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Foreword

The international conference on “Frontiers in Optimization: Theory and Appli-
cations” (FOTA 2016) from which this volume arose is a good example of inter-
disciplinary approach for optimization research.

The key questions that were in our mind while organizing the conference were:
(i) What are the important problem areas that are faced by the industries and
business sectors where optimization plays or could play a key role? (ii) What are the
tools developed by the optimization research community over the decades to
address the problems of industries and business sectors? Although these questions
were never formally posed to the speakers, partial answers were offered by the
twenty-six papers that were presented.

Durgapur, India Samarjit Kar
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Preface

The first international conference on “Frontiers in Optimization: Theory and
Applications” (FOTA 2016) was jointly organized by the Operational Research
Society of India (ORSI) and the Department of Mathematics, Heritage Institute of
Technology, Kolkata, during 24–26 November 2016 at Heritage Institute of
Technology, Kolkata, India. Several distinguished speakers from academia,
industry and business houses presented the state of the art in modelling and solved a
variety of problems that were key to optimization and its applications.

The aim of the conference was to highlight the current advances in the opti-
mization theory and its applications as well as to promote the research in this area to
encourage the researchers, scientists, engineers and practitioners from both aca-
demia and industries through exchange of their ideas, problems and solutions.
Representatives from industries like heads of research from Strand Life Sciences,
Dastur Business and Technology Consulting, Microsoft Research Lab, Department
of Atomic Energy (DAE), Government of India, participated and presented their
research works in the conference. Speakers from academia including faculties from
National Graduate Institute for Policy Studies, Tokyo, Japan; Tsinghua University,
Beijing, China; Saint Mary’s University, Halifax, Canada; Indian leading business
schools as well as faculties from engineering and operations research departments
also shared their research ideas.

FOTA 2016 received overwhelming submissions covering different areas related
to optimization theory and its applications. With the help of our program committee
and reviewers, these submissions went through an extensive peer review process.
This volume comprises twenty-six of the accepted papers, which provides a com-
prehensive overview of the current research and future scope in optimization
theory.
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The papers collated in this volume reflect both current applications of opti-
mization techniques by practitioners as well as development of new methodologies
by academic researchers. The volume is organized in three parts:

• Optimization: Theory and modelling
• Engineering and Biomedical applications
• Management applications

Durgapur, India Samarjit Kar
Kolkata, India Ujjwal Maulik
Beijing, China Xiang Li
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FOTA 2016

Use of optimization techniques in different engineering and management applica-
tions has become common practices in the last few decades. This book presents
some recent advances in optimization and its applications. Prominent researchers
from academic institutions have presented some state-of-the-art techniques in
optimization including theoretical and simulation aspects, while the contributors
from the practitioners in industry and business sectors comprise the latest tech-
niques practiced by them.

The book covers a wide range of topic: engineering optimization, logistic
management, financial optimization, and models for risk management and
diversification.

Not only the standard mathematical models were presented and analysed, but
also different problems of engineering and management applications were thor-
oughly deliberated upon to suggest mathematical models and practices for evalu-
ation and review in real-life situation.

xxi
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On Generalized Positive Subdefinite
Matrices and Interior Point Algorithm

A. K. Das, R. Jana and Deepmala

Abstract In this paper, we propose an iterative and descent type interior point

method to compute solution of linear complementarity problem LCP(q,A) given that

A is real square matrix and q is a real vector. The linear complementarity problem

includes many of the optimization problems and applications. In this context, we

consider the class of generalized positive subdefinite matrices (GPSBD) which is a

generalization of the class of positive subdefinite (PSBD) matrices. Though Lemke’s

algorithm is frequently used to solve small and medium-size LCP(q,A), Lemke’s

algorithm does not compute solution of all problems. It is known that Lemke’s algo-

rithm is not a polynomial time bound algorithm. We show that the proposed algo-

rithm converges to the solution of LCP(q,A) where A belongs to GPSBD class. We

provide the complexity analysis of the proposed algorithm. A numerical example is

illustrated to show the performance of the proposed algorithm.

Keywords Interior point algorithm ⋅ Generalized positive subdefinite matrices

(GPSBD) ⋅ Positive subdefinite matrices (PSBD) ⋅ Linear complementarity

problem
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4 A. K. Das et al.

1 Introduction

We introduce a different approach to compute the solution of linear complementarity

problem LCP(q,A) where A is real square matrix and q is a real vector. The proposed

algorithm is formulated based on iterative descent method. The linear complemen-

tarity problem contains many of the optimization problems and applications. The

class of generalized positive subdefinite matrices (GPSBD) is a generalization of

the class of positive subdefinite (PSBD) matrices [7]. We study this algorithm for

solving LCP(q,A) under A ∈ GPSBD class. The algorithm proposed by Lemke to

solve an LCP(q,A) contributed significantly to the development of the linear com-

plementarity theory. However, Lemke’s algorithm does not consider all problems.

Interior point method is another approach to solve linear complementarity problem.

If A is positive semidefinite matrix, then LCP(q,A) is solvable in polynomial time

by ellipsoid method [4], path-following method [8], projective method [5]. Fathi [3]

showed the computational complexity of LCP(q,A) related to symmetric positive

definite matrix. For details, see [2, 12] and references cited therein. We suggest an

interior point method in line with Pang [10] to compute solution of LCP(q,A) where

A belongs to GPSBD class. We claim that the proposed algorithm is useful to com-

pute solution of a large linear complementarity problem.

In Sect. 2, some results are presented that are used in the next sections. In Sect. 3,

we proposed an algorithm based on interior point method to solve linear comple-

mentarity problem. We establish some new results related to the proposed interior

point method. We prove that the proposed algorithm converges to the solutions of

the problem. We include the complexity analysis of the proposed algorithm. Finally,

we consider a numerical example to illustrate the performance of the proposed algo-

rithm.

2 Preliminaries

Rn
++ denotes the positive orthant in Rn

. For any matrix A ∈ Rn×n
, AT

denotes its trans-

pose. xi denotes the ith coordinate of the vector x. Also, xT
denotes the transpose of

x. ‖x‖ denotes the norm of the vector x.

Now we start with the definition of linear complementarity problem. Suppose

that a square matrix A of order n and an n dimensional vector q, we have to find n
dimensional vectors u and v satisfying

v − Au = q, u ≥ 0, v ≥ 0 (1)

uT v = 0. (2)

Equation (1) indicates the feasibility of the problem, and (1), (2) jointly indicate the

solution of the problem.
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Martos [6] proposed positive subdefinite (PSBD) matrices to address pseudo-

convex functions. The nonsymmetric PSBD matrices were studied to connect gen-

eralized monotonicity and the linear complementarity problem. Later, Crouzeix and

Komlósi [1] enlarged PSBD class by introducing the class of GPSBD matrices.

This class was studied in the context of the processability of linear complementar-

ity problem by Lemke’s algorithm. We recall that A is called PSBD matrix if for all

u ∈ Rn
, uTAu < 0 implies ATu is unisigned. A matrix A ∈ Rn×n

is called GPSBD

[1, 9] if ∃ ei ≥ 0 and fi ≥ 0 with ei + fi = 1, i = 1, 2,… , n such that

∀ u ∈ Rn
, uTAu < 0 ⇒

{
either − eiui + fi(ATu)i ≥ 0 for all i,
or − eiui + fi(ATu)i ≤ 0 for all i. (3)

A matrix A ∈ Rn×n
is called GPSBD if ∃ two diagonal matrices E ≥ 0 and F ≥ 0

with E + F = I such that

∀ u ∈ Rn
, uTAu < 0 ⇒

{
either − Eu + FATu ≥ 0
or − Eu + FATu ≤ 0. (4)

When E = 0, A is PSBD. A is called merely generalized positive subdefinite
(MGPSBD) matrix when A is GPSBD but not PSBD matrix.

Theorem 2.1 [10] Suppose u > 0 such that v = q + Au > 0, κ > n and ψ ∶ Rn
++ ×

Rn
++ → R such that ψ(u, v) = κ log(uTv) −

∑n
i=1 log(uivi). Then,

ψ(u, v) ≥ (κ − n)log(uTv).
Proof Note that

ψ(u, v) = κ log(uTv) −
∑n

i=1 log(uivi)
≥ κ log(uTv) − log

( 1
n

∑n
i=1(uivi)

)n

= (κ − n)log(uTv) + n log n
≥ (κ − n)log(uTv)

■

Theorem 2.2 [10] Suppose u > 0 such that v = q + Au > 0, κ > n and ψ ∶ Rn
++ ×

Rn
++ → R such that ψ(u, v) = κ log(uTv) −

∑n
i=1 log(uivi). Then,

(∇uψ(u, v))i(∇vψ(u, v))i = uivi

(
κ

uTv
− 1

uivi

)2
∀ i.

Proof Note that
(
∇uψ(u, v)

)

i =
κ

uTv
vi −

1
uivi

vi

= vi
[ κ

uTv
− 1

uivi

] .

Similarly, we show
(
∇vψ(u, v)

)

i = ui
[ κ

uTv
− 1

uivi

]
.

Hence, (∇uψ(u, v))i(∇vψ(u, v))i = uivi

(
κ

uTv
− 1

uivi

)2
∀ i. ■
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Theorem 2.3 [10] Suppose u > 0 such that v = q + Au > 0, κ > n and ψ ∶ Rn
++ ×

Rn
++ → R such that ψ(u, v) = κ log(uTv) −

∑n
i=1 log(uivi). Then,

(∇uψ(u, v))T∇vψ(u, v) > 0.

3 Results

Let u > 0, v = q + Au > 0, κ > n and ψ ∶ Rn
++ × Rn

++ → R such that ψ(u, v)
= κ log(uTv) −

∑n
i=1 log(uivi) ≥ 0. Todd et al. [11] considered this function in the

context of linear programming. We propose an interior point algorithm in line with

Pang [10] for finding solution of LCP (q,A) given that A is a MGPSBD ∩C0 with

0 < fi < 1 ∀ i. We prove the following results which are required for the proposed

algorithm.

Theorem 3.1 Suppose A ∈ MGPSBD ∩C0 with 0 < fi < 1 ∀ i. Then for u, v > 0,
∇uψ(u, v) + AT∇vψ(u, v) ≠ 0.

Proof Suppose ∇uψ(u, v) + AT∇vψ(u, v) = 0. It follows that

(∇vψ(u, v))i(AT∇vψ(u, v))i = −(∇uψ(u, v))i(∇vψ(u, v))i ≤ 0 ∀ i.

Let I1 = {i ∶ (∇vψ(u, v))i > 0} and I2 = {i ∶ (∇vψ(u, v))i < 0}. We consider fol-

lowing three cases (C1, C2, C3).

C1: I2 = ∅. Then,

(∇vψ(u, v))TA(∇vψ(u, v)) = (∇vψ(u, v))TAT (∇vψ(u, v))
=
∑

i
(∇vψ(u, v))i(AT (∇vψ(u, v)))i

≤ 0.

Since A ∈ C0, [(∇vψ(u, v))i(AT (∇vψ(u, v)))i] = 0, ∀ i.

C2: I1 = ∅. Then,

(−(∇vψ(u, v)))TAT (−(∇vψ(u, v))) = (∇vψ(u, v))TAT (∇vψ(u, v))
=
∑

i
(∇vψ(u, v))i(AT (∇vψ(u, v)))i

≤ 0.

Since A ∈ C0, [(∇vψ(u, v))i(AT (∇vψ(u, v)))i] = 0, ∀ i.

C3: Suppose ∃ (∇vψ(u, v)) such that (∇vψ(u, v))i(AT (∇vψ(u, v)))i ≤ 0 for i = 1, 2,… , n
and (∇vψ(u, v))k(AT (∇vψ(u, v)))k < 0 for at least one k ∈ {1, 2,
… , n}. Let I1 ≠ ∅ and I2 ≠ ∅.
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(∇vψ(u, v))TAT (∇vψ(u, v)) =
∑

i
[(∇vψ(u, v))i(AT (∇vψ(u, v)))i] < 0.

This implies

−ei(∇vψ(u, v))i + fi(AT (∇vψ(u, v)))i ≥ 0, ∀ i or

−ei(∇vψ(u, v))i + fi(AT (∇vψ(u, v)))i ≤ 0, ∀ i.

We assume −ei(∇vψ(u, v))i + fi(AT (∇vψ(u, v)))i ≥ 0, ∀ i.
Then, for all i ∈ I1, −ei(∇vψ(u, v))2i + fi(∇vψ(u, v))i(AT (∇vψ(u, v)))i ≥ 0.
This implies [(∇vψ(u, v))i(AT (∇vψ(u, v)))i] ≥

ei

fi
(∇vψ(u, v))2i > 0, ∀ i ∈ I1.

Therefore,

∑

i∈I1

[(∇vψ(u, v))i(AT (∇vψ(u, v)))i] > 0.

Since (∇vψ(u, v))i(AT (∇vψ(u, v)))i ≤ 0 for i = 1,… , n,
therefore, [(∇vψ(u, v))i(AT (∇vψ(u, v)))i] = 0, ∀ i. This contradicts Theorem 2.3.

Hence, ∇uψ(u, v) + AT∇vψ(u, v) ≠ 0, for u, v > 0. ■

Theorem 3.2 Suppose u and v are two positive n-vectors. U = diag(u) and V =
diag(v) and B = (U)−2 + AT (V)−2A where A ∈ Rn×n

. Then, B is symmetric positive
definite matrix.

Proof Note that

BT = [(U)−2 + AT (V)−2A]T = (U)−2 + [AT (V)−2A]T
= (U)−2 + AT (V)−2A
= (U)−2 + AT (V)−2A = B.

Hence, B is symmetric. Again,

xTAT (V)−2Ax = (Ax)T (V)−2Ax
= (y)T (V)−2y.

Since (y)T (V)−2y ≥ 0, ∀ y ∈ Rn
, AT (V)−2A is positive semidefinite. Hence, B is

positive definite. ■

We describe an interior point algorithm for solving LCP(q,A) where A ∈ MGPSBD

∩ C0.

Algorithm

Step 1: Let β, γ ∈ (0, 1) and σ ∈ (0, 1
2
) following line search step and u0

be a

strictly feasible point of LCP(q,A) and v0 = q + Au0
> 0.

∇uψk = ∇uψ(uk
, vk), ∇vψk = ∇vψ(uk

, vk)
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and

Uk = diag(uk), Vk = diag(vk).

Step 2: Now to find the search direction, consider the following problem

minimize (∇uψk)Tdu + (∇vψk)Tdv

subject to dv = Adu, ‖(Uk)−1du‖
2 + ‖(Vk)−1dv‖

2
≤ β2

.

We apply scaled gradient reduction method to obtain search direction (du, dv).
Step 3: Find mk to be the smallest m ≥ 0 integer such that

ψ(uk + γmdk
u
, vk + γmdk

v
) − ψ(uk

, vk) ≤ σγm[(∇uψk)Tdk
u
+ (∇vψk)Tdk

v
].

Step 4: Set

(uk+1
, vk+1) = (uk

, vk) + γmk (dk
u
, dk

v
).

Step 5: If (uk+1
, vk+1) satisfies the termination criterion, i.e., (uk+1)Tvk+1 ≤ ε,

where ε > 0 is a very small quantity, stop else k = k + 1.

Now to show (dk
u, d

k
v) as descent direction for the merit function, we prove the

following lemma.

Lemma 3.1 Suppose A ∈ MGPSBD ∩C0 with 0 < fi < 1 ∀ i, u > 0, v = q + Au >

0, κ > n and ψ ∶ Rn
++ × Rn

++ → R such that ψ(u, v) = κ log(uTv) −
∑n

i=1
log(uivi). If there is a pair of vectors (dk

u, d
k
v) such that (∇uψk)Tdk

u + (∇vψk)Tdk
v < 0,

then ∃ a γ ∈ (0, 1) such that ψ(uk + γmdk
u
, vk + γmdk

v
) − ψ(uk

, vk) < 0 where m is a
nonnegative integer and (dk

u, d
k
v) is said to be the descent direction.

Proof We have dk
u
= −(Ak)−1rk

τk
, dk

v
= Adk

u
from the algorithm. According to Theorem

3.1, rk = ∇uψk + AT∇vψk ≠ 0 and Ak = (Uk)−2 + AT (Vk)−2A is positive definite by

Theorem 3.2. So τk =
√
(rk)T (Ak)−1rk

β
is positive. Now we show that (∇uψk)Tdk

u +

(∇vψk)Tdk
v
< 0. We derive

(∇uψk)Tdk
u + (∇vψk)Tdk

v =
[
∇uψk + MT∇vψk

]Tdk
u

= − 1
τk
(
√
(rk)t(Mk)−1rk)2

= −τkβ
2
< 0.

Now we consider ψ(uk + γmdk
u, v

k + γmdk
v) − ψ(uk

, vk) ≤ σγm[(∇uψk)Tdk
u +

(∇vψk)Tdk
v]. Since 0 < β, γ,σ < 1, we say ψ(uk + γmdk

u, v
k + γmdk

v) −
ψ(uk

, vk) < 0. ■

We prove the following theorem to show that the proposed algorithm converges

to the solution under some defined condition.
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Theorem 3.3 If A ∈ MGPSBD ∩C0 with 0 < fi < 1 ∀ i and LCP(q,A) has a strictly
feasible solution, then every accumulation point of {uk} is the solution of LCP(q,A),
i.e., algorithm converges to the solution.

Proof Let us consider the subsequences {uk ∶ k ∈ ω}. Suppose ũ is the limit of

the subsequence and ṽ = q + Aũ. Again, we know ψ(ũ, ṽ) < ∞. So either ũT ṽ =
0 or (ũ, ṽ) > 0. If the first case happen, then we are done. So let us consider that

(ũ, ṽ) > 0. Also, suppose r̃ and ̃A are the limits of the subsequences {rk ∶ k ∈ ω} and

{Ak ∶ k ∈ ω}, respectively. Consider τ k
converges to τ̃ =

√
r̃T ̃A−1r̃
β

(> 0), where ̃A

remains positive definite. ( ̃du,
̃dv) be the limits of the sequence of direction (dk

u, d
k
v).

So from the algorithm, we get

̃du = −
̃A−1r̃
τ̃

,
̃dv = A ̃du.

Now as {ψ(uk+1
, vk+1) − ψ(uk

, vk)} converges to zero and since limmk = ∞ as k →
∞, {(uk+1

, vk+1) ∶ k ∈ ω} and {(uk + γmk−1dk
u
, vk + γmk−1dk

v
) ∶ k ∈ ω} converges to

(ũ, ṽ). As mk is the smallest nonnegative integers, we have,

ψ(uk + γmk−1dk
u, v

k + γmk−1dk
v) − ψ(uk

, vk)
γmk−1

> −σβ2τk.

Again, on the other hand, from the algorithm,

ψ(uk+1
, vk+1) − ψ(uk

, vk)
γmk

≤ −σβ2τk.

Now taking limit k → ∞, From the last two inequalities, we can write,

∇u(ψ(ũ, ṽ))T ̃du + ∇v(ψ(ũ, ṽ))T ̃dv = −στ̃β2
.

Again from Lemma 3.1, we know

(∇uψk)Tdk
u + (∇vψk)Tdk

v = −τkβ
2
.

Hence, by taking limit k → ∞, we get

∇u(ψ(ũ, ṽ))T ̃du + ∇v(ψ(ũ, ṽ))T ̃dv = −τ̃β2
.

This is a contradiction. So our proposed algorithm converges to the solution. ■
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3.1 Complexity Analysis

In our proposed algorithm, we start with a interior feasible point (u0
, v0) such that

ψ(u0
, v0) ≤ O(κL),where L is the size of input data A and q and generates a sequence

of interior feasible points {uk
, vk ∶ k ∈ ω} so that ψ(uk

, vk) ≤ −(κ − n)L. In the

algorithm, (dk
u, d

k
v) be the descent direction in the k-th iteration. Now to find the

search direction, consider the following problem

minimize (∇uψk)Tdu + (∇vψk)Tdv

subject to dv = Adu, ‖(Uk)−1du‖
2 + ‖(Vk)−1dv‖

2
≤ β2

.

According to Ye [14], we can rewrite,

[
(Uk)−1dk

u
(Vk)−1dk

v

]

= −β
αk

‖
‖α

k‖
‖
,

where

αk =
[
αk

u
αk

v

]

=

[
κ

(uTv)k
Uk(vk + ATπk) − e

κ

(uTv)k
Vk(uk − πk) − e

]

,

πk = ((Vk)2 + A(Uk)2AT )−1(Vk − AUk)(Ukvk − (uTv)k

κ
e) and e be the vector of all 1.

Now for any u, v > 0, we define

h(u, v) = κ

uTv
Uv − e and

H(u, v) = 2I − (UAT − V)(V2 + AU2AT )−1(AU − V).

‖h(u, v)‖2H denotes the H-norm so that ‖h(u, v)‖2H = hT (u, v)H(u, v)h(u, v).Now we

show that H(u, v) is positive semidefinite (PSD).

Theorem 3.4 Suppose H(u, v) = 2I − (UAT − V)(V2 + AU2AT )−1(AU − V). Then,
H(u, v) is positive semidefinite matrix.

Proof We define ℑ =
(

2I UAT − V
AU − V V2 + AU2AT

)

. ℑ11 and ℑ22 are symmetric and

positive definite. This follows that ℑ is symmetric. Now we consider the Schur com-

plement 2I − (UAT − V)(V2 + AU2AT )−1(AU − V) of ℑ22 in ℑ. According to Schur

complement lemma 2I − (UAT − V)(V2 + AU2AT )−1(AU − V) is positive semidefi-

nite. This follows H(u, v) is positive semidefinite. ■

Now ‖
‖α

k‖
‖
2 = hT (uk

, vk)H(uk
, vk)h(uk

, vk). We define the condition number

ζ(q,A) for the LCP(q,A) as
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ζ(q,A) = inf{‖h(u, v)‖2H ∶ uTv ≥ 2−L
,ψ(u, v) ≤ O(κL),u > 0, v = q + Au > 0}.

The condition number ζ(q,A) represents the degree of difficulty for the proposed

algorithm. Now we prove the following theorem.

Theorem 3.5 Let κ > n be fixed. Then, for A ∈ MGPSBD ∩C0 with 0 < fi < 1 ∀ i
and {u, v > 0, v = q + Au ∶ ψ(u, v) ≤ O(κL)} is bounded, ζ(q,A) > 0.

Proof We show that ‖h(u, v)‖2H > 0. If π = 0, then it is easy to verify that ‖h(u, v)‖2H >

0. Now if π ≠ 0, we show that ‖h(u, v)‖2H > 0. If not, then ‖h(u, v)‖2H
= 0. This follows

UATπ + Vπ = 0. (5)

However, as A ∈ MGPSBD ∩C0 with 0 < fi < 1 ∀ i, According to Theorem 3.1,

Eq. 5 can not be true. Hence, ‖h(u, v)‖2H > 0. Now uTv ≥ 2−L
and ∀ u, v > 0, v =

q + Au we have,

O(κL) ≥ ψ(u, v) = κ log(uTv) −
∑n

i=1 log(uivi)
= (κ − n + 1) log(uTv) + (n − 1) log(uTv)
−
∑

i≠j log(uivi) − log(ujvj)
≥ (κ − n + 1) log(uTv) + (n − 1) log(uTv − ujvj)
−
∑

i≠j log (uivi) − log(ujvj)
≥ (κ − n + 1) log(uTv) + (n − 1) log(n − 1) − log(ujvj)
≥ −(κ − n + 1)L + (n − 1) log(n − 1) − log(ujvj).

Therefore, log(ujvj) ≥ −O(κL) for j ∈ {1, 2,… , n}. Hence, ujvj is bounded away

from zero by e−O(κL) ∀ j. Now there exists an ε̄ independent of (u, v) such that uj ≥ ε̄
and vj ≥ ε̄ following the proof line of Proposition 4 given in [15] Therefore,

ζ(q,A) = inf{‖h(u, v)‖2H ∶ uTv ≥ 2−L
,ψ(u, v) ≤ O(κL),u > 0, v = q + Au > 0},

≥ inf{‖h(u, v)‖2H ∶ u ≥ ε̄e, v ≥ ε̄e,ψ(u, v) ≤ O(κL),u ≥ 0, v = q + Au ≥ 0}.

Now the set related to ζ(q,A) is closed and bounded and ‖h(u, v)‖2H > 0. Hence,

ζ(q,A) > 0. ■

Theorem 3.6 The proposed algorithm with κ > n and ζ(q,A) > 0 solves the LCP(q,A)
in O( nL

ξ(ζ(q,A))
) iterations.

Proof We consider the merit function ψ(u, v) = κ log(uTv) −
∑n

i=1 log(uivi).
Based on the concavity of log function, Lemma 3.1 of [14] and Sect. 3 of [13], we

have

ψ(uk + dk
u, v

k + dk
v) − ψ(uk

, vk) ≤ −β
‖
‖
‖
αk‖‖

‖
+ β2

2
(κ + 1

1 − β
).

Now letting, β = min{‖αk‖
κ+2

,

1
κ+2

} ≤ 1∕2. So we can write,
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ψ(uk + dk
u, v

k + dk
v) − ψ(uk

, vk) ≤ −ξ(‖‖
‖
αk‖‖

‖

2
), (6)

where

ξ(‖‖
‖
αk‖‖

‖

2
) =

⎧
⎪
⎨
⎪
⎩

‖αk‖
2

2(κ+2)
, if ‖

‖α
k‖
‖
2
≤

(κ+2)2

4
κ+2
8
, otherwise.

(7)

Here, ‖‖α
k‖
‖
2

is used as the amount of reduction of the potential function at k-th itera-

tion. Now we find a interior feasible point for which each component is less than 2L
.

The resulting point has a potential value less than O(nL).Now from Eq. 6, we say that

the potential function is reduced by O(ξ(ζ(q,A))) at every step of iteration. Hence,

in total of O( nL
ξ(ζ(q,A))

) iterations, we have ψ(uk
, vk) < −(κ − n)L and (uk)Tvk

< 2−L
.

■

3.2 Numerical Illustration

A numerical example is considered to demonstrate the effectiveness and efficiency

of the proposed algorithm. We consider the following example of LCP(q,A), where

A =
⎛
⎜
⎜
⎜
⎝

1 0 0 0
−2 1 0 0
4 0 1 0

10 0 0 1

⎞
⎟
⎟
⎟
⎠

and q =
⎛
⎜
⎜
⎜
⎝

−5
−4
2
8

⎞
⎟
⎟
⎟
⎠

.

It is easy to show that A is not a PSD matrix. However, A satisfies the definitions of

MGPSBD ∩ C0-matrix. We apply proposed algorithm to find solution of the given

problem. According to Theorem 3.3 algorithm converges to solution with u0
, v0

>

0. To start with, we initialize β = 0.5, γ = 0.5, σ = 0.2, κ = 5, and ε = 0.00001.

We set u0
=

⎛
⎜
⎜
⎜
⎝

10
100
100
10

⎞
⎟
⎟
⎟
⎠

and obtain v0
=

⎛
⎜
⎜
⎜
⎝

5
76
142
118

⎞
⎟
⎟
⎟
⎠

. We define diff [ψ(uk
, vk)] = ψ(uk +

γmdk
u, v

k + γmdk
v) − ψ(uk

, vk).
Table 1 summarizes the computations for the first 10 iterations, 20th, 21st iter-

ation, 45th iteration, and 46st iteration. It is clear that the sequence {uk} and {vk}
produced by the proposed algorithm converges to the solution of the given LCP(q,A),

i.e., u∗ =
⎛
⎜
⎜
⎜
⎝

5
14
0
0

⎞
⎟
⎟
⎟
⎠

and v∗ =
⎛
⎜
⎜
⎜
⎝

0
0
22
58

⎞
⎟
⎟
⎟
⎠

.
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k

ψ
(u

k ,
v

k )
dk u

dk v
di

ff
[ψ

(u
k ,

v
k )
]

1

⎛ ⎜ ⎜ ⎜ ⎜ ⎝

10
.
9

93
.
1

64
.
5

11
.
1⎞ ⎟ ⎟ ⎟ ⎟ ⎠

⎛ ⎜ ⎜ ⎜ ⎜ ⎝

5.
85

67
.
39

10
9.
88

12
7.
62

⎞ ⎟ ⎟ ⎟ ⎟ ⎠

2
0
.7

4
0
5
7

⎛ ⎜ ⎜ ⎜ ⎜ ⎝

0.
85
2

−
6.
90
8

−
35
.
52
3

1.
1⎞ ⎟ ⎟ ⎟ ⎟ ⎠

⎛ ⎜ ⎜ ⎜ ⎜ ⎝

0.
85
2

−
8.
61
2

−
32
.
11
5

9.
62

⎞ ⎟ ⎟ ⎟ ⎟ ⎠

−
1.
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Saddle Point Criteria for Semi-infinite
Programming Problems
via an 𝜼-Approximation Method

Yadvendra Singh and S. K. Mishra

Abstract In this paper, we consider a semi-infinite programming problem involv-

ing differentiable invex functions. We construct an 𝜂-approximated semi-infinite

programming problem associated with the original semi-infinite programming prob-

lem and establish relationship between its saddle point and an optimal solution. We

also establish relationship between an optimal solution of original semi-infinite pro-

gramming problem and saddle point of 𝜂-approximated semi-infinite programming

problem. Examples are given to illustrate the obtained results.

Keywords Semi-infinite programming ⋅ Generalized convexity ⋅ Optimality

conditions

1 Introduction

In semi-infinite programming problems, the term semi-infinite means finitely many

variables appear in infinitely many constraints. In recent years, semi-infinite pro-

gramming problems have been an active field of research. Vaz et al. [1] have described

how robot trajectory planning can be formulated as a semi-infinite programming

problem. Tong et al. [2] have solved an optimal power flow problem with tran-

sient stability constraints by converting it to a semi-infinite programming problem.

Vaz and Ferreira [3] have shown that air pollution control problems can be posed

as semi-infinite programming problems. Winterfeld [4] has discussed semi-infinite

programming problem in gemstone cutting industry.
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In this paper, we consider the following semi-infinite programming problem:

(SIP) min f (x)
subject to gt(x) ≤ 0, t ∈ T ,

where T is an infinite index set. Let f ∶ X → ℝ and gt ∶ X → ℝ, t ∈ T are differen-

tiable functions on nonempty open set X ⊆ ℝn
.

Optimality conditions for semi-infinite programming problems (SIP) have been

widely studied. López et al. [5] have given optimality conditions for convex nondif-

ferentiable semi-infinite programming problems which involve the notion of

Lagrangian saddle point. Recently, Kanzi [6] established some constraint qualifica-

tions and necessary optimality conditions for semi-infinite programming problems.

For more details, we refer the reader to the recent review papers by López and Still

[7] and Shapiro [8] and reference therein.

Antczak [9] introduced 𝜂-approximation method for solving a nonlinear mathe-

matical programming problems. Later, in [10], he extended 𝜂-approximation method

and established equivalence between saddle point of associated 𝜂-approximated opti-

mization problem and an optimal solution in original semi-infinite programming

problem. Ratiu et al. [11] established connections between the feasible solutions

of semi-infinite programming problems and its 𝜂-approximated semi-infinite pro-

gramming problems and obtained some connections between the optimal solution

of semi-infinite programming problems and related approximation problems.

Motivated by [6, 9–11], we construct an 𝜂-approximated semi-infinite program-

ming problem associated with the original semi-infinite programming problem. The

aim of our paper is to show how one can obtain optimality conditions of a semi-

infinite programming problem by saddle point of a less complicated 𝜂-approximated

semi-infinite programming problem.

The outline of this paper is as follows: In Sect. 2, we give some preliminary def-

initions and results which will be used in the sequel. In Sect. 3, we formulate an 𝜂-

approximated semi-infinite programming problem associated with the original semi-

infinite programming problem and establish relationship between its saddle point and

an optimal solution. In Sect. 4, we establish relationship between an optimal solution

of original semi-infinite programming problem and saddle point of 𝜂-approximated

semi-infinite programming problem.

2 Basic Definition and Results

In this section, we recall some known definitions and results which will be used in

the sequel. Given a nonempty set D ⊆ ℝn
, we denote the closure of D by D̄ and

convex cone (containing origin) by cone(D). The polar cone is defined by

D0 ∶= {d ∈ ℝn|⟨x, d⟩ ≤ 0, ∀x ∈ D},
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where ⟨., .⟩ exhibits the standard inner product in ℝn
.

The contingent cone of attainable directions to D at x̄ is defined by

A(D, x̄) ∶= {d ∈ ℝn| for all {tk} ⊂ ℝ+, tk → 0, ∃{dk} ⊂ ℝn
, dk → d ∶

x̄ + tkdk ∈ D ∀k ∈ ℕ}.

Let M ∶= {x ∈ X| gt(x) ≤ 0, t ∈ T} denotes the set of all feasible solution of prob-

lem (SIP).

Definition 1 A feasible point x̄ ∈ M is called an optimal solution of (SIP) if

f (x̄) ≤ f (x), ∀x ∈ M.

For x̄ ∈ M we consider,

T(x̄) ∶= {t ∶ T| gt(x̄) = 0} and Z(x̄) ∶= {∇gt(x̄)| t ∈ T}.

Throughout the paper, we assume that the set T(x̄), at x̄, is nonempty and let

ℝT
+ ∶= {𝜆 ≡ (𝜆t)t∈T | 𝜆t ≥ 0 and 𝜆t ≠ 0 for finitely many t ∈ T}.

The following Karush-Kuhn-Tucker type necessary optimality condition is a

direct consequence of Theorem 4.3(b) of [6].

Theorem 1 Suppose x̄ is an optimal solution of (SIP) and assume the suitable con-
straint [6] qualification holds at x̄ and cone(Z(x̄)) is closed, then there exists 𝜆̄ ∈ ℝT

+,
such that

∇f (x̄) +
∑

t∈T(x̄)
𝜆̄t∇gt(x̄) = 0. (1)

Definition 2 [12] Let f ∶ X → ℝ be a differentiable function on a nonempty set X ⊆

ℝn
, then f is said to be invex at x̄ on X with respect to 𝜂 if the following inequality

holds:

f (x) − f (x̄) ≥ ∇f (x̄)𝜂(x, x̄), ∀x ∈ X. (2)

The following Lagrangian function is associated with the problem (SIP):

L(x, 𝜆) ∶= f (x) +
∑

t∈T
𝜆t gt(x), ∀ (x, 𝜆) ∈ X ×ℝT

+.

Now, we give the definition of saddle point of the Lagrangian for (SIP).

Definition 3 A point (x̄, 𝜆̄) ∈ M ×ℝT
+ is said to be a saddle point in (SIP) if

L(x̄, 𝜆) ≤ L(x̄, 𝜆̄) ≤ L(x, 𝜆̄),∀𝜆 ∈ ℝT
+,∀x ∈ M.
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3 𝜼-Saddle Point Optimality Criteria in the
𝜼-Approximated Semi-infinite Optimization Problem

Let x̄ be a feasible point in (SIP). We consider the 𝜂-approximated semi-infinite opti-

mization problem given by

(SIP
𝜂
(x̄)) min (f (x̄) + ∇f (x̄)𝜂(x, x̄)) ,

subject to gt(x̄) + ∇gt(x̄)𝜂(x, x̄) ≤ 0, t ∈ T ,

where f , g, X are define as in problem (SIP) and 𝜂(., x̄) is differentiable at the point

x = x̄ with respect to the first component.

Let M(x̄) ∶= {x ∈ X ∶ gt(x̄) + ∇gt(x̄)𝜂(x, x̄) ≤ 0} denotes the set of all feasible solu-

tion in (SIP
𝜂
)(x̄) and let

Z′ (x̄) ∶= {∇gt(x̄)𝜂x(x̄, x̄)| t ∈ T}.

The following 𝜂-Lagrangian function is associated with the problem (SIP
𝜂
(x̄)):

L
𝜂
(x, 𝜆) ∶= f (x̄) +

∑

t∈T
𝜆tgt(x̄) + ∇f (x̄)𝜂(x, x̄) +

∑

t∈T
𝜆t∇gt(x̄)𝜂(x, x̄),

∀ (x, 𝜆) ∈ X ×ℝT
+.

Now, we give the definition of 𝜂-saddle point of the 𝜂-Lagrangian for (SIP
𝜂
(x̄)).

