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Abstract In this paper, we consider an eco-epidemiological model with Holling

type III functional response and a time delay representing the gestation period of the

predator. In the model, it is assumed that the predator population suffers a transmis-

sible disease. By means of Lyapunov functionals and Laselle’s invariance principle,

sufficient conditions are obtained for the global stability of the endemic coexistence

of the system.
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1 Introduction

Epidemiological models have received considerate attention in the literature to

explain the spread and control of infectious disease [1–4]. Most of these models

descend from the pioneering work of Kermack and Mckendrick [5], who proposed

the classical SIR model . Seeing that species do not exist alone in the nature world, so

it is very important to study the system of two or more interacting species subjected

to disease [6].

Recently, great attention has been paid to study the relationships between demo-

graphic processes among different populations and diseases (see, e.g., [7–11]). Such

as, Zhang et al. [7] studied the following eco-epidemiological model with Holling

type I response function
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ẋ(t) = rx(t) − a11x2(t) − a12x(t)S(t),
̇S(t) = a21x(t − 𝜏)S(t − 𝜏) − r1S(t) − 𝛽S(t)I(t),
̇I(t) = 𝛽S(t)I(t) − r2I(t),

(1.1)

where x(t), S(t), I(t) denote the densities of the prey, the susceptible predator, and the

infected predator population, respectively.

In system (1.1), it assumes that the per capita rate of predation depends on the

prey numbers only. But Holling found that each predator increased its consumption

rate when exposed to a higher prey density, and also predator density increased with

increasing prey density [12, 13]. So he suggested the following three kinds of func-

tional responses referring to the number of prey eaten per predator per unit time.

(1) p1(x) = ax, (2) p2(x) =
ax

m + x
, (3) p3(x) =

ax2

m + x2
,

where x denotes the density of prey, a > 0 is the search rate of the predator, m > 0
is half-saturation constant, p1(x), p2(x), and p3(x) represent Holling type I, II, and III

functional responses, respectively.

Holling type III functional response reveals that the risk of being preyed upon is

small at low prey density but increases up to a certain point as prey density increases,

which is in accordance with some phenomena of natural world. Also, we know that

many factors contribute to a type III functional response such as prey refuge, predator

learning, and the presence of alternative prey [14].

Motivated by the works of Holling [14] and Zhang et al. [7], in this paper,

we consider a delayed eco-epidemiological model with Holling type III functional

response, which suffers a transmissible disease. Thus, we study the following eco-

epidemiological model:

ẋ(t) = rx(t) − a11x2(t) −
a12x2(t)S(t)
1 + mx2(t)

−
a13x2(t)I(t)
1 + mx2(t)

,

̇S(t) = k
a12x2(t − 𝜏)S(t − 𝜏)

1 + mx2(t − 𝜏)
− r1S(t) − 𝛽S(t)I(t),

̇I(t) = 𝛽S(t)I(t) + k
a13x2(t − 𝜏)I(t − 𝜏)
1 + mx2(t − 𝜏)

− r2I(t).

(1.2)

where x(t), S(t), and I(t) represent the densities of the prey, the susceptible predator,

and the infected predator population, respectively. r is the intrinsic growth rate of

prey population without disease, r∕a11 is the environmental carrying capacity, a12 is

the capturing rate of the susceptible predators. The infected predator also can catch

the prey; here, a13 denotes the capturing rate of the infected predator. k is the con-

version rate of nutrients into the reproduction of predators by consuming prey, 𝛽 is

the disease transmission coefficient, r1 is the natural death rate of the susceptible

predators, r2 is the natural and disease-related mortality rate of the infected preda-

tor. Here, r1 < r2. 𝜏 is a time delay representing a duration of 𝜏 time units elapses
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when an individual prey is killed and the moment when the corresponding addition

is made to the predator population. All the parameters are positive.

