that we
allow amore general non-unit cost constraint which results in a different closed-form
solution to the optimal rule. Luedtke and van der Laan (2016b) tackles the issue of
possible non-unique solutions and resulting violations of pathwise differentiability.
The conditions we require in assumptions (A2)–(A4) are adopted from these works.

A large body of work focuses on the case of optimal treatment regimes in the
unconstrained case, such as Robins (2004). More recently, various approaches tackle
the constrained ODT problem: Zhang et al. (2012) describe a solution that assumes
the optimal treatment regime is indexed by a finite-dimensional parameter, while
Chakraborty et al. (2013) describe a bootstrappingmethod for learning ODT regimes
with confidence intervals that shrink at a slower than root-n rate. Chakraborty and
Moodie (2013) give a review of recent work on the constrained case.

1.3 Model and Problem

We consider the problem of estimation and inference under an optimal intervention,
in the context of an instrumental variable model. We take an iid sample of n data
points (W, Z , A,Y ) ∼ M , whereM is a semiparametric model. Z is assumed to be
a valid instrument for identifying the effect of treatment A on outcome Y , when one
has to account for unmeasured confounding. In applications, instrument Z is often
a randomized encouragement mechanism or randomized assignment to treatment
which may or may not be followed. In other cases, Z is not perfectly randomized but
nevertheless promotes or discourages individuals in receiving treatment. V ⊆ W is
an arbitrary fixed subset of the baseline covariates, and FV (W ) gives the mapping
W → V · d(V ) refers to a decision rule as a function of V , where Z = d(V ) is
used to denote the optimal intervention on the instrument Z , in other words, the
optimal assignment to treatment or the optimal intent-to-treat. A = d(V ) refers to
the optimal treatment rule. We are interested in estimating the mean counterfactual
outcome under an optimal rule Z = d(V ) or A = d(V ). Figure 1.1 shows a diagram.

There are no restrictions on the type of data. However, the case of categorical or
continuous Z or A are both dealt with separately in Toth (2016).

Further, we let cA(A,W ) be a cost function that gives the cost associated with
assigning an individual with covariates W to a particular A value. We let cT (Z ,W )

be a cost function that gives the total cost associated with assigning an individual
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Fig. 1.1 Causal diagram

with covariates W to a particular Z value. We can think of cT (Z ,W ) as the sum
of cZ (Z ,W ), a cost incurred directly from setting Z , and EA|W,ZcA(A,W ), an
average cost incurred from the actual treatment A.3 We need to find optimal rule
Z = d(V ) under cost constraint E cT (Z ,W ) ≤ K , for a fixed cost K , and optimal
rule Z = d(V ) under constraint E cA(A,W ) ≤ K .

Notation. Let PW ≡ Pr(W ) and ρ(Z ,W ) ≡ Pr(Z = 1|W ). Also let Π(Z ,W ) ≡
E(A | Z ,W ) be the conditional mean of A given Z ,W , and μ(Z ,W ) ≡ E(Y |
Z ,W ).

We also define μb(V ) � EW |V
[
μ(Z = 1,W ) − μ(Z = 0,W )

]
, which gives the

mean difference in outcome between setting Z = 1 and Z = 0 given V . Similarly,
cb,Z (V ) � EW |V

[
cT (Z = 1,W ) − cT (Z = 0,W )

]
, and cb,A(V ) � EW |V

[
cA(A =

1,W ) − cA(A = 0,W )
]
. We also use notation m(V ) � EW |Vm(W ), where m is

the causal effect function defined in the causal assumptions.
We further assume wlog that intent-to-treat Z = 0 has lower cost for all V :

EW |V cT (0,W ) ≤ EW |V cT (1,W ).4 Let KZ � EWcT (0,W ) be the total cost of not

assigning any individuals to intent-to-treat, and KZ � EWcT (1,W ) be the total cost
of assigning everyone, andwe assume a non-trivial constraint KZ < K < KZ . Define

KA � EWcA(0,W ), and KA similarly.

Causal model.
Using the structural equation framework of (Pearl 2000), we assume that each vari-
able is a function of other variables that affect it and a random term (also called error
term). Let U denote the error terms. Thus, we have

W = fW (UW ), Z = fZ (W,UZ ), A = f A(W, Z ,UA),Y = fY (W, Z , A,UY )

3It is not hard to extend this model to incorporate uncertainty in E(A|W, Z) for calculating
cT (Z ,W ), and thus estimating cT (Z ,W ) from the data, given fixed functions cZ , cA. There is
a correction term that gets added to the efficient influence curve.
4We are only making this assumption for the sake of easing notation. We can forgo this assumption
by introducing notation; i.e., Z = l(V ) is the lower cost intent-to-treat value for a stratum defined
by covariates V .
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where U = (UW ,UZ ,UA,UY ) ∼ PU,0 is an exogenous random variable, and fW ,
fZ , f A, fY may be unspecified or partially specified (for instance, we might know
that the instrument is randomized). UY is possibly confounded with UA.

We use notation that a subscript of 0 denotes the true distribution, in expressions
such as E0, P0.

Assumption (A1) Assumptions ensuring that Z is a valid instrument:

1. Exclusion restriction. Z only affects outcome Y through its effect on treatment
A. Thus, fY (W, Z , A,UY ) = fY (W, A,UY ).

2. Exogeneity of the instrument. E(UY |W, Z) = 0 for any W, Z .
3. Z induces variation in A. Var0[E0(A|Z ,W )|W ] > 0 for all W .