Definition 4 A point (x̄, 𝜆̄) ∈ M(x̄) ×ℝT
+ is said to be an 𝜂-saddle point in the

𝜂-approximate semi-infinite programming problem (SIP
𝜂
(x̄)) if

L
𝜂
(x̄, 𝜆) ≤ L

𝜂
(x̄, 𝜆̄) ≤ L

𝜂
(x, 𝜆̄), ∀𝜆 ∈ ℝT

+,∀x ∈ M(x̄). (3)

The following constraint qualifications are generalization of constraint qualifica-

tions from [6] for 𝜂-approximated semi-infinite programming problem (SIP
𝜂
(x̄)).

Definition 5 We say that the constraint qualification holds at x̄ ∈ M(x̄) for

𝜂-approximated semi-infinite programming problem (SIP
𝜂
(x̄)) if

Z′ 0(x̄) ⊆ A(M(x̄), x̄).

Now, we give the Karush-kuhn-Tucker necessary optimality condition for

𝜂-approximate semi-infinite programming problem (SIP
𝜂
(x̄)).

Theorem 2 Suppose x̄ is optimal solution of (SIP
𝜂
(x̄)) and assume that constraint

qualification from Definition 5 holds at x̄ and cone(Z′ (x̄)) is closed, then there exists
𝜆̄ ∈ ℝT

+, such that
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[

∇f (x̄) +
∑

t∈T(x̄)
𝜆̄t∇gt(x̄)

]

𝜂x(x, x̄) = 0. (4)

Proof It follows from Theorem 1.

The following theorems give the equivalence between an 𝜂-saddle point of the

𝜂-Lagrangian and an optimal solution of problem (SIP
𝜂
(x̄)).

Theorem 3 If (x̄, 𝜆̄) ∈ M(x̄) ×ℝT
+ is an 𝜂-saddle point of (SIP

𝜂
(x̄)), where 𝜂(., .) ∶

X × X → X satisfies the condition 𝜂(x, x) = 0, ∀x ∈ X, then x̄ is optimal in problem
(SIP

𝜂
(x̄)).

Proof We proceed by contradiction. Suppose that x̄ is not optimal in (SIP
𝜂
(x̄)). Then,

there exists x0 ∈ M(x̄) such that

f (x̄) + ∇f (x̄)𝜂(x0, x̄) < f (x̄) + ∇f (x̄)𝜂(x̄, x̄), (5)

gt(x̄) + ∇gt(x̄)𝜂(x0, x̄) ≤ 0, ∀ t ∈ T . (6)

Since (x̄, 𝜆̄) is an 𝜂-saddle point of (SIP
𝜂
(x̄)) and 𝜆̄ = (𝜆̄t)t∈T ∈ ℝT

+, then by (6), we

get ∑

t∈T
𝜆̄tgt(x̄) +

∑

t∈T
𝜆̄t∇gt(x̄)𝜂(x0, x̄) ≤ 0. (7)

By the Definition 4 and assumption 𝜂(x, x) = 0, the following inequality holds

f (x̄) +
∑

t∈T
𝜆tg(x̄) ≤ f (x̄) +

∑

t∈T
𝜆̄tg(x̄), ∀ 𝜆 ∈ ℝT

+.

Let 𝜆t = 0, ∀t ∈ T , then we get

∑

t∈T
𝜆̄tgt(x̄) ≥ 0. (8)

Since x̄ ∈ M and 𝜆̄ ∈ ℝT
+, then we have

∑

t∈T
𝜆̄tgt(x̄) ≤ 0. (9)

Thus, from (8) and (9), we get

∑

t∈T
𝜆̄tgt(x̄) = 0. (10)

From (5), (7), and (10), we get
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f (x̄) +
∑

t∈T
𝜆̄tgt(x̄) + ∇f (x̄)𝜂(x0, x̄) +

∑

t∈T
𝜆̄t∇xgt(x̄)𝜂(x0, x̄)

< f (x̄) +
∑

t∈T
𝜆̄tgt(x̄) + ∇f (x̄)𝜂(x̄, x̄) +

∑

t∈T
𝜆̄t∇xgt(x̄)𝜂(x̄, x̄).

Hence, we obtain the following inequality:

L
𝜂
(x0, 𝜆̄) < L

𝜂
(x̄, 𝜆̄),

which contradicts (3). This completes the proof.

Theorem 4 Let f (x̄) + ∇f (x̄)𝜂(., x̄) and gt(x̄) + ∇gt(x̄)𝜂(., x̄), ∀t ∈ T are invex at x̄
on M(x̄) with respect to the same function, but not necessary with respect to the
function 𝜂 and moreover we assume that constraints qualification from Definition 5
holds at x̄. If x̄ is an optimal solution in (SIP

𝜂
(x̄)), then there exists 𝜆̄ ∈ ℝT

+ such that
(x̄, 𝜆̄) is an 𝜂-saddle point in (SIP

𝜂
(x̄)).

Proof Since f (x̄) + ∇f (x̄)𝜂(., x̄) and gt(x̄) + ∇gt(x̄)𝜂(., x̄) ∀t ∈ T are invex at x̄ on

M(x̄), then there exists a function 𝜑 ∶ M(x̄) × M(x̄) → M(x̄) such that, for all x ∈
M(x̄), the following inequality holds

f (x̄) + ∇f (x̄)𝜂(x, x̄) ≥ f (x̄) + ∇f (x̄)𝜂(x̄, x̄) + ∇f (x̄)𝜂x(x̄, x̄)𝜑(x, x̄), (11)

gt(x̄) + ∇gt(x̄)𝜂(x, x̄) ≥ gt(x̄) + ∇gt(x̄)𝜂(x̄, x̄) + ∇gt(x̄)𝜂x(x̄, x̄)𝜑(x, x̄), ∀t ∈ T . (12)

Let 𝜆̄ ∈ ℝT
+, therefore from (12), we get

∑

t∈T
𝜆̄tgt(x̄) +

∑

t∈T
𝜆̄t∇gt(x̄)𝜂(x, x̄)

≥

∑

t∈T
𝜆̄tgt(x̄) +

∑

t∈T
𝜆̄t∇gt(x̄)𝜂(x̄, x̄) +

∑

t∈T
𝜆̄t∇gt(x̄)𝜂x(x̄, x̄)𝜑(x, x̄). (13)

Adding both sides of inequality (11) and (13) and using the necessary optimality

condition for (SIP
𝜂
(x̄)) and define 𝜆̄t = 0, t ∉ T(x̄), we get

f (x̄) +
∑

t∈T
𝜆̄tgt(x̄) + ∇f (x̄)𝜂(x, x̄) +

∑

t∈T
𝜆̄t∇g(x̄)𝜂(x, x̄)

≥ f (x̄) +
∑

t∈T
𝜆̄tgt(x̄) + ∇f (x̄)𝜂(x̄, x̄) +

∑

t∈T
𝜆̄t∇gt(x̄)𝜂(x̄, x̄).

Thus,

L
𝜂
(x, 𝜆̄) ≥ L

𝜂
(x̄, 𝜆̄), ∀x ∈ M(x̄).

Since x̄ ∈ M(x̄), then

gt(x̄) + ∇gt(x̄)𝜂(x̄, x̄) ≤ 0, ∀t ∈ T ,
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Therefore for all 𝜆 ∈ ℝT
+, we get

∑

t∈T
𝜆tgt(x̄) +

∑

t∈T
𝜆t∇gt(x̄)𝜂(x̄, x̄) ≤ 0,

Since 𝜆̄t = 0, t ∉ T(x̄), thus we get

f (x̄) + ∇f (x̄)𝜂(x̄, x̄) +
∑

t∈T
𝜆tgt(x̄) +

∑

t∈T
𝜆t∇gt(x̄)𝜂(x̄, x̄)

≥ f (x̄) +
∑

t∈T
𝜆̄tgt(x̄) + ∇f (x̄)𝜂(x̄, x̄) +

∑

t∈T
𝜆̄t∇gt(x̄)𝜂(x̄, x̄),

f (x̄) + ∇f (x̄)𝜂(x̄, x̄) +
∑

t∈T
𝜆tgt(x̄) +

∑

t∈T
𝜆t∇gt(x̄)𝜂(x̄, x̄)

≥ f (x̄) +
∑

t∈T
𝜆̄tgt(x̄) + ∇f (x̄)𝜂(x̄, x̄) +

∑

t∈T
𝜆̄t∇gt(x̄)𝜂(x̄, x̄).

Hence, we obtain the following inequality:

L
𝜂
(x̄, 𝜆) ≤ L

𝜂
(x̄, 𝜆̄), ∀𝜆 ∈ ℝT

+.

4 𝜼-Saddle Point Optimality Criteria in the Semi-infinite
Optimization Problem

In this section, we show the equivalence between the semi-infinite programming

problem (SIP) and its 𝜂-approximated semi-infinite problem. We shall use the fol-

lowing lemma to prove our main results.

Lemma 1 [11] Let x̄ ∈ M and assume that gt,∀t ∈ T is differentiable invex function
at x̄ on Mwith respect to same 𝜂, then

M ⊆ M(x̄).

The following example shows that the invexity imposed in the above lemma is

essential.

Example 1 Let gt ∶ ℝ → ℝ, the function defined by

gt(x) = x3 − t, t ∈ ℕ.

We observe that feasible set M = {x ∈ ℝ ∶ gt(x) ≤ 0} = (−∞, 1].
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It is easy to verify that for x̄ = −1 and the function 𝜂 ∶ ℝ ×ℝ → ℝ, defined by

𝜂(x, y) = x − y, gt, t ∈ ℕ are not invex.

For x̄ = −1, we have M(x̄) = {x ∈ ℝ ∶ gt(x̄) + ∇gt(x̄)𝜂(x, x̄) ≤ 0} = (−∞,−1
3
].

Hence,

M ⊈ M(x̄).

The following theorems give the equivalence between an 𝜂-saddle point of the

𝜂-Lagrangian and an optimal solution of the problem (SIP).

Theorem 5 Let x̄ be a feasible solution in semi-infinite programming problem (SIP).
We assume that f (⋅) and gt(⋅),∀t ∈ T are invex at x̄ on M with respect to 𝜂 satisfying
the condition 𝜂(x̄, x̄) = 0. If (x̄, 𝜆̄) ∈ M(x̄) ×ℝT

+ is an 𝜂-saddle point in the (SIP
𝜂
(x̄)),

then x̄ is optimal in the original mathematical programming problem (SIP).

Proof Since (x̄, 𝜆̄) ∈ M(x̄) ×ℝT
+ is an 𝜂-saddle point in the 𝜂-approximate semi-

infinite programming problem (SIP
𝜂
(x̄)), then by Definition 4, we have

L
𝜂
(x̄, 𝜆) ≤ L

𝜂
(x̄, 𝜆̄), ∀𝜆 ∈ ℝT

+.

Using the definition of an 𝜂- Lagrange function in the problem (SIP
𝜂
(x̄)), we have

f (x̄) +
∑

t∈T
𝜆tgt(x̄) + ∇f (x̄)𝜂(x̄, x̄) +

∑

t∈T
𝜆t∇gt(x̄)𝜂(x̄, x̄)

≥ f (x̄) +
∑

t∈T
𝜆̄tgt(x̄) + ∇f (x̄)𝜂(x̄, x̄) +

∑

t∈T
𝜆̄t∇gt(x̄)𝜂(x̄, x̄),∀𝜆 ∈ ℝT

+.

Let 𝜆t = 0, ∀t ∈ T and 𝜂(x̄, x̄) = 0, we get

∑

t∈T
𝜆̄tgt(x̄) ≥ 0. (14)

Since x̄ ∈ M and 𝜆̄ ∈ ℝT
+, then we have

∑

t∈T
𝜆̄tgt(x̄) ≤ 0, (15)

from (14) and (15), we get ∑

t∈T
𝜆̄tgt(x̄) = 0. (16)

By the Definition 4 of 𝜂-saddle point of 𝜂-lagrangian, we have

L
𝜂
(x̄, 𝜆) ≤ L

𝜂
(x, 𝜆),∀x ∈ M(x).

Using the definition of an 𝜂- Lagrange function in the problem (SIP
𝜂
(x̄)), we have
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f (x̄) +
∑

t∈T
𝜆tgt(x̄) + ∇f (x̄)𝜂(x̄, x̄) +

∑

t∈T
𝜆t∇gt(x̄)𝜂(x̄, x̄)

≤ f (x̄) +
∑

t∈T
𝜆̄tgt(x̄) + ∇f (x̄)𝜂(x, x̄) +

∑

t∈T
𝜆̄t∇gt(x̄)𝜂(x, x̄),∀x ∈ M(x),

and so,

∇f (x̄)𝜂(x, x̄) +
∑

t∈T
𝜆̄t∇gt(x̄)𝜂(x, x̄) ≥ 0,∀x ∈ M(x̄). (17)

Since f , gt(⋅),∀t ∈ T are invex with respect to 𝜂, then we have

f (x) − f (x̄) ≥ ∇f (x̄)𝜂(x, x̄), ∀x ∈ M, (18)

gt(x) − gt(x̄) ≥ ∇gt(x̄)𝜂(x, x̄), ∀x ∈ M, t ∈ T . (19)

Hence, by 𝜆̄ ∈ ℝT
+, we get

∑

t∈T
𝜆̄tgt(x) −

∑

t∈T
𝜆̄tgt(x̄) ≥

∑

t∈T
𝜆̄t∇gt(x̄)𝜂(x, x̄), ∀x ∈ M. (20)

Therefore by (16), we get

∑

t∈T
𝜆̄tgt(x) ≥

∑

t∈T
𝜆̄t∇xgt(x̄)𝜂(x, x̄), ∀x ∈ M. (21)

Since x ∈ M, then by feasibility condition of (SIP), we have

∑

t∈T
𝜆̄tgt(x) ≤ 0. (22)

Therefore, by (22) and (21), we get

∑

t∈T
𝜆t∇gt(x)𝜂(x, x̄) ≤ 0,∀x ∈ M. (23)

Since by Lemma 1, it follows that M ⊆ M(x̄), then by (23) and (17), we get

∇f (x)𝜂(x, x̄) ≥ 0, ∀x ∈ M. (24)

Hence by (18) and (24)

f (x) ≥ f (x̄), ∀x ∈ M.

Therefor, x̄ is optimality in (SIP).

Theorem 6 Let x̄ be an optimal solution for semi-infinite programming problem
(SIP) and assume that a suitable constraint qualification [6] holds at x̄ and cone(Z(x̄))
is closed. Further, assume that f (⋅) and gt(⋅),∀t ∈ T are invex with respect to the
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same 𝜂 at x̄ on M. Then, there exists 𝜆̄ ∈ ℝT
+ such that (x̄, 𝜆̄) is an 𝜂-saddle point in

its 𝜂-approximated semi-infinite programming problem (SIP
𝜂
(x̄)).

Proof Since x̄ is optimal solution for SIP and a suitable constraint qualification holds

and cone(Z(x̄)) is closed, then by Theorem 1, the following inequality is obviously

fulfilled

L
𝜂
(x̄, 𝜆̄) ≤ L

𝜂
(x, 𝜆̄), ∀x ∈ M(x̄).

By optimality condition, we have

∑

t∈T
𝜆̄tgt(x̄) +

[

∇f (x̄) +
∑

t∈T
𝜆̄t∇gt(x̄)

]

𝜂(x̄, x̄) = 0. (25)

Since gt(⋅), t ∈ T are invex at x̄ on M with respect to 𝜂 then by Lemma 1 M ⊆ M(x̄),
then the inequality (23) holds at x̄ ∈ M. Hence, we get

∑

t∈T
𝜆t∇gt(x̄)𝜂(x̄, x̄) ≤ 0. (26)

Since f is invex at x̄ on M, then

f (x) − f (x̄) ≥ ∇f (x̄)𝜂(x, x̄), ∀x ∈ M. (27)

Therefore by putting x = x̄, we get

∇f (x̄)𝜂(x̄, x̄) ≤ 0, ∀x ∈ M. (28)

For x̄ ∈ M and 𝜆 ∈ ℝT
+, we have

∑

t∈T
𝜆tgt(x̄) ≤ 0. (29)

Hence, from (26), (28), and (29), we get

∑

t∈T
𝜆tgt(x̄) +

∑

t∈T
𝜆t∇xgt(x̄)𝜂(x̄, x̄) + ∇f (x̄)𝜂(x̄, x̄) ≤ 0. (30)

Hence, by (25) and (30), we get

f (x̄) +
∑

t∈T
𝜆tgt(x̄) + ∇f (x̄)𝜂(x̄, x̄) +

∑

t∈T
𝜆t∇gt(x̄)𝜂(x̄, x̄)

≤ f (x̄) +
∑

t∈T
𝜆̄tgt(x̄) + ∇f (x̄)𝜂(x̄, x̄) +

∑

t∈T
𝜆̄t∇gt(x̄)𝜂(x̄, x̄),

holds for all 𝜆 ∈ ℝT
+. Then, we have
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L
𝜂
(x̄, 𝜆) ≤ L

𝜂
(x̄, 𝜆̄), ∀𝜆 ∈ ℝT

+.

Example 2 We consider the following mathematical programming problem:

(SIP) min f (x) = (x − 1)2

subject to gt(x) = tx ≤ 0, ∀t ∈ ℕ.

The feasible solution for problem (SIP) is M ∶= {x ∈ ℝ ∶ −∞ < x ≤ 0}. Let x̄ = 0
be any feasible point. For 𝜂(x, x̄) = x − x̄, it is easy that to prove that f and gt,∀t ∈ T
are invex with respect 𝜂 at x̄ on M.

Thus, we obtain the following linear optimization problem:

(SIP
𝜂
(0)) min 1 − 2x

subject to tx ≤ 0, t ∈ N.

The 𝜂-approximated Lagrangian L
𝜂

of problem (SIP
𝜂
(0)) is

L
𝜂
(x, 𝜆) = 1 − 2x +

∑

t∈N
𝜆ttx = 1 − 2x + (𝜆1 + 2𝜆2 +⋯)x.

It is easy to show by Definition that (x̄, 𝜆̄), where x̄ = 0 and 𝜆̄ = (1, 0,⋯) is an saddle

point of 𝜂-approximated Lagrangian L
𝜂

in the problem (SIP
𝜂
(0)). Then, by Theorem

5, we conclude that x̄ is optimal in considered semi-infinite programming problem

(SIP).

Remark 1 Not that there exists more than one 𝜂 satisfying all conditions of the

Theorem 5. In another words, there exists more than one 𝜂-approximated semi-

infinite programming problem (SIP
𝜂
(x̄)) associated with original semi-infinite pro-

gramming problem (SIP).

Let 𝜂(x, x̄) = exp(x) − exp(x̄) in the above example. It is easy to verify that functions

f and gt, t ∈ ℕ are invex with respect to that 𝜂.

Then, we get the following associated nonlinear 𝜂-approximated semi-infinite pro-

gramming problem

(SIP
𝜂
(0)) min 3 − 2 exp(x)

subject to t(exp(x) − 1) ≤ 0, t ∈ N.

It is easy to show that (x̄, 𝜆̄), where x̄ = 0 and 𝜆̄ = (1, 0,⋯) is an saddle point of

𝜂-approximated Lagrangian L
𝜂

in the problem (SIP
𝜂
(0)). Then, by Theorem 5, we

conclude that x̄ is optimal in considered semi-infinite programming problem (SIP).
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5 Conclusions

In this paper, we have constructed an 𝜂-approximated semi-infinite programming

problem to solve original problem using saddle point criteria. We have established

relationship among an optimal solution of semi-infinite programming problem and

saddle point of associated 𝜂-approximated semi-infinite programming problem. In

future, 𝜂-approximated method given in this paper can be extended to nonsmooth

case.
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A Solution Approach to Multi-level
Nonlinear Fractional Programming
Problem

Suvasis Nayak and A. K. Ojha

Abstract This paper studies multi-level nonlinear fractional programming problem

(ML-NLFPP) of maximization type and proposes a solution approach which is based

on the concept of fuzzy and simultaneous minimization, maximization of the objec-

tives from their ideal, anti-ideal values, respectively. Nonlinear polynomial functions

are considered as the numerators and denominators of the fractional objectives at

each level. In the objective space, distance function or Euclidean metric is imple-

mented to measure the distances between numerators, denominators and their ideal,

anti-ideal values which need to be minimized and maximized. Goals for the con-

trolled decision variables of upper levels are ascertained from the individual best

optimal solutions of the corresponding levels, and tolerances are defined by deci-

sion makers to avoid the situation of decision deadlock. Fuzzy goal programming

with reduction of only under-deviation from the highest membership value derives

the best compromise solution of the concerned multi-level problem. An illustrative

numerical example is discussed to demonstrate the solution approach and its effec-

tiveness.

Keywords Multi-level programming ⋅ Fractional programming ⋅ Distance

function ⋅ Fuzzy goal programming ⋅ Best compromise solution

1 Introduction

Multi-level programming problems(MLPP) arise in hierarchical organizations com-

prising multiple interactive decision-making units or decision makers (DM) to solve

decentralized planning problems where DM at each level controls a set of decision

variables independently. Some common characteristics [1] of MLPP are: DMs are

S. Nayak (✉) ⋅ A. K. Ojha

School of Basic Sciences, Indian Institute of Technology Bhubaneswar,

Bhubaneswar, India

e-mail: sn14@iitbbs.ac.in

A. K. Ojha

e-mail: akojha@iitbbs.ac.in

© Springer Nature Singapore Pte Ltd. 2018

S. Kar et al. (eds.), Operations Research and Optimization, Springer Proceedings

in Mathematics & Statistics 225, https://doi.org/10.1007/978-981-10-7814-9_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7814-9_3&domain=pdf


30 S. Nayak and A. K. Ojha

interactive in nature within the hierarchical structure; decisions are sequentially pro-

cessed from upper to lower level; each level DM tries to maximize its own benefit but

their decisions are affected by the actions and reactions of each other and sometimes

causes a situation of decision deadlock. Thus, DMs must possess a compromising

and cooperative motivation for determination of a solution for the overall benefit of

the system at which each level DM gains a minimum standard of satisfaction. MLPP

are extremely useful to decentralized systems [1] such as agriculture, transporta-

tion, network design, government policy, finance, economic system. In many real-

world decision-making situations, objectives in form of fraction ( f
N (x)
f D(x)

) of physical

and/or economical quantities are encountered to be optimized [2], e.g., profit/cost,

output/employ, debit/equity, risk assets/capital. Such mathematically modelled opti-

mization problems belong to the class of fractional programming in which objectives

are defined as ratio of linear or nonlinear functions. Multi-level fractional program-

ming can be encountered [3, 4] in the fields of control theory, resource allocation,

complex network design, pattern recognition and so forth.

Bi-level and tri-level problems belong to the class of multi-level programming,

and bi-level programming problems are most considerably studied in the literature.

Shih et al. [1] extended the concept of satisfactory solution of Lai [5] to solve MLPP

using fuzzy membership functions and Zimmermanns [6] max-min operator tech-

nique. White [7] developed a penalty function approach to solve a tri-level program-

ming problem. Osman et al. [8] implemented tolerance membership functions to

solve a tri-level nonlinear multi-objective problem, whereas Zhang et al. [9] pro-

posed Kth best algorithm to solve linear tri-level problem.

Pramanik and Roy [10] developed fuzzy goal programming (FGP) to solve MLPP

by extending goal programming (GP) approach of Mohamed [11]. Baky [12] used

FGP to solve a multi-level multi-objective programming problem (MLMOPP) and

proposed technique for order preference by similarity to ideal solution (TOPSIS)

[13] algorithm to solve multi-level nonlinear multi-objective decision-making prob-

lems. Abo-Sinna and Baky [14] proposed interactive balance space approach to

solve MLMOPP. Sinha [15] used fuzzy mathematical programming to solve MLPP.

Lachhwani [16] proposed FGP approach to solve MLMOPP with linear objectives

and linear fractional objectives [4]. In literature, almost all works on MLPP deal

with linear or non-linear objectives but the proposed method solves MLPP with the

objectives are defined as fraction of non-linear polynomial functions which is not

supposed to be studied earlier.

The paper is organized as follows: Following introduction, Sect. 2 interprets the

mathematical formulation of ML-NLFPP and Sect. 3 incorporates some basic ideas

about distance functions. The details of the proposed solution technique and a step-

wise algorithm are explained in Sect. 4. A numerical example is worked out in Sect. 5

to demonstrate the proposed solution approach. Finally, some conclusions are incor-

porated in Sect. 6.
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2 Mathematical Formulation of ML-NLFPP

Consider a q-level mathematical programming which comprises its objectives as

nonlinear fractional functions at each level. DMi denotes the decision maker at ith
level and controls a set of decision variables Xi independently. The ML-NLFPP of

maximization type can be formulated as follows:

Level-1: max
X1

f1(x) =
f N1 (x)
f D1 (x)

=

r1∑

j=1
c1jx

𝛼
(1)
j1

1 x
𝛼
(1)
j2

2 ... x
𝛼
(1)
jn

n

r′1∑

j=1
d1jx

𝛽
(1)
j1
1 x

𝛽
(1)
j2
2 ... x

𝛽
(1)
jn
n

where X2,X3, ...,Xq solve,

Level-2: max
X2

f2(x) =
f N2 (x)
f D2 (x)

=

r2∑

j=1
c2jx

𝛼
(2)
j1

1 x
𝛼
(2)
j2

2 ... x
𝛼
(2)
jn

n

r′2∑

j=1
d2jx

𝛽
(2)
j1
1 x

𝛽
(2)
j2
2 ... x

𝛽
(2)
jn
n

⋮
where Xq solves

Level-q: max
Xq

fq(x) =
f Nq (x)
f Dq (x)

=

rq∑

j=1
cqjx

𝛼

(q)
j1

1 x
𝛼

(q)
j2

2 ... x
𝛼

(q)
jn

n

r′q∑

j=1
dqjx

𝛽

(q)
j1
1 x

𝛽

(q)
j2
2 ... x

𝛽

(q)
jn
n

subject to

x = (X1,X2, ...,Xq) ∈ 𝛺 = {gi(x)(≤,=,≥)0, x > 0, i = 1, 2, ..., r} ≠ 𝜙, or

x = (X1,X2, ...,Xq) ∈ 𝛺 = {A1X1 + A2X2 +⋯ + AqXq(≤,=,≥)b, x > 0}
≠ 𝜙

where,

X1 = (x11, x12, ..., x1n1 ) ∈ Rn1 , X2 = (x21, x22, ..., x2n2 ) ∈ Rn2 , …, Xq = (xq1, xq2, ...,
xqnq ) ∈ Rnq , x = (X1,X2, ...,Xq) ∈ Rn

, i.e., n = n1 + n2 +⋯ + nq and f Ni , f Di ∶ Rn → R,

cij, dij ∈ R and 𝛼
(i)
jk , 𝛽

(i)
jk ∈ R+

for i = 1, 2, ..., q, k = 1, 2, ..., n.

gi(x) are nonlinear constraints whereas a set of linear constraints is produced by

A1 ∈ Rm×n1 , A2 ∈ Rm×n2 , ...,Aq ∈ Rm×nq , b ∈ Rm
and 𝛺 is assumed to be a convex

feasible region of constraints.

3 Some Basics of Distance Function

Consider a vector of objective functions F(x) = (f1(x), f2(x), ..., fk(x)) in

k-dimensional objective space of a multi-objective optimization problem (MOOP)

of maximization type. Let F∗ = (f ∗1 , f
∗
2 , ..., f

∗
k ) and F̄ = (f̄1, f̄2, ..., f̄k) be the ideal or

reference point and the anti-ideal or nadir point, respectively, where:

f ∗i = max
x∈𝛺

fi(x), f̄i = min
x∈𝛺

fi(x) for i = 1, 2, ..., k
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Define the following vectors FIP
and FNP

in the objective space.

FIP(x) = (f ∗1 − f1(x), f ∗2 − f2(x), ..., f ∗k − fk(x))
FNP(x) = (f1(x) − f̄1, f2(x) − f̄2, ..., fk(x) − f̄k)

As we consider a problem of maximization type, (F∗ − F(x)) and (F(x) − F̄) need

to be minimized and maximized, respectively, to obtain the best compromise solu-

tion. Define the following distance functions or Lp-metrics in the objective space to

optimize the differences.

dp(FIP(x)) = [
k∑

i=1
𝛾
p
i {

f ∗i −fi(x)
f ∗i −f̄i

}p]
1
p =

k∑

i=1
𝛾
p
i {𝜇

min
fi

(x)}p]
1
p , 1 ≤ p < ∞

dp(FIP(x)) = max
1≤i≤k

[𝛾i{
f ∗i −fi(x)
f ∗i −f̄i

}] = max
1≤i≤k

[𝛾i{𝜇min
fi

(x)}], p = ∞

dp(FNP(x)) = [
k∑

i=1
𝛾
p
i {

fi(x)−f̄i
f ∗i −f̄i

}p]
1
p =

k∑

i=1
𝛾
p
i {𝜇

max
fi

(x)}p]
1
p , 1 ≤ p < ∞

dp(FNP(x)) = max
1≤i≤k

[𝛾i{
fi(x)−f̄i
f ∗i −f̄i

}] = max
1≤i≤k

[𝛾i{𝜇max
fi

(x)}], p = ∞

where, 𝛾i (i = 1, 2, ..., k) are the relative weights assigned to the objectives in order

of their preference by the decision maker and also are usually assumed to be positive

and normalized. Each of the deviations {f ∗i − fi(x)} and {fi(x) − f̄i}, i = 1, 2, ..., k is

divided by the largest possible deviation {f ∗i − f̄i} for achieving the values in [0, 1].
As f̄i ≤ fi(x) ≤ f ∗i , 𝜇

min
fi

(x) and 𝜇
max
fi

(x) can be treated as fuzzy linear membership

functions of the objectives fi(x) of minimization and maximization type, respectively.

In our proposed method, we have considered the Euclidean metric, i.e., p = 2, for

computations required in numerical problems. As we deal with the Lp-metric in finite

dimensional objective space, other values of p ≠ 2 can also be considered. More

about these results can be found in [17, 18].

4 Proposed Method to Solve ML-NLFPP

As we consider a multi-level problem which involves fractional objectives of max-

imization type at each level, max
x∈𝛺

f Ni (x)
f Di (x)

, i = 1, 2, ..., q occurs when f Ni (x) and f Di (x)
simultaneously attain their best possible maximum and minimum values, respec-

tively, on the constrained feasible region. Thus at each level-i, the problem is refor-

mulated as a multi-objective optimization problem with non-fractional objectives as:

{max f Ni (x),min f Di (x)} subject to x ∈ 𝛺

To obtain the best and worst values of f Ni (x) and f Di (x), optimize them individually

over the feasible region of constraints.

max f Ni (x) = f N∗

i , min f Ni (x) = f̄ Ni , min f Di (x) = f D∗

i , max f Di (x) = f̄ Di
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The range of variations for numerator and denominator functions at each level is

computed as:

f̄ Ni ≤ f Ni (x) ≤ f N∗

i and f D∗

i ≤ f Di (x) ≤ f̄ Di , i = 1, 2, ..., q

At each level-i, the ideal and anti-ideal objective points for (f Ni (x), f
D
i (x)) are

obtained as (f N∗

i , f D∗

i ) and (f̄ Ni , f̄
D
i ), respectively. Construct the following distance

functions separately for each level-i = 1, 2, ..., q.

dp(F∗
i ) = [𝜆pi {

f N∗i −f Ni (x)
f N∗i −f̄ Ni

}p + 𝛽
p
i {

f Di (x)−f D∗i

f̄ Di −f D∗i
}p]

1
p

dp(F̄i) = [𝜆pi {
f Ni (x)−f̄ Ni
f N∗i −f̄ Ni

}p + 𝛽
p
i {

f̄ Di −f Di (x)
f̄ Di −f D∗i

}p]
1
p

dp(F∗
i ) and dp(F̄i) need to be simultaneously minimized and maximized, respectively,

to maintain shortest and farthest distance from the best and worst values of the objec-

tives so as to determine the best compromise solution of the ML-NLFPP. Thus, at

each level-i, the problem is formulated as:

Problem-Pi: {min dp(F∗
i ),max dp(F̄i)} subject to x ∈ 𝛺

Evaluate the aspired (best) and acceptable (worst) values of dp(F∗
i ) and dp(F̄i) as

follows:

d∗minp (Fi) = min
x∈𝛺

dp(F∗
i ) which occurs at x = xF∗

i

d̄p
max(Fi) = max

x∈𝛺
dp(F̄i) which occurs at x = xF̄i

d∗maxp (Fi) = max
x∈𝛺

dp(F∗
i ), d̄p

min(Fi) = min
x∈𝛺

dp(F̄i)

This is suggested that d∗maxp (Fi) and d̄p
min(Fi) can also be evaluated as:

d∗maxp (Fi) = dp(F∗
i (xF̄i

)) and d̄p
min(Fi) = dp(F̄i(xF∗

i
))

Finally, the range of variations for dp(F∗
i ) and dp(F̄i) is obtained as:

d∗minp (Fi) ≤ dp(F∗
i ) ≤ d∗maxp (Fi), d̄p

min(Fi) ≤ dp(F̄i) ≤ d̄p
max(Fi)

Construct the following fuzzy linear membership functions for dp(F∗
i ) and dp(F̄i)

at each level-i = 1, 2, ..., q as follows:

𝜇dp(F∗
i )
(x) =

⎧
⎪
⎨
⎪
⎩

1, dp(F∗
i ) ≤ d∗minp (Fi)

d∗maxp (Fi)−dp(F∗
i )

d∗maxp (Fi)−d∗minp (Fi)
, d∗minp (Fi) < dp(F∗

i ) ≤ d∗maxp (Fi)

0, dp(F∗
i ) > d∗maxp (Fi)

𝜇dp(F̄i)(x) =
⎧
⎪
⎨
⎪
⎩

1, dp(F̄i) ≥ d̄p
max(Fi)

dp(F̄i)−d̄p
min(Fi)

d̄p
max(Fi)−d̄p

min(Fi)
, d̄p

min(Fi) ≤ dp(F̄i) < d̄p
max(Fi)

0, dp(F̄i) < d̄p
min(Fi)
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As decisions of upper-level DMi are expressed through their respective controlled

decision variables, the goals for Xi can be determined by solving the following prob-

lem separately for each i = 1, 2, ..., q − 1 except the qth level.

Problem-P
′

i: max {𝜇dp(F∗
i )
(x), 𝜇dp(F̄i)(x)} subject to x ∈ 𝛺

To solve the above problem, fuzzy membership goals can be expressed as:

𝜇dp(F∗
i )
(x) + d∗−i − d∗+i = 1, 𝜇dp(F̄i)(x) + d̄−i − d̄+i = 1

where, d∗−i , d̄−i and d∗+i , d̄+i are under and over deviational variables with d∗−i , d̄−i ,

d∗+i , d̄+i ≥ 0 and d∗−i .d∗+i = 0, d̄−i .d̄
+
i = 0. As over deviation from the highest mem-

bership value unity(1) represents the state of complete achievement, only under devi-

ational variables are considered to be minimized to solve the Problem-P
′

i which can

be reformulated as:

Problem − P′′

i

min (d∗−i + d̄−i )
subject to

𝜇dp(F∗
i )
(x) =

d∗maxp (Fi) − dp(F∗
i )

d∗maxp (Fi) − d∗minp (Fi)
+ d∗−i ≥ 1

𝜇dp(F̄i)(x) =
dp(F̄i) − d̄p

min(Fi)

d̄p
max(Fi) − d̄p

min(Fi)
+ d̄−i ≥ 1

x ∈ 𝛺, d∗−i , d̄−i ≥ 0

On solving Problem-P
′′

i separately for each i = 1, 2, ..., (q − 1) by DMi, the

corresponding solutions are obtained as x∗i = (Xi∗
1 ,X

i∗
2 , ...,X

i∗
q ). So, the goals for

the controlled decision variables X1,X2, ...,Xq−1 are obtained as X1∗
1 ,X2∗

2 , ...,X(q−1)∗
q−1 ,

respectively. DMi declares some positive and negative tolerances to the goals Xi∗
i

for its controlled decision variables Xi as relaxation to avoid the situation of decision

deadlock. Thus,Xi can be treated as a triangular fuzzy number as (Xi∗
i − I−i ,X

i∗
i ,X

i∗
i +

I+i ). I
−
i and I+i are not necessarily same and defined by DMi considering the practical

problem.