The initial conditions for system (1.2) are

x(𝜃) = 𝜙1(𝜃), S(𝜃) = 𝜙2(𝜃), I(𝜃) = 𝜙3(𝜃), 𝜃 ∈ [−𝜏, 0],
𝜙i ∈ C([−𝜏, 0],R3

+), 𝜙i > 0, i = 1, 2, 3,
(1.3)

where R3
+ = (x1, x2, x3) ∶ x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The organization of this paper is as follows. In Sect. 2, the positivity and the equi-

libria of system (1.2) are presented. In Sect. 3, we consider about the permanence of

system (1.2) by using the persistence theory on infinite dimensional systems devel-

oped by Hale and Waltman [15]. In Sect. 4, we establish sufficient conditions for

the global asymptotic stability of the endemic-coexistence equilibrium of system

(1.2) by constructing suitable Lyapunov functionals and adopting Lasalle’s invari-

ance principle. Finally, we discuss the biological meaning of the result obtained in

this paper.

2 Preliminaries

In this section, we consider the positivity of solutions and the equilibria of system

(1.2).

2.1 Positivity of Solutions

Theorem 2.1 Suppose that (x(t), S(t), I(t)) is a solution of system (1.2) with initial
conditions (1.3). Then, x(t) ≥ 0, S(t) ≥ 0, and I(t) ≥ 0 for all t ≥ 0.

Proof From the first equation of system (1.2), we have

x(t) = x(0) exp
{
∫

t

0

[
r − a11x(u) − a12x(u)S(u)∕(1 + mx2(u)) − a13x(u)I(u)∕(1 + mx2(u))

]
du

}
> 0.

Hence, x(t) is positive.

In order to prove that S(t) is positive on [0,∞], suppose that there exists t1 > 0
such that S(t1) = 0, and S(t) > 0 for t ∈ [0, t1]. Then, ̇S(t1) ≤ 0. From the second

equation of (1.2), we have
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̇S(t1) = k
a12x2(t1 − 𝜏)S(t1 − 𝜏)

1 + mx2(t1 − 𝜏)
− r1S(t1) − 𝛽S(t1)I(t1)

= k
a12x2(t1 − 𝜏)S(t1 − 𝜏)

1 + mx2(t1 − 𝜏)
> 0,

which is a contradiction.

In order to show that I(t) is positive on [0,∞], suppose that there exists t2 > 0 such

that I(t2) = 0, and I(t) > 0 for t ∈ [0, t2]. Then, ̇I(t2) ≤ 0. From the third equation of

(1.2), we have

̇I(t2) = 𝛽S(t2)I(t2) + k
a13x2(t2 − 𝜏)I(t2 − 𝜏)

1 + mx2(t2 − 𝜏)
− r2I(t2)

= k
a13x2(t2 − 𝜏)I(t2 − 𝜏)

1 + mx2(t2 − 𝜏)
> 0,

which is a contradiction. □

2.2 Equilibria

System (1.2) possesses the following equilibria in general.

(i) The trivial equilibrium E0 = (0, 0, 0).
(ii) The predator-extinction equilibrium E1 = (r∕a11, 0, 0).

(iii) The disease-free equilibrium E2 = (x2, S2, 0), where

x2 =
√ r1

ka12 − r1m
,

S2 =
k√

r1(ka12 − r1m)

(
r − a11

√ r1
ka12 − r1m

)
.

(2.1)

We denote an ecological threshold parameter by ℜ1 =
k
r1

r2a12
a211 + mr2

. It is easy

to show that if ℜ1 > 1, then x2 > 0, I2 > 0.
(iv) The planar equilibrium E3 = (x3, 0, I3), where

x3 =
√ r2

ka13 − r2m
,

I3 =
k√

r2(ka13 − r2m)

(
r − a11

√ r2
ka13 − r2m

)
.