Structural equation for outcome Y :
4. Y = Am(W ) + θ(W ) +UY for continuous Y , and

Pr(Y = 1|W, A, ŨY ) = Am(W ) + θ(W ) + ŨY for binary Y ,
whereUY = (ŨY ,U ′

Y ) for an exogenous r.v.U ′
Y ,

5 andm, θ are unspecified func-
tions.

Assumptions 2 and 4 yield that, whether Y is binary or continuous,

E(Y |W, Z) = m0(W )Π0(W, Z) + θ0(W )

We use Y (A = a) to denote the counterfactual from setting treatment to A =
a. These assumptions guarantee that E(Y (A = a)) equals EWm(W )a + θ(W ) for
identifiable functions m, θ .

It should be noted that we do not require the instrument to be randomized with
respect to treatment (UZ ⊥⊥ UA| W is not necessary).

It is simple to see from the above instrumental variable assumptions that Z is
randomized with respect to Y , so we have:

Corollary 1 (Randomization of Z.) UZ ⊥ UY |W.

This implies E(Y (Z)|W ) = E(Y |W, Z).

Statistical model. The above-stated causal model implies the statistical model M
consisting of all distributions P of O = (W, Z , A,Y ) satisfying EP(Y |W, Z) =
mP(W ) · ΠP(W, Z) + θP(W ). Here, mP and θP are unspecified functions and
ΠP(W, Z) = EP(A|W, Z) such that VarP(ΠP(Z ,W )|W ) > 0 for allW . Note that
the regression equation EP(Y |W, Z) = mP(W ) · ΠP(W, Z) + θP(W ) is always sat-
isfied for some choice of m(W ), θ(W ) when Z is binary. The distribution for the
instrument ρ(W ) may or may not be known, and we generally think of all other
components PW ,Π,m, θ as unspecified.

5The U ′
Y term is an exogenous r.v. whose purpose is for sampling binary Y with mean

f̃Y (W, Z , A, ŨY ).
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1.3.1 Parameter of Interest, with Optimal Intent-to-Treat

Causal parameter of interest.

ΨZ (P0) � Maxd EP0Y (Z = d(V )) s.t. EP0 [cT (Z = d(V ),W )] ≤ K

Statistical target parameter.

ΨZ ,0 = EP0μ0(Z = d0(V ),W ) (1.1)

where d0 is the optimal intent-to-treat rule:
d0 = argmaxd EP0μ0(Z = d(V ),W ) s.t. EP0 [cT (Z = d(V ),W )] ≤ K
We also use the notation ΨZ (P0) = ΨZ (PW,0, μ0).

1.3.2 Parameter of Interest, with Optimal Treatment

Causal parameter of interest.

ΨA(P0) � Maxd E0Y (A = d(V )) s.t. E0[cA(A = d(V ),W )] ≤ K (1.2)

Identifiability. m(W ) is identified as
[
(μ(Z = 1,W ) − μ(Z = 0,W ))/(Π(Z =

1,W ) − Π(Z = 0,W ))
]
. θ(W ) is identified as

[
μ(Z ,W ) − Π(Z ,W ) · m(W )

]
.

Statistical target parameter.

Lemma 1 The causal parameter given in Eq. (1.2) is identified by the statistical
target parameter:

ΨA,0 = EPW,0

[
m0(W )d0(V ) + θ0(W )

]
(1.3)

Note that optimal decision rule d0 is a function ofm0, PW,0. For ΨA,0 we also use the
notation ΨA(PW,0,m0, θ0), or alternately ΨA(PW,0,Π0, μ0), using the above identi-
fiability results.

This lemma follows from our causal assumptions:

ΨA(P0) = EY (A = d0(V )) = EW EUY |W EY (A = d0(V )|W,UY )

The right hand side becomes EW EUW |Y (m(W )d0(V ) + θ(W ) +UY ) for a continuous
Y , and EW EUW |Y (m(W )d0(V ) + θ(W ) + ŨY ) for a binary Y .
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1.4 Closed-Form Solution for Optimal Rule d0 in the Case
of Binary Treatment

The problem of finding the optimal deterministic treatment rule d(V ) is NP-hard
(Karp 1972). However, when allowing possible non-deterministic treatments, there
is a simple closed-form solution for the optimal treatment or the optimal intent-to-
treat. The optimal rule is to treat all strata with the highest marginal gain per marginal
cost, so that the total cost of the policy equals the cost constraint.

This section introduces key quantities and notation used in the rest of the chapter.
We present the solution in detail for the case of intervening on the instrument, when
Z = d0(V ). Recall that wlogwe think of Z = 0 as the ‘baseline’ intent-to-treat (ITT)
value having lower cost. We define a scoring function T (V ) = μb(V )

cb(V )
for ordering

subgroups (given by V ) based on the effect of setting Z = 1 per unit cost. In the
optimal intent-to-treat policy, all groups with the highest T (V ) values deterministi-
cally have Z set to 1, up to cost K and assuming μb ≥ 0. We write TP(V ) to make
explicit the dependence on PW , μ(Z ,W ) from distribution P .

Define a function SP : [−∞,+∞] → R as

SP(x) = EV [I (TP(V ) ≥ x)(cb(V )]

In otherwords, SP(x) gives the expected (additional above baseline) cost of setting
Z = 1 for all subgroups having TP(V ) ≥ x . We use S0(·) to denote SP0 from here
on.