Construct the following fuzzy membership functions for the controlled decision

variables Xi at each level-i = 1, 2, ..., q − 1.

𝜇X̃i
(Xi) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

Xi−Xi∗
i +I

−
i

I−i
, Xi∗

i − I−i ≤ Xi ≤ Xi∗
i

Xi∗
i +I

+
i −Xi

I+i
, Xi∗

i ≤ Xi ≤ Xi∗
i + I+i

0, otherwise

Figures 1, 2, and 3 represent the linear membership functions for the distance

functions dp(F̄i), dp(F∗
i ) and the controlled decision variables Xi, respectively.
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Fig. 1 Membership

function for dp(F̄i)

Fig. 2 Membership

function for dp(F∗
i )

Fig. 3 Membership

function for Xi

Finally to determine the best compromise solution of ML-NLFPP, all the above con-

structed membership functions are maximized simultaneously; i.e., the following

problem-P
∗
i is solved.

Problem − P′′

i

max {𝜇dp(F∗
i )
(x), 𝜇dp(F̄i)(x) ∶i = 1, 2, ..., q, 𝜇X̃i

(Xi) ∶ i = 1, 2, ..., (q − 1)}

subject to

x ∈ 𝛺

Using fuzzy goal programming introduced by Mohamed [11], Problem-P
∗
i can be

reformulated and expressed in generalized form as follows:

Problem − P∗∗i

min
q∑

i=1
(d∗−i + d̄−i ) +

q−1∑

i=1
(dl−i + dr−i )

subject to
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𝜇dp(F∗
i )
(x) =

d∗maxp (Fi) − dp(F∗
i )

d∗maxp (Fi) − d∗minp (Fi)
+ d∗−i ≥ 1, i = 1, 2, ..., q

𝜇dp(F̄i)(x) =
dp(F̄i) − d̄p

min(Fi)

d̄p
max(Fi) − d̄p

min(Fi)
+ d̄−i ≥ 1, i = 1, 2, ..., q

𝜇X̃i
(Xi) =

Xi − Xi∗
i + I−i
I−i

+ dl−i ≥ 1, i = 1, 2, ..., (q − 1)

𝜇X̃i
(Xi) =

Xi∗
i + I+i − Xi

I+i
+ dr−i ≥ 1, i = 1, 2, ..., (q − 1)

x ∈ 𝛺, d∗−i , d̄−i , d
l−
i , dr−i ≥ 0

If all DMs get unsatisfied with the best compromise solution obtained by solv-

ing Problem-P
∗∗
i , the tolerances for the goals of decision variables are modified and

the compromise solution is re-evaluated. But such case rarely happens since the tol-

erances are defined by respective DMs after considerable observation towards the

practical problem. To summarize the steps of the proposed solution approach, an

algorithm is presented below.

4.1 Algorithm to Solve ML-NLFPP

The following steps are executed sequentially to determine the best compromise

solution of the ML-NLFPP.

Step 1. Maximize and minimize f Ni (x) and f Di (x) individually for each i = 1, 2, ..., q
to obtain f N∗

i , f̄ Ni , f
D∗

i , and f̄ Di .

Step 2. Construct the distance functions dp(F∗
i ) and dp(F̄i) for each level-i =

1, 2, ..., q.

Step 3. Maximize and minimize dp(F∗
i ) and dp(F̄i) individually for each i = 1, 2, ..., q

to obtain d∗minp (Fi), d∗maxp (Fi), d̄p
min(Fi) and d̄p

max(Fi).
Step 4. Construct the fuzzy membership functions 𝜇dp(F∗

i )
(x) and 𝜇dp(F̄i)(x) for each

i = 1, 2, ..., q.

Step 5. Solve Problem-P
′′

i for each i = 1, 2, ..., (q − 1) to obtain the solutions x∗i =
(Xi∗

1 ,X
i∗
2 , ...,X

i∗
q ).

Step 6. Obtain the goals Xi∗
i for each Xi, i = 1, 2, ..., (q − 1).

Step 7. Define the negative and positive tolerances I−i and I+i for the controlled deci-

sion variables Xi, i = 1, 2, ..., (q − 1).
Step 8. Construct the fuzzy membership functions 𝜇X̃i

(Xi) for i = 1, 2, ..., (q − 1).
Step 9. Solve Problem-P

∗∗
i to obtain the best compromise solution.

Step 10. If the DMs remain unsatisfied with the above-obtained solution, the toler-

ances for Xi are modified and the steps 8 and 9 are repeated to obtain a new best

compromise solution of ML-NLFPP.
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5 Illustrative Numerical Example

To demonstrate the proposed solution approach and justify its feasibility, the follow-

ing ML-NLFPP is solved.

Level 1: max
x1

x21+2x1x3+x
2
3

x21+x2+x3

where x2, x3 solve

Level 2: max
x2

2x1x22+x
2
2+x3

x1+x22+x3
where x3 solves

Level 3: max
x3

x21−3x
2
1x3+x1x

2
2

x1+x2+x23
subject to

𝛺 =
⎧
⎪
⎨
⎪
⎩

2x1 + x2 + 2x3 ≤ 4
x1 + x2 + x3 ≥ 1
x1, x2, x3 ≥ 0

Individual maximal and minimal values of the numerator and denominator func-

tions of all levels are computed as:

max
x∈𝛺

f N1 (x) = 4, min
x∈𝛺

f N1 (x) = 0, min
x∈𝛺

f D1 (x) = 0.75, max
x∈𝛺

f D1 (x) = 4
max
x∈𝛺

f N2 (x) = 18.5185, min
x∈𝛺

f N2 (x) = 0, min
x∈𝛺

f D2 (x) = 0.75, max
x∈𝛺

f D2 (x) = 16
max
x∈𝛺

f N3 (x) = 5.2526,min
x∈𝛺

f N3 (x) = −2.0576,

min
x∈𝛺

f D3 (x) = 0.75,max
x∈𝛺

f D3 (x) = 4

Using the concept of the proposed solution approach, construct the following dis-

tance functions at each level-1, 2, 3 as follows:

At level-1: Ideal and anti-ideal points are (f N∗1 , f D∗1 ) = (4, 0.75) and (f̄ N1 , f̄
D
1 ) =

(0, 4), respectively.

dp(F∗
1) = [𝜆21(

4−f N1 (x)
4

)2 + 𝛽
2
1 (

f D1 (x)−0.75
3.25

)2]
1
2 , dp(F̄1) = [𝜆21(

f N1 (x)
4

)2 + 𝛽
2
1 (

4−f D1 (x)
3.25

)2]
1
2

On substituting the values of f N1 (x), f
D
1 (x) and 𝜆1 = 𝛽1 = 0.5:

dp(F∗
1) = [0.0156(4 − x21 − 2x1x3 − x23)

2 + 0.0237(x21 + x2 + x3 − 0.75)2]
1
2

dp(F̄1) = [0.0156(x21 + 2x1x3 + x23)
2 + 0.0237(4 − x21 − x2 − x3)2]

1
2

At level-2: Ideal and anti-ideal points are (f N∗2 , f D∗2 ) = (18.5185, 0.75) and

(f̄ N2 , f̄
D
2 ) = (0, 16), respectively.

dp(F∗
2) = [𝜆22(

18.5185−f N2 (x)
18.5185

)2 + 𝛽
2
2 (

f D2 (x)−0.75
15.25

)2]
1
2

dp(F̄2) = [𝜆22(
f N2 (x)

18.5185
)2 + 𝛽

2
2 (

16−f D2 (x)
15.25

)2]
1
2
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On substituting the values of f N2 (x), f
D
2 (x) and 𝜆2 = 𝛽2 = 0.5:

dp(F∗
2) = [0.0007(18.5185 − 2x1x22 − x22 − x3)2 + 0.0011(x1 + x22 + x3 − 0.75)2]

1
2

dp(F̄2) = [0.0007(2x1x22 + x22 + x3)2 + 0.0011(16 − x1 − x22 − x3)2]
1
2

At level-3: Ideal and anti-ideal points are (f N∗3 , f D∗3 ) = (5.2526, 0.75) and

(f̄ N3 , f̄
D
3 ) = (−2.0576, 4), respectively.

dp(F∗
3) = [𝜆23(

5.2526−f N3 (x)
7.3102

)2 + 𝛽
2
3 (

f D3 (x)−0.75
3.25

)2]
1
2

dp(F̄3) = [𝜆23(
f N3 (x)+2.0576

7.3102
)2 + 𝛽

2
3 (

4−f D3 (x)
3.25

)2]
1
2

On substituting the values of f N3 (x), f
D
3 (x) and 𝜆3 = 𝛽3 = 0.5:

dp(F∗
3) = [0.0047(5.2526 − x21 + 3x21x3 − x1x22)

2 + 0.0237(x1 + x2 + x23 − 0.75)2]
1
2

dp(F̄3) = [0.0047(x21 − 3x21x3 + x1x22 + 2.0576)2 + 0.0237(4 − x1 − x2 − x23)
2]

1
2

The aspired and acceptable values, i.e., the range of variations for dp(F∗
i ) and

dp(F̄i), i = 1, 2, 3, are obtained as:

0.1468 ≤ dp(F∗
1) ≤ 0.7071, 0 ≤ dp(F̄1) ≤ 0.6079, 0.2107 ≤ dp(F∗

2) ≤ 0.5102,

0.3309 ≤ dp(F̄2) ≤ 0.5228, 0.2097 ≤ dp(F∗
3) ≤ 0.6164, 0.1411 ≤ dp(F̄3) ≤ 0.5201

Construct the following membership functions for dp(F∗
i ) and dp(F̄i), i = 1, 2, 3

as follows:

𝜇dp(F∗
1 )
(x) =

⎧
⎪
⎨
⎪
⎩

1, dp(F∗
1) ≤ 0.1468

0.7071−dp(F∗
1 )

0.5603
, 0.1468 < dp(F∗

1) ≤ 0.7071
0, dp(F∗

1) > 0.7071

𝜇dp(F̄1)(x) =
⎧
⎪
⎨
⎪
⎩

1, dp(F̄1) ≥ 0.6079
dp(F̄1)
0.6079

, 0 ≤ dp(F̄1) < 0.6079
0, dp(F̄1) < 0

𝜇dp(F∗
2 )
(x) =

⎧
⎪
⎨
⎪
⎩

1, dp(F∗
2) ≤ 0.2107

0.5102−dp(F∗
2 )

0.2995
, 0.2107 < dp(F∗

2) ≤ 0.5102
0, dp(F∗

2) > 0.5102

𝜇dp(F̄2)(x) =
⎧
⎪
⎨
⎪
⎩

1, dp(F̄2) ≥ 0.5228
dp(F̄2)−0.3309

0.1919
, 0.3309 ≤ dp(F̄2) < 0.5228

0, dp(F̄2) < 0.3309
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𝜇dp(F∗
3 )
(x) =

⎧
⎪
⎨
⎪
⎩

1, dp(F∗
3) ≤ 0.2097

0.6164−dp(F∗
3 )

0.4067
, 0.2097 < dp(F∗

3) ≤ 0.6164
0, dp(F∗

3) > 0.6164

𝜇dp(F̄3)(x) =
⎧
⎪
⎨
⎪
⎩

1, dp(F̄3) ≥ 0.5201
dp(F̄3)−0.1411

0.379
, 0.1411 ≤ dp(F̄3) < 0.5201

0, dp(F̄3) < 0.1411

DM1 solves the following problem to obtain the goal for x1 by maximizing

𝜇dp(F∗
1 )
(x) and 𝜇dp(F̄1)(x) simultaneously.

min (d∗1 + d̄1)

subject to
0.7071−dp(F∗

1 )
0.5603

+ d∗1 ≥ 1,
dp(F̄1)
0.6079

+ d̄1 ≥ 1
2x1 + x2 + 2x3 ≤ 4, x1 + x2 + x3 ≥ 1, x1, x2, x3, d∗1 , d̄1 ≥ 0

The solution is obtained as (x1, x2, x3) = (0.5, 0, 1.4999). The goal for x1 is ascer-

tained as 0.5, and DM1 defines x̃1 = (0.2, 0.5, 0.7) with tolerances.

DM2 solves the following problem to obtain the goal for x2 by maximizing

𝜇dp(F∗
2 )
(x) and 𝜇dp(F̄2)(x) simultaneously.

min (d∗2 + d̄2)

subject to
0.5102−dp(F∗

2 )
0.2995

+ d∗2 ≥ 1,
dp(F̄2)−0.3309

0.1919
+ d̄2 ≥ 1

2x1 + x2 + 2x3 ≤ 4, x1 + x2 + x3 ≥ 1, x1, x2, x3, d∗2 , d̄2 ≥ 0

The solution is obtained as (x1, x2, x3) = (0.7627, 2.4745, 0). The goal for x2 is

ascertained as 2.4745, and DM2 defines x̃2 = (0.5, 2.4745, 3) with tolerances.

Construct the fuzzy membership functions for x1 and x2 as follows:

𝜇x̃1 (x1) =
⎧
⎪
⎨
⎪
⎩

x1−0.2
0.3

, 0.2 ≤ x1 ≤ 0.5
0.7−x1
0.2

, 0.5 ≤ x1 ≤ 0.7
0, otherwise

𝜇x̃2 (x2) =
⎧
⎪
⎨
⎪
⎩

x2−0.5
1.9745

, 0.5 ≤ x2 ≤ 2.4745
3−x2
0.5255

, 2.4745 ≤ x2 ≤ 3
0, otherwise

The best compromise solution of the ML-NLFPP is obtained by solving the fol-

lowing problem where fuzzy goal programming reducing only negative deviational

variables is applied to maximize 𝜇x̃1 (x1), 𝜇x̃2 (x2) and 𝜇dp(F̄i)(x), 𝜇dp(F̄i)(x), i = 1, 2, 3.

min
3∑

i=1
d∗i +

3∑

i=1
d̄i +

2∑

i=1
dl−i +

2∑

i=1
dr−i

subject to
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0.7071 − dp(F∗
1)

0.5603
+ d∗1 ≥ 1,

0.5102 − dp(F∗
2)

0.2995
+ d∗2 ≥ 1,

0.6164 − dp(F∗
3)

0.4067
+ d∗3 ≥ 1

dp(F̄1)
0.6079

+ d̄1 ≥ 1,
dp(F̄2) − 0.3309

0.1919
+ d̄2 ≥ 1,

dp(F̄3) − 0.1411
0.379

+ d̄3 ≥ 1

x1 − 0.2
0.3

+ dl−1 ≥ 1,
x2 − 0.5
1.9745

+ dl−2 ≥ 1

0.7 − x1
0.2

+ dr−1 ≥ 1,
3 − x2
0.5255

+ dr−2 ≥ 1

2x1 + x2 + 2x3 ≤ 4, x1 + x2 + x3 ≥ 1
x1, x2, x3, d∗1 , d

∗
2 , d

∗
3 , d̄1, d̄2, d̄3, d

l−
1 , dl−2 , dr−1 , dr−2 ≥ 0

The solution is obtained as x∗ = (0.5, 0.5, 0), and the values of the numerator

and denominator functions at this point are: f N1 (x
∗) = 0.25, f N2 (x

∗) = 0.5, f N3 (x
∗) =

0.375, f D1 (x
∗) = 0.75, f D2 (x

∗) = 0.75, f D3 (x
∗) = 1 which shows the feasibility of the

proposed approach as the obtained values of the numerator and denominator func-

tions of the objectives lie in their predefined range of variations.

6 Conclusion

This paper proposed a solution approach to multi-level fractional programming prob-

lem with the objectives as fraction of nonlinear polynomial functions. The numerator

and denominator functions simultaneously maintained possible shortest and farthest

distance from their respective ideal and anti-ideal points to derive the best compro-

mise solution. Reduction of only negative deviations from the goals of fuzzy mem-

bership functions produced the optimal solution of ML-NLFPP. Numerical example

illustrated the feasibility and effectiveness of the solution approach. LINGO software

and MATLAB software were used for the computational works of the problem.

Acknowledgements Authors are grateful to the editor and anonymous referees for their valuable

comments and suggestions to improve the quality of the paper.
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On Finite Buffer BMAP/G/𝟏 Queue
with Queue Length Dependent Service

A. Banerjee, K. Sikdar and G. K. Gupta

Abstract This paper deals with the analysis of a finite buffer queueing system where

customers are arriving according to the batch Markovian arrival process (BMAP).

The service time is considered to be generally distributed and is dependent on the

queue length at service initiation epoch. The stationary queue length distribution at

various epoch is obtained using the embedded Markov chain technique and the sup-

plementary variable technique. A computational procedure has been discussed by

considering phase-type service time distribution. Finally, some numerical results are

given to show the numerical compatibility of the analytical results. Also a compar-

ative study is carried out to establish the fact that our model may help in optimizing

system performance by controlling the service rate depending on the state of the

system.

Keywords Batch Markovian arrival process ⋅ Blocking probability

Congestion ⋅ Queue length dependent service

1 Introduction

Modern wireless/wired computer communication and telecommunication system

have been designed to support a wide range of multimedia applications, such as

voice, data and video, with expectation to maintain Quality of Service (QoS).

The traffic flow in such communication networks is statistically multiplexed, highly
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irregular (e.g. bursty and correlated) and transmitted in superhigh speed. Hence, this

type of traffic flow cannot be well approximated in terms of stationary Poisson pro-

cess. The mathematical model for telecommunication networks is well approximated

by theBMAP input flow as it is a stochastic point process that generalizes the standard

Poisson process by allowing for batches of arrivals, dependent interarrival times,

nonexponential interarrival time distributions and correlated batch sizes. For more

detail on BMAP, readers are referred to see [1–10] and the references therein.

The purpose of studying any queueing model is to optimize its system perfor-

mance. After arriving to the system, the customers have to wait in the queue if

server is found unavailable. Long waiting line may cause queueing delay and increase

in loss probability which ultimately results in poor system performance. Hence, to

avoid this situation it is needed to develop control policy (service rate/arrival rate) to

reduce congestion. The queueing models with queue length dependent service pol-

icy have been studied by Choi and Choi [11], Choi et al. [12], Banerjee [13] and

the references therein. Choi and Choi [11] analysed a finite buffer queue, where cus-

tomers arrive according to the Markov modulated Poisson process (MMPP), with

queue length dependent service. MMPP is a special case of Markovian arrival pro-

cess (MAP). Recently, Banerjee [13] considered a more general queue length depen-

dent service policy than the one considered in [11], with MAP. No literature was

found on BMAP/G/1/N queueing model with queue length dependent service policy

and this motivated us to study this model theoretically.

In this paper, we deal with a finite buffer BMAP/G/1 queue whose service time

distribution changes dynamically depending on the queue length at service initia-

tion epoch. Also service time distribution is considered to be generally distributed.

Following the approach of Banerjee [13], we obtain queue length distribution at ser-

vice completion epoch (departure epoch) and arbitrary epoch. Then we present a

computational procedure by considering phase-type service time distribution.

For use in sequel, let e(r), ej(r) and Ir denote, respectively, the column vector of

dimension r consisting of 1’s, column vector of dimension r with 1 in the jth position

and 0 elsewhere, and an identity matrix of dimension r. When there is no need to

emphasize the dimension of these vectors, we will suppress the suffix. Thus, e will

denote a column vector of 1’s of appropriate dimension.

The rest of this paper is organized as follows. In Sect. 2, description of the model

and its analysis at various epoch is given. The computational procedure when service

time follows phase-type distribution is spelled out in Sect. 3. System performance

measures and numerical results are given in Sections 4 and 5, respectively. The paper

ends with some concluding remark in Sect. 6.

2 Model Description and Analysis

We consider a single-server queueing system in which the customers arrive accord-

ing to a BMAP with matrix representation (Dk, k = 0, 1, 2,…) of dimension m. The

arrivals are governed by an underlying m-state Markov chain with transition rate



On Finite Buffer BMAP/G/1 Queue with Queue Length Dependent Service 45

d0ij, 1 ≤ i, j ≤ m, i ≠ j, there is a transition from state i to state j in the underlying

Markov chain without an arrival, and with transition rate dkij, 1 ≤ i, j ≤ m, k ⩾ 1,

there is a transition from state i to state j in the underlying Markov chain with an

arrival of batch size k. The matrix D0 = [d0ij] has nonnegative off-diagonal and neg-

ative diagonal elements, and the matrices Dk = [dkij], k ≥ 1 have nonnegative ele-

ments. Hence,

∑∞

k=0
Dk = D is the infinitesimal generator of the underlying Markov

chain {J(t)}, where J(t) is the state of the underlying Markov chain at time t with

state space {i ∶ 1 ≤ i ≤ m}. For this arrival process, we have D𝐞 = 0 and there exists

a stationary probability vector 𝜹 such that

𝜹D = 𝟎, 𝜹e = 1. (1)

The fundamental arrival rate (average arrival rate) and average batch arrival rate of

the above Markov process are given by 𝜆

∗ = 𝜹

∑∞

k=0
kDk𝐞 and 𝜆g = 𝜹

∑∞

k=1
Dk𝐞,

respectively. For more detail on this topic, see Lucantoni et al. [1].

Let ̃N(t) denotes the number of customers arriving in (0, t]. Then { ̃N(t), J(t)}
is a two-dimensional Markov process of batch Markovian arrival process (BMAP),

with state space {(n, i) ∶ n ≥ 0, 1 ≤ i ≤ m}. The infinitesimal generator of the above

Markov process is given by

Q =
⎛
⎜
⎜
⎜⎝

D0 D1 D2 D3 ⋯
0 D0 D1 D2 ⋯
0 0 D0 D1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟⎠

.

Let { ̃P(n, t), n ≥ 0, t ≥ 0} be the square matrices of order m whose (i, j)-th elements

are the conditional probabilities defined as

p̃i,j(n, t) = P{̃N(t) = n, J(t) = j|̃N(0) = 0, J(0) = i} n ≥ 0, 1 ≤ i, j ≤ m.

These matrices satisfy the following system of differential–difference equations

̃P′(0, t) = ̃P(0, t)D0,

̃P′(n, t) =
n∑

i=0

̃P(n − i, t)Di, n ≥ 1,

with ̃P(0, 0) = I and ̃P(n, 0) = 0, n ≥ 1.

These matrices, associated with the counting process {̃N(t), J(t); t ≥ 0}, have been

extensively studied in the literature, and an efficient procedure for computing them
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is given in Neuts [14]. Let us define the matrix-generating function of ̃P(n, t) (n ≥ 0)

as ̃P∗(z, t) =
∑∞

n=0
̃P(n, t)zn, |z| ≤ 1. With usual process of generating function,

we have ̃P∗′ (z, t) = ̃P∗(z, t)D(z), ̃P∗′ (z, 0) = I. Solving these matrix-differential equa-

tions, we get ̃P∗(z, t) = eD(z)t, |z| ≤ 1, t ≥ 0, where D(z) =
∑∞

i=0 Dizi.
We are dealing with a finite buffer queue of buffer size N > 1, so at any time

maximum (N + 1) customers can be present in the system. The batches which upon

arrival are unable to find enough space in the buffer for all the members of the batch

are, either fully rejected, or a part of the batch is rejected. These rejection rules are

known as total batch rejection or partial batch rejection policy, respectively. Since

the partial batch rejection policy utilizes the buffer space in an optimal manner, we

consider only this policy in this paper.

The service times are assumed to be generally distributed and dependent on the

queue length. Specifically, let Tn, 1 ≤ n ≤ N, denote the service time with distribu-

tion function Hn(.). Let ̃hn(.) and H∗
n (.), 1 ≤ n ≤ N, denote, respectively, the proba-

bility density function and the Laplace–Stieltjes transform of Tn. Let hn denote the

mean service time.

The steady-state analysis of the model under consideration will be carried out

using the embedded Markov chain approach and the supplementary variable tech-

nique since the service times are assumed to be generally distributed. First, we will

look at the semi-Markov process embedded at the points of departure of a customer.

Towards this end, let us define the square matrices n,k(x) and 0,k(x) of order m for

x ≥ 0 whose (i, j)th elements (n,k(x))ij and (0,k(x))ij, respectively, are defined as

follows.

∙ (n,k(x))ij = Pr{Given a departure at time 0, which left n (1 ≤ n ≤ N) customer

in the queue and the arrival process in phase i, the next departure occurs no later

than time x with the arrival process in phase j, and during that service k (k ≥ 0)
customers arrive},

∙ (0,k(x))ij = Pr{Given a departure at time 0, which left 0 customer in the queue

and the arrival process in phase i, the next departure occurs no later than time x
with the arrival process in phase j, and during that service k (k ≥ 0) customers

arrive}.

n,k(x) =
x

∫

0

̃P(k, t)dHn(t), 1 ≤ n ≤ N, 0 ≤ k ≤ N − n,

̄n,k(x) =
∞∑

l=k
n,l(x), 1 ≤ n ≤ N, k = N − n + 1,

0,k(x) =
k+1∑

i=1

̃Dii,k−i+1, 0 ≤ k ≤ N − 1,

̄0,N(x) =
N∑

i=1

̃Di
̄i,N−i+1.
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For use in sequel, we define

n,k = n,k(∞), 1 ≤ n ≤ N, 0 ≤ k ≤ N − n,
̄n,k = ̄n,k(∞), 1 ≤ n ≤ N, k = N − n + 1,
0,k = 0,k(∞), 0 ≤ k ≤ N − 1,
̄0,N = ̄0,N(∞),

(2)

with ̃Di = (−D0)−1Di, 1 ≤ i ≤ N − 1 and ̃DN = (−D0)−1̂DN , where ̂Dk =
∑∞

i=k
Di

for k ⩾ 1.

2.1 Queue Length Distribution at Departure Epoch

In this section, the joint distribution of the number of customers in the queue and

phase of the arrival process at departure epoch has been obtained using the embed-

ded Markov chain technique. Towards this end, let N+
n and J+n denote, respec-

tively, the number of customers in the queue and the phase of the arrival process

immediately after the n-th departure of a customer. Then the discrete-time pro-

cess {(N+
n , J

+
n ); n ≥ 0} constitutes a two-dimensional Markov chain with state space

{(i, j); 0 ≤ i ≤ N, 1 ≤ j ≤ m}. Now observing the system immediately after a depar-

ture, the transition probability matrix (TPM)  of the above Markov process is

obtained as

 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

0,0 0,1 0,2 … 0,N−1 ̄0,N
1,0 1,1 1,2 … 1,N−1 ̄1,N
0 2,0 2,1 … 2,N−2 ̄2,N−1
0 0 3,0 … 3,N−3 ̄3,N−2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 … N,0 ̄N,1

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

(3)

Let 𝜋
+
i (n), 0 ≤ n ≤ N, be the joint probability that there are n customers in the queue

and the state of the arrival process is i (1 ≤ i ≤ m) immediately after the departure

of a customer. Further, define 𝝅̃
+(n) = (𝜋+

1 (n), 𝜋
+
2 (n),… , 𝜋

+
m(n)), 0 ≤ n ≤ N. The

unknown quantities 𝝅̃
+(n) can be obtained by solving the system of equations 𝝅̃

+ =
𝝅̃
+

with 𝝅̃
+𝐞 = 1, where 𝝅̃

+ = (𝝅̃+(0), 𝝅̃+(1),… , 𝝅̃
+(N)) is a vector of dimension

(N + 1)m.
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2.2 Queue Length Distribution at an Arbitrary Epoch

In this section, we obtain joint distribution of queue length and phase of the system

at arbitrary epoch. Towards this end, we define the state of the system at time t as

follows:

∙ Nq(t) is the number of customers in the queue waiting for service

∙ J(t) is the phase of the arrival process

∙ U(t) is the remaining service time of a customer in service, if any

∙ 𝜉(t) be the state of the server, that is,

𝜉(t) =
{

1, if server is busy,

0, if server is idle.

Let us define for 1 ≤ i ≤ m,

pi(t) = Pr{Nq(t) = 0, J(t) = i, 𝜉(t) = 0},
𝜋i(n, u; t)du = Pr{Nq(t) = n, J(t) = i, u < U(t) ≤ u + du, 𝜉(t) = 1}, 0 ≤ n ≤ N, u ≥ 0.

Define the steady-state probabilities, for 1 ≤ i ≤ m, as

pi = lim
t→∞

pi(t),
𝜋i(n, u) = lim

t→∞
𝜋i(n, u; t), 0 ≤ n ≤ N u ≥ 0.

Let us define the vectors p and 𝝅(n, u), 0 ≤ n ≤ N, u ≥ 0, of order m whose jth
components are given by pj and 𝜋j(n, u), respectively. Then relating the state of the

system at time t and t + dt and using the supplementary variable technique, in steady

state, we have the following (matrix) differential equations.

𝟎 = pD0 + 𝝅(0, 0), (4)

− d
du

𝝅(0, u) = 𝝅(0, u)D0 + h1(u)𝝅(1, 0) + h1(u)pD1, (5)

− d
du

𝝅(n, u) = 𝝅(n, u)D0 + hn+1(u)pDn+1 + hn+1(u)𝝅(n + 1, 0) +
n∑

i=1
𝝅(n − i, u)Di,

1 ≤ n ≤ N − 2, (6)

− d
du

𝝅(N − 1, u) = 𝝅(N − 1, u)D0 + hN (u)p
∞∑

i=N
Di + hN (u)𝝅(N, 0)

N−1∑

i=1
𝝅(N − 1 − i, u)Di, (7)

− d
du

𝝅(N, u) = 𝝅(N, u)
∞∑

i=0
Di +

N∑

j=1

∞∑

i=j
𝝅(N − j, u)Di. (8)

Define the Laplace transform of 𝝅(n, u) as 𝝅
∗(n, s) = ∫

∞
0 e−su𝝅(n, u)du, 0 ≤ n ≤

N, ℝe s ≥ 0 and observe that 𝝅(n) ≡ 𝝅
∗(n, 0) = ∫

∞
0 𝝅(n, u)du, 0 ≤ n ≤ N.
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Now multiplying (5)–(8) by e−su and integrating with respect to u over 0 to ∞, we

have

− s𝝅∗(0, s) + 𝝅(0, 0) = 𝝅
∗(0, s)D0 + H∗

1 (s)𝝅(1, 0) + H∗
1 (s)pD1, (9)

−s𝝅∗(n, s) + 𝝅(n, 0) = 𝝅
∗(n, s)D0 + H∗

n+1(s)pDn+1 + H∗
n+1(s)𝝅(n + 1, 0)

+
n∑

i=1
𝝅
∗(n − i, s)Di, 1 ≤ n ≤ N − 2, (10)

−s𝝅∗(N − 1, s) + 𝝅(N − 1, 0) = 𝝅
∗(N − 1, s)D0 + H∗

N(s)p
∞∑

i=N
Di + H∗

N(s)𝝅(N, 0)

+
N−1∑

i=1
𝝅
∗(N − 1 − i, s)Di, (11)

−s𝝅∗(N, s) + 𝝅(N, 0) = 𝝅
∗(N, s)

∞∑

i=0
Di +

N∑

j=1

∞∑

i=j
𝝅
∗(N − j, s)Di. (12)

Post multiplying (9)–(12) by the vector 𝐞, adding them and using

∑∞

i=0
Di𝐞 = 𝟎, we

obtain

N∑

n=0
𝝅
∗(n, s)𝐞 =

N−1∑

n=1

1 − H∗
n (s)

s
pDn𝐞 +

1 − H∗
N(s)

s

∞∑

n=N
pDn𝐞 +

N∑

n=1

1 − H∗
n (s)

s
𝝅(n, 0)𝐞.

(13)

Taking limit s → 0 in (13) yields

N∑

n=0
𝝅(n)𝐞 =

N−1∑

n=1
hnpDn𝐞 + hN

∞∑

n=N
pDn𝐞 +

N∑

n=1
hn𝝅(n, 0)𝐞,

⇒ 1 − p𝐞 =
N−1∑

n=1
hn𝝅(0, 0)̃Dn𝐞 + hN𝝅(0, 0)̃DN𝐞 +

N∑

n=1
hn𝝅(n, 0)𝐞. (14)

Using (4) and the normalizing condition p𝐞 +
∑N

n=0
𝝅(n)𝐞 = 1, the above relation

has been obtained.

Before giving relations between {p,𝝅(n)} and {𝝅̃+(n)}, let us first derive the follow-

ing results which will be used later.
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It may be noted here that as 𝝅̃
+(n) and 𝝅(n, 0) are proportional to each other, hence

𝝅̃
+(n) = d𝝅(n, 0), 0 ≤ n ≤ N, (15)

where d is a proportionality constant. The following lemma gives an expression

for d.

Lemma 1 The value of d, as appeared in (15), is given by

d−1 =
N∑

n=0
𝝅(n, 0)𝐞 = 1 − p𝐞

g
, (16)

where g =
∑N−1

n=1 hn𝝅̃+(0)̃Dn𝐞 + hN 𝝅̃+(0)̃DN𝐞 +
∑N

n=1hn𝝅̃
+(n)𝐞.

Proof Summing both sides of (15) over the range of n, the desired result d−1 =∑N

n=0
𝝅(n, 0)𝐞 is obtained. Then dividing (14) by

∑N

n=0
𝝅(n, 0)𝐞 and using (15),

the desired result (16) is obtained after little algebraic operation.

Theorem 1 The state probabilities {p,𝝅(n)} and {𝝅̃+(n)} are related by

p = 𝜏[𝝅̃+(0)(−D0)−1] (17)

𝝅(0) = 𝜏[𝝅̃+(1) − 𝝅̃
+(0) + 𝝅̃

+(0)̃D1](−D0)−1 (18)

𝝅(n) = 𝜏[𝝅̃+(n + 1) − 𝝅̃
+(n) + 𝝅̃

+(0)̃Dn+1](−D0)−1 +
n∑

i=1
𝝅(n − i)Di(−D0)−1,

0 ≤ n ≤ N − 2, (19)

𝝅(N − 1) = 𝜏[𝝅̃+(N) − 𝝅̃
+(N − 1) + 𝝅̃

+(0)̃DN ](−D0)−1 +
N−1∑

i=1
𝝅(N − 1 − i)Di(−D0)−1, (20)

𝝅(N) = 𝜹 − p −
N−1∑

n=0
𝝅(n), (21)

where 𝜏−1 = g + 𝝅̃
+(0)(−D0)−1𝐞 and g is given in Lemma 1.

Proof Dividing (4) by

∑N

n=0
𝝅(n, 0)𝐞 and using (15) and Lemma 1, after little

manipulations the desired result (17) is obtained. Now setting s = 0 in (9)–(11), using

(15) and following a recursive procedure, the desired result (18)–(20) is obtained

with the help of Lemma 1. The last relation (21) follows immediately from the nor-

malizing condition p +
∑N

n=0
𝝅(n) = 𝜹.
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3 Computational Procedure

This section describes the necessary steps required for the computation of the ele-

ments and the matrices n,k of TPM  by considering phase-type (PH distribution)

service time distribution. PH distribution can be completely represented by (𝜷, 𝐒),
where 𝜷 and 𝐒 are of dimension 𝜈 (i.e. 𝜷 is an initial probability vector and 𝐒 is a

square matrix governing the transitions to various transition states). For more detail

on PH distribution and their properties, see Neuts [15]. The following theorem gives

a procedure for the computation of the matrices n,k.

Theorem 2 Let Hn(⋅) (1 ≤ n ≤ N) follows a PH distribution with irreducible rep-
resentation (𝜷n, 𝐒n), where 𝜷n and 𝐒n are of dimension 𝜈, then the matrices n,k
appearing in (3) are given by

n,k = (Im ⊗ 𝜷n)Mn,k(Im ⊗ 𝐒0n), 1 ≤ n ≤ N, 0 ≤ k ≤ N − n, (22)

̄n,k = (Im ⊗ 𝜷n) ̄Mn,k(Im ⊗ 𝐒0n), 1 ≤ n ≤ N, k = N − n + 1, (23)

where

𝐒0n = −𝐒n𝐞,

Mn,k =
k∑

i=1
Mn,k−i(Di ⊗ I

𝜈

)Mn,0 1 ≤ n ≤ N, 1 ≤ k ≤ N − n

̄Mn,k =
[
−

k−1∑

l=0
Mn,l(̂Dk−l ⊗ I

𝜈

)(D⊕ 𝐒n)−1
]
1 ≤ n ≤ N, k = N − n + 1,

Mn,0 = −(D0 ⊕ 𝐒n)−1, 1 ≤ n ≤ N − 1.