(2.2)
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Similar, we denote ℜ2 =
k
r2

r2a13
a211 + mr2

. It is easy to show that if ℜ2 > 1, then

x3 > 0, I3 > 0.
(v) The endemic-coexistence equilibrium E∗ = (x∗, S∗, I∗), where

I∗ =
ka12x∗2

𝛽(1 + mx∗2)
−

r1
𝛽

,

S∗ =
r2
𝛽

−
ka13x∗2

𝛽(1 + mx∗2)
,

(2.3)

in which x∗ is a positive real root of the following cubic equation:

m𝛽a11x3 − mr𝛽x2 + (a11𝛽 + r2a12 − a13r1)x − r𝛽 = 0. (2.4)

It can be seen that if

(H1) r2(ka12 − r1m) > r1(ka13 − r2m),
then system (1.2) has a endemic-coexistence equilibrium E∗

.

3 Permanence

In this section, we study the permanence of system (1.2). Before starting our theorem,

we give some basic concepts and corresponding theory.

Definition 3.1 System (1.2) is said to be permanent (uniformly persistent) if there

are positive mi and Mi(i = 1, 2, 3) such that each positive solution (x(t), S(t), I(t)) of

system (1.2) satisfies

m1 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M1,

m2 ≤ lim inf
t→+∞

S(t) ≤ lim sup
t→+∞

S(t) ≤ M2,

m3 ≤ lim inf
t→+∞

I(t) ≤ lim sup
t→+∞

I(t) ≤ M3.

Definition 3.2 System (1.2) is said to be permanent if there exists a compact region

Ω0 ∈ intΩ such that every solution of Eqs. (1.2) with initial condition (1.3) will

eventually enter and remain in region Ω0.

It is easy to see that for a dissipative system, uniform persistence is equivalent to

permanence. For the sake of convenience, we present the uniform persistence theory

for infinite dimensional systems.

Let X be a complete metric space with metric d. Suppose that T is a continuous

semiflow on X, that is, a continuous mapping T ∶ [0,+∞] × X → X with the follow-

ing properties
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Tt◦Ts = Tt+s, t, s ≥ 0, T0(x) = x, x ∈ X,

where Tt denotes the mapping from X to X given by Tt(x) = T(t, x).
The distance d(x,Y) of a point x ∈ X from a subset Y of X is defined by

d(x,Y) = inf y∈Yd(x, y).

Recall that the positive orbit 𝛾
+(x) through x is defined as 𝛾

+(x) = ∪t≥0{T(t)x}, and

its 𝜔− limit set is 𝜔(x) = ∩s≥0∪t≥s{T(t)x}. Define Ws(A) the strong stable set of a

compact invariant set A as

Ws(A) = {x ∶ x ∈ X, 𝜔(x) ≠ ∅, 𝜔(x) ⊂ A}.

Suppose that X0
is open and dense in X and X0 ∪ X0 = X, X0 ∩ X0 = ∅. Moreover,

the C0
-semigroup T(t) on X satisfies

T(t) ∶ X0 → X0
,T(t) ∶ X0 → X0. (3.1)

Let Tb(t) = T(t) ∣X0
and Ab be the global attractor for Tb(t).

Lemma 3.1 (Hale and Waltman [15]) Suppose that T(t) satisfies (3.1). If the follow-
ing hold

(i) there is a t0 ≥ 0 such that T(t) is compact for t > t0;
(ii) T(t) is point dissipative in X; and
(iii) ̄Ab = ∪x∈Ab

𝜔(x) is isolated and has an acyclic covering ̂Mt, where

̂Mt = { ̃M1, ̃M2,… ,

̃Mn};

(iv) Ws( ̃Mi) ∩ X0 = ∅ for i = 1, 2,… , n.

Then, X0 is a uniform repeller with respect to X0; that is, there is an 𝜀 > 0 such that
for any x ∈ X0, lim inf t→+∞ d(T(t)x,X0) ≥ 𝜀.

We also need the following result to study the permanence of system (1.2).

Lemma 3.2 There are positive constants M1 and M2 such that for any positive solu-
tion (x(t), S(t), I(t)) of system (1.2) with initial conditions (1.3),

lim sup
t→+∞

x(t) < M2, lim sup
t→+∞

S(t) < M1, lim sup
t→+∞

I(t) < M1. (3.2)

Proof Let (x(t), S(t), I(t)) be any solution of system (1.2) with initial conditions (1.3).