Define cutoff ηP as
ηP = S−1

P (K − KA,P)

The assumptions below in Sect. 1.5 guarantee that S−1
P (K − KA,P) exists and ηP

is well defined. η is set so that there is a total cost K of treating with Z = 1 everyone
having T (V ) ≥ η. Further let:

τP = max{ηP , 0}

Thus, τ gives the cutoff for the scoring function T (V ), so the optimal rule is

dP(V ) = 1 iff TP(V ) ≥ τP

Lemma 2 Assume (A2)–(A4). Then, the optimal decision rule d0 for parameter
ΨZ ,0 as defined in Eq.1.1 is the deterministic solution d0(V ) = 1 iff T0(V ) ≥ τ0,
with T0, τ0 as defined above.

The proof is given in Toth (2016). That work also describes modifications to the
optimal solution for d0 when Z is continuous or categorical.
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1.4.1 Closed-Form Solution for Optimal Treatment Rule
A = d0(V )

The solution given above goes through for the case of intervening on the treatment,
with the two main modifications that: (1) replace intervention variable Z with A, and
(2) replace μb(W ) with m(W ). These latter quantities represent the effect on Y of
applying the intervention versus the baseline treatment (at Z or A, respectively).

1.5 Assumptions for Pathwise Differentiability of ΨZ,0
and ΨA,0

We use notation d0 = dP0 , τ0 = τP0 , etc. We state these assumptions for ΨZ ,0. The
exact same assumptions apply for ΨA,0, replacing Z with A in a few places.

These three assumptions are needed to ensure pathwise differentiability and prove
the form of the canonical gradient (Theorem 1).

Assumptions (A2)–(A4).

(A2) Positivity assumption: 0 < ρ0(W ) < 1.

(A3) There is a neighborhood of η0 where S0(x) is Lipschitz continuous, and a
neighborhood of S0(η0) = K − KZ 0

where S−1
0 (y) is Lipschitz continuous.

(A4) Pr0(T0(V ) = τ) = 0 for all τ in a neighborhood of τ0.

Note that (A3) implies that S−1
0 (K − KZ 0

) exists. Note also that (A3) actually
implies Pr0(T0(V ) = η) = 0 for η in a neighborhood of η0, and thus, (A3) implies
(A4) when η0 > 0 and τ0 = η0.

Need for (A4) (Guarantee of non-exceptional law).
If (A4) does not hold and there is positive probability of individuals being at the
threshold for being treated or not under the optimal rule, then the solution d(V ) is
not unique, and ΨZ ,0 is no longer pathwise differentiable. It is easy to see that under
(A4), the optimal d(V ) over the broader set of non-deterministic decision rules is
a deterministic rule. Toth (2016) describes why (A4) is a reasonable assumption in
practice whenwe have a constraint KZ < K < KZ that allows for only a strict subset
of the population to be treated.
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1.6 TMLE for Optimal Intent-to-Treat Problem (ΨZ,0)

All proofs and derivations for what follows are given in Toth (2016).

1.6.1 Canonical Gradient for ΨZ,0

For O = (W, Z , A,Y ), and deterministic rule d(V ), define

D1(d, P)(O) � I (Z = d(V ))

ρP(W )
(Y − μP(Z ,W )) (1.4)

D2(d, P)(O) � μP(d(V ),W ) − EPμP(d(V ),W ) (1.5)

D3(d, τ, P)(O) = −τ(cT (d(V ),W ) − K ) (1.6)

Define

D∗(d, τ, P)(O) � D1(d, P)(O) + D2(d, P)(O) + D3(d, τ, P)(O)

Theorem 1 Assume (A1)–(A4) above. ThenΨZ is pathwise differentiable at P0 with
canonical gradient D0 = D∗(d0, τ0, P0).

1.6.2 TMLE

The relevant components for estimatingΨZ = EWμ(Z = d(V ),W ) areQ = (PW , μ

(Z ,W )). Decision rule d is also part of Ψ , but it is a function of PW , μ(Z ,W ). The
nuisance parameter is g = ρ(W ). First convert Y to the unit interval via a linear
transformation Y → Ỹ , so that Ỹ = 0 corresponds to Ymin and Ỹ = 1 to Ymax. We
assume Y ∈ [0, 1] from here.

1. Use the empirical distribution PW,n to estimate PW . Make initial estimates of
μn(Z ,W ) and gn = ρn(W ) using any strategy desired. Data-adaptive learning
using Super Learner is recommended.

2. The empirical estimate PW,n gives an estimate of PrV,n(V ) = EW,n I (FV (W ) =
V ), KZ ,n = EW,ncT (0,W ), KZ ,n = EW,ncT (1,W ), and cb,Z ,n(V ) = EW,n|V
(cT (1,W ) − cT (0,W )).

3. Estimate μb,0 as μb,n(V ) = EW,n|V (μn(1,W ) − μn(0,W )).
4. Estimate T0(V ) as Tn(V ) = μb,n(V )

cb,Z ,n(V )
.