Proof Proof follows similar steps as described in Banerjee et al. [16] and Banerjee

[13].

4 Performance Measures

The performance measures are key features of any queueing system as they reflect

the efficiency of the queueing model under consideration. The average number of

customers in the queue (Lq) and average waiting time of a customer in the queue

(Wq) is given by Lq =
∑N

n=0
n𝝅(n)𝐞 and Wq =

Lq
𝜆
∗ , respectively. Another important

performance measure that is the loss probability, which is also termed as blocking

probability, is discussed below.
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4.1 Loss Probability

∙ The blocking probability of the first customer of an arriving batch is given by

PBLF = 𝝅(N)̂D1𝐞
𝜆g

∙ The blocking probability of an arbitrary arriving customer is given by

PBLA = p
∞∑

k=N+1
Gk𝐞 +

N∑

n=0
𝝅(n)

∞∑

k=N−n+1
Gk𝐞

where Gk =
̂Dk

𝜆
∗ , k = 1, 2, ..., is a matrix of dimension m and represents that the

position of an arbitrary customer in a accepted batch is k.

∙ The blocking probability of the last customer is given by PBLL = p̂DN+1𝐞
𝜆g

+
∑N

n=0

∑∞

i=N−n+1

𝝅(n)Di𝐞
𝜆g

.

5 Numerical Results

The numerical compatibility of the analytical results, as obtained in the previous

sections, is illustrated in this section in self-explanatory tables and graphs. Towards

this end, in Table 1 and Table 2, the queue length distributions at various epoch for

BMAP∕PHn∕1∕30 and BMAP∕PHn∕1∕20 queue have been displayed, respectively.

At the bottom of the table, various performance measures are also presented. In

Table 1, the input parameters are considered as follows:

The BMAP representation is taken as

D0 =
⎡
⎢
⎢
⎢⎣

−0.986 0.12 0.023

0.01 −0.999 0.04

0.11 0.150 −1.439

⎤
⎥
⎥
⎥⎦
, D2 =

⎡
⎢
⎢
⎢⎣

0.013 0.140 0.0

0.15 0.0 0.135

0.206 0.198 0.078

⎤
⎥
⎥
⎥⎦
, D5 =

⎡
⎢
⎢
⎢⎣

0.123 0.0 0.127

0.116 0.090 0.008

0.167 0.087 0.197

⎤
⎥
⎥
⎥⎦

and D7 =
⎡
⎢
⎢
⎢⎣

0.120 0.230 0.09
0.45 0.0 0.0

0.0 0.119 0.127

⎤
⎥
⎥
⎥⎦
. For service time, PH-distribution is taken as 𝜷n =

(
0.4 0.6

)
and 𝐒n =

(
−𝜇n 𝜇n
0 −𝜇n

)
for 1 ≤ n ≤ N, where 𝜇n = 𝜇n−1 + 0.3 for 1 ≤

n ≤ N and 𝜇0 = 5.0. In Table 2, the input parameters are considered as follows:
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The BMAP representation is taken as

D0 =

⎡
⎢
⎢
⎢
⎢
⎢⎣

−3.7893 0.456 0.284 0.423

0.329 −2.703 0.063 0.488

0.271 0.480 −3.638 0.236

0.071 0.0 0.231 −2.4764

⎤
⎥
⎥
⎥
⎥
⎥⎦

, D1 =

⎡
⎢
⎢
⎢
⎢
⎢⎣

0.303 0.417 0.0 0.045

0.087 0.452 0.141 0.156

0.252 0.0 0.053 0.198

0.059 0.275 0.148 0.051

⎤
⎥
⎥
⎥
⎥
⎥⎦

,

D4 =

⎡
⎢
⎢
⎢
⎢
⎢⎣

0.220 0.440 0.0423 0.0

0.049 0.088 0.0 0.001

0.219 0.186 0.380 0.410

0.343 0.166 0.272 0.094

⎤
⎥
⎥
⎥
⎥
⎥⎦

and D7 =

⎡
⎢
⎢
⎢
⎢
⎢⎣

0.472 0.333 0.246 0.108

0.135 0.349 0.046 0.319

0.097 0.086 0.291 0.479

0.217 0.170 0.362 0.0174

⎤
⎥
⎥
⎥
⎥
⎥⎦

. For ser-

vice time, PH distribution is taken as 𝜷n =
(
1.0 0.0

)
and 𝐒n =

(
−2𝜇n 𝜇n
0 −2𝜇n

)
for

1 ≤ n ≤ N, where 𝜇n = 2.5 + 1
1+n

for 0 ≤ n ≤ N.

In Figs. 1, 2 and 3, we carry out a comparative study of our model, where ser-

vice time changes depending on the queue length at service initiation epoch, with

BMAP/G/1/N queue, where service time remains constant for fixed N. This compar-

ison clearly demonstrates that the model under consideration may help in optimizing

the system performance, in terms of minimizing average queue length, average wait-

ing time of a customer in the queue and loss probability, by controlling the service

rate depending on the queue length.
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Fig. 1 Effect of N on average queue length
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Fig. 2 Effect of N on average waiting time of a customer in the queue

In Figs. 1, 2 and 3, the effect of N (buffer size) on Lq, Wq and loss proba-

bility (PBLF, PBLA, PBLL), respectively, has been studied for BMAP∕PHn∕1∕N
(N varies from 5 to 100) queue with the following input parameters: The BMAP

representation is taken as D0 =

[
−2.823 0.0

0.188 −3.121

]
, D1 =

[
0.139 0.193

0.176 0.104

]
, D2 =

[
0.182 1.228

1.050 0.513

]
and D4 =

[
0.258 0.823

0.367 0.723

]
. For service time, PH distribution is

taken as 𝜷n =
(
0.4 0.6

)
, 𝐒n =

(
−2𝜇n 𝜇n
0 −2𝜇n

)
. for 1 ≤ n ≤ N.

Here we consider the following two cases where Case 1 represents the constant ser-

vice time distribution whereas Case 2 represents the queue length dependent service

process.

Case 1: 𝜇n =
(N+2)𝜇
2N

for 0 ≤ n ≤ N and 𝜇 = 3.5,

Case 2: 𝜇n =
(n+1)𝜇

N
for 0 ≤ n ≤ N and 𝜇 = 3.5.

It is clear from Figs. 1 and 2 that as N increases Lq and Wq increases for both the

cases, and the value of Lq and Wq is little high for Case 1 in comparison to Case 2

for fixed value of N. Therefore, in this example although there is no considerable

differences in the values of Lq and Wq are observed for Case 1 and Case 2, however,

it can be concluded that queue length dependent service policy minimizes Lq and

Wq. Now from Fig. 3, it can be observed that as N increases loss/blocking proba-

bility (PBLF, PBLA, PBLL) decreases for Case 2 whereas it increases for Case 1.
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Fig. 3 Effect of N on Blocking Probability

Also it is observed that for fixed N, the values of PBLF, PBLA, PBLL for Case 1 are

very high in comparison with the corresponding values of PBLF, PBLA, PBLL for

Case 2. With this observation we can conclude that the queue length dependent ser-

vice policy decreases loss probability very significantly. Therefore, in total we can

come to an conclusion that the queue length dependent service mechanism which is

studied in this paper with BMAP/G/1/N queue may help in reducing congestion as

this is reducing its system performance measures as discussed above.

6 Conclusion

In this paper, we have considered finite buffer queue where customers arrive accord-

ing to BMAP. We analysed the model by considering general service time distri-

bution where service rates are changing dynamically depending on the number of

customers waiting for service in the queue at service initiation epoch. Using the

embedded Markov chain technique, we obtained the departure epoch probabilities.

Then using the supplementary variable technique, we derive a relation with depar-

ture epoch probabilities to obtain arbitrary epoch probabilities. Finally, we give an

computational procedure by considering phase-type distribution. In future, it would

be interesting to study the model with vacation or working vacation.
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Computational Analysis of a Single
Server Queue with Batch Markovian
Arrival and Exponential Single Working
Vacation

A. D. Banik, Souvik Ghosh and Debasis Basu

Abstract In this paper, an infinite buffer queue with a single server and non-renewal

batch arrival is studied. The service discipline is considered as exhaustive type under

single exponential working vacation policy. Further, both the service times during

the working vacation and normal busy period are assumed to be generally distributed

random variables. It is also assumed that the service times and the arrival process

are independent of each others. Moreover, it is accepted that at the end of an expo-

nentially distributed working vacation, the first customer in the front of the queue

is likely to receive service rate as per normal busy period service rate irrespective

of received service in the working vacation period as the server shifts from working

vacation mode to normal period mode. The system-length distributions at different e-

pochs, such as post-departure and arbitrary epoch are obtained. TheRG-factorization

technique is applied to obtain the distribution of the system length at post-departure

epoch. Henceforth, the system-length distribution at arbitrary epoch is determined

by supplementary variable technique along with some simple algebraic manipula-

tions. Some useful performance measures to be particular the mean system length

of the model and the mean waiting time of an arbitrary customer in the system is

discussed in the numerical section. Finally, some numerical results are presented for

the model, in the form of the table and graphs. A possible application of the model

in communication network is outlined in the paper.
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1 Introduction

Queueing theory was originated through the early works of Erlang (1915) while de-

signing telephone network and call availability during the peak hours of service.

During the early days of queueing analysis, arrival process was realized as Poisson

process. But the correlation in arrival processes in present days computer or com-

munication networks is not described suitably by the so-called Poisson process. The

correlation among the inter-arrival times can be fairly explained by Markovian ar-

rival process (MAP), introduced by Lucantoni et al. [1]. Further, MAP was extended

to batch Markovian arrival process (BMAP) by Lucantoni [2] to illustrate the corre-

lation among the batch arrivals of variable capacity, which is also able to describe

the versatile Markovian point process (VMPP), see Neuts [3] and Ramaswami [4].

Vacation queueing systems are considered to be a handy tool to model and ana-

lyze todays complex networks arising in communication, computer, and many other

engineering systems. A vacation queuing model presumes that the server remains

unproductive while it goes for a vacation. However, service requirements in modern

fast and explosive networks demand an active server with reduced service rate dur-

ing vacation. This kind of vacations are termed as working vacations (WV) and was

studied by Servi and Finn [5]. They studied an M/M/1 queue with multiple working

vacations (MWV), which means that after completing a working vacation if the server

does not find any customer waiting in the queue then he again starts a working vaca-

tion. Besides this, if the server is unable to spot a customer on completing a WV and

then remains idle, then it is called a single working vacation (SWV) rule. A discrete-

time Geo[X]∕G∕1 queue under MWV and SWV policies was examined by Li et al. [6]

and Gao and Liu [7], respectively. Chae et al. [8] investigated both the continuous-

time GI/M/1 queue and the discrete-time GI/Geo/1 queue with SWV . Considering

both finite and infinite system capacity, Banik [9] studied single working vacation

GI/M/1 queue.GI/M/1 queue with SWV is also studied by Li and Tian [10]. Recently,

assuming rational-type MWV policy, Banik [11] investigated BMAP∕R∕1∕∞ queue

using matrix analytic procedure.

In this paper, a BMAP∕G∕1∕∞∕SWV queue is investigated, where G indicates

that the service times are generally distributed random variables for both the serv-

er’s working vacation and busy mode. The working vacation is exponentially dis-

tributed, and the customers can receive service in a reduced rate during the working

vacation. The computational analysis is based on the calculation of post-departure

epoch probabilities using RG-factorization technique, see Li [12]. Henceforth, the

supplementary variable method is used to get the arbitrary epoch probabilities using

the relation between arbitrary and post-departure epoch probabilities. The queueing

system studied in this paper can be modeled in a computer grid.
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2 Application of the Model

A grid is an architecture of geographically distributed computer resources, which is

used to solve a large-scale complex problem. The architecture builds with hetero-

geneous resources, i.e., each resource in the grid is dedicated to do different jobs.

End users submitted their jobs to the grid and receive the executed results. However,

resource management and scheduling is one of the key interests to meet the quality

of service (QoS) requirements of the job such as the time bound to finish the job,

the number of resources used. It may happen in the grid environment that some of

the resources are overburdened while at the same time other resources are underuti-

lized. This kind of unequal job distribution to the resources causes load imbalance

in the grid. Analyzing the log file of the Large Hadron Collider Computing Grid

(LCG), Yin et al. [13] have shown that there is an activity peak in daily cycle. They

also observed that during the peak hours, there are more than 10% resources stands

unproductive which cause the load imbalance in the grid. Therefore, it is needed to

transfer the job requests from the overloaded resources to the light-loaded or idle

resources to utilize the underused or unused resources and reduce the average job

response time. We propose the M∕G∕1 − SWV model in the grid environment to

achieve better result in terms of server utilization and QoS (job response time).

The vacation period of a resource may be utilized to reduce the workload of oth-

er resources. The consignment during vacation period is considered as secondary

tasks to the resources. Resources may do the secondary tasks in a reduced speed

as after a busy period a resource needs some maintenance. After the maintenance,

the resources are again eligible to give service in a normal speed. We can model

a grid environment in such a working vacation scenario to reduce the workload of

the highly loaded resources as well as the mean job response time. There are three

primary components of a grid environment, namely grid portal, scheduler, and grid

resources. End users submit their request to the grid through the grid portal. Then,

the job requests are delivered to the scheduler. The scheduler matches the user re-

quests and available resources which is efficient to perform those kind of requests.

If the scheduler finds that all the pertinent resources are busy while some other re-

sources are idle or underutilized, then the jobs are transferred to those resources. A

grid environment has been shown in Fig. 1.

3 Description and Analysis of the Queueing Model

In this section, the analysis of the BMAP∕G∕1∕∞ queue under SWV policy is carried

out. In SWV strategy, the server is allowed to take a conditional vacation when he

finds that the queue is empty upon completing a service in a normal busy period. The

condition imposed on the sever is that he should provide service during vacation in a

reduced rate while taking vacation, and after finishing a WV if the server do not find

any waiting customer in the queue, then he should remain idle with normal service



64 A. D. Banik et al.

Fig. 1 Architecture of a grid environment

rate rather than taking another WV . On the other hand, upon completing a WV , if the

server finds a customer in the queue then the server should immediately starts a nor-

mal busy period. That is, while the server is on WV mode, then the first customer on

the queue will get service at a reduced rate and can receive service at normal rate if

the WV terminates. It should be mentioned here that the change of service rate for the

leading customer of the waiting queue is independent of the service received during

server’s WV . Let V , S1, and S2 are the random variables of the duration of a WV , ser-

vice during normal busy period and service during WV period, respectively. Further,

it is assumed that V , S1, S2, and the arrival process are independent of each others.

Let the probability distribution function (DF) and the probability density function

(pdf) of a random variable X are denoted by FX(x) and fX(x), respectively. Further-

more, f ∗X (s) is symbolized as the Laplace–Stieltjes transform (LST) of fX(x). Hence,

for the independent and identically distributed (iid.) random variable (r.v.) S1 (S2) the

DF, pdf, and LST are expressed by FS1 (x) (FS2 (x)), fS1 (x) (fS2 (x)) and f ∗S1 (s) (f ∗S2 (s)).
Also, the expected service time during a normal busy period and vacation period are

pointed by 1∕𝜇1 and 1∕𝜇2, respectively. Similarly, for exponential vacation times, the

LST, pdf, and DF are noted by f ∗V (s) =
𝛾
∗

𝛾∗+s
, fV (x) = 𝛾

∗e−𝛾∗x and FV (x) = 1 − e−𝛾∗x,
respectively, where 𝛾

∗ (> 0) is assumed as the expected number of vacations per unit

of time. One may note that due to lack of memory property, the residual vacation time

V̂ is also exponential with parameter 𝛾
∗
. Therefore, fV̂ (x) = 𝛾

∗e−𝛾∗x and f ∗
V̂
(s) = 𝛾

∗

𝛾∗+s
.

For the model, it is assumed that the arrival is governed by an m-state batch

Markovian arrival process (BMAP). The (BMAP) is represented by the matrices 𝐃k
(k = 0, 1, 2,…), where 𝐃0 is the state transition rate matrix for no arrival and 𝐃k
is the state transition rate matrix for an arrival of batch size k; BMAP is discussed

in details by Lucantoni [2]. Let the irreducible infinitesimal generator of the under-

lying Markov chain is denoted by D, i.e., D =
∑∞

k=0 Dk with De = 𝟎, where 𝐞 is a

column vector with all elements equal to one and appropriate dimension. Then the
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stationary probability vector of the process, i.e., 𝝅, satisfies 𝝅𝐃 = 𝟎 and 𝝅𝐞 = 1.

The mean arrival rate and mean batch arrival rate of the stationary BMAP are giv-

en by 𝜆
∗ = 𝝅

∑∞
k=1 k𝐃k𝐞 and 𝜆g = 𝝅

∑∞
k=1 𝐃k𝐞 = 𝝅𝐃′

1𝐞, respectively, where 𝐃′

n =∑∞
i=n 𝐃i (n = 1, 2, 3,…). Let at time t (≥ 0), 𝐏(n, t) (n = 0, 1, 2,…) denotes an m × m

matrix whose (i, j)-th element is the conditional probability defined as Pij(n, t) =
Pr{N(t) = n, J(t) = j|N(0) = 0, J(0) = i}, where n, i and j are non-negative inte-

gers with 1 ≤ i, j ≤ m. Hence, the matrices 𝐏(n, t) satisfy the following system of

difference-differential equations:

𝐏(1)(n, t) =
n∑

k=0
𝐏(k, t)𝐃n−k, n = 0, 1, 2,… , (1)

with 𝐏(0, 0) = 𝐈m, where 𝐈m is an identity matrix of order m and 𝐏(1)(n, t) = d
dt
𝐏(n, t).

In the rest of the paper, an identity matrix of proper dimension is denoted by 𝐈 and

the subscript is mentioned wherever needed. For the continuous variable |z| ≤ 1,

let us define matrix generating function 𝐏∗(z, t) =
∑∞

n=0 𝐏(n, t)z
n
. Now multiplying

Eq. (1) by zn and then summing over n, one can get
d
dt
𝐏∗(z, t) = 𝐏∗(z, t)𝐃(z), where

𝐃(z) = ∑∞
k=0 𝐃kzk. Hence, solving the matrix differential equation for the continuous

variables |z| ≤ 1 and t ≥ 0, it can be derived 𝐏∗(z, t) = e𝐃(z)t. Let us define the m × m
matrices of mass functions as

𝐀n =
∫

∞

0
𝐏(n, t)dFS1 (t), 𝐕n =

∫

∞

0
𝐏(n, t)dFS2 (t), n = 0, 1, 2,… . (2)

The numerical computation of An and Vn for PH-type and non-PH-type distributions

are discussed by Neuts [14], Lucantoni [2] and Banik [11].

If V̂ stands for the remaining vacation time, then the distribution of V̂ is exactly

same as V . The probability that the remaining vacation time exceeds the service time

during a WV is given by 𝜀 = ∫
∞
0 (1 − FV̂ (x))fS2 (x) dx = f ∗S2 (𝛾

∗). Similarly, the proba-

bility that remaining vacation time exceeds remaining service time in a working va-

cation is formulated by 𝜏 = ∫
∞
0 (1 − FV̂ (x))fŜ2 (x) dx = f ∗

Ŝ2
(𝛾∗) = 𝜇2(1 − f ∗S2 (𝛾

∗)∕𝛾∗.

From these formulae, 𝜀 and 𝜏 are determined if the corresponding distribution func-

tions, i.e., FS2 (x) and FŜ2
(x), are given. The service time distribution during a normal

busy period and a working vacation can be framed by FS1 (x) = 1 − exp{− ∫
x
0 u(t)dt}

and FS2 (x) = 1 − exp{− ∫
x
0 v(t)dt}, respectively, where u(t) and v(t) are the hazard

rates of the distributions S1 and S2, respectively. Similarly, if y(t) be the hazard rate

of the distribution of V̂ + S1, then FV̂+S1
(x) = 1 − exp{− ∫

x
0 y(t)dt}. For stability of

the model, it is assumed that the traffic intensity 𝜌 = 𝜆
∗∕𝜇1 is less than one.
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3.1 Stationary Distribution at Post-departure Epoch

Let ti (i = 0, 1, 2,…) denotes the service completion epochs, while t+i (i = 0, 1, 2,…)

stands for the time epoch just after completion of a service. If at any t+i (i =
0, 1, 2,…), the system length, the state of the batch arrival process, and the serv-

er’s state are symbolized by Nq(t+i ), J(t
+
i ), and 𝜉(t+i ), then the state of the system at

that epoch can be defined as 𝜁i = {Nq(t+i ), J(t
+
i ), 𝜉(t

+
i )}. Moreover, 𝜉(t+i ) can take

values 0 or 1, if the server is on WV or in a normal busy period, respectively, and for

𝜌 < 1, the embedded Markov chain 𝜁i (i = 0, 1, 2,…) is irreducible, aperiodic, and

ergodic. Hence for 𝜌 < 1, the steady-state solution of the Markov chain exists. For

n = 0, 1, 2,…, let the limiting probabilities are defined as

p+0,j(n) = limi→∞ P{Nq(t+i ) = n, J(t+i ) = j, 𝜉(t+i ) = 0}, j = 1, 2,… ,m,

p+1,j(n) = limi→∞ P{Nq(t+i ) = n, J(t+i ) = j, 𝜉(t+i ) = 1}, j = 1, 2,… ,m,

with the row vectors 𝐩+0 (n)= [p+0,1(n), p
+
0,2(n),… p+0,m(n)] and 𝐩+1 (n)= [p+1,1(n), p

+
1,2(n),

… p+1,m(n)]. Now the transition probability matrix (TPM) which describes the prob-

ability of transitions among the states 𝜁i (i = 0, 1, 2,…) can be obtained by relating

two consecutive embedded post-departure epochs and can be given by

 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐁0,0 𝐁0,1 𝐁0,2 𝐁0,3 𝐁0,4 ⋯ ⋯
𝐁1,0 𝐀1 𝐀2 𝐀3 𝐀4 ⋯ ⋯
𝟎 𝐀0 𝐀1 𝐀2 𝐀3 ⋯ ⋯
𝟎 𝟎 𝐀0 𝐀1 𝐀2 ⋯ ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(3)

where 𝐀k =
[
𝜀𝐕k (1 − 𝜀)𝐁k
𝟎 𝐀k

]

, k = 0, 1, 2,…, 𝐁0,0 =

[
𝜀𝐃1𝐕0 (1 − 𝜀)𝐃1𝐁0
𝐃1𝐀0 𝟎

]

,

𝐁1,0 =
[
𝜀𝐕0 (1 − 𝜀)𝐁0
𝐀0 𝟎

]

, 𝐁0,k =

⎡
⎢
⎢
⎢
⎢
⎣

𝜀

k+1∑

i=1
𝐃i𝐕k−i+1 (1 − 𝜀)

k+1∑

i=1
𝐃i𝐁k−i+1

𝟎
k+1∑

i=1
𝐃i𝐀k−i+1

⎤
⎥
⎥
⎥
⎥
⎦

, k = 1, 2, 3,…, and

𝐃k = (−𝐃0)−1𝐃k (k = 1, 2, 3,…) represents the phase transition matrix during an

inter-batch arrival time of customers which is accepted in the system. For n ≥ 0, the

stationary probabilities 𝐩+0 (n) and 𝐩+1 (n) are determined by applying RG factorization

to the TPM  as follows. The state space of the Markov chain  may be rewritten

as Ω = {(n, r) ∶ n = 0, 1, 2,… and r = 1, 2,… , 2m}, where n be the level variable

and r be the phase variable of the Markov chain. For k = 0, 1, 2,…, let us denote

L
≤k =

⋃k
i=0 Li, i.e., L

≤k be the set of all the states in the levels up to k. Now if L
≤n

(n = 0, 1, 2,…) is set as the censored set, then the block-partitioned censored TPM

can be written by
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
≤n =

⎛
⎜
⎜
⎜
⎜
⎝

𝝓
(n)
0,0 𝝓

(n)
0,1 ⋯ 𝝓

(n)
0,n

𝝓
(n)
1,0 𝝓

(n)
1,1 ⋯ 𝝓

(n)
1,n

⋮ ⋮ ⋮
𝝓
(n)
n,0 𝝓

(n)
n,2 ⋯ 𝝓

(n)
n,n

⎞
⎟
⎟
⎟
⎟
⎠

. (4)

For non-negative integers n, i, j with 0 ≤ i, j ≤ n, the expression of 𝝓
(n)
i,j was derived

by Li [12, Lemma 2.4] and can be given by 𝝓
(n)
i,j = i,j +

∑∞
k=n+1 𝝓

(k)
i,k

∑∞
l=0[𝝓

(k)
k,k]

l
𝝓
(k)
k,j .

For j < i − 1, it should be noted that 𝝓
(n)
i,j = 𝟎. Then the U-, R-, and G-measures as

described by Li [12] can be given by

𝚿n = 𝝓
(n)
n,n, n = 0, 1, 2,… , (5)

Ri,j = 𝝓
(j)
i,j

(
I −𝚿j

)−1
, i = 0, 1, 2,… , j, (6)

Gn =
(
I −𝚿n

)−1
𝝓
(i)
n,n−1, n = 1, 2, 3,… . (7)

Now from Theorem 2.5 of [12], one may write

I −  = (I − RU)(I −𝚿D)(I − GL), (8)

where RU , UD and GL are strictly upper diagonal, diagonal, and strictly lower diago-

nal matrices, respectively, and are illustrated by Li [12]. Let 𝝅 = [𝝅0,𝝅1,𝝅2,…] be the

stationary probability vector of the block-structured Markov chain  , then 𝝅 = 𝝅

and 𝝅e = 1. Now if z0 is denoted as the stationary probability vector of 𝚿0 to level

0, then the stationary probability vector of the Markov chain  is expressed by

𝝅k =
⎧
⎪
⎨
⎪
⎩

𝜂z0, if k = 0,
k−1∑

i=0
𝝅iRi,k, if k = 1, 2, 3,… ,

(9)

where 𝜂 is a constant and is uniquely determined by
∑∞

k=0 𝝅ke = 1, see [12, Theorem

2.9]. Note that 𝝅k (k = 0, 1, 2,…) is a vector of dimension 1 × 2m, where first m
components give the post-departure probabilities at server’s ideal state, i.e., 𝐩+0 (k)
and rest m components give the post-departure probabilities when the server is busy,

i.e., 𝐩+1 (k). One may note that the normalization condition is
∑∞

n=0

(
𝐩+0 (n) + 𝐩+1 (n)

)

𝐞 = 1.

Lemma 1 The expected time gap between two consecutive service completion
epochs is given by
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Tmean =
[
𝜀E(S2) + (1 − 𝜀)E(V̂ + S1)

] ∞∑

n=0
𝐩+0 (n)𝐞 + E(S1)

∞∑

n=0
𝐩+1 (n)𝐞

+(𝐩+0 (0) + 𝐩+1 (0))(−𝐃0)−1𝐞. (10)

Proof Tmean is given by Eq. (10) where (𝐩+0 (0) + 𝐩+1 (0))(−𝐃0)−1𝐞 is the term due to

mean inter-batch arrival time of customers accepted in the system while the server

is idle during a working vacation or during normal busy period. This can be verified

as shown below. Let 𝐘 denote the m × m matrix whose ijth element Yij is the mean

sojourn time of the system in an idle period with phase j, provided at the initial

instant of the idle period phase was i. With the help of Eq. (1), it can be written that

𝐘 = ∫
∞
0 𝐏(0, t)dt = ∫

∞
0 e𝐃0tdt = (−𝐃0)−1.

3.2 Stationary Distribution at Arbitrary Epoch

System-length distribution at arbitrary epochs are obtained by supplementary vari-

able method using post-departure epochs probabilities, and the solution procedure

is given by Banik [11]. Let the states of the server at time t is marked as 𝜉(t) which

can take values 0, 1, and 2 for the server being busy in normal busy period, working

vacation period, and after finishing a WV . The system length including the customer

who is in service and the state of the batch arrival is expressed as Ns(t) and J(t), re-

spectively. Further, the elapsed service time of a customer in a normal busy (working

vacation) period is symbolized as S̃1(t) (S̃2(t)). Similarly, if the random variable S3
represents the sum of the two random variables, remaining vacation time (V̂), and a

service time during the normal busy period (S1), then the server’s elapsed remaining

vacation time plus a customer’s service time during the next normal busy period is

given by S̃3(t). Hence, for positive integers i and j with 1 ≤ i ≤ m, n ≥ 1, and the

continuous variable x (≥ 0), the joint probabilities of Ns(t), 𝜉(t), S̃1, S̃2, and S̃3 are,

respectively, defined by

𝜋i(n, x; t)𝛥x = P{Ns(t) = n, J(t) = i, x < S̃1(t) < x + 𝛥x, 𝜉(t) = 1}, (11)

𝜔i(n, x; t)𝛥x = P{Ns(t) = n, J(t) = i, x < S̃2(t) < x + 𝛥x, 𝜉(t) = 0}, (12)

𝜓i(n, x; t)𝛥x = P{Ns(t) = n, J(t) = i, x < S̃3(t) < x + 𝛥x, 𝜉(t) = 2}, (13)

𝜈i(0; t) = P{Ns(t) = 0, J(t) = i, 𝜉(t) = 0}, (14)

𝜈i(1; t) = P{Ns(t) = 0, J(t) = i, 𝜉(t) = 1}. (15)

As the model is investigated in steady state, i.e., when t → ∞, the above probabilities

will be denoted by 𝜋i(n, x), 𝜔i(n, x), 𝜓i(n, x), 𝜈i(0) and 𝜈i(1). Let us further define the

row vectors of order m as 𝝅(n, x) = [𝜋i(n, x)]1×m, 𝝎(n, x) = [𝜔i(n, x)]1×m, 𝝍(n, x) =
[𝜓i(n, x)]1×m and 𝝂(0) = [𝜈i(0)]1×m, 𝝂(1) = [𝜈i(1)]1×m, 1 ≤ i ≤ m. Now using the fact

that
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𝝅(n) =
∞

∫

0

𝝅(n, x)dx, 𝝎(n) =
∞

∫

0

𝝎(n, x)dx, and 𝝍(n) =
∞

∫

0

𝝍(n, x)dx, (16)

for n = 1, 2, 3,…, the following relations can be obtained after using supplementary

variable technique and a few algebraic manipulations.

𝝅(n) = E(S1)
n∑

i=1
𝝂(1)𝐃i𝐀̂n−i +

E(S1)
Tmean

n∑

i=1
𝐩+1 (i)𝐀̂n−i, (17)

𝝎(n) = 𝜏E(S2)
n∑

i=1
𝝂(0)𝐃i𝐕̂n−i +

𝜏E(S2)
Tmean

n∑

i=1
𝐩+0 (i)𝐕̂n−i, (18)

𝝍(n) = (1 − 𝜏)E(S3)
n∑

i=1
𝝂(0)𝐃i𝐁̂n−i +

(1 − 𝜏)E(S3)
Tmean

n∑

i=1
𝐩+0 (i)𝐁̂n−i, (19)

since S3 ≡ V̂ + S1, i.e., S3 is the sum of r.vs. V̂ and S1, and we assume

𝐀̂n =
1

E(S1) ∫

∞

0
𝐏(n, x)(1 − FS1 (x))dx, n = 0, 1, 2,… , (20)

𝐕̂n =
1

E(S2) ∫

∞

0
𝐏(n, x)(1 − FS2 (x))dx, n = 0, 1, 2,… , (21)

𝐁̂n =
1

E(S3) ∫

∞

0
𝐏(n, x)(1 − FS3 (x))dx, n = 0, 1, 2,… , (22)

the unknown vectors 𝝂(0) and 𝝂(1) satisfy the following equation:

𝝂(0) + 𝝂(1) = 1
Tmean

(
𝐩+0 (0) + 𝐩+1 (0)

)
(−𝐃0)−1. (23)

It should be noted here that one may not able to find the vectors 𝝂(0) and 𝝂(1)
explicitly. Hence, the approximation for these vectors can be taken as

𝝂(0) ≈ 1
Tmean

𝐩+0 (0)(−𝐃0)−1 and 𝝂(1) ≈ 1
Tmean

𝐩+1 (0)(−𝐃0)−1. We checked that these ap-

proximations give better results for other vector values 𝝅(n), 𝝎(n) and 𝝍(n) for Eqs.

(17)–(19). This approximation is presented in the numerical results.

Let 𝐩(n) denotes the row vector whose ith component is the probability of n (n =
0, 1, 2,…) customers in the system at an arbitrary epoch and state of the arrival

process is i (i = 1, 2,… ,m). Then, we can write 𝐩(0) = 𝝂(0) + 𝝂(1), and for n ≥ 1,
𝐩(n) = 𝝅(n) + 𝝎(n) + 𝝍(n).

Remark 1 It should be noted here that
1

Tmean
= 𝜆

∗
, which can be verified with the Eq.

(10). Similarly, it can be checked that
∑∞

n=0 𝐩(n) = 𝝅. These facts can be used as the

correctness of the numerical results.
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4 Performance Measures and Numerical Illustrations

Some useful performance measures of the discussed queueing system can be de-

termined using the steady-state probabilities and are formulated in this section.

The mean number of customers in the system at a random epoch is evaluated by

Ls =
∑∞

i=1 i𝐩(i)𝐞. Similarly, the expected system lengths of the system when the serv-

er serves the customers in a normal busy period and in a working vacation period

are expressed by Ls1 =
∑∞

i=0 i𝝅(i)𝐞 and Ls2 =
∑∞

i=1 i𝝎(i)𝐞, respectively. Finally, the

mean system length of the system when the server is busy, i.e., the server serves

either in a reduced rate or in a normal rate is computed as Ls3 =
∑∞

i=1 i𝝍(i)𝐞. If the

expected waiting time of an arbitrary customer in the system is denoted by Ws then

from Little’s law, one can determine Ws = Ls∕𝜆∗. All the computations are carried

out by MAPLE software.

The system-length distributions at post-departure and arbitrary epoch for

BMAP∕PH∕1∕∞∕SWV and BMAP∕D∕1∕∞∕SWV queueing system is presented in

Table 1 with the following parameter. The 2-state BMAP representation is taken as

D0=

[
−5.0 1.5
1.0 −4.0

]

,D1=

[
0.98 0.42
0.84 0.36

]

,D2=

[
0.73 0.31
0.63 0.27

]

,D3=

[
0.245 0.105
0.21 0.09

]

,D4=

[
0.245 0.105
0.28 0.12

]

and Dk (k ≥ 5) is null matrix of order 2. For this representation of

BMAP, 𝝅 = [0.548673 0.451327], 𝜆∗ = 6.548673, and 𝜆g = 3.274336. The shape

parameter and the scale parameter of the Weibull distribution for the service time

during working vacation is taken as 1.2 and 0.2, respectively, and the pdf of the

distribution is given by fS2 (x) = 8.278378x0.2e−6.898648x1.2 . The LST of the Weibul-

l distribution is approximated by Pade approximation [4/5] using first 20 moments

calculated from the above pdf of the Weibull distribution, where [4/5] indicates that

the numerator polynomial is of degree 4 and that of the denominator is five. One

may note that 𝜖 = f ∗S2 (𝛾
∗), 𝜏 = f ∗

Ŝ2
(𝛾∗), f ∗

Ŝ2
(s) = 𝜇2(1 − f ∗S2 (s))∕s. It is assumed that the

vacation time is exponential with parameter 𝛾
∗ = 1.5. The parameters of PH type

and deterministic distribution for the service time during normal busy period is so

chosen that E(S1) = 0.075. During normal busy period, the Laplace transform of the

deterministic service time is taken as f ∗S1 (s) = e(−s∕𝜇1); hence, f ∗
V̂+S1

(s) = 𝛾
∗∕𝛾∗ + s

e
−s∕𝜇1 , where 𝜇1 = 1∕E(S1). The PH-type representation is taken as 𝜷1 = [0.5 0.5],

U1 =
[
−60 60
0 −15

]

with 𝜌 = 𝜆
∗E(S1) = 0.491150.