Consider the function

V(t) = kx(t) + S(t + 𝜏) + I(t + 𝜏).
From system (1.2), we get
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̇V(t) = krx(t) − ka11x2(t) − r1S(t + 𝜏) − r2I(t + 𝜏)
= k(r + r1)x(t) − ka11x2(t) − r1V(t) + (r1 − r2)I(t + 𝜏)
≤M1 − r1V(t),

where M1 =
k(r + r1)2

4a11
. Which yields lim supt→+∞ V(t) ≤ M1. If we choose M2 =

M1∕k, then (3.2) follows. This complete the proof. □

In the following, we investigate the permanence of system (1.2).

Theorem 3.1 If 𝛽S2 > r2 holds, then system (1.2) is permanent.

Proof LetC+([−𝜏, 0],ℝ3
+) denote the space of continuous functions mapping [−𝜏, 0]

into ℝ3
+. Define

C1 =
{
(𝜙1, 𝜙2, 𝜙3) ∈ C+([−𝜏, 0],ℝ3

+) ∶ 𝜙1(𝜃) ≠ 0, 𝜙2(𝜃) = 𝜙3(𝜃) = 0, 𝜃 ∈ [𝜏, 0]
}
,

C2 =
{
(𝜙1, 𝜙2, 𝜙3) ∈ C+([−𝜏, 0],ℝ3

+) ∶ 𝜙1(𝜃)𝜙2(𝜃) ≠ 0, 𝜙3(𝜃) = 0, 𝜃 ∈ [𝜏, 0]
}
.

Denote C0 = C1 ∪ C2, X = C+([−𝜏, 0],ℝ3
+), and C0 = intC+([−𝜏, 0],ℝ3

+).
We verify below that the conditions in Lemma 3.1 are satisfied. By the definition

of C0
and C0, it is easy to know that C0

and C0 are positively invariant. Moreover, the

conditions (i) and (ii) in Lemma 3.1 are clearly satisfied. Thus, we need only to verify

that the conditions (iii) and (iv) hold. System (1.2) has two constant solutions in C0 :

̄E1 ∈ C1, ̄E2 ∈ C2 corresponding, respectively, to x(t) = r∕a11, S(t) = 0, I(t) = 0 and

x(t) = x2, S(t) = S2, I(t) = 0.

Firstly, we verify the condition (iii) of Lemma 3.1. If (x(t), S(t), I(t)) is a solution

of system (1.2) initiating from C1, then ẋ(t) = rx(t) − a11x2(t), which yields x(t) →
r∕a11 as t → +∞. If (x(t), S(t), I(t)) is a solution of system (1.2) initiating from C2
with 𝜙1(𝜃) > 0 and 𝜙2(𝜃) > 0, then we have

ẋ(t) = rx(t) − a11x2(t) −
a12x2(t)S(t)
1 + mx2(t)

,

̇S(t) = ka12
x2(t − 𝜏)S(t − 𝜏)
1 + mx2(t − 𝜏)

− r1S(t).
(3.3)

It is obvious that if 𝛽S2∕r2 > 1, then ℜ1 > 1. Using Lemmas 3.1 and 3.2, it is easy to

prove that ifℜ1 > 1 holds, then system (3.3) is uniformly persistent. Noting thatC1 ∩
C2 = ∅, this shows that the invariant sets ̄E1 and ̄E2 are isolated. Hence,

{
̄E1, ̄E2

}
is

isolated and is an acyclic covering.