5. Estimate S0(x) using Sn(x) = EV,n[I (Tn(V ) ≥ x)(cb,Z ,n(V )].
6. Estimate η0 as ηn using ηn = S−1

n (K − KZ ,n) and τn = max{0, ηn}.
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7. Estimate the decision rule as dn(V ) = 1 iff Tn(V ) ≥ τn .
8. Now fluctuate the initial estimate ofμn(Z ,W ) as follows: For Z ∈ [0, 1], define

covariate H(Z ,W ) � I (dn(V )=Z)

gn(W )
. Run a logistic regression using:

Outcome: (Yi : i = 1, . . . , n)

Offset: (logit μn(Zi ,Wi ), i = 1, . . . , n)

Covariate: (H(Zi ,Wi ) : i = 1, . . . , n)

Let εn represent the level of fluctuation, with
εn = argmaxε

1
n

∑n
i=1[μn(ε)(Zi ,Wi ) log Yi + (1 − μn(ε)(Zi ,Wi )) log(1 − Yi )]

and μn(ε)(Z ,W ) = logit−1(logit μn(Z ,W ) + εH(Z ,W )).
9. Set the final estimate of μ(Z ,W ) to μ∗

n(Z ,W ) = μn(εn)(Z ,W ).
10. Finally, form final estimate of ΨZ ,0 = ΨZ ,d0(P0) using the plug-in estimator

Ψ ∗
Z = ΨZ ,dn (P

∗
n ) = 1

n

n∑

i=1

μ∗
n(Z = dn(Vi ),Wi )

We have used the notation ΨZ ,d(P) referring to mean outcome under decision
rule Z = d(V ), and Ψ ∗

n the final estimate of the data-generating distribution.

It is easy to see that PnD∗(dn, τn, P∗
n ) = 0: We have PnD1(dn, P∗

n ) = Pn
d
dε

L(Qn(ε|gn), gn, (O1, . . . , On))|ε=0 = 0; PnD2(dn, P∗
n ) = 0 when we are using the

empirical distribution PW,n; and PnD3(dn, τn, P∗
n ) = 0 is described in the proof of

optimality of the closed-form solution in Toth (2016).

1.6.3 Theoretical Results for Ψ ∗
Z

1.6.3.1 Conditions for Efficiency of Ψ ∗
Z

These six conditions are needed to prove asymptotic efficiency (Theorem 2). As
discussed in Toth (2016), when all relevant components and nuisance parameters
(PW,n, ρn, μn) are consistent, then (C3) and (C4) hold, while (C6) holds by con-
struction of the TMLE estimator.

(C1) ρ0(W ) satisfies the strong positivity assumption: Pr0(δ < ρ0(W ) < 1 −
δ) = 1 for some δ > 0.

(C2) The estimate ρn(W ) satisfies the strong positivity assumption, for a fixed
δ > 0 with probability approaching 1, so we have Pr0(δ < ρn(W ) < 1 − δ) → 1.

Define second-order terms as follows:

R1(d, P) � EP0

[(
1 − PrP0(Z = d|W )

PrP(Z = d|W )

)(
μP(Z = d,W ) − μ0(Z = d,W )

)]
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R2(d, τ0, P) � EP0

[
(d − d0)(μb,0(V ) − τ0cb,0(V ))

]

Let R0(d, τ0, P) = R1(d, P) + R2(d, τ0, P).

(C3) R0(dn, τ0, P∗
n ) = oP0(n

− 1
2 ).

(C4) P0[(D∗(dn, τ0, P∗
n ) − D0)

2] = oP0(1).

C5) D∗(dn, τ0, P∗
n ) belongs to a P0-Donsker class with probability approaching 1.

(C6) 1
n

∑n
i=1 D

∗(dn, τ0, P∗
n )(Oi ) = oP0(n

− 1
2 ).

1.6.3.2 Sufficient Conditions for Lemma 3

(E1) GC-like property for cb,Z (V ), μb,n(V ):
supV |(EW,n|V − EW,0|V )cb,T (W )| = supV (|cb,Z ,n(V ) − cb,Z ,0(V )|) = oP0(1)

(E2) supV |EW,0|Vμb,n(W ) − EW,0|Vμb,0(W )| = oP0(1)

(E3) Sn(x), defined as x → EV,n[I (Tn(V ) ≥ x)cb,Z ,n(V )] is a GC-class.

(E4) Convergence of ρn ,μn to ρ0,μ0, respectively, in L2(P0) norm at a O(n−1/2)

rate in each case.

When all relevant components and nuisance parameters are consistent, as is the
case when Theorem 2 below holds and our estimator is efficient, we also expect
conditions (E1)–(E4) to hold.

Toth (2016) discusses the assumptions and conditions above in detail.

1.6.3.3 Efficiency and Inference

Theorem 2 (Ψ ∗
Z is asymptotically linear and efficient.) Assume assumptions (A1)–

(A4) and conditions (C1)–(C6). Then, Ψ ∗
Z = ΨZ (P∗

n ) = ΨZ ,dn (P
∗
n ) as defined by the

TMLE procedure is a RAL estimator of ΨZ (P0) with influence curve D0, so

ΨZ (P∗
n ) − ΨZ (P0) = 1

n

n∑

i=1

D0(Oi ) + oP0(n
− 1

2 ).

Further, Ψ ∗
Z is efficient among all RAL estimators of ΨZ (P0).
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Inference. Let σ 2
0 = VarO∼P0D0(O). By Theorem 2 and the central limit theo-

rem,
√
n(ΨZ (P∗

n ) − ΨZ (P0)) converges in distribution to a N (0, σ 2
0 ) distribution.

Let σ 2
n = 1

n

∑n
i=1 D

∗(dn, τn, P∗
n )(Oi )

2 be an estimate of σ 2
0 .