It can be seen in the above numerical example that
1

Tmean
= 6.547141 which is ap-

proximately equal to 𝜆
∗
. Also,

∑∞
n=0 p(n) is quite close to 𝝅. In Figs. 2 and 3, we have

plotted the mean system length and mean waiting time of an arbitrary customer in

above-described BMAP/PH/1 and BMAP/D/1 SWV systems for different 𝜌 (gener-

ated by varying the parameters of PH type and deterministic distribution). It can be

seen from the figures that as 𝜌 increases, the mean waiting time and the mean system

lengths significantly differ for the cases of deterministic and PH-type service times.
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Fig. 2 𝜌 versus Ls
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Fig. 3 𝜌 versus Ws
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5 Conclusions and Future Scope

A BMAP∕G∕1∕∞ queue under single working vacation scheme is investigated in

this paper. An approach to determine the steady-state distributions of the number of

customers in the system at different epochs is outlined here. However, it is interesting

to study an equivalent queueing system with correlated service process; for example

non-renewal type service time distribution can be considered for the same model.

One may also be interested to study the analogous discrete-time queueing model

which is effective on digital telecommunication networks. These problems can be

investigated in further.
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Computational Analysis of the GI/G/1
Risk Process Using Roots

Gopinath Panda, A. D. Banik and M. L. Chaudhry

Abstract In this paper, we analyze an insurance risk model wherein the arrival of

claims and their sizes occur as renewal processes. Using the duality relation in queue-

ing theory and roots method, we derive closed-form expressions for the ultimate ruin

probability, the distribution of the deficit at the time of ruin, and the expected time

to ruin in terms of the roots of the characteristic equation. Finally, some numerical

computations are portrayed with the help of tables.

Keywords Risk processes ⋅ Ruin probability ⋅ Duality ⋅ Padé approximation

Time to ruin ⋅ GI/G/1 queue ⋅ Deficit at the time of ruin

1 Introduction

In recent years, the Sparre Andersen (renewal risk) model has been studied exten-

sively due to its important actuarial applications. Many risk measures like probability

of ultimate ruin, time to ruin, surplus prior to ruin, deficit at the time of ruin, and

recovery time after ruin, have received substantial attention [1–3]. In insurance risk

theory, the principal problem is to find the infinite-time ruin probability. Also, there

has been significant development in the areas such as analysis of the deficit at the

time of ruin, the surplus before the time of ruin, and the time to ruin. The identifi-

cation of the above distributions is cumbersome due to the nonexistence of analytic

expressions in most of the cases. Gerber and Shiu [4] introduced a unified approach
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with the discounted penalty function (a function of the ruin time, the surplus prior

to ruin, and the deficit at ruin) to get the analytic expressions for the above risk

measures. The joint analysis of these random variables using the discounted penalty

function facilitated them to provide a refined characterization of the ruin measures in

terms of a renewal equation [5]. This was further analyzed for some special classes

of the Sparre Andersen model by Dickson and Hipp [6, 7], Landriault and Willmot

[8], Gerber and Shiu [9], and Li and Garrido [10]. The Sparre Andersen model with

Erlang or generalized Erlang distributed inter-claim times has been studied exten-

sively in [11, 12], whereas phase-type inter-claim times are considered in [13, 14].

In a renewal risk model, the probability of ultimate ruin can be identified with the

limiting waiting-time distribution in a single server queue with arrival process being

a renewal one and service time being generally distributed. The second best alterna-

tive to obtain a closed-form solution for ruin probability is a numerical method which

helps to compute the ruin probabilities accurately. Many studies of these models

have focused on numerical methods for evaluation of ruin probabilities; see [15] for

a description of such methods. Some of the main approaches include matrix analytic

methods, Laplace transform inversion, and differential and integral equations. Panda

et al. [16] studied the GI∕M∕1 risk process employing the characteristic roots and

numerically computed several risk measures. An extensive literature on risk theory

can be found in the classic text by Asmussen and Albrecher [17].

Prabhu [18] explored the connection between risk theory and other applied prob-

ability areas in a queueing context. Since then, the duality results have been used

by several authors [19, 21] to find different measures of renewal risk model. We

are interested in the closed-form solution for the risk measures which are, how-

ever, not easy to obtain in most of the cases with an exception in case of phase-type

claims [20]. We extended the model studied in [21], to include both phase-type and

non-phase-type claim size distributions as well as for the distributions with rational

and non-rational Laplace-Stieltjes transform (LST). This method not only concen-

trates on the risk models where claim distributions have rational LST but also can

be applied for any arbitrary distributions with a little modification, i.e., for distribu-

tions with non-rational LST (inverse Gaussian, US Pareto) and no closed-form LST

(Weibull, lognormal), we use the Padé approximation method and continued fraction

approximation. We have used the duality results and roots method to derive closed-

form expressions for the probability of ultimate ruin, expected time to ruin, and the

deficit at the time of ruin. Further, we derived the distribution function of the deficit

at the time of ruin, from which moments of all orders can be derived easily. The

method of roots applied to find the ruin probability is simpler than the Gerber–Shiu

penalty function method as the latter involves tedious integrations. Also, the roots

method is easier for numerical computation in comparison with the earlier works.

The model can be applied to insurance and finance markets.
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2 Mathematical Description of Risk Process

We consider a Sparre Andersen risk process in continuous time, associated with an

insurance company. Let R(t) be the amount of capital per portfolio for an insurance

company at time t. At the beginning (t = 0), we assume the capital of the company to

be u (> 0), that is, R(0) = u. The portfolio receives premiums with constant premium

rate p(> 0). Claims arrive randomly to the insurance company and are to be settled

immediately. Insurance company assumes average claim size to be finite; otherwise,

no insurance company would insure such a risk. In the risk theory, the risk reserve

process is

R(t) = u + pt −
N(t)∑

k=1
Xk, (1)

where N(t) is the total number of claims arrived before time t and Xk is the size

of the kth claim. The claim number process {N(t), t ≥ 0} is a renewal process and

is independent of the claim sizes {Xk, k ≥ 1}. Let Ti, i ≥ 1 denote the interarrival

times of claims, where T1 is the time of the first claim, and Ti for i = 2, 3,… , the

time between the (i − 1)th claim and the ith claim. Now, the sequence of positive

random variables {Ti}∞i=1 is independent identically distributed (i.i.d.) with common

distribution function A(x), density a(x), LST A∗(s) = ∫
∞
0 e−sxdA(x), and mean E(T),

where the random variable T is the generic for inter-claim arrival times. We assume

that there are finitely many claims in finite-time intervals, i.e., the number N(t) is

finite almost surely and E(N(t)) is also finite. Let the claim sizes Xk be positive

i.i.d. random variables with common distribution function B(x), density b(x), LST

B∗(s) = ∫
∞
0 e−sxdB(x), and mean (mean of single claim) E(X), where X is the generic

of claim sizes. The claim amounts and the claim arrival process are mutually inde-

pendent, i.e., Xi is independent of Ti. The above risk model is characterized by the

property lim
t→∞

∑N(t)
i=1 Xi∕t = 𝜌, with 𝜌 being the average claim size per unit time. The

safety loading factor, denoted by 𝜂 is the relative amount by which the premium rate

p exceeds 𝜌, i.e., 𝜂 = (p − 𝜌)∕𝜌. An insurance company will always try to ensure a

positive safety loading 𝜂 > 0, i.e., the premiums received per unit time should exceed

the expected claim payments per unit time. Another process {S(t), t ≥ 0} in the the-

ory of risk is known as the claim surplus process, which is defined as

S(t) = u − R(t) =
N(t)∑

k=1
Xk − pt. (2)

The claim surplus process is more convenient to work with than the original pro-

cess {R(t), t ≥ 0}. The most important measure in risk theory is the infinite-time

ruin probability (or ultimate ruin probability), which is denoted by 𝜓(u) and is

defined as the probability that the risk reserve becomes negative if it started with
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initial reserve u, 𝜓(u) = P(inf t≥0 R(t) < 0|R(0) = u). On the other hand, the finite-

time ruin probability is the ruin probability before a fixed time say, T̄ and is defined

by 𝜓(u, T̄) = P
(
inf0≤t≤T̄ R(t) < 0|R(0) = u

)
. Let 𝜏(u) denote the time to ruin, that

is the time instant for which the risk reserve becomes negative for the first time,

then 𝜏(u) = inf{t ≥ 0 ∶ R(t) < 0} = inf{t ≥ 0 ∶ S(t) > u} and M = sup
0≤t<∞

S(t) is the

maximum with infinite-time ruin probability. Thus, the ultimate ruin probability is

𝜓(u) = P{𝜏(u) < ∞} = P{M > u}. The following proposition can be found in [17,

p. 3].

Proposition 1 When safety loading factor is negative (𝜂 < 0), then M = ∞ and
hence, ruin is certain whatever may be the initial reserve (𝜓(u) = 1, ∀ u). If safety
loading factor is positive, then M < ∞ and hence, 𝜓(u) < 1, for all sufficiently
large u.

3 GI/G/1 Risk Process and Duality

Consider a risk process in which the claims arrive to the system following a renewal

process, i.e., the arrival epochs t1, t2,… , of the risk process form a renewal process

with tn = T1 + T2 +⋯ + Tn. The inter-claim arrival times {Ti, i ≥ 1} and claim sizes

{Xi, i ≥ 1} are defined in Sect. 2. We assume the premium rate per unit time to be

unity (p = 1). The average claim amount per unit time is equal to E(X)∕E(T). We

denote the above risk process as GI/G/1 risk model. Let N (u) be the number of

claims up to the time of ruin. Then N (u) is given by

N (u) = inf{n ∶ u +
n∑

i=1
Ti −

n∑

i=1
Xi < 0}.

The time to ruin is

𝜏(u) =
N (u)∑

i=1
Ti, (3)

and the deficit at the time of ruin is

𝜁 (u) =
N (u)∑

i=1
Xi −

N (u)∑

i=1
Ti − u =

N (u)∑

i=1
Xi − 𝜏(u) − u. (4)

Let 𝜁 (0) = 𝜁. Consider the GI/G/1 risk process. The corresponding queueing sys-

tem associated with this risk process is the single server GI/G/1 queue, with an infi-

nite buffer. Let the customers (individual claims) arrive to the system at time epochs



Computational Analysis of the GI/G/1 Risk Process Using Roots 79

0 = t0, t1, t2,… , tn,… . The interarrival and service times are respectively the inter-

claim arrival times and claim sizes of the risk process. The customers are served by

a single server. The service discipline is the classical first-come first-served (FCFS)

one. The traffic intensity of the queueing model, 𝜌 = E(X)∕E(T), is assumed to be

less than unity, i.e., the underlying queueing model will satisfy the stability condition

if 𝜌 < 1 which is equivalent to E(X) < E(T).

4 Performance Measures of the Risk Process

An insurance risk model is characterized by the ultimate ruin probability, time to

ruin, deficit at the time of ruin, and recovery time after a ruin. We analyze the fol-

lowing performance measures.

4.1 Probability of Ultimate Ruin

For the GI/G/1 risk model described above, we consider two cases for 𝜌: when 𝜌

greater than unity and 𝜌 smaller than unity.

Case 1. (𝜌 > 1) In this case, ruin is certain. When 𝜌 becomes greater than unity,

the safety loading factor for the risk process 𝜂 becomes negative. Hence by Proposi-

tion 1, the result follows.

Case 2. (𝜌 < 1) When 𝜌 < 1, we use the classical result that the ruin probabilities

for the GI/G/1 risk model are related to the stationary actual waiting-time (W) of an

initially empty GI/G/1 queue by means of 𝜓(u) = P(W > u). Consider the GI/G/1

queue, where the claim arrival process serves as the customer arrivals with the same

rate and the claim sizes serves as the service times with distribution function B(x).
A single server provides service to the incoming claims following the classical first-

come first-served discipline. The stability condition for the underlying queueing sys-

tem is 𝜌 < 1. For the above renewal arrival queue with 𝜌 < 1, ruin probability is dis-

tributed as the tail of the waiting-time in steady state. Let Wn be the actual waiting-

time of nth customer, i.e., the time at which the customer arrives to the queue until

he starts service. Let W be the stationary actual waiting-time of Wn with LST W∗(s).
The literature on queueing theory indicates that distributions bearing rational LSTs

address a wide range of distributions that arise in real-life applications. In this per-

spective, we consider those distributions having rational LSTs of the form P(s)∕Q(s),
where the polynomials Q(s) and P(s) are of degree n and at most n, respectively.

Also they have no common factors. Assuming B∗(s) = P(s)∕Q(s), it can be shown

by Rouché’s theorem that the characteristic equation (c.e.) of the GI/G/1 queue,

Q(s) − A∗(−s)P(s) = 0

has n roots (assumed distinct), say sk(k = 1, 2,… , n) with Re(sk) < 0. From (3.5) of

Chaudhry et al. [22, p. 112], we can obtain the actual waiting-time LST,
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W∗(s) =
∏n

i=1 −si

Q(0)
+

n∑

i=1

Ai

s − si
, (5)

where the unknowns are

Ai = −si
Q(si)
Q(0)

n∏

j=1,j≠i

( −sj

si − sj

)
, i = 1, 2,… , n.

The probability that a customer upon arrival will not wait is W(0) =
∏n

i=1 −si∕
Q(0). Taking the inverse Laplace transform of (5), the pdf and cdf of actual waiting-

time distribution are, respectively,

w(t) = 1
Q(0)

n∏

i=1
−si 𝛿(t) +

n∑

i=1
Ai esit and W(t) = 1 +

n∑

i=1

Ai

si
esit, (6)

where 𝛿(t) is the Dirac 𝛿-function. From [17, p. 162], the fundamental duality rela-

tions between the steady-state behavior of the GI/G/1 queue and the ruin probabilities

can be found in the proposition below.

Proposition 2 If 𝜂 > 0 (≡ 𝜌 < 1), then there exists a random variable W such that
for n → ∞, Wn converges in distribution to W, and the probability of ultimate ruin
is given by 𝜓(u) = P(W > u).

The survival probability 𝜙(u) for the above renewal risk model is given by 𝜙(u) =
W(u). The ultimate ruin probability becomes

𝜓(u) =
n∑

i=1

Ai

−si
esiu. (7)

Remark 1 The expression for ruin probability 𝜓(u) in Case 2 (E(X) < E(T)) of

Frostig [21, p. 396] exactly matches in numerical value with our model when both

the claim arrival and claim sizes are phase-type distributed.

4.2 Time to Ruin and Deficit at the Time of Ruin

As time passes, the risk reserve of an insurance company increases with more pre-

mium and decreases when a claim is settled. There is a point in time when the risk

reserve becomes negative for the first time. This particular time instant is called the

ruin time and is denoted by 𝜁 (u). Here, we consider two cases: when 𝜌 > 1 and 𝜌 < 1.

Case 1. (𝜌 > 1) In this case, ruin is certain and the kth-order moment of 𝜏(u) exist

for k = 1, 2,…. The busy period Bp of the dual queue GI∕G∗∕1 is finite, where the

interarrival and service times of GI/G/1 are exchanged in the dual GI∕G∗∕1. When
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the initial reserve u = 0, from the duality between the GI/G/1 risk process and the

GI∕G∗∕1 queueing system, we obtain E(𝜏(0)) = E(Bp) and E(𝜁 (0)) = E(I). We con-

tinue the analysis of the dual queue GI∕G∗∕1 to find the idle period distribution. The

arrival process of the dual queue has LST B∗(s), mean E(X) and that of the service

process is A∗(s) and E(T). Hence, the dual queue is stable as 𝜌
∗ = 1∕𝜌 < 1. The c.e.

of the dual queue is 1 − A∗(s) B∗(−s) = 0. Let A∗(s) = P̂(s)∕Q̂(s), where the degree

of Q̂(s) is m and degree of P̂(s) is at most m. Following the similar analysis as in case

2 of Sect. 4.1, the actual waiting-time of the dual queue becomes

Ŵ∗(s) = Q̂(s)
Q̂(0)

m∏

i=1

−ŝi

(s − ŝi)
=

∏m
i=1 −ŝi

Q̂(0)
+

m∑

i=1

Âi

s − ŝi
, (8)

where ŝi, i = 1, 2,… ,m are the roots of the c.e. of the dual queue in Re(̂si) < 0. The

unknowns can be easily calculated and found to be

Âi = −ŝiQ̂(̂si)
m∏

j=1,j≠i

(
−ŝj

ŝi − ŝj

)
∕ Q̂(0), i = 1, 2,… ,m.

Let I be the r.v which represents the distribution of actual idle period observed

by an arriving customer. From Eq. (8.106) of [23], the relation between LSTs of idle

period distribution and actual waiting-time distribution is given by

I∗(s) = 1 − Ŵ∗(−s)[1 − A∗(−s)B∗(s)]∕Ŵ(0). (9)

Substituting the value of Ŵ(s) and then simplifying the expression for I∗(s) and

the partial fraction decomposition results

I∗(s) =
l∑

j=1

hj

s − 𝛼j
, (10)

where 𝛼j for j = 1, 2,… , l are distinct roots of Q(s) with Re(𝛼j) < 0 and hj, j =
0, 1,… , l are constants to be determined by evaluating left-hand side I∗(s) and right-

hand side
∑l

j=1
hj

s−𝛼j
of Eq. (10) for any l values of s(= 1, 2,… , l). The coefficients

hj satisfy the relation
∑l

j=1
hj

𝛼j
+ 1 = 0. In case Q(s) has repeated roots, say, 𝛼1 with

multiplicity k1 and 𝛼2 with multiplicity k2 such that k1 + k2 = l, the partial fractions

have to be modified to
k1∑

j=1

hj

(s − 𝛼1)j
+

k2∑

j=1

h̄j

(s − 𝛼2)j
.

From Eq. (10), the pdf fI(t) and cdf FI(t) of idle period distribution, respectively,

are
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fI(t) =
m∑

j=1
hje𝛼j t and FI(t) = 1 +

m∑

j=1

hj

𝛼j
e𝛼j t. (11)

The kth-order moment of idle period is given by

Ek(I) =
m∑

j=1
hj∕𝛼k+1

j .

Suppose that initially the server is idle and he remains so for an arbitrary time.

As soon as a customer arrives, he gets busy and remains busy for a random amount

of time. So the cycle of idle periods and busy periods will generate two mutually

independent sequences which can be studied as an alternating renewal process. The

expected busy period, E(Bp), in the queueing system GI/G/1 can be found from the

relation E(Bp)∕E(I) = 𝜌
∗∕(1 − 𝜌

∗); see [24]. So E(Bp) is given by

E(Bp) =
𝜌
∗

1 − 𝜌∗

m∑

j=1

hj

𝛼
2
j

.

Hence, the expected time to ruin and the expected deficit at the time of ruin for

u = 0 are

E(𝜏(0)) = 𝜌
∗

1 − 𝜌∗

m∑

j=1

hj

𝛼
2
j

and E(𝜁 (0)) =
m∑

j=1

hj

𝛼
2
j

. (12)

When the initial reserve u > 0, the expected value of the deficit at the time of

ruin 𝜁 (u) is equivalent to the expected value of the excess life of idle period of the

associated dual queue at time u. As it is already explained that the idle period and the

busy period form an alternating renewal process, we consider the renewal process

formed by the idle periods only. Let r(t) be the time measured from t, the instant at

which we start observing the renewal process to the next renewal instant after time t.
Now, to find the expected value of the excess life (or residual life) of idle period, we

have to first calculate the expected value of the number of renewals in [0, u] for the

dual queue GI∕G∗∕1. The expected value of excess life of idle period r(t) at time t
can be obtained from the definition of excess life

r(t) = WN(t)+1 − t, t > 0,

where WN(t)+1 is the waiting-time until the (N(t) + 1)th renewal, when idle periods

take the place of arrivals, i.e., WN(t)+1 =
∑N(t)+1

i=1 Ii, where Ii is the inter-occurrence

time between (i − 1)th and ith idle period. Taking expectation of both sides and then

applying Wald’s identity, the expected number of renewals is
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E(r(t)) = E(I)[E(N(t)) + 1] − t. (13)

Alternatively, we can also derive the expected number of renewals. The expres-

sion for the LST of the expected number of renewals E(N(t)) is given by

V∗(s) = I∗(s)
1 − I∗(s)

=
∑l

j=1 hj
∏l

i=1,i≠j(s − 𝛼i)
∏l

j=1(s − 𝛼j) −
∑l

j=1 hj
∏l

i=1,i≠j(s − 𝛼i)
, Re(s) > 0. (14)

Clearly, V∗(s) is a proper rational polynomial. Since V∗(s) is convergent for

Re(s) > 0, using Rouche’s theorem it can be shown that denom(V∗(s)) = 0 has l roots

(assumed distinct), say 𝛼i (i = 1, 2,… , l) for which Re(si) ≤ 0. In case of repeated

roots, the partial fractions have to be modified similarly as stated earlier. Clearly, one

root is at s = 0, say sl. Making partial fractions, we can write (14) as

V∗(s) =
l−1∑

i=1

di

s − 𝛼i
+

dl

s − 𝛼l
. (15)

The constants di, i = 1, 2,… , l can be determined by solving

∑l
j=1 hj

∏l
i=1,i≠j (s−𝛼i )

∏l
j=1(s−𝛼j ) −

∑l
j=1 hj

∏l
i=1,i≠j (s−𝛼i )

=
∑l−1

i=1
di

s−si
+ dl

s
. Taking the inverse LST of (15), we get the renewal density function v(t),

as

v(t) =
l−1∑

i=1
diesit + dl. (16)

Integrating (16) from 0 to t, we get the explicit expression for the expected number

of renewals E(N(t)).

V(t) = E(N(t)) = dlt +
l−1∑

i=1

di

si
esit −

l−1∑

i=1

di

si
. (17)

One can also directly obtain (17) from [25, p. 382] using the relation E(N(t)) =
L −1

{
I∗(s)

s(1−I∗(s))

}
. We numerically match E(N(t)) obtained by different methods as

explained above and find good match. Equation (17) is valid for any claim size dis-

tribution, whereas E(Ñ(u)), calculated using (7.1) of [21] is valid only for phase-

type claim sizes. Let F
𝜁
(t), the distribution function of the deficit at the time of ruin

𝜁 (u), be defined as F
𝜁
(t) = P{𝜁 (u) ≤ t} = P{r(u) ≤ t}. The closed-form expression

of F
𝜁
(t) is given by

F
𝜁
(t) = FI(u + t) −

∫

u

0
[1 − FI(u + t − x)]v(x)dx. (18)
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The density function f
𝜁
, expected value and higher-order moments of the deficit

at the time of ruin, can easily be derived from (18). For initial reserve u = 0, 𝜁 (0) is

distributed as the idle period FI(t) of dual queue GI∕G∗∕1. The expected value of

the deficit at the time of ruin 𝜁 (u) can be obtained either from (13) and (17) or (18).

From Eqs. (13) and (17), the expected value of deficit at the time of ruin is given as

E(𝜁 (u)) = E(r(u)) = E(I)

[
1 +

l−1∑

i=1

di

si
esiu −

l−1∑

i=1

di

si

]
(19)

Now to obtain the expected time to ruin, we use (2) and then (4), to get

S(𝜏(u)) =
N(𝜏(u))∑

i=1
Xi − 𝜏(u) = u + 𝜁 (u). (20)

Taking expectation of both sides of (20) and then applying Wald’s identity, we

obtain

E(𝜏(u)) = u + E(𝜁 (u))
𝜌 − 1

. (21)

Using Eq. (19), the expected value of the time to ruin of the GI/G/1 risk process

is

E(𝜏(u)) =

u + E(I)

[
1 +

l−1∑
i=1

di

si
esiu −

l−1∑
i=1

di

si

]

𝜌 − 1
. (22)

Case 2. (𝜌 < 1) In this case, the expected time to ruin is infinite. For the dual

queue, 𝜌
∗ = 1∕𝜌 > 1. The fundamental duality relations fail as the dual queue

GI∕G∗∕1 becomes unstable. So, using the change of measure technique via expo-

nential family [17, p. 82], we redefine the parameters of our risk process. Define

𝜅(𝜃) = B∗(−𝜃)A∗(𝜃) − 1. The Lundberg equation 𝜅(𝜃) = 0 has a unique positive

solution 𝛾 called the Lundberg coefficient. Consider another renewal risk process

where the inter-claim arrival times are distributed as T
𝛾

with distribution A
𝛾
(t) and

with claim size distributed as X
𝛾
, with distribution B

𝛾
(t). The densities of claim

arrivals and claim sizes are related to the original risk process in the following way:

a
𝛾
(t) = e−𝛾t a(t)∕A∗(𝛾), b

𝛾
(t) = e𝛾t b(t)∕B∗(−𝛾).

We call this risk process the 𝛾-risk process. Substituting 𝛾 = 0, we get the orig-

inal risk process. Let P
𝛾

be the probability measure induced by {T
𝛾j,X𝛾j} and E

𝛾

be the corresponding expectation operator. As the Lundberg conjugation corre-

sponds to interchanging the rates of the inter-claim arrival and the claim sizes, the

𝜌
𝛾
= E(X

𝛾
)∕E(T

𝛾
) > 1. Hence, the dual queue of the 𝛾-risk process is stable. This is

the condition we have in case 1. Now consider the dual queue GI∕G∗∕1 where the
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service times are generally distributed as T
𝛾

with mean E(T
𝛾
), and interarrival times

are distributed as X
𝛾

with mean E(X
𝛾
). Since 𝜌

∗
𝛾
= 1∕𝜌

𝛾
of the dual queue is less than

1, the steady-state condition holds, i.e., the steady-state solutions of the dual queue

exist. Following similar analysis to the one used in case 1, the performance measures

of the 𝛾-risk process can be found. These measures can be considered as the upper

bounds for the corresponding measures of the original risk process.

5 Numerical Results and Discussion

In this section, we present numerical examples that show the effect of several param-

eters on the behavior of the different performance measures of the renewal risk pro-

cess. In particular, we are concerned about the values of the queueing parameters for

which the insurance company’s business will be stable. Numerical results demon-

strated in this paper are performed using Maple 17 program. We have considered

several numerical experiments with different sets of system parameters, and for the

sake of completeness, few sets of risk parameters are shown below in the numer-

ical computations. The numerical values are computed up to 30 decimal places in

Maple 17 program, but due to lack of space only 6 decimal places are presented with

rounding off.

We consider a PH(𝜶,T)∕PH(𝜷,S)∕1 risk process with parameters,

𝜶 = (0.1, 0.6, 0, 0.3), T =
⎛
⎜
⎜
⎜⎝

−3 1 0 1
1 −5 1 0
0 2 −4 2
1 0 1 −4

⎞
⎟
⎟
⎟⎠

, 𝜷 = (0.5, 0.2, 0.3), S =
⎛
⎜
⎜⎝

−3 1 0
0 −6 1
0 2 −5

⎞
⎟
⎟⎠
.

Here em is the column vector of one’s. The expected values of claim arrival

and claim sizes are E(T) = −𝜶T−1e4 = 0.565333 and E(X) = −𝜷S−1e3 = 0.330952.

So 𝜌 = E(X)∕E(T) = 0.585411 < 1. The queueing model associated with the above

risk model is the stable PH(𝜶,T)∕PH(𝜷,S)∕1 queue. We obtain the stationary

distribution actual waiting-time using the roots of the characteristic equation

explained in the Sect. 4. The ultimate ruin probability is 𝜓(u) = −0.002865
e−7.101841u + 0.003354 e−3.867988u + 0.584922 e−1.140942u

with 𝜓(0) = 0.585411. The

corresponding expression 𝜓(u) = 𝜷
+e(S+s𝜷+)ue in [21, p. 396] exactly matches for

all u which is presented in the second column (Frostig) in Tables 1 and 2.

In case of inverse Gaussian claims, the LST is not in the rational form. So, Padé

approximation formula is used to rationalize the LST. For this, we first obtained N
moments (m1,m2,… ,mN) of the IG distribution and then form a function series in

terms of s, i.e.,
∑N

i=1(−1)
imisi∕i!. Then we approximated this series with the function

Padé [4, 5] in Maple to obtain our required LST of IG distribution. Similar procedure

is followed in case of Weibull claims to get the LST required for the characteristic

equation. Several risk measures are studied for phase-type claim size distribution
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Table 1 Ruin probabilities 𝜓(u) for different claim arrival distributions

u PH Frostig ME IG Wb Pareto

0 0.626887 0.626887 0.498410 0.782942 0.551246 0.757810

1 0.200255 0.200255 0.231030 0.557299 0.269135 0.514416

2 0.063961 0.063961 0.108224 0.399221 0.134552 0.352925

3 0.020436 0.020436 0.050700 0.285989 0.067277 0.242141

4 0.006530 0.006530 0.023752 0.204873 0.033639 0.166133

5 0.002086 0.002086 0.011127 0.146764 0.016820 0.113984

6 0.000667 0.000667 0.005213 0.105137 0.008410 0.078204

7 0.000213 0.000213 0.002442 0.075317 0.004205 0.053656

8 0.000068 0.000068 0.001144 0.053955 0.002103 0.036813

9 0.000022 0.000022 0.000536 0.038651 0.001051 0.025258

10 0.000007 0.000007 0.000251 0.027689 0.000526 0.017329

Table 2 Ruin probabilities 𝜓(u) for different claim size distributions

u PH Frostig ME IG Wb Pareto

0 0.428468 0.428468 0.794369 0.353593 0.440906 0.588651

1 0.167076 0.167076 0.643123 0.094832 0.288346 0.376409

2 0.065950 0.065950 0.521321 0.030824 0.213110 0.251653

3 0.026074 0.026074 0.422822 0.010576 0.160285 0.169757

4 0.010311 0.010311 0.343019 0.003724 0.122497 0.114737

5 0.004077 0.004077 0.278309 0.001333 0.095017 0.077583

6 0.001612 0.001612 0.225817 0.000483 0.074693 0.052465

7 0.000638 0.000638 0.183230 0.000176 0.059412 0.035480

8 0.000252 0.000252 0.148676 0.000064 0.047738 0.023994

9 0.000100 0.000100 0.120639 0.000024 0.038689 0.016226

10 0.000039 0.000039 0.097889 0.000009 0.031581 0.010973

with representation (𝜶,T) and changing the claim arrival distribution to be matrix

exponential (ME), inverse Gaussian (IG), and Weibull (Wb) with densities (1 +
1

(2𝜋)2
)(1 − cos(2𝜋t))e−t

,

√
0.5
2𝜋t3

e−𝜆(t−0.75)2∕(2(0.75)2t)
and

0.5
10

(
t
10

)0.5−1
e−(t∕10)0.5 , respec-

tively.

Also, we consider the US Pareto [17, p. 10] claim size distribution with pdf
𝛼 a𝛼

(a+x)𝛼+1
, where scale parameter a = 1.5 and shape parameter 𝛼 = 2.5. The LST of

the Pareto claims, 𝛼(as)𝛼easΓ(−𝛼, as), is not rational because of the presence of

incomplete Gamma function. We obtained the rational form representation of the

incomplete Gamma function using the Legendre’s continued fraction approach. For

calculation of the LST of the Pareto in rational form, we found five terms in the

continued fraction of incomplete Gamma function. For all these risk processes, we

carry out similar analysis as in case of PH∕PH∕1 risk process, and the values of ruin

probabilities for different initial reserves are presented in Table 1.
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Again, we have fixed the claim arrival distribution to be phase-type with rep-

resentation PH(𝜶,T), where 𝜶 = (0.1, 0.6, 0, 0.3), T =
⎛
⎜
⎜
⎜⎝

−3 1 0 1
3 −5 1 1
0 2 −4 1
1 0 2 −4

⎞
⎟
⎟
⎟⎠

, E(T) =

1.303093 and considered different types of claim amount distributions as

follows: Phase-type claims with representation (𝜷𝟏,S𝟏), matrix exponential claims

with representation (𝜷𝟐,S𝟐), inverse Gaussian density

√
𝜆

2𝜋t3
e−𝜆(t−𝜇)2∕(2𝜇2t)

,

𝜆 = 0.5, 𝜇 = 0.5,E(X) = 0.5, Weibull claims with density
𝜆

𝜇

(
t
𝜇

)
𝜆−1

e−(t∕𝜇)𝜆 , 𝜆 =
0.5,
𝜇 = 0.3, E(X) = 0.6 Pareto claims with density

𝛼 a𝛼

(a+x)𝛼+1
, a = 1.5, 𝛼 = 2.5, where

𝜷𝟏 = (0.5, 0.2, 0.3), 𝜷𝟐 = (1, 0, 0),S𝟏 =
⎛
⎜
⎜⎝

−3 1 0
0 −6 5
0 3 −5

⎞
⎟
⎟⎠
,S𝟐 =

⎛
⎜
⎜⎝

0 −1 − 4𝜋2 1 + 4𝜋2

3 2 −6
2 2 −5

⎞
⎟
⎟⎠
.

Similar analysis of the model is carried out using the roots method and duality rela-

tions. The ultimate ruin probability is calculated from the tail of the waiting-time

distribution of the associated queueing system. In case of PH claims, the values are

compared with that of Frostig and exact matching is found. The values of the ulti-

mate ruin probabilities against initial reserves of the insurance company for different

claim size distributions are presented in Table 2.

It is also important for the insurance companies to know the time to ruin of their

business as well as the deficit amount at the time of ruin. Keeping these in mind,

we consider different distributions for claim arrivals as well as claim amounts and

calculated the expected time to ruin and expected deficit at the time of ruin. We first

consider a PH(𝜶,T)∕PH(𝜷,S)∕1 risk process, where (𝜶,T) and (𝜷,S) are

𝜶 = (0.5, 0.2, 0.3),T =
⎛
⎜
⎜⎝

−3 1 0
0 −6 1
0 2 −5

⎞
⎟
⎟⎠
, 𝜷 = (0.1, 0.6, 0, 0.3),S =

⎛
⎜
⎜
⎜⎝

−3 1 0 1
1 −5 1 0
0 2 −4 2
1 0 1 −4

⎞
⎟
⎟
⎟⎠

.

For this risk process, 𝜌 is 1.708201 > 1. Hence, ruin is certain. To find the time

to ruin and deficit at the time of ruin, we consider the dual queue (PH(𝜷,S)∕PH
(𝜶,T)∕1) of the risk process (PH(𝜶,T)∕PH(𝜷,S)∕1). The dual queue is stable since

𝜌
∗ = 1∕𝜌 < 1. Using the analysis as explained in Sect. 4.2, we calculate the waiting-

time (actual and virtual) distributions and idle period distribution and the excess life

of the idle period distribution. Similarly, the expected values of the deficit and the

time to ruin are calculated for other claim size distributions described above. The

expected deficit at the time of ruin for different claim distributions is presented in

Table 3 and that of the expected time to ruin in Table 4. We have found that inverse

Gaussian and matrix exponential distributions are more helpful than others for the

insurance company.
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Table 3 Expected value of the deficit at the time of ruin for different claim sizes

u PH Frostig ME IG Wb Pareto

0 0.628177 0.628177 0.951825 0.473230 2.687979 0.891496

1 0.659026 0.659026 0.981618 0.540957 4.167769 1.020517

2 0.659124 0.659124 0.989147 0.550614 4.904983 1.042251

3 0.659125 0.659125 0.990817 0.552450 5.290328 1.046379

4 0.659125 0.659125 0.991091 0.552911 5.507631 1.047172

5 0.659125 0.659125 0.991089 0.553040 5.643478 1.047325

6 0.659125 0.659125 0.991060 0.553076 5.738733 1.047355

7 0.659125 0.659125 0.991041 0.553086 5.812763 1.047360

8 0.659125 0.659125 0.991032 0.553089 5.874820 1.047361

9 0.659125 0.659125 0.991028 0.553090 5.929389 1.047362

10 0.659125 0.659125 0.991027 0.553091 5.978708 1.047362

Table 4 Expected value of the time to ruin for different claim sizes

u PH Frostig ME IG Wb Pareto

0 0.887003 0.887003 0.452473 0.926465 0.532994 0.641202

1 2.342591 2.342591 0.942010 3.016804 1.024707 1.453243

2 3.754757 3.754757 1.420963 4.993455 1.369176 2.188119

3 5.166785 5.166785 1.897132 6.954796 1.643874 2.910331

4 6.578813 6.578813 2.372636 8.913446 1.885251 3.630145

5 7.990840 7.990840 2.848009 10.871444 2.110476 4.349498

6 9.402868 9.402868 3.323369 12.829261 2.327652 5.068763

7 10.814896 10.814896 3.798735 14.787028 2.540619 5.788010

8 12.226923 12.226923 4.274105 16.744781 2.751213 6.507254

9 13.638951 13.638951 4.749477 18.702529 2.960321 7.226498

10 15.050978 15.050978 5.224851 20.660276 3.168389 7.945741

6 Conclusion and Future Scope

In this paper, a complete analysis of the GI/G/1 risk process is described for dif-

ferent claim arrivals and claim sizes with distributions having rational LST. Heavy-

tailed distributions and distributions without any LST are also considered. We pre-

sented the closed-form distributions for the ruin probability and the deficit at the

time of ruin. This model can be extended to discrete time renewal risk model, and its

counterpart in the continuous time can be approximated. Another challenging area

of investigation can be the cross-correlated risk models with dependency between
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inter-claim times and claim sizes. A further extension of the model to a renewal

risk process incorporating different variants like reinsurance, constant dividend bar-

rier, and force of interest is of much importance, and these studies are left for future

investigations.
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Score-Based Secretary Problem

Jyotirmoy Sarkar

Abstract In the celebrated “Secretary Problem,” involving n candidates who have

applied for a single vacant secretarial position, the employer interviews them one

by one in random order and learns their relative ranks. As soon as each interview is

over, the employer must either hire the candidate (and stop the process) or reject her

(never to be recalled). We consider a variation of this problem where the employer

also learns the scores of the already interviewed candidates, which are assumed to be

independent and drawn from a known continuous probability distribution. Endowed

with this additional information, what strategy should the employer follow in order

to maximize his chance of hiring the candidate with the highest score among all n
candidates? What is the maximum probability of hiring the best candidate?