Secondly, we show that Ws( ̃Ei)
⋂

C0 = ∅(i = 1, 2). Here, we restrict out atten-

tion to show Ws( ̃E2)
⋂

C0 = ∅ holds because the proof of Ws( ̃E1)
⋂

C0 = ∅ is sim-

ple. Assuming the contrary, namely Ws( ̃E2)
⋂

C0 ≠ ∅. Then, there exists a positive

solution (x(t), S(t), I(t)) satisfying limt→+∞(x(t), S(t), I(t)) = (x2, S2, 0).
Since 𝛽S2 > r2, we can choose 𝜀 > 0 small enough such that
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𝛽(S2 − 𝜀) > r2. (3.4)

Noting that limt→+∞ S(t) = S2, for 𝜀 > 0 sufficiently small satisfying (3.3), there is

a t0 > 0 such that if t > t0, S2 − 𝜀 < S(t) < S2 + 𝜀. For 𝜀 > 0 sufficiently small sat-

isfying (3.4), it follows from the third equation of system (1.2) that for t > t0 + 𝜏,

̇I(t) > 𝛽(S2 − 𝜀)I(t) − r2I(t), which, follows from (3.4), yields limt→+∞ I(t) = +∞.

This is contradicts Lemma 3.2. Thus, we have Ws( ̃E2)
⋂

C0 = ∅. By Lemma 3.1, we

conclude that C0 repels positive solutions of system (1.2) uniformly, and therefore,

system (1.2) is permanent. The proof is complete. □

4 Global Stability

Theorem 4.1 If the endemic-coexistence equilibrium E∗ of system (1.2) exists, then
E∗ is globally asymptotically stable provided that
(H2): x ≥ r∕(2a11).
Here, x is the persistency constant for x satisfying lim inf t→+∞ x ≥ x.

Proof Assume that (x(t), S(t), I(t)) is any positive solution of system (1.2) with initial

conditions (1.3). Denote 𝜙(x(t)) = x2(t)
1 + mx2(t)

. Define

V11(t) = k
(
x(t) − x∗ −

∫

x

x∗

𝜙(x∗)
𝜙(x(u))

du
)
+ S(t) − S∗ − S∗ ln S(t)

S∗

+ I(t) − I∗ − I∗ ln I(t)
I∗

.

(4.1)

Calculating the derivative ofV11(t) along positive solutions of system (1.2), it follows

that

d
dt
V11(t) = k

(
1 − 𝜙(x∗)

𝜙(x(t))

)[
rx(t) − a11x2(t) − a12𝜙(x(t))S(t) − a13𝜙(x(t))I(t)

]

+
(
1 − S∗

S(t)

)(
ka12𝜙(x(t − 𝜏))S(t − 𝜏) − r1S(t) − 𝛽S(t)I(t)

)

+
(
1 − I∗

I(t)

)(
𝛽S(t)I(t) + ka13𝜙(x(t − 𝜏))I(t − 𝜏) − r2I(t)

)
.

(4.2)

On substituting rx∗ − a11x∗2 − a12𝜙(x∗)S∗ − a13𝜙(x∗)I∗ = 0, ka12𝜙(x∗)
S∗ − r1S∗ − 𝛽S∗I∗ = 0, and 𝛽S∗I∗ + ka13𝜙(x∗)I∗ − r2I∗ = 0 into Eq. (4.2), we derive

that
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d
dt
V11(t) = k

(
1 − 𝜙(x∗)

𝜙(x(t))

)[
rx(t) − rx∗ − a11(x2(t) − x∗2) + a12𝜙(x∗)S∗ + a13𝜙(x∗)I∗

]

−ka12𝜙(x(t))S(t) + ka12𝜙(x(t − 𝜏))S(t − 𝜏) − ka13𝜙(x(t))I(t) + ka12𝜙(x(t − 𝜏))I(t − 𝜏)

−ka12S∗𝜙(x∗)
𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)
+ ka12S∗𝜙(x∗)

−ka13I∗𝜙(x∗)
𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)
+ ka13I∗𝜙(x∗)

+ka12𝜙(x∗)S + ka13𝜙(x∗)I − r1S(t) + 𝛽S∗I − 𝛽I∗S(t) − r2I(t).
(4.3)

Define

V12(t) = ka12
∫

t

t−𝜏

[
𝜙(x(u))S(u) − 𝜙(x∗)S∗ − 𝜙(x∗)S∗ ln 𝜙(x(u))S(u)

𝜙(x∗)S∗

]
du,

V13(t) = ka13
∫

t

t−𝜏

[
𝜙(x(u))I(u) − 𝜙(x∗)I∗ − 𝜙(x∗)I∗ ln 𝜙(x(u))I(u)

𝜙(x∗)I∗

]
du.