Lemma 3 Under the assumptions (C1) and (C2), and conditions (E1)–(E4), we
have σn →P0 σ0. Thus, an asymptotically valid 2-sided 1 − α confidence interval is
given by

Ψ ∗
Z ± z1− α

2

σn√
n

where z1− α
2
denotes the (1 − α

2 )-quantile of a N (0, 1) r.v.

1.6.3.4 Double Robustness of Ψ ∗
Z,n

Theorem 2 demonstrates consistency and efficiency when all relevant components
and nuisance parameters are consistently estimated. Another important issue is under
what cases of partial misspecification we still get a consistent estimate ofΨZ ,0, albeit
an inefficient one. Our TMLE-based estimate Ψ ∗

Z is a consistent estimate of ΨZ ,0

under misspecification of ρn(W ) in the initial estimates, but not under misspecifica-
tion of μn(W, Z). However, it turns out there is still an important double robustness
property. If we considerΨ ∗

Z = ΨZ ,dn (P
∗
n ) as an estimate ofΨZ ,dn (P0), where the opti-

mal decision rule dn(V ) is estimated from the data, then we have that Ψ ∗
Z is double

robust to misspecification of ρn or μn in the initial estimates.

Lemma 4 (Ψ ∗
Z is a double robust estimator of ΨZ ,dn (P0).) Assume assumptions

(A1)–(A4) and conditions (C1)–(C2). Also assume the following version of (C4):

VarO∼P0(D1(dn, P∗
n )(O) + D2(dn, P∗

n )(O)) < ∞.

Then, Ψ ∗
Z = ΨZ ,dn (P

∗
n ) is a consistent estimator of ΨZ ,dn (P0) when either μn is

specified correctly, or ρn is specified correctly.

The proof of this lemma is based on the equation

ΨZ ,dn (P
∗
n ) − ΨZ ,dn (P0) = −P0

[
D1(dn, P∗

n ) + D2(dn, P∗
n )

] + R1(dn, P∗
n )

where D1, D2, and R1 are as defined in Sects. 1.6.1 and 1.6.3.1.

1.7 TMLE for Optimal Treatment Problem (ΨA,0)

Wenowpresent results for the case of intervening on the treatment, setting A = d(V ).
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1.7.1 Efficient Influence Curve D∗
A(Ψ0)

Lemma 5 Let

J0(Z ,W ) = I (Z = 1)

ρ0(W )
+

( I (Z=1)
ρ0(W )

− I (Z=0)
1−ρ0(W )

)(
d0(V ) − Π0(W, Z = 1)

)

Π0(W, Z = 1) − Π0(W, Z = 0)

The efficient influence curve D∗
A(Ψ0) is

D∗
A(Ψ0) = −τ0EP0 [cT (d0(V ),W ) − K ] (1.7)

+m0(W )d0(V ) + θ0(W ) − Ψ0 (1.8)

−J0(Z ,W )m0(W )
[
A − Π0(W, Z)

]
(1.9)

+J0(Z ,W )
[
Y − (m0(W )Π0(W, Z) − θ0(W ))

]
(1.10)

We also write D∗(d0, τ0, P0). For convenience, denote lines (1)–(4) of D∗
above as D∗

c , D∗
W , D∗

Π , and D∗
μ, respectively. Finally, let D

∗
A,dn

denote the efficient

influence curve for ΨA,dn (P0) � EPW,0m0(W )dn(V ) + θ0(W ), which is the mean
counterfactual estimate when the decision rule is estimated from the data. We have
D∗

A,dn
= D∗

W + D∗
Π + D∗

μ (see Toth 2016).

1.7.2 Iterative TMLE Estimator

We have derived two different TMLE-based estimators for ΨA,0. We present an
iterative estimator here, which involves a standard, numerically well-behaved, and
easily understood likelihoodmaximization operation at each step. Theother estimator
uses a logistic fluctuation in a single non-iterative step and has the advantage that
the estimate μ respects the bounds of Y found in the data (see Toth 2016; Toth and
van der Laan 2016).

The relevant components for estimatingΨA = EW [m(W )d(V ) + θ(W )] are Q =
(PW ,m, θ). The nuisance parameters are g = (ρ,Π). d(V ) and τ can be thought of
as functions of PW ,m here. Let

h1(W ) � 1
ρ(W )(Π(W,1)−Π(W,0)) + d(V )−Π(W,1)

(Π(W,1)−Π(W,0))2
1

ρ(W )(1−ρ(W ))
. Also, let h2(W ) �

1
ρ

[
1 − Π(W,1)

Π(W,1)−Π(W,0) + d−Π(W,1)
Π(W,1)−Π(W,0) (1 − Π(W,1)

Π(W,1)−Π(W,0)
1

1−ρ
)
]
.

Then, we have that D∗
μ = (h1Π + h2)(Y − mΠ − θ).

If A is not binary, convert A to the unit interval via a linear transformation A → Ã
so that Ã = 0 corresponds to Amin and Ã = 1 to Amax. We assume A ∈ [0, 1] from
here.

1. Use the empirical distribution PW,n to estimate PW . Make initial estimates
of Q = {mn(W ), θn(W )} and gn = {ρn(W ),Πn(W, Z)} using any strategy
desired. Data-adaptive learning using Super Learner is recommended.
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2. The empirical estimate PW,n gives an estimate of PrV,n(V ) = EW,n I (FV (W ) =
V ), KA,n = EW,ncA(0,W ), KA,n = EW,ncA(1,W ), and cb,A,n(V ) = EW,n|V
(cA(1,W ) − cA(0,W )).