Keywords Analytical expression ⋅ Conditional probability ⋅ Iterative

computation ⋅ Recursive relation ⋅ Simulation

1 Background and Statement of the Problem

Recall the celebrated secretary problem: There are n applicants who have applied for

the single open position of a secretary. The employer will interview them one by one

in random order. At the conclusion of each interview, the employer must decide either

to hire the candidate (and stop interviewing), or to let her go for good never to be

recalled. Thus, the process concludes as soon as a candidate is hired. At any time the

employer has a relative ranking of all candidates interviewed so far, but he does not

have their absolute ranking among all n candidates (unless and until he interviews all

candidates). His objective is to hire the best candidate. Obviously, he must consider

hiring a candidate only if she is the best among all interviewed candidates. How can

he maximize his probability of hiring the best candidate among all n candidates?

If the employer hires a candidate after interviewing too few candidates, he runs

the risk of missing the best candidate who is yet to be interviewed. On the other
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hand, if he rejects too many candidates and waits too long to hire, he will have

too few candidates left to be interviewed, and hence a small chance that one of

them will surpass the leading candidate among those who have been already inter-

viewed (and this leading candidate has not been hired). Assuming that all permuta-

tions of candidates by rank are equally likely, the optimal strategy turns out to be:

“Interview and let go the first m − 1 candidates, and thereafter hire the first candi-

date among m,m + 1,… , n − 1 who is the best among all interviewed candidates,

if such a candidate comes along; otherwise, hire the last candidate.” The value m,

of course, depends on n. In fact, m = argmaxk{pn(k)} where pn(1) = 1∕n and for

k ≥ 2, pn(k) =
k−1
n

n∑

j=k

1
j−1

. The maximum probability of hiring the best candidate by

following the optimal strategy is pn(m). In particular, asymptotically (as n → ∞), the

optimal choice is m ≈ n∕e, and the associated highest probability of hiring the best

candidate is 1∕e = 0.3678794….

The secretary problem is also known as the marriage problem, the sultan’s dowry

problem, the fussy suitor problem, the game of googol, and the best choice problem.

It was apparently introduced in 1949 by Flood [1]. R. Palermo proved that all strate-

gies are dominated by a strategy of the form: “Reject the first k − 1 unconditionally,

then accept the next candidate who is the best.” The first publication was apparently

by Martin Gardner in Scientific American, February 1960, where he presented the

analysis by Leo Moser and J.R. Pounder. It was reprinted with additional comments

in [2]. The 1∕e-law of best choice is due to Bruss [3]. We refer the reader to Ferguson

[4] for an extensive bibliography.

Here we consider a variation of the secretary problem, in which we know the

probability distribution from which the scores of each candidate is drawn. Suppose

that the candidates appear in a random order. After interviewing each candidate, the

employer not only knows her relative rank among all candidates interviewed so far,

but also he knows her absolute score on a known scale. In this modified situation,

what strategy should the employer follow in order to maximize his chance of hiring

the candidate with the highest score among all n candidates? More precisely, we

consider the problem below.

Score-Based Secretary Problem: In the context of the secretary problem, suppose that the

employer, after interviewing the candidates, can assign absolute scores X1,X2,…, which are

assumed to be drawn independently from the same known continuous distribution function

F. What is the employer’s best strategy to maximize the chance of winning (that is, hiring the

candidate with the highest score among all n candidates)? What is the maximum probability

of winning?

In preparation for solving the score-based secretary problem, let us make a few

straight-forward observations:

(1) Without loss of generality, we can assume that the scores are independent and

identically distributed (IID) as uniform (0, 1). For otherwise, we will simply

replace each score X by U = F(X), which will have uniform (0, 1) distribution.

See Exercise 1.2 of [5]. Also, by the continuity of F, ties among scores is ruled
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out (for when the scores are displayed to infinitely many decimal places, surely

they will differ).

(2) The employer will surely let go any candidate who scores below someone else

already interviewed. He should consider hiring a candidate only if her score

is a record high value in the sense that it is the largest among all scores

assigned so far. Clearly, X1 is a record high score. Thereafter, for m > 1, Xm
is a record high value if Xm = max{X1,X2,… ,Xm}; or equivalently, if Xm > Xi
for i = 1, 2,… ,m − 1.

(3) The employer should consider hiring a candidate with a record high score pro-

vided her score is large enough so that there is only a small chance that some

other candidate yet to be interviewed will score higher than the current candi-

date. How large a score is large enough for the employer win the game (or to

hire a candidate with a record high score)?

(4) The requisite threshold, above which the employer should hire a candidate with

a record high score, depends on how many candidates are yet to be interviewed.

Finding the threshold corresponding to each possible remaining number of can-

didates to be interviewed is the crux of the solution to the problem. We contend

that the thresholds can be found inductively as we allow more and more candi-

dates.

Let us describe the employer’s best strategy and his overall chance of winning.

Definition 1 If there are n applicants, let 𝜃n denote the threshold such that the

employer maximizes his probability of hiring the best candidate by using the strategy

“Hire Candidate 1, who scores X1, if and only if X1 > 𝜃n.”

Form of the Best Strategy: “If X1 > 𝜃n, then hire Candidate 1. Otherwise, wait

until a candidate (say, Candidate m) receives a record high score Xm. If Xm > 𝜃n+1−m,

then hire Candidate m. Otherwise, let her go and wait until the next record high score

is attained. Etc.”

Definition 2 If there are n applicants, let 𝜔n denote the (maximal) probability that

the employer wins the game (that is, hires the best candidate) if he uses his above-

stated best strategy.

We will now inductively determine 𝜃n and 𝜔n for all n = 1, 2, 3,….

2 Exact Solutions for Small Number of Candidates

Recall that the potential scores of the candidates (in the order interviewed) are

X1,X2,… ,Xn, which we assume are IID uniform (0, 1). If there is only n = 1 appli-

cant, the solution is trivial: Hire her irrespective of her score; that is, 𝜃1 = 0. In this

case, the employer surely hires the best candidate by default. So, 𝜔1 = 1. Let us pro-

ceed to determine (𝜃2, 𝜔2), (𝜃3, 𝜔3),….
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Fig. 1 Conditional

probability f2(x1) that the

employer wins, given

X1 = x1

Suppose that n = 2. In this case, after interviewing Candidate 1 who has received

score X1 = x1, there is only one more candidate to be interviewed. If x1 > 1∕2,

then the employer should hire Candidate 1, because, given x1 > 1∕2, the condi-

tional probability that the employer wins (or hires the better candidate) is P{X2 <

x1} = x1 > 1∕2. On the other hand, if x1 < 1∕2, then the employer should let Candi-

date 1 go, and hire Candidate 2, because, given x1 < 1∕2, the conditional probability

that the employer wins is P{X2 > x1} = 1 − x1 > 1∕2. Figure 1 shows the function

f2(x1) = max{1 − x1, x1}, the conditional probability of the employer winning, given

X1 = x1.

Since X1 follows a uniform (0, 1) distribution, the overall probability that the

employer wins is the area under the graph of f2(x1); that is,

𝜔2 =
∫

1

0
f2(x1) dx1 =

∫

1∕2

0
(1 − x1) dx1 +

∫

1

1∕2
x1 dx1 =

3
4
. (1)

We claim that 𝜃2 = 1∕2. The justification is as follows: If the employer adopts a

strategy of hiring Candidate 1 if and only if x1 > 𝜃, with any other threshold value

𝜃, then his overall probability of winning will be, as seen from Fig. 2,

∫

𝜃

0
(1 − x1) dx1 +

∫

1

𝜃

x1 dx1 = 𝜃(1 − 𝜃) + 1∕2 = 3
4
−
(
𝜃 − 1

2

)2
∈
(1
2
,

3
4

)
. (2)

Hence, any threshold value 𝜃, other than 𝜃2 = 1∕2, actually lowers the employer’s

overall probability of winning. Interestingly though, (2) shows that by choosing

any sub-optimal threshold 𝜃2 ≠ 1∕2, even by choosing 𝜃 = 0 (that is, always hire
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Fig. 2 For n = 2, the employer’s probability of hiring the better candidate if he uses a suboptimal

strategy by choosing thresholds 𝜃 and 0 for Candidates 1 and 2 respectively

Candidate 1 irrespective of her score) or 𝜃 = 1 (that is, never hire Candidate 1), the

employer’s chance of winning never falls below 1/2.

Next, suppose that n = 3. In this case, after interviewing Candidate 1, who scored

X1 = x1, there are two more candidates to interview. We must determine the value

of 𝜃3 such that the employer’s best strategy is to hire Candidate 1 with score X1 = x1
if and only if x1 > 𝜃3. Let us analyze separately what happens if (A) Candidate 1 is

hired, and (B) Candidate 1 is let go (or skipped over):

(A) If Candidate 1 is hired, then the interviewer has not seen scores X2 and X3,

which are independent uniform (0, 1) variables. In this case, the employer’s condi-

tional probability of winning is

Phire
3 (x1) = Pr{X2 < x1,X3 < x1} = Pr{X2 < x1} ⋅ Pr{X3 < x1} = x21 . (3)

Note that Phire
3 (x1) is an increasing function of x1 on (0, 1) going from 0 to 1. Thus,

whenever it is advantageous for the employer to hire Candidate 1 with a particular

score x1, it must be also advantageous to hire Candidate 1 with any score bigger than

x1.

(B) On the other hand, if the employer lets go Candidate 1 with a score x1, he

gets to interview Candidate 2 and obtain X2. The problem almost reduces to the case

of only two candidates, except that the employer should not apply his best strategy

for the two-candidate game unless X2 is a record high value; that is, unless X2 >

x1. There are three mutually exclusive cases to consider: (1) If X2 < x1, then the

employer should let Candidate 2 go, he should continue to interview Candidate 3 to

obtain X3, and win only if X3 > x1. (2) If X2 > x1 but X2 < 𝜃2, then (in accordance

with the optimal strategy for the two-candidate game) the employer should still let

Candidate 2 go, interview Candidate 3 to obtain X3, and win only if X3 > X2. (3) If

X2 > x1 and X2 > 𝜃2, then the employer should hire Candidate 2, and win if X3 < X2.

So, given x1 and the contemplated choice that the employer should let go Candi-

date 1, the conditional probability of his winning is
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Pskip
3 (x1) = Pr({X2 < x1,X3 > x1} ∪ {X2 > x1,X2 < 𝜃2,X3 > X2} ∪

{X2 > x1,X2 > 𝜃2,X3 < X2})

= x1(1 − x1) +
∫

1

x1
f2(x) dx =

⎧
⎪
⎨
⎪
⎩

3
4
− x21

2
if x1 ≤ 1∕2

(1 − x1)
(
x1 +

1+x1
2

)
if x1 ≥ 1∕2 .

Figure 3a, b shows Pskip
3 (x1) as the total area of the enclosed region for two typical

values of x1—(a) below 1∕2 and (b) above 1∕2.

It can be checked that Pskip
3 (x1) is a decreasing function of x1 on (0, 1) going from

𝜔2 = 3∕4 to 0, while Phire
3 (x1) is an increasing function of x1 on (0, 1) going from 0

to 1. By the intermediate value theorem (see [6], e.g.), these two functions intersect

in (0, 1) at a unique point x1 = 𝜃3 = (1 +
√
6)∕5, which is obtained by solving (1 −

x1) ⋅ (1 + 3x1)∕2 = x21, or equivalently 5x21 − 2x1 − 1 = 0. Therefore, the employer

should hire Candidate 1 if x1 > 𝜃3, let her go if x1 < 𝜃3, and be indifferent if x1 = 𝜃3.

Hence, given x1, the conditional probability of the employer winning (if he follows

the optimal strategy) is f3(x1) = max{Pskip
3 (x1),Phire

3 (x1)}, as shown in Fig. 4.

Finally, as was done in (1), if the employer uses this optimal strategy for n = 3,

his overall probability of winning is

𝜔3 =
∫

1

0
f3(x) dx

=
∫

1∕2

0

(
3
4
−

x21
2

)

dx1 +
∫

𝜃3

1∕2
(1 − x1)

(
1 + 3x1

2

)

dx1 +
∫

1

𝜃3

x21 dx1

= 17
48

+
x1 + x21 − x31

2
|
𝜃3
1∕2 +

x31
3
|1
𝜃3
= 293 + 48

√
6

600
= 0.68429251 .

Fig. 3 For a x1 < 0.5 and b x1 > 0.5, the conditional probability that the employer wins if he lets

go Candidate 1, obtains X2 = x2, and follows his best strategy
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Fig. 4 Conditional

probability f3(x1) that the

employer wins the

three-candidate game, given

Candidate 1’s score x1, if the

employer follows his optimal

strategy

For n ≥ 4 candidates, we proceed inductively. Suppose that the solutions for the

n-candidate game—Phire
n (x1),P

skip
n (x1), fn(x1), 𝜃n, 𝜔n—are already found. Then we

find the solutions for the (n + 1)-candidate game using Algorithm 1.

Algorithm 1

Step 1 Define Phire
n+1(x1) = x1 ⋅ Phire

n (x1). Starting from (3), by mathematical induc-

tion we note that Phire
n+1(x1) = xn1, which is an increasing function of x1 on (0, 1)

going from 0 to 1.

Step 2 DefinePskip
n+1(x1) = x1 ⋅ P

skip
n (x1) + ∫

1
x1
fn(x1) dx1, which is a decreasing func-

tion on (0, 1) going from 𝜔n to 0.

Step 3 The unique solution to Pskip
n+1(x1) = Phire

n+1(x1) in x1 yields 𝜃n+1.

Step 4 Define fn+1(x1) = max{Pskip
n+1(x1),P

hire
n+1(x1)}, and obtain the winning proba-

bility 𝜔n+1 = ∫
1
0 fn+1(x1) dxn+1.

Using Algorithm 1, we can obtain 𝜃4 = 0.775845, by solving 17x31 − 6x21 − 3x1 −
2 = 0; and we can evaluate 𝜔4 = ∫

1
0 f4(x1) dx1 = 0.655397. In this manner, we can

continue to use Algorithm 1 to find (𝜃5, 𝜔5), (𝜃6, 𝜔6),…. But the calculus becomes

tedious! In Sect. 3, we describe a computational technique to evaluate (𝜃n, 𝜔n) recur-

sively, and we verify the optimality of the solutions through simulation. In Sect. 4,

we develop analytical expressions of (𝜃n, 𝜔n) for all n ≥ 3.
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3 Computing (𝜽n, 𝝎n) and Verifying by Simulation

Nowadays, the ability to compute is at everyone’s fingertip—thanks to the invention

of personal computer and the advancement of computer languages. For instance,

using the programming language (and statistical software) R, which anyone can

download for free on to their computer, one can evaluate (𝜃n, 𝜔n).

3.1 Computational Evaluation of (𝜽n, 𝝎n)

First, the integrals in Steps 2 and 4 of Algorithm 1 can be approximated by computing

the Riemann sum. To do so, we recommend partitioning the interval (0, 1) into 106
equal subintervals of width 10−6 each and evaluate the integrand at the middle point

of each subinterval. Then the integral is approximated by the mean of the functional

values at the 106 midpoints. See [6], for example.

Second, because Pskip
n+1(x1) is decreasing from 𝜔n to 0, while Phire

n+1(x1) is increasing

from 0 to 1 in the interval (0, 1), the n-degree polynomial equation in Step 3 of

Algorithm 1 can be solved (approximately) by computing the largest argument at

which Pskip
n+1(x1) > Phire

n+1(x1), plus half of 10−6. The R codes for inductively computing

(𝜃n+1, 𝜔n+1) are given below.

R Codes to Compute (𝜃n+1, 𝜔n+1) Inductively

B=10ˆ6; H=0.5/B

serial=seq(1:B);grid=serial/B-H

theta=c(0); win=c(1) # for n=1

# for n=2 define directly

hire=grid;skip=1-grid;

theta=c(theta, grid[max(which(skip>hire))]+H)

fun=pmax(skip, hire); win=c(win, mean(fun))

# for n>2 define recursively

for (i in 3:100){

hire=hire*grid # Step 1

skip=(cumsum(fun[B:1])[B:1]+(serial-1)*skip)/B # Step 2

theta=c(theta, grid[max(which(skip>hire))]+H) # Step 3

fun=pmax(skip, hire); win=c(win, mean(fun)) # Step 4

}

Table 1 gives (𝜃n, 𝜔n) for n = 1, 2, 3,… , 100 correct to six decimal places.

Figure 5a–d depicts the conditional probability fn(x1) that the employer wins given

x1, if he follows his optimal strategy for n = 5, 10, 20, 100 candidates.

As seen in Table 1, for the game involving 10 candidates, the employer’s overall

probability of winning, if he follows his optimal strategy, is about 61%. Likewise,



Score-Based Secretary Problem 99

Ta
bl
e
1

T
h
e

th
r
e
s
h
o
ld

s
o
f

th
e

e
m

p
lo

y
e
r’

s
o
p
ti

m
a
l

s
tr

a
te

g
y

a
n
d

h
is

m
a
x
im

a
l

p
ro

b
a
b
il

it
y

o
f

w
in

n
in

g
c
o
r
re

s
p
o
n
d
in

g
to

1
–
1
0
0

c
a
n
d
id

a
te

s

>
r
o
u
n
d
(
t
h
e
t
a
,

6
)

[
1
]

0
.
0
0
0
0
0
0

0
.
5
0
0
0
0
0

0
.
6
8
9
8
9
8

0
.
7
7
5
8
4
5

0
.
8
2
4
5
9
0

0
.
8
5
5
9
4
9

0
.
8
7
7
8
0
7

0
.
8
9
3
9
1
0

0
.
9
0
6
2
6
5

0
.
9
1
6
0
4
4

[
1
1
]

0
.
9
2
3
9
7
6

0
.
9
3
0
5
3
9

0
.
9
3
6
0
5
9

0
.
9
4
0
7
6
7

0
.
9
4
4
8
2
9

0
.
9
4
8
3
7
0

0
.
9
5
1
4
8
4

0
.
9
5
4
2
4
3

0
.
9
5
6
7
0
6

0
.
9
5
8
9
1
7

[
2
1
]

0
.
9
6
0
9
1
3

0
.
9
6
2
7
2
4

0
.
9
6
4
3
7
5

0
.
9
6
5
8
8
6

0
.
9
6
7
2
7
4

0
.
9
6
8
5
5
3

0
.
9
6
9
7
3
6

0
.
9
7
0
8
3
4

0
.
9
7
1
8
5
4

0
.
9
7
2
8
0
6

[
3
1
]

0
.
9
7
3
6
9
5

0
.
9
7
4
5
2
8

0
.
9
7
5
3
1
0

0
.
9
7
6
0
4
5

0
.
9
7
6
7
3
8

0
.
9
7
7
3
9
2

0
.
9
7
8
0
1
0

0
.
9
7
8
5
9
5

0
.
9
7
9
1
5
0

0
.
9
7
9
6
7
7

[
4
1
]

0
.
9
8
0
1
7
8

0
.
9
8
0
6
5
4

0
.
9
8
1
1
0
9

0
.
9
8
1
5
4
2

0
.
9
8
1
9
5
6

0
.
9
8
2
3
5
2

0
.
9
8
2
7
3
1

0
.
9
8
3
0
9
4

0
.
9
8
3
4
4
2

0
.
9
8
3
7
7
6

[
5
1
]

0
.
9
8
4
0
9
7

0
.
9
8
4
4
0
5

0
.
9
8
4
7
0
2

0
.
9
8
4
9
8
7

0
.
9
8
5
2
6
2

0
.
9
8
5
5
2
7

0
.
9
8
5
7
8
3

0
.
9
8
6
0
3
0

0
.
9
8
6
2
6
9

0
.
9
8
6
4
9
9

[
6
1
]

0
.
9
8
6
7
2
2

0
.
9
8
6
9
3
8

0
.
9
8
7
1
4
6

0
.
9
8
7
3
4
9

0
.
9
8
7
5
4
4

0
.
9
8
7
7
3
4

0
.
9
8
7
9
1
9

0
.
9
8
8
0
9
7

0
.
9
8
8
2
7
1

0
.
9
8
8
4
4
0

[
7
1
]

0
.
9
8
8
6
0
3

0
.
9
8
8
7
6
3

0
.
9
8
8
9
1
7

0
.
9
8
9
0
6
8

0
.
9
8
9
2
1
5

0
.
9
8
9
3
5
7

0
.
9
8
9
4
9
6

0
.
9
8
9
6
3
2

0
.
9
8
9
7
6
4

0
.
9
8
9
8
9
2

[
8
1
]

0
.
9
9
0
0
1
8

0
.
9
9
0
1
4
0

0
.
9
9
0
2
6
0

0
.
9
9
0
3
7
6

0
.
9
9
0
4
9
0

0
.
9
9
0
6
0
1

0
.
9
9
0
7
1
0

0
.
9
9
0
8
1
6

0
.
9
9
0
9
1
9

0
.
9
9
1
0
2
1

[
9
1
]

0
.
9
9
1
1
2
0

0
.
9
9
1
2
1
7

0
.
9
9
1
3
1
2

0
.
9
9
1
4
0
5

0
.
9
9
1
4
9
5

0
.
9
9
1
5
8
4

0
.
9
9
1
6
7
2

0
.
9
9
1
7
5
7

0
.
9
9
1
8
4
1

0
.
9
9
1
9
2
2

>
r
o
u
n
d
(
w
i
n
,

6
)

[
1
]

1
.
0
0
0
0
0
0

0
.
7
5
0
0
0
0

0
.
6
8
4
2
9
3

0
.
6
5
5
3
9
6

0
.
6
3
9
1
9
4

0
.
6
2
8
7
8
4

0
.
6
2
1
5
0
8

0
.
6
1
6
1
2
8

0
.
6
1
1
9
8
6

0
.
6
0
8
7
0
0

[
1
1
]

0
.
6
0
6
0
2
8

0
.
6
0
3
8
1
3

0
.
6
0
1
9
4
8

0
.
6
0
0
3
5
6

0
.
5
9
8
9
8
1

0
.
5
9
7
7
8
1

0
.
5
9
6
7
2
5

0
.
5
9
5
7
8
8

0
.
5
9
4
9
5
2

0
.
5
9
4
2
0
1

[
2
1
]

0
.
5
9
3
5
2
2

0
.
5
9
2
9
0
6

0
.
5
9
2
3
4
4

0
.
5
9
1
8
3
0

0
.
5
9
1
3
5
8

0
.
5
9
0
9
2
2

0
.
5
9
0
5
1
9

0
.
5
9
0
1
4
5

0
.
5
8
9
7
9
7

0
.
5
8
9
4
7
2

[
3
1
]

0
.
5
8
9
1
6
9

0
.
5
8
8
8
8
5

0
.
5
8
8
6
1
8

0
.
5
8
8
3
6
7

0
.
5
8
8
1
3
1

0
.
5
8
7
9
0
8

0
.
5
8
7
6
9
7

0
.
5
8
7
4
9
7

0
.
5
8
7
3
0
7

0
.
5
8
7
1
2
7

[
4
1
]

0
.
5
8
6
9
5
6

0
.
5
8
6
7
9
3

0
.
5
8
6
6
3
8

0
.
5
8
6
4
9
0

0
.
5
8
6
3
4
8

0
.
5
8
6
2
1
3

0
.
5
8
6
0
8
4

0
.
5
8
5
9
6
0

0
.
5
8
5
8
4
1

0
.
5
8
5
7
2
6

[
5
1
]

0
.
5
8
5
6
1
7

0
.
5
8
5
5
1
1

0
.
5
8
5
4
1
0

0
.
5
8
5
3
1
2

0
.
5
8
5
2
1
8

0
.
5
8
5
1
2
7

0
.
5
8
5
0
4
0

0
.
5
8
4
9
5
5

0
.
5
8
4
8
7
4

0
.
5
8
4
7
9
5

[
6
1
]

0
.
5
8
4
7
1
9

0
.
5
8
4
6
4
5

0
.
5
8
4
5
7
3

0
.
5
8
4
5
0
4

0
.
5
8
4
4
3
7

0
.
5
8
4
3
7
2

0
.
5
8
4
3
0
9

0
.
5
8
4
2
4
8

0
.
5
8
4
1
8
9

0
.
5
8
4
1
3
1

[
7
1
]

0
.
5
8
4
0
7
5

0
.
5
8
4
0
2
0

0
.
5
8
3
9
6
7

0
.
5
8
3
9
1
6

0
.
5
8
3
8
6
5

0
.
5
8
3
8
1
7

0
.
5
8
3
7
6
9

0
.
5
8
3
7
2
3

0
.
5
8
3
6
7
8

0
.
5
8
3
6
3
3

[
8
1
]

0
.
5
8
3
5
9
1

0
.
5
8
3
5
4
9

0
.
5
8
3
5
0
8

0
.
5
8
3
4
6
8

0
.
5
8
3
4
2
9

0
.
5
8
3
3
9
1

0
.
5
8
3
3
5
4

0
.
5
8
3
3
1
7

0
.
5
8
3
2
8
2

0
.
5
8
3
2
4
7

[
9
1
]

0
.
5
8
3
2
1
3

0
.
5
8
3
1
8
0

0
.
5
8
3
1
4
7

0
.
5
8
3
1
1
6

0
.
5
8
3
0
8
5

0
.
5
8
3
0
5
4

0
.
5
8
3
0
2
4

0
.
5
8
2
9
9
5

0
.
5
8
2
9
6
6

0
.
5
8
2
9
3
8



100 J. Sarkar

Fig. 5 Conditional probability fn(x1) that the employer wins, given the score x1 of Candidate 1, if

he follows his optimal strategy for a 5, b 10, c 20, d 100 candidates

for the game involving 100 candidates, the employer’s overall probability of win-

ning, if he follows his optimal strategy, is about 58%. However, we also note that his

probability of winning is monotonically decreasing as the number of candidates is

increasing. Will the game continue to be favorable to him as the number of candi-

dates increase, say to 500 or to 1000? Will there be a limiting value to the employer’s

probability of winning as the number of candidates increase without bound? Based

on the fact that the thresholds and the winning probabilities for 951–1000 candidates

have stabilized, as seen from Table 2, we conjecture that the answers are affirmative;

but we leave the details to the reader to investigate.
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3.2 Verifying Optimality of Computed Values via Simulation

In solving the score-based secretary problem, we made claims of a probabilistic

nature. For example, when n = 5, we claimed: “The employer’s maximal probability

of winning a five-candidate game is 𝜔5 = 0.639194, and he can achieve this proba-

bility by adhering to an optimal strategy with 𝜃1 = 0, 𝜃2 = 0.5, 𝜃3 = 0.689898, 𝜃4 =
0.775845, 𝜃5 = 0.824590.” The correctness of this claim can be verified by conduct-

ing a simulation, which involves imitating a random phenomenon by generating an

appropriate sequence of random numbers.

One can simulate the five-candidate game a large number of times to estimate the

employer’s probability of winning using the R codes below. The win5 function, used

in the codes, indicates whether the employer wins in any one particular play. The esti-

mated probability of the employer’s winning, p̂, is given by the mean of the indicators

of win in a series of M = 106 plays. In fact, in view of the central limit theorem, there

is about 95% chance that the estimate p̂ will be within 1.96
√
p(1 − p)∕M < 1∕

√
M

of the true probability p. See [7], for example. Therefore, our estimate p̂ based

on M = 106 repetitions will be correct to three decimal places with about 95%

probability.

With the optimal choice of the threshold values, the estimate is found to be

0.638607, whereas with one particular alternative choice, the estimate turns out to

be 0.636515, and with another alternative choice to be 0.592601. Since the estimates

are correct to three decimal places, as reasoned above, this simulation provides suffi-

cient justification for the optimal choice of thresholds and declares the other choices

of thresholds as suboptimal. We encourage the readers to estimate the probability

that the employer wins when other choices of the threshold values 𝜃3, 𝜃4, 𝜃5 are made

and verify that none will do better than the optimal choices of thresholds our Algo-

rithm 1 has produced. In Sect. 4, we will compute the employer’s exact probability

of winning, for each of these strategies.

R Codes to Simulate Winning Probability for any Set of Thresholds

win5 <- function(theta3,theta4,theta5){

coin=runif(5, 0, 1); top=max(coin)

if (coin[1]>=theta5){ind=(coin[1]==top)}

else{if (coin[2]>=max(coin[1],theta4)){ind=(coin[2]==top)}

else{if (coin[3]>=max(coin[1:2],theta3)){ind=(coin[3]==top)}

else{if (coin[4]>=max(coin[1:3],1/2)){ind=(coin[4]==top)}

else{ind=(coin[5]==top)}

} } }

ind

}

mean(replicate(10ˆ6, win5((1+sqrt(6))/5,.775845,.824590))) #opt

mean(replicate(10ˆ6, win5(2/3, 3/4, 4/5))) # alternative 1

mean(replicate(10ˆ6, win5(1/2,.5ˆ(1/5),.5ˆ(1/5),.5ˆ(1/5)))) #2
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4 Analytical Expressions of (𝜽n, 𝝎n)

A careful study of Algorithm 1 leads to an analytical expression for 𝜃n, given in The-

orem 1, and thereafter an analytical expression of 𝜔n, given in Theorem 2. Toward

these results, we note the following:

(a) From Step 1, we have Phire
n+1(x) = xn for all x ∈ (0, 1).

(b) From Step 4, we have fn(x) = max{Pskip
n (x),Phire

n (x)} for all x ∈ (0, 1). In partic-

ular, fn(x) = Phire
n (x) for all x ∈ (𝜃n, 1).

(c) From Steps 2 and 1 and item (b) above, for all x ∈ (𝜃n, 1), we have

Pskip
n+1(x) = x Pskip

n (x) +
∫

1

x
Phire
n (u) du = x Pskip

n (x) + 1 − xn
n

(4)

In fact, solving (4), we get Lemma 1 (to be proved momentarily):

Lemma 1 For all n ≥ 1, we have

Pskip
n+1(x) =

[ n∑

k=1

x−k − 1
k

]

xn . (5)

(d) From Step 3, we have 𝜃n+1 is the solution to Pskip
n+1(x) = Phire

n+1(x); or equivalently,

in view of items (a) and (c) above, 𝜃n+1 is the solution to

n∑

k=1

x−k − 1
k

= 1 . (6)

In other words, we obtain Theorem 1 (to be proved shortly):

Theorem 1 𝜃n+1 = (1 + 𝜖n+1)−1, where 𝜖n+1 is the unique solution to

n∑

i=1

(
n
i

)
𝜖

i

i
= 1 . (7)

Proof of Lemma 1. The proof is by mathematical induction on n. We know that

Pskip
1 (x) = 0 and Phire

1 (x) = 1 for all x ∈ (0, 1). Next, we know that Pskip
2 (x) = 1 − x

for all x ∈ (0, 1). Also, putting n = 1 in (4), for x ∈ (0, 1), we have

Pskip
2 (x) = x Pskip

1 (x) +
∫

1

x
u0 du = x ⋅ 0 + (1 − x) = (x−1 − 1) x

Hence, (6) holds for n = 1.
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Now suppose that (6) holds for an arbitrary n ≥ 1. Then from (4), we have

Pskip
n+1(x) = x ⋅

[n−1∑

k=1

x−k − 1
k

]

xn−1 + 1 − xn
n

=

[n−1∑

k=1

x−k − 1
k

]

xn + 1 − xn
n

=

[ n∑

k=1

x−k − 1
k

]

xn .

Hence, (6) holds for n + 1. This completes the proof of Lemma 1. Q.E.D.

Proof of Theorem 1. Write x = (1 + 𝜖)−1. Then starting from (6), applying the bino-

mial theorem, and simplifying, we have

1 =
n∑

k=1

x−k − 1
k

=
n∑

k=1

(1 + 𝜖)k − 1
k

=
n∑

k=1

1
k

k∑

i=1

(
k
i

)

𝜖

i =
n∑

i=1

n∑

k=i

1
i

(
k − 1
i − 1

)

𝜖

i

=
n∑

i=1

{ n∑

k=i

(
k − 1
i − 1

)}
𝜖

i

i
=

n∑

i=1

(
n
i

)
𝜖

i

i
.

This completes the proof. Q.E.D.

We already know that 𝜃1 = 0, 𝜃2 = 1∕2. Putting n = 2 into Theorem 1, we solve

2𝜖 + 𝜖

2∕2 = 1 to obtain 𝜖3 = −2 +
√
6; whence 𝜃3 = (1 + 𝜖3)−1 = (−1 +

√
6)−1 =

(1 +
√
6)∕5. Next, putting n = 3 into Theorem 1, we solve 3𝜖 + 3𝜖2∕2 + 𝜖

3∕3 = 1
to obtain 𝜖4 = 0.288917; and hence 𝜃4 = 1∕1.288917 = 0.775845. The advantage

of using Theorem 1 over the computational technique of Sect. 3 is that we can now

compute 𝜃n directly without having to compute first 𝜃3, 𝜃4,… , 𝜃n−1.

Remark 1 Since the left-hand side expression in (7) is increasing in n at each fixed

𝜖 ∈ (0, 1), the solution {𝜖n+1} is a decreasing sequence. Hence, {𝜃n} is an increasing

sequence.

Remark 2 For n ≥ 100, we can approximate 𝜃n as 0.447651∕n, or more simply

approximate it as 1 − 0.8035∕n.

The optimal thresholds 𝜃1 = 0, 𝜃2 = 1∕2, 𝜃3 = (1 +
√
6)∕5, 𝜃4,… , 𝜃n are used to

find an analytical expression for 𝜔n as given in Theorem 2. In fact, this theorem holds

for any non-decreasing sequence of thresholds 𝜉1, 𝜉2,… , 𝜉n, which need not be the

optimal thresholds. The proof is delegated to the Appendix.

Theorem 2 For any non-decreasing sequence of thresholds {𝜉n} with 𝜉n ∈ (0, 1),
used by the employer to hire a candidate whose score is a running maximum and
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exceeds the corresponding threshold, the probability that the employer wins is given
by

Pn(Win; {𝜉n})

= 1
n
+

[
𝜉

n−1
2

(n − 1) ⋅ 1
−

̄H1 𝜉
n
2

n

]

+

[
𝜉

n−2
3

(n − 2) ⋅ 2
+

𝜉

n−1
3

(n − 1) ⋅ 1
−

̄H2 𝜉
n
3

n

]

+⋯ +

[
𝜉n

1 ⋅ (n − 1)
+

𝜉

2
n

2 ⋅ (n − 2)
+⋯ +

𝜉

n−1
n

(n − 1) ⋅ 1
−

̄Hn−1 𝜉
n
n

n

]

.

where ̄Hn = 1 + Hn and Hn = 1 + 1∕2 +⋯ + 1∕n is the n-th harmonic number.