(4.4)

Then,

d
dt
V12(t) = ka12

(
𝜙(x(t))S(t) − 𝜙(x(t − 𝜏))S(t − 𝜏) + 𝜙(x∗)S∗ ln 𝜙(x(t − 𝜏))S(t − 𝜏)

𝜙(x(t))S(t)

)
,

d
dt
V13(t) = ka13

(
𝜙(x(t))I(t) − 𝜙(x(t − 𝜏))I(t − 𝜏) + 𝜙(x∗)I∗ ln 𝜙(x(t − 𝜏))I(t − 𝜏)

𝜙(x(t))I(t)

)
.

(4.5)

Set V1(t) = V11(t) + V12(t) + V13(t). It follows from (4.1) (4.4), and (4.5) that

d
dt
V1(t) =k

(
1 − 𝜙(x∗)

𝜙(x(t))

)[
rx(t) − rx∗ − a11(x2(t) − x∗2) + a12𝜙(x∗)S∗ + a13𝜙(x∗)I∗

]

+ka12𝜙(x∗)S∗ ln
𝜙(x(t − 𝜏))S(t − 𝜏)

𝜙(x(t))S(t)
+ ka13𝜙(x∗)I∗ ln

𝜙(x(t − 𝜏))I(t − 𝜏)
𝜙(x(t))I(t)

−ka12S∗𝜙(x∗)
𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)
+ ka12S∗𝜙(x∗)

−ka13I∗𝜙(x∗)
𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)
+ ka13I∗𝜙(x∗)

+ka12𝜙(x∗)S + ka13𝜙(x∗)I − r1S(t) + 𝛽S∗I − 𝛽I∗S(t) − r2I(t).
(4.6)

Noting that

ln 𝜙(x(t − 𝜏))S(t − 𝜏)
𝜙(x(t))S(t)

= ln 𝜙(x(t − 𝜏))S(t − 𝜏)
S(t)𝜙(x∗)

+ ln 𝜙(x∗)
𝜙(x(t))

,

ln 𝜙(x(t − 𝜏))I(t − 𝜏)
𝜙(x(t))I(t)

= ln 𝜙(x(t − 𝜏))I(t − 𝜏)
I(t)𝜙(x∗)

+ ln 𝜙(x∗)
𝜙(x(t))

,

(4.7)

we derive from (4.7) that
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d
dt
V1(t) =k

(
1 − 𝜙(x∗)

𝜙(x(t))

)[
rx(t) − rx∗ − a11(x2(t) − x∗2)

]

−ka12𝜙(x∗)S∗
[
𝜙(x∗)
𝜙(x(t))

− 1 − ln 𝜙(x∗)
𝜙(x(t))

]
− ka13𝜙(x∗)I∗

[
𝜙(x∗)
𝜙(x(t))

− 1 − ln 𝜙(x∗)
𝜙(x(t))

]

−ka12S∗𝜙(x∗)
[
𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)
− 1 − ln 𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)

]

−ka13I∗𝜙(x∗)
[
𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)
− 1 − ln 𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)

]

+ka12𝜙(x∗)S + ka13𝜙(x∗)I − r1S(t) + 𝛽S∗I − 𝛽I∗S(t) − r2I(t).
(4.8)

On substituting ka12𝜙(x∗) = r1 + 𝛽I∗ and ka13𝜙(x∗) = r2 − 𝛽S∗ into Eq. (4.8), we

derive that

d
dt
V1(t) =k

(
1 − 𝜙(x∗)

𝜙(x(t))

)[
rx(t) − rx∗ − a11(x2(t) − x∗2)

]

−ka12𝜙(x∗)S∗
[
𝜙(x∗)
𝜙(x(t))

− 1 − ln 𝜙(x∗)
𝜙(x(t))

]
− ka13𝜙(x∗)I∗

[
𝜙(x∗)
𝜙(x(t))

− 1 − ln 𝜙(x∗)
𝜙(x(t))

]

−ka12S∗𝜙(x∗)
[
𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)
− 1 − ln 𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)

]

−ka13I∗𝜙(x∗)
[
𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)
− 1 − ln 𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)

]
.