3. Estimate mn(V ) as EW,n|Vm(W ).
4. Estimate T0(V ) as Tn(V ) = mn(V )

cb,A,n(V )
.

5. Estimate S0(x) using Sn(x) = EV,n[I (Tn(V ) ≥ x)(cb,A,n(V ))].
6. Estimate η0 as using ηn = S−1

n (K − KA,n) and τn = max{0, ηn}.
7. Estimate the decision rule as dn(V ) = 1 iff Tn(V ) ≥ τn (the decision rule is not

updated iteratively).

ITERATE STEPS (8)–(9) UNTIL CONVERGENCE:
8. Fluctuate the initial estimate of mn(W ), θn(W ) as follows: Using μn(Z ,W ) =

mn(W )Πn(Z ,W ) + θn(W ), run an OLS regression:
Outcome: (Yi : i = 1, . . . , n)

Offset: (μn(Zi ,Wi ), i = 1, . . . , n)

Covariate: (h1(Wi )Πn(Zi ,Wi ) + h2(Wi ) : i = 1, . . . , n)

Let εn represent the level of fluctuation, with
εn = argmaxε

1
n

∑n
i=1(Yi − μn(ε)(Zi ,Wi ))

2 and
μn(ε)(Z ,W ) = μn(Z ,W ) + ε(h1(W )Πn(Z ,W ) + h2(W )).

Note that μn(ε) = (mn + εh1)Πn + (θn + εh2) stays in the semiparametric
regression model.
Update mn to mn(ε) = mn + εh1, θn to θn(ε) = θn + εh2.

9. Now fluctuate the initial estimate of Πn(Z ,W ) as follows: Use covariate
J (Z ,W ) as defined in Lemma 5. Run a logistic regression using:

Outcome: (Ai : i = 1, . . . , n)

Offset: (logit Πn(Zi ,Wi ), i = 1, . . . , n)

Covariate: (J (Zi ,Wi )m(Wi ) : i = 1, . . . , n)

Let εn represent the level of fluctuation, with
εn = argmaxε

1
n

∑n
i=1[Πn(ε)(Zi ,Wi ) log Ai + (1 − Πn(ε)(Zi ,Wi ))

log(1 − Ai )] andΠn(ε)(Z ,W ) = logit−1(logitΠn(Z ,W ) + εJ (Z ,W )m(W )).
Update Πn to Πn(ε). Also update h1(W ), h2(W ) to reflect the new Πn .

10. Finally, form final estimate of ΨA,0 = ΨA,d0(P0), using a plug-in estimator with
the final estimates upon convergence m∗

n and θ∗
n :

Ψ ∗
A = ΨA,dn (P

∗
n ) = 1

n

n∑

i=1

[
m∗

n(Wi ) · dn(Vi ) + θ∗
n (Wi )

]
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As for ΨZ , it is straightforward to check that the efficient influence equation
PnD∗(dn, τn, P∗

n ) = 0.

1.7.3 Double Robustness of Ψ ∗
A

As in Sect. 1.6.3.4, Ψ ∗
A is not a double robust estimator of ΨA,0: Component m(W )

must always be consistently specified as a necessary condition for consistency of
Ψ ∗

A . However, if we consider Ψ ∗
A = ΨA,dn (P

∗
n ) as an estimate of ΨA,dn (P0), where

the optimal decision rule dn(V ) is estimated from the data, then we have that Ψ ∗
A is

double robust:

Lemma 6 (Ψ ∗
A is a double robust estimator of ΨA,dn (P0).) Assume (A1)–(A4) and

(C1)–(C2). Also assume VarO∼P0(D
∗
d(dn, P

∗
n )(O)) < ∞.

Then, Ψ ∗
A = ΨA,dn (P

∗
n ) is a consistent estimator of ΨA,dn (P0) when either:

• mn and θn are consistent
• ρn and Πn are consistent
• mn and ρn are consistent

Above D∗
d refers to D∗

μ + D∗
Π + D∗

W , the portions of the efficient influence curve
that are orthogonal to variation in decision rule d. The proof is straightforward (see
Toth 2016).

1.8 Simulations

1.8.1 Setup

We use two main data-generating functions:

Dataset 1 (categorical Y ).

Data is generated according to:

UAY ∼ Bernoulli(1/2)

W1 ∼ Uniform(−1, 1)

W2 ∼ Bernoulli(1/2)

Z ∼ Bernoulli(α)

A ∼ Bernoulli(W1 + 10 · Z + 2 ·UAY − 10)

Y ∼ Bernoulli((1 − A) ∗ (plogis(W2 − 2 −UA,Y )) + (A) ∗ (plogis(W1 + 4))
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UA,Y is the confounding term. For the simulations where V ⊂ W , we take V =
(1(W1 ≥ 0) + −1(W1 < 0),W2). We have cT (Z = 1,W ) = 1, cT (Z = 0,W ) =
0 for all W here.

Dataset 2 (continuous Y .)