Using Theorem 2, we can find the employer’s probability of winning if he uses

any set of non-decreasing thresholds. In particular, in the simulation study of Sect. 3,

for n = 5, we estimated P{Win} based on 106 plays of the game for the optimal

strategy as well as for two alternative strategies. We can now compute the exact

value of P{Win} for each strategy: It is 0.6391947 for optimal strategy, 0.6370689

for alternative 1, and 0.5923543 for alternative 2. Thus, we exhibit that indeed the

alternative strategies are sub-optimal.

5 Conclusion

We reiterate that there is no need to restrict the candidates’ scores to have the uni-

form (0, 1) distribution. The results of this paper will continue to hold if the scores

are drawn from any known continuous distribution function F with only one small

change: simply replace the thresholds of the employer’s optimal strategy by the cor-

responding percentiles of F. The employer’s maximal probability of winning will

remain unaltered.

Also, we can solve the problem of hiring the candidate with the minimum score

(say, on some undesirable negative trait) among all n candidates) by simply defin-

ing Y = 1 − X and hiring the candidate with the maximum Y-score. Likewise, we

can solve the problem of hiring the candidate with a score closest to any specific

percentile of F,

Whereas in the usual secretary problem (with only relative ranks available) the

limiting (as n → ∞) probability of winning is 1∕e ≈ 0.368, in our score-based secre-

tary problem, we conjecture that the limiting probability of winning is about 0.580.

The details are left to the reader.
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Appendix

Proof of Theorem 2. Suppose that the employer hires Candidate k, where k =
1, 2,… , n. Recall that the employer hires Candidate 1 iff X1 > 𝜉n. Otherwise, he

hires Candidate k ≥ 2 provided he has not already hired anyone earlier and Xk = s
exceeds both the previous maximum r = max{X1,… ,Xk−1} and the threshold value

𝜉n+1−k for Candidate k. In order to express the probability density function of r, sub-

ject to the fact that no candidate among Candidates 1, 2,… , k − 1 has been hired,

we must account for which candidate possibly achieved the record score r among

Candidates 1, 2,… , k − 1. Therefore, we split the range (0, 𝜉n) of r as

(𝜉n−1, 𝜉n), (𝜉n−2, 𝜉n−1),… , (𝜉n+1−k, 𝜉n+2−k), (0, 𝜉n+1−k) ;

and note that the number of possible candidates who might have achieved r is

1, 2,… , k − 1, k − 1, respectively, in these intervals. See Fig. 6.

Having hired Candidate k, the employer wins (or hires the best candidate) only if

all future Candidates also score below Candidate k. Adding up the joint probability

that the employer hires Candidate k and he wins, we obtain

Pn(Win) =
n∑

k=1
Pn(Hire k and Win)

Fig. 6 If Candidate k ≥ 2 with score Xk = s is hired, then what is the likely score r =
max{X1,… ,Xk−1} of the previous leading candidate, and which candidate is she?
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=
∫

1

𝜉n

sn−1 ds +
n−1∑

k=2

{k−1∑

j=1
∫

𝜉n+1−j

𝜉n−j

j rk−2
∫

1

r
sn−k ds dr

+
∫

𝜉n+1−k

0
(k − 1) rk−2

∫

1

𝜉n+1−k

sn−k ds dr

}

+
n−1∑

j=1
∫

𝜉n+1−j

𝜉n−j

j rn−2
∫

1

r
s0 ds dr

=
1 − 𝜉

n
n

n
+

n−1∑

k=2

{k−1∑

j=1
∫

𝜉n+1−j

𝜉n−j

j r
k−2 − rn−1
n + 1 − k

dr

+
∫

𝜉n+1−k

0
(k − 1) rk−2

1 − 𝜉

n+1−k
n+1−k

n + 1 − k
dr

}

+
n−1∑

j=1
∫

𝜉n+1−j

𝜉n−j

j (rn−2 − rn−1) dr

=
1 − 𝜉

n
n

n
+

n∑

k=2

1
n + 1 − k

{
k−1∑

j=1
j

(
𝜉

k−1
n−j − 𝜉

k−1
n+1−j

k − 1
−

𝜉

n
n−j − 𝜉

n
n+1−j

n

)

+
(
𝜉

k−1
n+1−k − 𝜉

n
n+1−k

)}

= 1
n
[1 − 𝜉

n
n − 𝜉

n
n−1 −⋯ − 𝜉

n
2 − 𝜉

n
1]

+ 1
n − 1

(

𝜉n −
𝜉

n
n

n

)

+ 1
n − 2

[ (
𝜉

2
n

2
−

𝜉

n
n

n

)

+

(
𝜉

2
n−1
2

−
𝜉

n
n−1
n

)]

+ 1
n − 3

[ (
𝜉

3
n

3
−

𝜉

n
n

n

)

+

(
𝜉

3
n−1
3

−
𝜉

n
n−1
n

)

+

(
𝜉

3
n−2
3

−
𝜉

n
n−2
n

)]

+⋯

+ 1
1

[ (
𝜉

n−1
n

n − 1
−

𝜉

n
n

n

)

+

(
𝜉

n−1
n−1

n − 1
−

𝜉

n
n−1
n

)

+⋯ +

(
𝜉

n−1
2

n − 1
−

𝜉

n
2
n

)]

= 1
n
[1 − 𝜉

n
n − 𝜉

n
n−1 −⋯ − 𝜉

n
2]

+

[
𝜉n

1 ⋅ (n − 1)
+

𝜉

2
n + 𝜉

2
n−1

2 ⋅ (n − 2)
+⋯ +

𝜉

n−1
n + 𝜉

n−1
n−1 +⋯ + 𝜉

n−1
2

(n − 1) ⋅ 1)

]

−
𝜉

n
n

n
Hn−1 −

𝜉

n
n−1
n

Hn−2 −⋯ −
𝜉

n
2
n
H1 ,

whence the theorem follows. Q.E.D.
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The General Solutions to Some Systems
of Adjointable Operator Equations

Nan-Bin Cao and Yu-Ping Zhang

Abstract We consider two systems of adjointable operator equations A1X = C1,

XB2 = C2,A3XB∗
3 − B3X∗A∗

3 = C3 andA1X = C1,A2X = C2,A3XB∗
3 − B3X∗A∗

3 = C3
over the Hilbert C∗

-modules. Necessary and sufficient conditions for the existence

and the expressions of the general solutions to those systems are established.

Keywords Hilbert C∗
-modules ⋅ System of operator equations ⋅ General

solution ⋅ Inner inverse of a operator ⋅ Moore–Penrose inverse of a operator
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1 Introduction

It is a very active research topic to investigate the solutions to operator equations,

etc., (e.g., [1–4]). For instance, in 2005, Wang [1] studied the systems of matrix

equation

A1X = C1,XB2 = C2,A3XB∗
3 = C3,A4XB4 = C4,

A1X = C1,A2X = C2,A3XB∗
3 = C3,A4XB4 = C4,

Xu [3] studied the operator equation

AXB∗ − BX∗A∗ = C

in general setting of the adjointable operators between Hilbert C∗
-modules. We in

this paper consider two systems of adjointable operator equations
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A1X = C1,XB2 = C2,A3XB∗
3 − B3X∗A∗

3 = C3 (1.1)

and

A1X = C1,A2X = C2,A3XB∗
3 − B3X∗A∗

3 = C3 (1.2)

over the Hilbert C∗
-modules.

In Sect. 2, we will give some knowledge about the Hilbert C∗
-modules. In Sect. 3,

we will study the general solution to the system of adjointable operator equations

(1.1). In Sect. 4, we will study the general solution to the system of adjointable oper-

ator equations (1.2).

2 Preliminaries

Throughout this paper, U is a C∗
-algebra. By a projection, we mean an idempotent

and self-adjoint element in a certain C∗
-algebra. Let H and K be two Hilbert C∗

-

modules, denote by L (H,K) the set of the adjointable operators from H to K. In

case H = K, L (H,H) which we abbreviate to L (H), is a C∗
-algebra, whose unit is

denoted by IH . For any A ∈ L (H,K), the range and the null space of A are denoted

by R(A) and N(A), respectively.

Throughout the rest of this section, H and K be two Hilbert C∗
-modules, and A

is an element of L (H,K). By Lance [4], [Theorem 3.2, Remark 1.1] we have the

following lemma:

Lemma 2.1 The closeness of any one of the following sets implies the closeness of
the remaining three sets:

R(A),R(A∗),R(AA∗),R(A∗A).

If R(A) is closed, then R(A) = R(AA∗), R(A∗) = R(A∗A), and the following orthog-
onal decompositions hold:

H = N(A)⊕ R(A∗),K = R(A)⊕ N(A∗)

Definition 2.1 Any element A−
of A{1} = {X ∈ L (K,H) ∣ AXA = A} will be

called a {1}-inverse of A. Note that A has a {1}-inverse if and only if R(A) is closed.

Definition 2.2 The Moore–Penrose inverse of A (if it exists) is defined as the oper-

ator A† ∈ L (K,H) satisfying the Penrose equations,

AA†A = A,A†AA† = A†
, (A†A)∗ = A†A, (AA†)∗ = AA†

.
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As in the Hilbert space case, A†
exists if and only if R(A) is closed. In this case,

(A†)∗ = ((A)∗)†,R(A†) = R(A∗) and A† ∣R(A)⟂= 0, A† ∣R(A)⟂ is the restriction of A†
to

the orthogonal complement of R(A).
In this paper, the notations A−

,A†
,FA and EA are reserved to denote any {1}-

inverse ofA, the Moore–Penrose inverse ofA, the projections IH − A†A and IK − AA†
,

respectively. If in addition H = K, then we define

H(+,∗) = A + A∗
,H(−,∗) = A − A∗

.

Throughout the rest of this paper, Hi(i = 1, 2,… , 5) are Hilbert C∗
-modules.

3 The General Solution to the System of Adjointable
Operator Equations (1.1)

We begin with the following lemma which proof just like one over the complex field.

Lemma 3.1 (See Lemma 2.2 in [2]). Let A1 ∈ L (H1,H2),B2 ∈ L (H4,H3) have
closed range, and let C1 ∈ L (H3,H2),C2 ∈ L (H4,H1). Then, the system of
adjointable operator equations

A1X = C1,XB2 = C2 (3.1)

is consistent if and only if

EA1
C1 = 0,C2FB2

= 0,A1C2 = C1B2. (3.2)

In that case, the general solution of (3.1) is

X = A†
1C1 + FA1

C2B
†
2 + FA1

YEB2
, (3.3)

where Y ∈ L (H3,H1) is arbitrary.

From Xu [3], we have the following lemma.

Lemma 3.2 Let A ∈ L (H3,H2),B ∈ L (H1,H2) have closed ranges such that
R(B) ⊆ R(A). Let C ∈ L (H2) and D = EBA such that R(D) is also closed. Then,
the equation

AXB∗ − BXA∗ = C,X ∈ L (H1,H3) (3.4)

has a solution if and only if

C∗ = −C and H(−,∗)((AA† + DD†)CBB†) = 2C. (3.5)
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In this case, the general solution X to Eq. (3.4) is of the form

X = X0 + V − 1
2
A†AVB†B + 1

2
A†BV∗A∗(B†)∗ − 1

2
A†BV∗(B†AD†A)∗ − 1

2
D†AVB†B,

(3.6)

where V ∈ L (H1,H3) is arbitrary, and X0 is a particular solution to Eq. (3.4)
defined by

X0 =
1
2
A†C(B†)∗ − 1

2
A†BB†C(B†AD†)∗ + 1

2
D†C(B†)∗. (3.7)

In the next theorem, for simply express, we define

A†
1C1 + FA1

C2B
†
2 = T ,A3FA1

= M,EB2
B∗
3 = N∗

,EB3
A3 = D1,

ENM = D2,C3 + B3T∗A∗
3 − A3TB∗

3 = S.

Theorem 3.3 Let A1 ∈ L (H1,H2),A3 ∈ L (H1,H5),B2 ∈ L (H4,H3),B3 ∈ L (H3,

H5),C1 ∈ L (H3,H2),C2 ∈ L (H4,H1),C3 ∈ L (H5), and let A1,B2,A3,B3,

M,N,D1,D2 have closed range such that R(B3) ⊆ R(A3),R(N) ⊆ R(M). Then, the
system of adjointable operator equations (1.1) is consistent if and only if

EA1
C1 = 0,C2FB2

= 0,A1C2 = C1B2, (3.8)

and
C∗
3 = −C3 and H(−,∗)((A3A

†
3 + D1D

†
1)C3B3B

†
3) = 2C3, (3.9)

and
H(−,∗)((MM† + D2D

†
2)SNN

†) = 2S. (3.10)

In that case, the general solution of (1.1) is

X = T + FA1
(X0 + V − 1

2
M†MVN†N + 1

2
M†NV∗M∗(N†)∗

− 1
2
M†NV∗(N†MD†

2M)∗ − 1
2
D†

2MVN†N)EB2
,

(3.11)

where V ∈ L (H3,H1) is arbitrary, and X0 is defined by

X0 =
1
2
M†S(N†)∗ − 1

2
M†NN†S(N†MD†

2)
∗ + 1

2
D†

2S(N
†)∗. (3.12)

Proof For the necessary part. Suppose that the system of adjoint operator equations

(1.1) has a common solution X, then X is a common solution to the system of adjoint

operator equations (3.1), and X is a solution of operator equation

A3XB∗
3 − B3X∗A∗

3 = C3, (3.13)
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from Lemmas 3.1 and 3.2, we can get (3.8) and (3.9). Because X is a common solu-

tion to the system of adjoint operator equations (3.1), then X can be expressed as

X = A†
1C1 + FA1

C2B
†
2 + FA1

YEB2
, (3.14)

where Y ∈ L (H3,H1) is arbitrary. Taking (3.14) into (3.13), we can get

MYN∗ − NY∗M∗ = S, (3.15)

then (3.15) must has a solution, from Lemma 3.2, we can get (3.10) and

S∗ = −S, (3.16)

that is

(C3 + B3T∗A∗
3 − A3TB∗

3)
∗ = −(C3 + B3T∗A∗

3 − A3TB∗
3), (3.17)

it means from C∗
3 = −C3 we can derive S∗ = −S, so (3.16) can be omit.

We now proceed to prove the sufficient part of the theorem. From (3.8) and (3.9),

we know the system of operator equations (3.1) has a common solution and the oper-

ator equation (3.13) has a solution, the general common solution of (3.1) is given by

(3.14), taking (3.14) into (3.13) we can get (3.15), from (3.10) we know (3.15) is con-

sistent, which means the system of adjoint operator equations (1.1) has a common

solution.

In the rest of this theorem, we will give the proof that for any solution to the

system of adjointable operator equations (1.1) can be expressed as (3.11). Suppose

that X is a common solution to the system of adjoint operator equations (1.1), then

FA1
X = X − A†

1A1X
= X − A†

1C1.

So,

FA1
XEB2

= X − XB2B
†
2 − A†

1C1 + A†
1C1B2B

†
2

= X − C2B
†
2 − A†

1C1 + A†
1A1C2B

†
2.

Thereby,

X = A†
1C1 + C2B

†
2 − A†

1A1C2B
†
2 + FA1

XEB2
,

then,

A3XB∗
3 − B3X∗A∗

3 = MXN∗ − NX∗M∗ + A3TB∗
3 − B3T∗A∗

3 = C3,
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it means

MXN∗ − NX∗M∗ = S. (3.18)

For any V ∈ L (H3,H1), let

𝜙(V) = V − 1
2
M†MVN†N + 1

2
M†NV∗M∗(N†)∗

− 1
2
M†NV∗(N†MD†

2M)∗ − 1
2
D†

2MVN†N.

We have

M𝜙(V)N∗ = 1
2
(MVN∗ + NV∗M∗NN† − NV∗(NN†MD†

2M)∗ −MD†
2MVN∗)

= 1
2
MVN∗ + 1

2
NV∗M∗NN† − 1

2
NV∗((I − EN)MD†

2D2)∗ −
1
2
MD†

2MVN∗

= 1
2
MVN∗ + 1

2
NV∗M∗NN† − 1

2
NV∗D†

2D2A∗ + 1
2
NV∗D∗

2 −
1
2
MD†

2MVN∗

= 1
2
MVN∗ + 1

2
NV∗M∗NN† + 1

2
NV∗M∗EN − H(+,∗)( 1

2
NV∗D†

2D2M∗)

= H(+,∗)( 1
2
MVN∗) − H(+,∗)( 1

2
NV∗D†

2D2M∗).

It follows that 𝜙(V) is a solution to the following equation:

MXN∗ − NX∗M∗ = 0. (3.19)

On the other hand, given any solution X to Eq. (3.19), let V = X. Then we have

𝜙(X) = X − 1
2
M†MXN†N + 1

2
M†(NX∗M∗)(N†)∗

− 1
2
M†(NX∗M∗)(N†MD†

2)
∗ − 1

2
D†

2MXN†N
= X − 1

2
M†MXN†N + 1

2
M†MXN∗(N†)∗

− 1
2
M†MXN∗(N†MD†

2)
∗ − 1

2
D†

2MXN∗(N†)∗

= X − 1
2
M†MX(N†MD†

2N)
∗ − 1

2
D†

2NX
∗M∗(N†)∗

= X.

We have proved that the general solution to Eq. (3.19) has a form 𝜙(V) for some

V ∈ L (H3,H1). It is easy to check that X0 defined by

X0 =
1
2
M†S(N†)∗ − 1

2
M†NN†S(N†MD†

2)
∗ + 1

2
D†

2S(N
†)∗

is a particular solution to Eq. (3.18), we conclude that the general solution X to the

system of adjointable operator equations (1.1) has a form of (3.11). □
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4 The General Solution to the System of Adjointable
Operator Equations (1.2)

We begin with the following lemma which proof just like one over the complex field.

Lemma 4.1 (See Lemma 2.2 in [1]). Let A1 ∈ L (H1,H2),A2 ∈ L (H1,H4) have
closed range, and let C1 ∈ L (H3,H2),C2 ∈ L (H3,H4),W = A2FA1

,G = EWA2.
Then, the system of adjointable operator equations

A1X = C1,A2X = C2 (4.1)

is consistent if and only if

EA1
C1 = 0,EA2

C2 = 0,G(A†
2C2 − A†

1C1) = 0. (4.2)

In that case, the general solution of (4.1) is

X = A†
1C1 + FA1

W†A2(A
†
2C2 − A†

1C1) + FA1
FWY , (4.3)

where Y ∈ L (H3,H1) is arbitrary.

In the next theorem, for simply express, we define

W = A2FA1
,G = EWA2,A

†
1C1 + FA1

W†A2(A
†
2C2 − A†

1C1) = T ,

A3FA1
FW = M,EB3

A3 = D1,EB3
M = D2,C3 + B3T∗A∗

3 − A3TB∗
3 = S.

Theorem 4.2 Let A1 ∈ L (H1,H2),A2 ∈ L (H1,H4),A3 ∈ L (H1,H5),B3 ∈ L (H3,

H5),C1 ∈ L (H3,H2),C2 ∈ L (H3,H4),C3 ∈ L (H5), and let A1,A2,A3,B3,

M,D1,D2 have closed range such that R(B3) ⊆ R(M). Then, the system of adjointable
operator equations (1.2) is consistent if and only if

EA1
C1 = 0,EA2

C2 = 0,G(A†
2C2 − A†

1C1) = 0, (4.4)

and
C∗
3 = −C3 and H(−,∗)((A3A

†
3 + D1D

†
1)C3B3B

†
3) = 2C3, (4.5)

and
H(−,∗)((MM† + D2D

†
2)SB3B

†
3) = 2S. (4.6)

In that case, the general solution of (1.2) is

X = T + FA1
FW (X0 + V − 1

2
M†MVB†

3B3 +
1
2
M†B3V∗M∗(B†

3)
∗

− 1
2
M†B3V∗(B†

3MD†
2M)∗ − 1

2
D†

2MVB†
3B3),

(4.7)
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where V ∈ L (H3,H1) is arbitrary, and X0 is defined by

X0 =
1
2
M†S(B†

3)
∗ − 1

2
M†B3B

†
3S(B

†
3MD†

2)
∗ + 1

2
D†

2S(B
†
3)

∗
. (4.8)

Proof From R(B3) ⊆ R(M), we can get R(B3) ⊆ R(A3).
For the necessary part. Suppose that the system of adjoint operator equations

(1.2) has a common solution X, then X is a common solution to the system of adjoint

operator equations (4.1) and X is a solution of operator equation

A3XB∗
3 − B3X∗A∗

3 = C3; (4.9)

from Lemmas 4.1 and 3.2, we can get (4.4) and (4.5). Because X is a common solu-

tion to the system of adjoint operator equations (4.1), X can be expressed as

X = A†
1C1 + FA1

W†A2(A
†
2C2 − A†

1C1) + FA1
FWY , (4.10)

where Y ∈ L (H3,H1) is arbitrary. Taking (4.10) into (4.9), we can get

MYB∗
3 − B3Y∗M∗ = S, (4.11)

then (4.11) must has a solution, from Lemma 3.2, we can get (4.6) and

S∗ = −S, (4.12)

that is

(C3 + B3T∗A∗
3 − A3TB∗

3)
∗ = −(C3 + B3T∗A∗

3 − A3TB∗
3), (4.13)

it means from C∗
3 = −C3 we can derive S∗ = −S, so (4.12) can be omit.

We now proceed to proved the sufficient part of the theorem. From (4.4) and

(4.5), we know the system of operator equations (4.1) has a common solution and the

operator equation (4.9) has a solution, the general common solution of (4.1) is given

by (4.10), taking (4.10) into (4.9) we can get (4.11), from (4.6) we know (4.11) is

consistent, which means the system of adjoint operator equations (1.2) has a common

solution.

In the rest of this theorem, we will give the proof that for any solution to the

system of adjointable operator equations (1.2) can be expressed as (4.7). Suppose

that X is a common solution to the system of adjoint operator equations (1.2), then

FWX = X −W†WX
= X −W†A2(X − A†

1C1)
= X −W†(C2 − A2A

†
1C1)

= X −W†A2(A
†
2C2 − A†

1C1).
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So,

FA1
FWY = X − A†

1C1 − FA1
W†A2(A

†
2C2 − A†

1C1).

Thereby,

X = A†
1C1 + FA1

W†A2(A
†
2C2 − A†

1C1) + FA1
FWY ,

then,

A3XB∗
3 − B3X∗A∗

3 = MXB∗
3 − B3X∗M∗ + A3TB∗

3 − B3T∗A∗
3 = C3,

it means

MXB∗
3 − B3X∗M∗ = S. (4.14)

For any V ∈ L (H3,H1), let

𝜙(V) = V − 1
2
M†MVB†

3B3 +
1
2
M†B3V∗M∗(B†

3)
∗

− 1
2
M†B3V∗(B†

3MD†
2M)∗ − 1

2
D†

2MVB†
3B3.

We have

M𝜙(V)B∗
3 = 1

2
(MVB∗

3 + B3V∗M∗B3B
†
3 − B3V∗(B3B

†
3MD†

2M)∗ −MD†
2MVB∗

3)

= 1
2
MVB∗

3 +
1
2
B3V∗M∗B3B

†
3 −

1
2
B3V∗((I − EB3

)MD†
2D2)∗ −

1
2
MD†

2MVB∗
3

= 1
2
MVB∗

3 +
1
2
B3V∗M∗B3B

†
3 −

1
2
B3V∗D†

2D2A∗ + 1
2
B3V∗D∗

2 −
1
2
MD†

2MVB∗
3

= 1
2
MVB∗

3 +
1
2
B3V∗M∗B3B

†
3 +

1
2
B3V∗M∗EB3

− H(+,∗)( 1
2
B3V∗D†

2D2M∗)

= H(+,∗)( 1
2
MVB∗

3) − H(+,∗)( 1
2
B3V∗D†

2D2M∗).

It follows that 𝜙(V) is a solution to the following equation:

MXB∗
3 − B3X∗M∗ = 0. (4.15)

On the other hand, given any solution X to Eq. (4.15), let V = X. Then we have

𝜙(X) = X − 1
2
M†MXB†

3B3 +
1
2
M†(B3X∗M∗)(B†

3)
∗

− 1
2
M†(B3X∗M∗)(B†

3MD†
2)

∗ − 1
2
D†

2MXB†
3B3

= X − 1
2
M†MXB†

3B3 +
1
2
M†MXB∗

3(B
†
3)

∗

− 1
2
M†MXB∗

3(B
†
3MD†

2)
∗ − 1

2
D†

2MXB∗
3(B

†
3)

∗

= X − 1
2
M†MX(B†

3MD†
2B3)∗ −

1
2
D†

2B3X∗M∗(B†
3)

∗

= X.
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We have proved that the general solution to Eq. (4.15) has a form 𝜙(V) for some

V ∈ L (H3,H1). It is easy to check that X0 defined by

X0 =
1
2
M†S(B†

3)
∗ − 1

2
M†B3B

†
3S(B

†
3MD†

2)
∗ + 1

2
D†

2S(B
†
3)

∗

is a particular solution to Eq. (4.14), we conclude that the general solution X to the

system of adjointable operator equations (1.2) has a form of (4.7). □
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Global Stability of a Delayed
Eco-Epidemiological Model with Holling
Type III Functional Response

Hongfang Bai and Rui Xu

Abstract In this paper, we consider an eco-epidemiological model with Holling

type III functional response and a time delay representing the gestation period of the

predator. In the model, it is assumed that the predator population suffers a transmis-

sible disease. By means of Lyapunov functionals and Laselle’s invariance principle,

sufficient conditions are obtained for the global stability of the endemic coexistence

of the system.

Keywords Eco-epidemiological model ⋅ Delay ⋅ Laselle’s invariance principle

Global stability

1 Introduction

Epidemiological models have received considerate attention in the literature to

explain the spread and control of infectious disease [1–4]. Most of these models

descend from the pioneering work of Kermack and Mckendrick [5], who proposed

the classical SIR model . Seeing that species do not exist alone in the nature world, so

it is very important to study the system of two or more interacting species subjected

to disease [6].

Recently, great attention has been paid to study the relationships between demo-

graphic processes among different populations and diseases (see, e.g., [7–11]). Such

as, Zhang et al. [7] studied the following eco-epidemiological model with Holling

type I response function
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ẋ(t) = rx(t) − a11x2(t) − a12x(t)S(t),
̇S(t) = a21x(t − 𝜏)S(t − 𝜏) − r1S(t) − 𝛽S(t)I(t),
̇I(t) = 𝛽S(t)I(t) − r2I(t),

(1.1)

where x(t), S(t), I(t) denote the densities of the prey, the susceptible predator, and the

infected predator population, respectively.

In system (1.1), it assumes that the per capita rate of predation depends on the

prey numbers only. But Holling found that each predator increased its consumption

rate when exposed to a higher prey density, and also predator density increased with

increasing prey density [12, 13]. So he suggested the following three kinds of func-

tional responses referring to the number of prey eaten per predator per unit time.

(1) p1(x) = ax, (2) p2(x) =
ax

m + x
, (3) p3(x) =

ax2

m + x2
,

where x denotes the density of prey, a > 0 is the search rate of the predator, m > 0
is half-saturation constant, p1(x), p2(x), and p3(x) represent Holling type I, II, and III

functional responses, respectively.

Holling type III functional response reveals that the risk of being preyed upon is

small at low prey density but increases up to a certain point as prey density increases,

which is in accordance with some phenomena of natural world. Also, we know that

many factors contribute to a type III functional response such as prey refuge, predator

learning, and the presence of alternative prey [14].

Motivated by the works of Holling [14] and Zhang et al. [7], in this paper,

we consider a delayed eco-epidemiological model with Holling type III functional

response, which suffers a transmissible disease. Thus, we study the following eco-

epidemiological model:

ẋ(t) = rx(t) − a11x2(t) −
a12x2(t)S(t)
1 + mx2(t)

−
a13x2(t)I(t)
1 + mx2(t)

,

̇S(t) = k
a12x2(t − 𝜏)S(t − 𝜏)

1 + mx2(t − 𝜏)
− r1S(t) − 𝛽S(t)I(t),

̇I(t) = 𝛽S(t)I(t) + k
a13x2(t − 𝜏)I(t − 𝜏)
1 + mx2(t − 𝜏)

− r2I(t).

(1.2)

where x(t), S(t), and I(t) represent the densities of the prey, the susceptible predator,

and the infected predator population, respectively. r is the intrinsic growth rate of

prey population without disease, r∕a11 is the environmental carrying capacity, a12 is

the capturing rate of the susceptible predators. The infected predator also can catch

the prey; here, a13 denotes the capturing rate of the infected predator. k is the con-

version rate of nutrients into the reproduction of predators by consuming prey, 𝛽 is

the disease transmission coefficient, r1 is the natural death rate of the susceptible

predators, r2 is the natural and disease-related mortality rate of the infected preda-

tor. Here, r1 < r2. 𝜏 is a time delay representing a duration of 𝜏 time units elapses
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when an individual prey is killed and the moment when the corresponding addition

is made to the predator population. All the parameters are positive.

The initial conditions for system (1.2) are

x(𝜃) = 𝜙1(𝜃), S(𝜃) = 𝜙2(𝜃), I(𝜃) = 𝜙3(𝜃), 𝜃 ∈ [−𝜏, 0],
𝜙i ∈ C([−𝜏, 0],R3

+), 𝜙i > 0, i = 1, 2, 3,
(1.3)

where R3
+ = (x1, x2, x3) ∶ x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The organization of this paper is as follows. In Sect. 2, the positivity and the equi-

libria of system (1.2) are presented. In Sect. 3, we consider about the permanence of

system (1.2) by using the persistence theory on infinite dimensional systems devel-

oped by Hale and Waltman [15]. In Sect. 4, we establish sufficient conditions for

the global asymptotic stability of the endemic-coexistence equilibrium of system

(1.2) by constructing suitable Lyapunov functionals and adopting Lasalle’s invari-

ance principle. Finally, we discuss the biological meaning of the result obtained in

this paper.

2 Preliminaries

In this section, we consider the positivity of solutions and the equilibria of system

(1.2).

2.1 Positivity of Solutions

Theorem 2.1 Suppose that (x(t), S(t), I(t)) is a solution of system (1.2) with initial
conditions (1.3). Then, x(t) ≥ 0, S(t) ≥ 0, and I(t) ≥ 0 for all t ≥ 0.

Proof From the first equation of system (1.2), we have

x(t) = x(0) exp
{
∫

t

0

[
r − a11x(u) − a12x(u)S(u)∕(1 + mx2(u)) − a13x(u)I(u)∕(1 + mx2(u))

]
du

}
> 0.

Hence, x(t) is positive.

In order to prove that S(t) is positive on [0,∞], suppose that there exists t1 > 0
such that S(t1) = 0, and S(t) > 0 for t ∈ [0, t1]. Then, ̇S(t1) ≤ 0. From the second

equation of (1.2), we have
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̇S(t1) = k
a12x2(t1 − 𝜏)S(t1 − 𝜏)

1 + mx2(t1 − 𝜏)
− r1S(t1) − 𝛽S(t1)I(t1)

= k
a12x2(t1 − 𝜏)S(t1 − 𝜏)

1 + mx2(t1 − 𝜏)
> 0,

which is a contradiction.

In order to show that I(t) is positive on [0,∞], suppose that there exists t2 > 0 such

that I(t2) = 0, and I(t) > 0 for t ∈ [0, t2]. Then, ̇I(t2) ≤ 0. From the third equation of

(1.2), we have

̇I(t2) = 𝛽S(t2)I(t2) + k
a13x2(t2 − 𝜏)I(t2 − 𝜏)

1 + mx2(t2 − 𝜏)
− r2I(t2)

= k
a13x2(t2 − 𝜏)I(t2 − 𝜏)

1 + mx2(t2 − 𝜏)
> 0,

which is a contradiction. □

2.2 Equilibria

System (1.2) possesses the following equilibria in general.

(i) The trivial equilibrium E0 = (0, 0, 0).
(ii) The predator-extinction equilibrium E1 = (r∕a11, 0, 0).

(iii) The disease-free equilibrium E2 = (x2, S2, 0), where

x2 =
√ r1

ka12 − r1m
,

S2 =
k√

r1(ka12 − r1m)

(
r − a11

√ r1
ka12 − r1m

)
.

(2.1)

We denote an ecological threshold parameter by ℜ1 =
k
r1

r2a12
a211 + mr2

. It is easy

to show that if ℜ1 > 1, then x2 > 0, I2 > 0.
(iv) The planar equilibrium E3 = (x3, 0, I3), where

x3 =
√ r2

ka13 − r2m
,

I3 =
k√

r2(ka13 − r2m)

(
r − a11

√ r2
ka13 − r2m

)
.

(2.2)
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Similar, we denote ℜ2 =
k
r2

r2a13
a211 + mr2

. It is easy to show that if ℜ2 > 1, then

x3 > 0, I3 > 0.
(v) The endemic-coexistence equilibrium E∗ = (x∗, S∗, I∗), where

I∗ =
ka12x∗2

𝛽(1 + mx∗2)
−

r1
𝛽

,

S∗ =
r2
𝛽

−
ka13x∗2

𝛽(1 + mx∗2)
,

(2.3)

in which x∗ is a positive real root of the following cubic equation:

m𝛽a11x3 − mr𝛽x2 + (a11𝛽 + r2a12 − a13r1)x − r𝛽 = 0. (2.4)

It can be seen that if

(H1) r2(ka12 − r1m) > r1(ka13 − r2m),
then system (1.2) has a endemic-coexistence equilibrium E∗

.

3 Permanence

In this section, we study the permanence of system (1.2). Before starting our theorem,

we give some basic concepts and corresponding theory.

Definition 3.1 System (1.2) is said to be permanent (uniformly persistent) if there

are positive mi and Mi(i = 1, 2, 3) such that each positive solution (x(t), S(t), I(t)) of

system (1.2) satisfies

m1 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M1,

m2 ≤ lim inf
t→+∞

S(t) ≤ lim sup
t→+∞

S(t) ≤ M2,

m3 ≤ lim inf
t→+∞

I(t) ≤ lim sup
t→+∞

I(t) ≤ M3.

Definition 3.2 System (1.2) is said to be permanent if there exists a compact region

Ω0 ∈ intΩ such that every solution of Eqs. (1.2) with initial condition (1.3) will

eventually enter and remain in region Ω0.

It is easy to see that for a dissipative system, uniform persistence is equivalent to

permanence. For the sake of convenience, we present the uniform persistence theory

for infinite dimensional systems.

Let X be a complete metric space with metric d. Suppose that T is a continuous

semiflow on X, that is, a continuous mapping T ∶ [0,+∞] × X → X with the follow-

ing properties
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Tt◦Ts = Tt+s, t, s ≥ 0, T0(x) = x, x ∈ X,

where Tt denotes the mapping from X to X given by Tt(x) = T(t, x).
The distance d(x,Y) of a point x ∈ X from a subset Y of X is defined by

d(x,Y) = inf y∈Yd(x, y).

Recall that the positive orbit 𝛾
+(x) through x is defined as 𝛾

+(x) = ∪t≥0{T(t)x}, and

its 𝜔− limit set is 𝜔(x) = ∩s≥0∪t≥s{T(t)x}. Define Ws(A) the strong stable set of a

compact invariant set A as

Ws(A) = {x ∶ x ∈ X, 𝜔(x) ≠ ∅, 𝜔(x) ⊂ A}.

Suppose that X0
is open and dense in X and X0 ∪ X0 = X, X0 ∩ X0 = ∅. Moreover,

the C0
-semigroup T(t) on X satisfies

T(t) ∶ X0 → X0
,T(t) ∶ X0 → X0. (3.1)

Let Tb(t) = T(t) ∣X0
and Ab be the global attractor for Tb(t).

Lemma 3.1 (Hale and Waltman [15]) Suppose that T(t) satisfies (3.1). If the follow-
ing hold

(i) there is a t0 ≥ 0 such that T(t) is compact for t > t0;
(ii) T(t) is point dissipative in X; and
(iii) ̄Ab = ∪x∈Ab

𝜔(x) is isolated and has an acyclic covering ̂Mt, where

̂Mt = { ̃M1, ̃M2,… ,

̃Mn};

(iv) Ws( ̃Mi) ∩ X0 = ∅ for i = 1, 2,… , n.

Then, X0 is a uniform repeller with respect to X0; that is, there is an 𝜀 > 0 such that
for any x ∈ X0, lim inf t→+∞ d(T(t)x,X0) ≥ 𝜀.