(4.9)

Noting that 𝜙(x∗) = x∗2(t)
1 + mx∗2(t)

and 𝜙(x) = x2(t)
1 + mx2(t)

, we derive from (4.9) that

d
dt
V1(t) =k

(x + x∗)(x(t) − x∗)2

x2(t)(1 + mx∗2)
[
r − a11(x(t) + x∗))

]

−ka12𝜙(x∗)S∗
[
𝜙(x∗)
𝜙(x(t))

− 1 − ln 𝜙(x∗)
𝜙(x(t))

]
− ka13𝜙(x∗)I∗

[
𝜙(x∗)
𝜙(x(t))

− 1 − ln 𝜙(x∗)
𝜙(x(t))

]

−ka12S∗𝜙(x∗)
[
𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)
− 1 − ln 𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)

]

−ka13I∗𝜙(x∗)
[
𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)
− 1 − ln 𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)

]
.

(4.10)

Since (H2) holds, there exists a constant T > 0 such that if t ≥ T , x(t) > r∕(2a11). In

this case, we have that, for t ≥ T ,

(x + x∗)(x(t) − x∗)2

x2(t)(1 + mx∗2)
[
r − a11(x(t) + x∗))

]
≤ 0, (4.11)

with equality if and only if x = x∗. Seeing that the function f (x) = x − 1 − ln x is

always nonnegative for any x > 0, and f (x) = 0 if and only if x = 1, therefor, if t ≥ T ,

̇V1(t) ≤ 0, which equality if and only if x = x∗, S(t) = S(t − 𝜏), I(t) = I(t − 𝜏). We

now look for the invariant subset M within the set
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M = {(x, S, I) ∶ x = x∗, S(t) = S(t − 𝜏), I(t) = I(t − 𝜏)}. (4.12)

Since x = x∗, S(t) = S(t − 𝜏), I(t) = I(t − 𝜏) on M, it follows from the system (1.2)

that

0 = ẋ(t) = rx∗ − a11x∗2 −
a12x∗2S(t)
1 + mx∗2

−
a13x∗2I(t)
1 + mx∗2

,

0 = ̇S(t) =
[
k

a12x∗2

1 + mx∗2
− r1 − 𝛽I(t)

]
S(t),

0 = ̇I(t) =
[
𝛽S(t) + k

a13x∗2

1 + mx∗2
− r2

]
I(t),

(4.13)

which yields S = S∗ and I = I∗. Hence, the only invariant set in M is 𝕄 = (x∗, S∗, I∗).
Therefore, the global asymptotic stability of E∗

follows from Lasalle’s invariance

principle for delay differential systems [16]. This completes the proof. □

5 Discussion

In this paper, we have proposed and analyzed an eco-epidemiological system with

time delay due to the gestation of the predator. We assumed that a transmissible

disease spreading among the predator population, meanwhile, both the susceptible

predator and the infected predator can catch the prey. Specially, system (1.2) has no

intraspecific competition terms in the second and the third equations. In this case,

under what conditions will the global stability of a feasible equilibrium of system

(1.2) persists independent of the time delay? We established global asymptotic sta-

bility of the endemic-coexistence equilibrium of the system by means of Lyapunov

functionals and Laselle’s invariance principle. According to Theorem 4.1, we can see

that the endemic-coexistence equilibrium of system (1.2) is globally asymptotically

stable when the prey population is abundant enough.
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