We use three-dimensional W and distribution

UAY ∼ Normal(0, 1)

W ∼ Normal(μβ,�)

Z ∼ Bernoulli(0.1)

A ∼ −2 · W1 + W22 + 4 · W3 · Z +UAY

Y ∼ 0.5 · W1 · W2 − W3 + 3 · A · W2 +UAY

When V ⊂ W , we use either V equals W1 rounded to the nearest 0.2, or alter-
nately, V is W3 rounded to the nearest 0.2. We also have cT (0,W ) = 0 for all W ,
and cT (1,W ) = 1 + b · W1, and varying μβ, �, and b.

Forming initial estimates.
We use the empirical distribution PW,n for the distribution of W . For learning μn ,
we use Super Learner, with the following libraries of learners (the names of learners
are as specified in the SuperLearner package (van der Laan et al. 2007):

For continuous Y : glm, step, randomForest, nnet, svm, polymars, rpart, ridge,
glmnet, gam, bayesglm, loess, mean.

For categorical Y : glm, step, svm, step.interaction, glm.interaction, nnet.4, gam,
randomForest, knn, mean, glmnet, rpart.

Further, we included different parameterizations of some of the learners given
above, such as ntree = 100, 300, 500, 1000 for randomForest.

Finally, for learning ρn , we use a correctly specified logistic regression, regressing
Z on W (except for simulation (C) as described below).

Estimators used.
For both parameters of interest ΨZ and ΨA, we report results on the TMLE estimator
Ψ ∗

Z (orΨ
∗
A), and the initial substitution estimatorΨ 0

Z ,n (orΨ
0
A,n). The latter is the plug-

in estimate, for instanceΨ 0
Z ,n � ΨZ (PW.n, μn), that uses the same initial estimates of

relevant components and the nuisance parameter as TMLE. Thus, the initial substi-
tution estimator gives a comparison of TMLE to a straightforward semiparametric,
machine learning-based approach. 1000 repetitions are done of each simulation.
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Table 1.1 (Simulation A.) Consistent estimation of ΨZ ,0 using machine learning, categorical
Y · ΨZ ,0 = 0.3456, K = 0.3, and V ⊂ W · σ 2

n = VarO∼Pn D
∗
Z (dn, τn, P∗

n )(O)

N = 250

Estimator Ψ ∗
Z Bias Var σ 2

n /N Cover

TMLE 0.3545 0.0089 0.0071 0.0010 88.3

CV-TMLE 0.3541 0.0085 0.0017 0.0010 90.6

Init. Substit. 0.3427 −0.0029 0.0067 0.0010 (87.9)

N = 1000

TMLE 0.3485 0.0029 0.0003 0.0003 93.3

CV-TMLE 0.3497 0.0041 0.0002 0.0003 96.8

Init. Substit. 0.3344 −0.0112 0.0003 0.0003 (88.3)

N = 4000

TMLE 0.3467 0.0011 0.0001 0.0001 95.0

CV-TMLE 0.3498 0.0002 0.0001 0.0001 94.7

Init. Substit. 0.3429 −0.0027 0.0001 0.0001 (93.3)

Table 1.2 (Simulation B.) Consistent estimation of ΨA,0 using machine learning, continuous
Y · ΨA,0 = 336.2, K = 0.8, and V ⊂ W · σ 2

n = VarO∼Pn D
∗
Z (dn, τn, P∗

n )(O)

N = 250

Estimator Ψ ∗
A Bias Var σ 2

n /N Cover

TMLE 327.5 −8.7 344.7 176.3 78.4

Init. Substit. 310.0 −26.2 495.1 174.0 (47.8)

N = 1000

TMLE 332.9 −3.3 40.7 38.5 89.0

Init. Substit. 322.7 −13.5 126.8 43.1 (53.2)

N = 4000

TMLE 334.5 −1.7 8.4 9.1 93.3

Init. Substit. 328.7 −7.5 25.9 8.8 (41.3)

Simulations (A–B): using a large library of learning algorithms for consistent
initial estimates.
Tables1.1 and 1.2 show the behavior of our estimators whenmachine learning is used
to consistently estimate all relevant components and nuisance parameters. Table1.1
deals with estimating ΨZ when Y is categorical. In this case, bias is very low with or
without the TMLE fluctuation step. σ 2

n /n gives a consistent estimate of the variance
of Ψ ∗

Z , in this case where efficiency holds. We see that both estimators have very
low variance that converges to σ 2

n /n by n = 1000. Coverage of 95% confidence
intervals is also displayed, with intervals calculated as Ψ ∗

n ± 1.96 σn√
n
, as in Lemma

3. The coverage is given in parentheses for the initial substitution estimator, as σ 2
n

is not necessarily the right variance. The TMLE estimators show better coverage,



1 Targeted Learning of Optimal Individualized Treatment Rules … 19

even though, in this example, the width of the confidence intervals was accurate for
all estimators for n ≥ 1000. This may be due to the asymptotic linearity property
of the TMLE-based estimators, ensuring that they follow a normal distribution as n
becomes large.

Y is continuous in Table1.2. TMLE convincingly outperforms the initial substi-
tution estimator in both bias and variance here. Only the TMLE estimator is guar-
anteed to be efficient, and we see a significant improvement in variance. The esti-
mated asymptotic variance σ 2

n /n approximates the variance seen in Ψ ∗
A fairly well

for n ≥ 1000. The coverage of confidence intervals for TMLE seems to converge to
95% more slowly than for the previous case of categorical Y .

Simulation (C): double robustness under partial misspecification.
As described in Sect. 1.7.3, Ψ ∗

A = Ψ ∗
A,dn

is a double robust estimator of ΨA,dn (Ψ0),
but not necessarily of ΨA,0.

Table1.3 verifies consistency of Ψ ∗
A when the initial estimate for μn is grossly

misspecified as μn = mean(Y ). This creates a discrepancy of ∼0.1 points between
ΨA,dn (P0) andΨA,0. The initial substitution estimator retains a bias of around−0.09 in
estimating ΨA,dn (P0), while TMLE demonstrates practically zero bias by n = 1000.
TMLE is not efficient in this setting of partial misspecification. It has significantly
larger variance than the initial substitution estimator for smaller sample sizes, but the
variances are similar by n = 4000. For confidence intervals, the width was calculated
by estimating Var(ΨA,dn ) as σ 2

n = VarO∼Pn D
∗
dn

(P∗
n )(O), where D∗

dn
(P) is the effi-

Table 1.3 (Simulation C.) Robustness ofΨ ∗
A to partial misspecification,μn is misspecified.ΨA,0 =

0.63, K = 0.5, and V = W

N = 1000

Estimator Ψ ∗
A

(
Ψ ∗ −

Ψdn (P0)
)

(
Ψ ∗ − Ψ0

)
Var Cover

TMLE 0.54 0.00 −0.09 0.69 93.3

Init. Substit. 0.45 −0.10 −0.18 0.24 (69.2)

N = 4000

TMLE 0.54 0.00 −0.09 0.11 96.8

Init. Substit. 0.45 −0.09 −0.18 0.10 (40.1)

Table 1.4 (Simulation D.) Estimation of true mean outcome ΨZ ,dn (P0), under rule
dn · ΨZ ,dn (P0) = 162.8 when K = 0.2, and ΨZ ,dn (P0) = 289.1 when K = 0.8. Sample size is
N = 1000 and V = W

K = 0.2 K = 0.8

Learning μn Ψ ∗
Z Var Ψ ∗

Z Var

Large library 158.9 8.14 286.4 9.32

Small library 148.3 49.45 267.9 16.28

No fitting 142.2 12.83 264.1 10.30
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cient influence curve of ΨA,dn (P) as defined in Sect. 1.7.1. It provides a conservative
(over)-estimate of variance for confidence intervals, as discussed in Toth and van der
Laan (2016). We see that TMLE’s coverage converges to just above 95%. On the
other hand, coverage is very low for the initial substitution estimator due to its bias.
This is despite the fact that the intervals are too wide in this case.

Simulation (D): quality of the estimate of dn versus the true mean outcome
attained under rule dn .
We study how more accurate estimation of the decision rule dn can lead to a
higher objective obtained. The objective maximized here is the mean outcome under
rule dn , where dn must satisfy a cost constraint. We use the known true distri-
butions for PW,0 and μ0 in calculating the value of mean outcome under dn as
Ψdn (P0) = EP0μ0(W, Z = dn(V )). The highest the true mean outcome can be under
a decision rule that satisfies EP0cT (W, Z = d(V )) ≤ K is Ψ0 using optimal rule
d = d0. Therefore, the discrepancy between Ψdn (P0) and Ψ0 gives a measure of how
inaccurate estimation of the decision rule diminishes the objective.

We compareΨdn (P0)when estimatingμn using the usual large library of learners;
when using a smaller library of learners consisting of mean, loess, nnet.size = 3,
nnet.size = 4, nnet.size = 5; and finally when we set μn = mean(Y ) · dn is estimated
usingμn as usual (note that it is the same between the initial substitution and TMLE-
based estimates). Table1.4 confirms the importance of forming a good fit with the
data for achieving a high mean outcome. For K = 0.2 when roughly 20% of the
population could be assigned Z = 1, the mean outcome was only a few points below
the true optimal mean outcome Ψd0 , when using the full library of learners (158.9
vs. 162.8). However, it was about 15 points lower when using a much smaller library
of learners. In fact, even when using machine learning with several nonparametric
methods in the case of the smaller library, the objective Ψdn (P0) attained was not far
from that attained with the most uninformative μn = mean(Y ). Very similar results
hold for the less constrained case of K = 0.8.

1.9 Discussion

We considered the resource-allocation problem of finding the optimal mean coun-
terfactual outcome given a general cost constraint, in the setting where unmeasured
confounding is a possibility and an instrumental variable is available. This work
dealt with both problems of finding an optimal treatment regime, and finding the
optimal intent-to-treat regime. For both cases, we gave closed-form solutions of the
optimal intervention and derived estimators for the optimal mean counterfactual out-
come. Our model allows the individualized treatment (or intent-to-treat) rules to be
a function of an arbitrary subset of baseline covariates. Estimation is done using
the targeted maximum likelihood (TMLE) methodology, which is a semiparametric
approach having a number of desirable properties (efficiency, robustness to mis-
specification, asymptotic normality, and being a substitution estimator). Simulation
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results showed that TMLE can simultaneously demonstrate both finite-sample bias
reduction and lower variance than straightforwardmachine learning approaches. The
empirical variance of TMLE estimators appears to converge to the semiparametric
efficiency bound, and confidence intervals are accurate for sample sizes of a few
thousand. Consistency in the case of partial misspecification was confirmed, in the
sense of Lemmas 4 and 6. Our simulations also addressed the important question of
to what extent improved statistical estimation can lead to better optimization results.
We were able to demonstrate significant increases in the value of the mean outcome
under the estimated optimal rule, when a larger library of data-adaptive learners
achieved a closer fit.
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