We also need the following result to study the permanence of system (1.2).

Lemma 3.2 There are positive constants M1 and M2 such that for any positive solu-
tion (x(t), S(t), I(t)) of system (1.2) with initial conditions (1.3),

lim sup
t→+∞

x(t) < M2, lim sup
t→+∞

S(t) < M1, lim sup
t→+∞

I(t) < M1. (3.2)

Proof Let (x(t), S(t), I(t)) be any solution of system (1.2) with initial conditions (1.3).

Consider the function

V(t) = kx(t) + S(t + 𝜏) + I(t + 𝜏).
From system (1.2), we get
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̇V(t) = krx(t) − ka11x2(t) − r1S(t + 𝜏) − r2I(t + 𝜏)
= k(r + r1)x(t) − ka11x2(t) − r1V(t) + (r1 − r2)I(t + 𝜏)
≤M1 − r1V(t),

where M1 =
k(r + r1)2

4a11
. Which yields lim supt→+∞ V(t) ≤ M1. If we choose M2 =

M1∕k, then (3.2) follows. This complete the proof. □

In the following, we investigate the permanence of system (1.2).

Theorem 3.1 If 𝛽S2 > r2 holds, then system (1.2) is permanent.

Proof LetC+([−𝜏, 0],ℝ3
+) denote the space of continuous functions mapping [−𝜏, 0]

into ℝ3
+. Define

C1 =
{
(𝜙1, 𝜙2, 𝜙3) ∈ C+([−𝜏, 0],ℝ3

+) ∶ 𝜙1(𝜃) ≠ 0, 𝜙2(𝜃) = 𝜙3(𝜃) = 0, 𝜃 ∈ [𝜏, 0]
}
,

C2 =
{
(𝜙1, 𝜙2, 𝜙3) ∈ C+([−𝜏, 0],ℝ3

+) ∶ 𝜙1(𝜃)𝜙2(𝜃) ≠ 0, 𝜙3(𝜃) = 0, 𝜃 ∈ [𝜏, 0]
}
.

Denote C0 = C1 ∪ C2, X = C+([−𝜏, 0],ℝ3
+), and C0 = intC+([−𝜏, 0],ℝ3

+).
We verify below that the conditions in Lemma 3.1 are satisfied. By the definition

of C0
and C0, it is easy to know that C0

and C0 are positively invariant. Moreover, the

conditions (i) and (ii) in Lemma 3.1 are clearly satisfied. Thus, we need only to verify

that the conditions (iii) and (iv) hold. System (1.2) has two constant solutions in C0 :

̄E1 ∈ C1, ̄E2 ∈ C2 corresponding, respectively, to x(t) = r∕a11, S(t) = 0, I(t) = 0 and

x(t) = x2, S(t) = S2, I(t) = 0.

Firstly, we verify the condition (iii) of Lemma 3.1. If (x(t), S(t), I(t)) is a solution

of system (1.2) initiating from C1, then ẋ(t) = rx(t) − a11x2(t), which yields x(t) →
r∕a11 as t → +∞. If (x(t), S(t), I(t)) is a solution of system (1.2) initiating from C2
with 𝜙1(𝜃) > 0 and 𝜙2(𝜃) > 0, then we have

ẋ(t) = rx(t) − a11x2(t) −
a12x2(t)S(t)
1 + mx2(t)

,

̇S(t) = ka12
x2(t − 𝜏)S(t − 𝜏)
1 + mx2(t − 𝜏)

− r1S(t).
(3.3)

It is obvious that if 𝛽S2∕r2 > 1, then ℜ1 > 1. Using Lemmas 3.1 and 3.2, it is easy to

prove that ifℜ1 > 1 holds, then system (3.3) is uniformly persistent. Noting thatC1 ∩
C2 = ∅, this shows that the invariant sets ̄E1 and ̄E2 are isolated. Hence,

{
̄E1, ̄E2

}
is

isolated and is an acyclic covering.

Secondly, we show that Ws( ̃Ei)
⋂

C0 = ∅(i = 1, 2). Here, we restrict out atten-

tion to show Ws( ̃E2)
⋂

C0 = ∅ holds because the proof of Ws( ̃E1)
⋂

C0 = ∅ is sim-

ple. Assuming the contrary, namely Ws( ̃E2)
⋂

C0 ≠ ∅. Then, there exists a positive

solution (x(t), S(t), I(t)) satisfying limt→+∞(x(t), S(t), I(t)) = (x2, S2, 0).
Since 𝛽S2 > r2, we can choose 𝜀 > 0 small enough such that
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𝛽(S2 − 𝜀) > r2. (3.4)

Noting that limt→+∞ S(t) = S2, for 𝜀 > 0 sufficiently small satisfying (3.3), there is

a t0 > 0 such that if t > t0, S2 − 𝜀 < S(t) < S2 + 𝜀. For 𝜀 > 0 sufficiently small sat-

isfying (3.4), it follows from the third equation of system (1.2) that for t > t0 + 𝜏,

̇I(t) > 𝛽(S2 − 𝜀)I(t) − r2I(t), which, follows from (3.4), yields limt→+∞ I(t) = +∞.

This is contradicts Lemma 3.2. Thus, we have Ws( ̃E2)
⋂

C0 = ∅. By Lemma 3.1, we

conclude that C0 repels positive solutions of system (1.2) uniformly, and therefore,

system (1.2) is permanent. The proof is complete. □

4 Global Stability

Theorem 4.1 If the endemic-coexistence equilibrium E∗ of system (1.2) exists, then
E∗ is globally asymptotically stable provided that
(H2): x ≥ r∕(2a11).
Here, x is the persistency constant for x satisfying lim inf t→+∞ x ≥ x.

Proof Assume that (x(t), S(t), I(t)) is any positive solution of system (1.2) with initial

conditions (1.3). Denote 𝜙(x(t)) = x2(t)
1 + mx2(t)

. Define

V11(t) = k
(
x(t) − x∗ −

∫

x

x∗

𝜙(x∗)
𝜙(x(u))

du
)
+ S(t) − S∗ − S∗ ln S(t)

S∗

+ I(t) − I∗ − I∗ ln I(t)
I∗

.

(4.1)

Calculating the derivative ofV11(t) along positive solutions of system (1.2), it follows

that

d
dt
V11(t) = k

(
1 − 𝜙(x∗)

𝜙(x(t))

)[
rx(t) − a11x2(t) − a12𝜙(x(t))S(t) − a13𝜙(x(t))I(t)

]

+
(
1 − S∗

S(t)

)(
ka12𝜙(x(t − 𝜏))S(t − 𝜏) − r1S(t) − 𝛽S(t)I(t)

)

+
(
1 − I∗

I(t)

)(
𝛽S(t)I(t) + ka13𝜙(x(t − 𝜏))I(t − 𝜏) − r2I(t)

)
.

(4.2)

On substituting rx∗ − a11x∗2 − a12𝜙(x∗)S∗ − a13𝜙(x∗)I∗ = 0, ka12𝜙(x∗)
S∗ − r1S∗ − 𝛽S∗I∗ = 0, and 𝛽S∗I∗ + ka13𝜙(x∗)I∗ − r2I∗ = 0 into Eq. (4.2), we derive

that
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d
dt
V11(t) = k

(
1 − 𝜙(x∗)

𝜙(x(t))

)[
rx(t) − rx∗ − a11(x2(t) − x∗2) + a12𝜙(x∗)S∗ + a13𝜙(x∗)I∗

]

−ka12𝜙(x(t))S(t) + ka12𝜙(x(t − 𝜏))S(t − 𝜏) − ka13𝜙(x(t))I(t) + ka12𝜙(x(t − 𝜏))I(t − 𝜏)

−ka12S∗𝜙(x∗)
𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)
+ ka12S∗𝜙(x∗)

−ka13I∗𝜙(x∗)
𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)
+ ka13I∗𝜙(x∗)

+ka12𝜙(x∗)S + ka13𝜙(x∗)I − r1S(t) + 𝛽S∗I − 𝛽I∗S(t) − r2I(t).
(4.3)

Define

V12(t) = ka12
∫

t

t−𝜏

[
𝜙(x(u))S(u) − 𝜙(x∗)S∗ − 𝜙(x∗)S∗ ln 𝜙(x(u))S(u)

𝜙(x∗)S∗

]
du,

V13(t) = ka13
∫

t

t−𝜏

[
𝜙(x(u))I(u) − 𝜙(x∗)I∗ − 𝜙(x∗)I∗ ln 𝜙(x(u))I(u)

𝜙(x∗)I∗

]
du.

(4.4)

Then,

d
dt
V12(t) = ka12

(
𝜙(x(t))S(t) − 𝜙(x(t − 𝜏))S(t − 𝜏) + 𝜙(x∗)S∗ ln 𝜙(x(t − 𝜏))S(t − 𝜏)

𝜙(x(t))S(t)

)
,

d
dt
V13(t) = ka13

(
𝜙(x(t))I(t) − 𝜙(x(t − 𝜏))I(t − 𝜏) + 𝜙(x∗)I∗ ln 𝜙(x(t − 𝜏))I(t − 𝜏)

𝜙(x(t))I(t)

)
.

(4.5)

Set V1(t) = V11(t) + V12(t) + V13(t). It follows from (4.1) (4.4), and (4.5) that

d
dt
V1(t) =k

(
1 − 𝜙(x∗)

𝜙(x(t))

)[
rx(t) − rx∗ − a11(x2(t) − x∗2) + a12𝜙(x∗)S∗ + a13𝜙(x∗)I∗

]

+ka12𝜙(x∗)S∗ ln
𝜙(x(t − 𝜏))S(t − 𝜏)

𝜙(x(t))S(t)
+ ka13𝜙(x∗)I∗ ln

𝜙(x(t − 𝜏))I(t − 𝜏)
𝜙(x(t))I(t)

−ka12S∗𝜙(x∗)
𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)
+ ka12S∗𝜙(x∗)

−ka13I∗𝜙(x∗)
𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)
+ ka13I∗𝜙(x∗)

+ka12𝜙(x∗)S + ka13𝜙(x∗)I − r1S(t) + 𝛽S∗I − 𝛽I∗S(t) − r2I(t).
(4.6)

Noting that

ln 𝜙(x(t − 𝜏))S(t − 𝜏)
𝜙(x(t))S(t)

= ln 𝜙(x(t − 𝜏))S(t − 𝜏)
S(t)𝜙(x∗)

+ ln 𝜙(x∗)
𝜙(x(t))

,

ln 𝜙(x(t − 𝜏))I(t − 𝜏)
𝜙(x(t))I(t)

= ln 𝜙(x(t − 𝜏))I(t − 𝜏)
I(t)𝜙(x∗)

+ ln 𝜙(x∗)
𝜙(x(t))

,

(4.7)

we derive from (4.7) that



128 H. Bai and R. Xu

d
dt
V1(t) =k

(
1 − 𝜙(x∗)

𝜙(x(t))

)[
rx(t) − rx∗ − a11(x2(t) − x∗2)

]

−ka12𝜙(x∗)S∗
[
𝜙(x∗)
𝜙(x(t))

− 1 − ln 𝜙(x∗)
𝜙(x(t))

]
− ka13𝜙(x∗)I∗

[
𝜙(x∗)
𝜙(x(t))

− 1 − ln 𝜙(x∗)
𝜙(x(t))

]

−ka12S∗𝜙(x∗)
[
𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)
− 1 − ln 𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)

]

−ka13I∗𝜙(x∗)
[
𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)
− 1 − ln 𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)

]

+ka12𝜙(x∗)S + ka13𝜙(x∗)I − r1S(t) + 𝛽S∗I − 𝛽I∗S(t) − r2I(t).
(4.8)

On substituting ka12𝜙(x∗) = r1 + 𝛽I∗ and ka13𝜙(x∗) = r2 − 𝛽S∗ into Eq. (4.8), we

derive that

d
dt
V1(t) =k

(
1 − 𝜙(x∗)

𝜙(x(t))

)[
rx(t) − rx∗ − a11(x2(t) − x∗2)

]

−ka12𝜙(x∗)S∗
[
𝜙(x∗)
𝜙(x(t))

− 1 − ln 𝜙(x∗)
𝜙(x(t))

]
− ka13𝜙(x∗)I∗

[
𝜙(x∗)
𝜙(x(t))

− 1 − ln 𝜙(x∗)
𝜙(x(t))

]

−ka12S∗𝜙(x∗)
[
𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)
− 1 − ln 𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)

]

−ka13I∗𝜙(x∗)
[
𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)
− 1 − ln 𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)

]
.

(4.9)

Noting that 𝜙(x∗) = x∗2(t)
1 + mx∗2(t)

and 𝜙(x) = x2(t)
1 + mx2(t)

, we derive from (4.9) that

d
dt
V1(t) =k

(x + x∗)(x(t) − x∗)2

x2(t)(1 + mx∗2)
[
r − a11(x(t) + x∗))

]

−ka12𝜙(x∗)S∗
[
𝜙(x∗)
𝜙(x(t))

− 1 − ln 𝜙(x∗)
𝜙(x(t))

]
− ka13𝜙(x∗)I∗

[
𝜙(x∗)
𝜙(x(t))

− 1 − ln 𝜙(x∗)
𝜙(x(t))

]

−ka12S∗𝜙(x∗)
[
𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)
− 1 − ln 𝜙(x(t − 𝜏))S(t − 𝜏)

S(t)𝜙(x∗)

]

−ka13I∗𝜙(x∗)
[
𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)
− 1 − ln 𝜙(x(t − 𝜏))I(t − 𝜏)

I(t)𝜙(x∗)

]
.

(4.10)

Since (H2) holds, there exists a constant T > 0 such that if t ≥ T , x(t) > r∕(2a11). In

this case, we have that, for t ≥ T ,

(x + x∗)(x(t) − x∗)2

x2(t)(1 + mx∗2)
[
r − a11(x(t) + x∗))

]
≤ 0, (4.11)

with equality if and only if x = x∗. Seeing that the function f (x) = x − 1 − ln x is

always nonnegative for any x > 0, and f (x) = 0 if and only if x = 1, therefor, if t ≥ T ,

̇V1(t) ≤ 0, which equality if and only if x = x∗, S(t) = S(t − 𝜏), I(t) = I(t − 𝜏). We

now look for the invariant subset M within the set
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M = {(x, S, I) ∶ x = x∗, S(t) = S(t − 𝜏), I(t) = I(t − 𝜏)}. (4.12)

Since x = x∗, S(t) = S(t − 𝜏), I(t) = I(t − 𝜏) on M, it follows from the system (1.2)

that

0 = ẋ(t) = rx∗ − a11x∗2 −
a12x∗2S(t)
1 + mx∗2

−
a13x∗2I(t)
1 + mx∗2

,

0 = ̇S(t) =
[
k

a12x∗2

1 + mx∗2
− r1 − 𝛽I(t)

]
S(t),

0 = ̇I(t) =
[
𝛽S(t) + k

a13x∗2

1 + mx∗2
− r2

]
I(t),

(4.13)

which yields S = S∗ and I = I∗. Hence, the only invariant set in M is 𝕄 = (x∗, S∗, I∗).
Therefore, the global asymptotic stability of E∗

follows from Lasalle’s invariance

principle for delay differential systems [16]. This completes the proof. □

5 Discussion

In this paper, we have proposed and analyzed an eco-epidemiological system with

time delay due to the gestation of the predator. We assumed that a transmissible

disease spreading among the predator population, meanwhile, both the susceptible

predator and the infected predator can catch the prey. Specially, system (1.2) has no

intraspecific competition terms in the second and the third equations. In this case,

under what conditions will the global stability of a feasible equilibrium of system

(1.2) persists independent of the time delay? We established global asymptotic sta-

bility of the endemic-coexistence equilibrium of the system by means of Lyapunov

functionals and Laselle’s invariance principle. According to Theorem 4.1, we can see

that the endemic-coexistence equilibrium of system (1.2) is globally asymptotically

stable when the prey population is abundant enough.
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Abstract As buildings contribute significantly towards global energy consumption,

it is essential that the occupants receive the best comfort without utilizing further

energy. This work treats building, environment and the occupants as a system, which

presents the context, and the occupants also provide their comfort criteria to a black

box for yielding the schedule of actions (opening/closing of doors/windows) for opti-

mal comfort. The physical state of an office, situated in France, is recorded over a

span of 100 days. This data is utilized by a physical model of the building to simu-

late the indoor ambience based on random sets of user actions from which an optimal

schedule is obtained, representing equally best trade-off among minimal thermal and

CO2-based air quality dissatisfaction. Results indicate that adopting the proposed

schedule of user actions can efficiently enhance the occupant’s comfort.
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1 Introduction

Considering the ever-growing energy demand and the depletion of non-renewable

energy resources, it is important to limit the energy usage in buildings which con-

stitute roughly about 40% of the global energy supply. Thus, it is imperative to sat-

isfy the demands of the building occupants without increasing the present rate of

energy consumption in buildings. Occupant, on the other hand, being an integral

part of the building system, can affect the indoor environmental condition through

their actions. By intelligently utilizing these actions, positive effects can be brought

upon the indoor environment. Thus, guiding the occupant’s actions, like opening and

closing of doors and windows, for significant period of time, can help achieve better

comfort in energy building at the same cost of energy consumption.

Attempts have been considered to meet the comfort demands of the occupants

by improving building construction techniques and adding insulation to walls and

ceilings. Building regulations also play an important role in the overall (both global

and local) energy management. However, obtaining positive impacts of occupant’s

actions in the energy consumption can help to manage their own comfort. It is there-

fore important to assist the occupants with an optimal energy plan in order to explain

that their expectations on comfort can be attained by themselves to some extent.

The approach used in this work considers an office, situated in Grenoble Institute

of Technology, France, fitted with 27 sensors, for collection of data like temperature,

solar illuminance, wind speed, humidity, moisture, CO2 concentration, to construct

the physical context. Also a physical model of the office is used which based on

the physical context of outside environment and neighbouring corridors, and a ran-

dom set of actions can simulate the indoor ambience. The indoor temperature and

CO2 concentration are responsible for thermal and air quality dissatisfaction of the

occupants. This work uses a multi-objective optimization algorithm, viz. differential

evolution, to obtain the schedule of user actions that can lead to minimal thermal and

air quality dissatisfaction. On presenting the occupants with this optimal schedule,

they can compare it with their previous schedule and adopt the new schedule, after

trial, if they find significant improvement of comfort.

Depending on the weather changes, the optimal schedule is variable. However,

rarely, there are day-to-day changes in the outside temperatures and CO2 concen-

trations. Hence, learning from past day’s environmental conditions and occupant’s

actions, the proposed optimal set of actions can be adopted for next day.

Rest of the paper is organized as follows: Section 2 describes the information flow

to yield the schedule of actions corresponding to the trade-offs between minimal

thermal and air quality dissatisfactions. Section 3 discusses the results to assess the

efficacy of the proposed approach. Section 4 presents the conclusion while directing

towards future research.
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Fig. 1 General schema of

energy management in smart

buildings

2 Experimental Framework

This work presents optimal schedules of actions (opening/closing of doors/windows)

which the occupants can adopt to achieve better thermal and CO2-based air quality

comfort at no extra energy expenditure. As the proposed scheme aims at improving

occupant’s comfort without increasing energy consumption, this can be considered

as an energy management scheme. The general schema of the work is shown in Fig. 1.

In this section, the function of each of these modules is explained in detail along with

the overall interconnection of the modules to explain the information flow. It is to

be mentioned that the environment, buildings and the occupants represent the smart

building system where the environment and buildings contribute to the physical con-

text/state, and the occupants, on the other hand, generate actions and provide their

comfort criteria to a black box. Finally, the occupants compare their actions with the

optimal actions generated by the black box in order to learn the scope of improve-

ment in their comfort. As the internal operation of the optimizer is unknown to the

occupant, it has been labelled as a black box.

2.1 Building and Environment

Through an array of sensors, the physical state of the outdoor, indoor and neighbour-

ing zones are recorded. Here, physical state refers to temperature, CO2 concentration,

humidity, etc. The inertia of these physical quantities from the outside environment

and neighbouring zones like corridors, staircase, etc., influences the physical quanti-

ties inside the room of the occupant. Hourly samples of such quantities are recorded

in the database for future reference. Here, as a test bed, an office room at Grenoble

Institute of Technology, France, where four researchers work, is fitted with 27 sen-

sors for recording the physical state/context and usual schedule of actions. This acts

as the smart building system for the proposed work.
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2.2 Occupants

Occupants are the integral part of the entire system. On the one hand, they provide

the optimization criteria like comfort, energy consumption, for obtaining an optimal

schedule of actions, and on the other hand, their actions influence the system which in

turn affects the optimization criteria. In the absence of controllable HVAC (heating,

ventilation and air conditioning) system, the only actions of the occupants which

can influence the indoor ambient conditions (and hence, their comfort) are opening

and closing of doors and windows. The occupants can compare the optimal schedules

with their usual schedule and adopt the proposed schedules as per need. For example,

if the difference in comfort is negligible, the occupant might not prefer to change their

schedule, whereas if the occupant observes significant improvement in comfort, the

occupant is expected to adopt the proposed schedules of actions.

After the basic building block, viz. the smart building system, and its purpose,

has been explained, the next step is to obtain the optimal schedules of actions. The

optimizer module, as explained next, helps in searching for best trade-offs among

the objectives provided by occupants.

2.3 Optimizer

The role of the optimizer is to yield a few optimal schedules of actions. The

essential specifications for the optimization module are as follows: the representa-

tion of the solution vector in order to decode the result, the optimization algorithm,

the objectives and their relation to the solution vector, the stopping condition and the

algorithmic parameters.

A solution of the optimization problem represents a set of actions. The allowed

actions for the occupants are opening and closing of doors and windows. As the data

is recorded in an office environment, the actions are noted over 12 working hours

i.e. from 8 a.m. to 8 p.m. Hence, the solution is represented by a 24-dimensional

binary vector where the first 12 entries imply opening/closing (open = 1, close = 0)

of windows and the later 12 entries are for opening/closing of doors for each of the

12 working hours, respectively.

Given the environmental context of the room, the primary objective of the work

is to obtain various schedules, such that each of the schedules represent trade-offs

among several conflicting objectives like minimizing thermal dissatisfaction, mini-

mizing CO2-based air quality dissatisfaction, minimizing humidity-based air quality

dissatisfaction, minimizing energy consumption, etc. Due to the presence of multiple

objectives, a multi-objective version of an optimization algorithm, viz. differential

evolution [3, 4], has been employed.

Assuming a physical context (indoor and outdoor environmental variables

like CO2 concentration, temperature, etc.) and a set of actions (opening/closing of

doors/windows) as inputs to the smart building system (outdoor environment and
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building with occupants), it outputs some effects (like thermal and air quality com-

fort). A physical model [1, 5] representing this system has been used which can

simulate the effects corresponding to random sets of actions, in the same context as

obtained from the database. These random sets of actions generate various sets of

effects. Several best trade-offs among the effects (generating the Pareto-front) are

chosen. Then, the occupants can compare the schedule of actions corresponding to

these trade-offs with their usual schedules to analyse the difference. Hence, evalua-

tion of objectives is a two-step process. The first step uses the physical model of the

office to evaluate indoor environmental variables depending on a true context and a

randomly assumed schedule of actions. The model is represented by Eqs. (1) and (2)

where the variables are defined in Table 1. Some of these variables represent sensor

measurements, whereas the remaining ones are learned by repeated simulation of

the physical model to match the office room. The second step evaluates effects (here,

thermal and CO2-based air quality dissatisfaction) from the simulated indoor phys-

ical variables. These effects are shown in Eqs. (4) and (5) which represent thermal

and air quality dissatisfaction at the ith hour, respectively. The objectives are formu-

lated keeping in mind that the indoor temperature is preferred between 21 and 23

◦
C and the indoor CO2 concentration is preferred between 400 and 1500 ppm. The

purpose of the optimizer is to optimize (minimize) the effects (dissatisfaction levels)

as formulated by Eq. (3).

Tin =
R
Ri
𝜏 + R

(
1

Rout
+

𝜁W

RW

)
Tout + R

(
1
Rn

+
𝜁D

RD

)
Tn (1)

V
dCin

dt
= −

(
Qout

0 (t) + Qcor
0 (t) + 𝜁W (t)QW + 𝜁D(t)QD

)
Cin

+
(
Qout

0 (t) + 𝜁W (t)QW
)
Cout +

(
Qcor

0 (t) + 𝜁D(t)QD
)
Ccor

+ SCO2
× n(t)

(2)

Minimize: D(actions) =
[
d1(Tin), d2(Cin)

]
=

[∑12
i=1 d

i
1

12
,

∑12
i=1 d

i
2

12

]
(3)

where

di1(Tin) =
⎧⎪⎨⎪⎩

21−Tin
21−18

if Tin < 21
0 if 21 ≤ Tin ≤ 23
Tin−23
26−23

if Tin > 23
(4)

di2(Cin) =

{
0 if Cin ≤ 400
Cin−400
1500−400

if Cin > 400
(5)

actions =
[
𝜁
1
W , 𝜁

2
W ,… , 𝜁

12
W , 𝜁

1
D, 𝜁

2
D,… , 𝜁

12
D
]
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Table 1 Algorithmic parameters and their values

Module Parameters Explanation Values

Physical model 𝜁W , 𝜁D Status of window (W),

door (D)

Open = 1, Close = 0

Tin, Tn, Tout Temperatures of

indoor, adjacent

corridor, outdoor

From database

RD, RW Thermal resistances of

door (D), window (W)

From database

Ri, Rn, Rout Resistance of walls,

adjacent corridor,

outdoor

From database

R Equivalent resistance Ri‖Rout‖Rn‖
RW (when 𝜁W = 1)‖
RD (when𝜁D = 1)

𝜏 Thermal coefficient

representing building

inertia

From database

V Volume of the room

(office)

From database

Cin, Cout, Ccor CO2 concentrations

indoor, outdoor, in

adjacent corridor

From database

Qout
, Qcor

Air speed outdoor, in

corridor

From database

QW , QD Air speed through

window (W), door (D)

From database

SCO2
Breath production of

CO2 per occupant

From database

n(t) Number of occupants

at time t
From database

Differential evolution

(optimizer)

NP Population size 20

Gmax Maximum generations 300

F Scale factor Randomly chosen

between 0 and 2

CR Crossover rate 0.8

r Reference point for

ranking and decision

making

Ideal point i.e. (0, 0)

Like most evolutionary optimization algorithms, the multi-objective version of

differential evolution is executed for a predetermined number of generations by

which the optimization algorithm is expected to have converged. The description

of various parameters and their values for which best results are obtained are noted

in Table 1.
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At the end of the optimization algorithm, a few optimal schedules of actions are

generated. The user can choose among these schedules based on their preference

among the multiple objectives of optimality by comparing their usual schedule with

the chosen schedule.

2.4 Comparing Schedule of Actions

Based on any schedule of actions, the physical model can generate the corresponding

indoor ambience. The indoor ambience based on the usual schedule of the occupant

is available in the database. Occupants can compare the simulated ambience (what

best could have happened) to their usual ambience (what had actually happened) and

understand the difference in effects to gain better comfort.

After the description of the experimental set-up, the next section discusses various

results in order to validate the proposed approach.

3 Result and Discussion

This section analyses the performance of the proposed approach using the vari-

ous results. Dissatisfaction levels as obtained from various simulated schedules are

shown in a scatter plot. From these, the set of Pareto-optimal schedules obtained

using optimization techniques are marked. Next, the variation of average indoor

temperature and CO2 concentration, obtained from optimal schedules, are compared

with usual schedules. Finally, the variation of net dissatisfaction resulting from the

proposed optimal schedule is shown to validate the optimization performance. The

experimental data is collected for 100 days (1 April 2015 to 9 July 2015), and the

analysis is conducted in 10 groups of 10 days each as shown in Table 2.

3.1 Pareto-Front and Optimal Schedules

A set of Pareto-optimal solutions is obtained for every working day in the experimen-

tal duration. Depending on the occupant’s preference, any one of these schedules can

be chosen as the preferred optimal schedules. Considering equal preference for both

the objectives, the solution nearest to reference point (at the minima for thermal and

air quality dissatisfaction i.e. at (0, 0)) is considered as the best schedule. The solu-

tion at the end of the Pareto-front is also analysed further for comparison because

these represent the best schedules with respect to each objectives (minimal thermal

or CO2-based air quality dissatisfaction), independently. Hence, occupant’s usual
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Table 2 Groups of experimental data recorded during working hours (8 a.m. to 8 p.m.)

Group Period Mean outdoor

temperature (
◦
C)

Outdoor CO2
concentration (ppm)

1 1 to 10 April 2015 10.1528

2 11 to 20 April 2015 17.8809

3 21 to 30 April 2015 17.1548

4 1 to 10 May 2015 20.7708

5 11 to 20 May 2015 20.1111 395

6 21 to 30 May 2015 15.9167

7 31 May to 9 June 2015 24.8571

8 10 to 19 June 2015 21.5119

9 20 to 29 June 2015 23.5417

10 30 June to 9 July 2015 28.7812

Fig. 2 Pareto-front and schedules of interest

schedule is compared with three other schedules: best schedule, schedule for opti-

mal thermal comfort and schedule for optimal air quality comfort. Using the context

from 16 April 2015, the thermal versus air quality dissatisfaction corresponding to

various simulated schedules is shown Fig. 2. It also shows the Pareto-front and the

three optimal schedules of interest, along with the usual level of dissatisfaction.
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Fig. 3 Variation in indoor temperature resulting from different schedules in the experimental

duration

3.2 Comparison of Physical Variables for Different
Schedules

As there are very less day-to-day changes in environmental conditions, the average

of physical variables of 10 days (working hours only) are considered for comparison

of the various schedules. Variations in indoor temperature and CO2 concentrations

due to various schedules are presented in Figs. 3 and 4 for all the 10 groups of 10 days

each as mentioned in Table 2. From the figures, it can be noticed that the difference

between usual and proposed indoor physical variables (temperatures and CO2 con-

centrations) is more during earlier days of experiment. In summer (group 7 to 10),

it is difficult to maintain the physical variables in preferred ranges just by varying

the schedule of opening/closing of doors/windows. Hence, in extreme cases where

outdoor physical variables (Table 2) are higher than preferred ranges, HVAC system

is needed to regulate the indoor physical variables. It is also to be noted that the best

schedule usually presents higher temperature than the schedules for optimal thermal

comfort. Similar observation is also noted for indoor CO2 concentration. This is due

to the fact the best schedule presents a trade-off solution, whereas the other proposed

schedules are optimal with respect to one objective at a time.
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3.3 Performance Analysis of Optimization Algorithm

Optimization algorithm, in this case, presents a set of solutions, called the Pareto-

optimal solution. The dissatisfaction values corresponding to these solutions

create the Pareto-front. To assess the convergence of the best schedule with respect

to the ideal optimal solution, the city-block distance (sum of absolute difference)

[2] between the corresponding dissatisfaction levels is measured. This distance rep-

resents the net dissatisfaction which is to be minimized. The parameters required

for this performance metric, viz. the reference point, are noted in Table 1. Box plots

for the distribution of net dissatisfaction for the best schedule of the Pareto-front

are noted in Fig. 5 for all the 10 groups which shows that the median is close to 0

and the range of values is very less towards the earlier group and becomes higher

for later groups. For a general idea of the range of dissatisfaction values, the theo-

retical variation of dissatisfaction is plotted against indoor temperature and indoor

CO2 concentration in Fig. 5 which follows from Eqs. (4) to (5). As noted from these

plots, a combined dissatisfaction value around 2 or higher indicates that the indoor

physical variables are not within preferred ranges. This implies that the proposed

optimization approach is reproducible and efficient in yielding optimal schedules for

this application during those period when HVAC system is not needed and thus,

managing energy efficiently in the studied scenario.
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Fig. 5 Variation in net dissatisfaction for the best schedule in the experimental duration

4 Conclusion

The objective of this work is to demonstrate an approach which considers the occu-

pant’s schedule of actions as the only controllable parameter of thermal and CO2-

based air quality comfort and yields several schedules of actions which represent

the best trade-offs between thermal and air quality dissatisfaction. Among the sev-

eral schedules, the schedule corresponding to the equally best compromise of air

quality and thermal comfort is analysed further. This optimal schedule can lead to

efficient energy management. This work also addresses the need of HVAC system

which arises when the environmental variables (here, temperature and CO2 concen-

tration) are too high from the preferred values such that change in schedule of actions

can negligibly influence the comfort level of the occupants.

However, just presenting the optimal schedule might not convince the occupants

to change their schedule. In order to gain occupant’s trust on the system, the effect of

small changes in action and the internal working of the black box are to be explained

in non-technical terms. This can lead to better comfort without depending on external

devices like HVAC system. The authors are working on the explanations and adding

more context to improve the parameterization of overall comfort. On the other hand,

when several devices including HVAC system (if required) are operational, their

energy consumption and environmental impact form other important effects to be

considered along with the comfort of the occupants. This forms open area of research

along this domain of energy management in smart buildings.
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CMA—H∞ Hybrid Design of Robust
Stable Adaptive Fuzzy Controllers
for Non-linear Systems

Kaushik Das Sharma, Amitava Chatterjee, Patrick Siarry
and Anjan Rakshit

Abstract The present paper utilizes covariance matrix adaptation (CMA), an
evolution strategy, in conjunction with H∞-based robust control law to design a
stable adaptive fuzzy controller for a class of non-linear systems. The objective of
the design is to develop a self-adaptive optimal/near optimal fuzzy controller, with
guaranteed stability and satisfactory robust transient performance. The global
search capability of CMA and H∞-based tuning, that provide a fast adaptation
utilizing local search method, is employed in tandem with this proposed design
methodology. The hybrid control strategy is implemented for benchmark simulation
case study, and the results demonstrate the usefulness of the proposed approach.

Keywords Covariance matrix adaptation (CMA) ⋅ H∞ based robust control
Adaptive fuzzy control ⋅ Hybrid fuzzy control ⋅ Non-linear systems

1 Introduction

Optimization of design variables is one of the challenges to the engineering com-
munity. Many times the fitness functions of such optimizations are mostly
non-differentiable, or even if differentiable, their derivatives may not be calculated
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explicitly. Furthermore, the problems are non-convex type in general, and so, finding
the global optima is quite difficult. To get rid of these kind of problems, Hansen et al.
proposed the covariance matrix adaptation evolution strategy (CMA-ES) or simply
CMA [1]. It is an evolutionary algorithm creating a number of probable solution
points utilizing the normal distribution, and it is a derivative-free optimization.
Although the original version is applicable only to the unconstrained problems and
can handle small population size during operation, the further improvements show
its application to the constrained optimization with large population size [2, 3].

The present paper proposes a systematic design procedure of stable adaptive
fuzzy logic controllers (AFLCs) using hybridizations of H∞-based approach
(HBA) of robust control [4] and CMA algorithm-based stochastic optimization
technique [1]. The hybrid design strategy of fuzzy controller design tries to combine
the advantages of both H∞ control-based local adaptation and stochastic
optimization-based global search method to develop a superior method [5]. The aims
of the proposed design scheme are to execute simultaneous adaptations of both the
structural features of FLC and its free parameters, such that (i) to guarantee the
stability of the closed-loop system and (ii) to accomplish high degrees of automation
in the design process, utilizing CMA algorithm, by getting rid of many manually
tuned parameters [6]. Hence, the objective of this work is to design stable adaptive
fuzzy controllers which can deliver high degree of automation in the design process,
guarantee asymptotic stability in the sense of Lyapunov and also achieve adequate
transient performance. The proposed scheme is implemented for a benchmark
non-linear case study, and the results show the usefulness of the scheme.

The rest of the paper is organized as follows: Sect. 2 presents the H∞-based
approach of AFLC design. Section 3 discusses the CMA algorithm and adaptive
fuzzy controller design using CMA, and Sect. 4 describes the proposed hybrid
controller design technique. Section 5 shows the simulation studies for a non-linear
system, and Sect. 6 concludes the paper.

2 H∞-Based Design of Robust Stable Adaptive Fuzzy
Controller

Let us consider an nth-order non-linear plant given as [4, 5]:

xðnÞ = f ðxÞ+ bu+ d
y= x

�
ð1Þ

where f ð ⋅ Þ is an unknown continuous function, u∈R and y∈R are the input and
output of the plant, b is an unknown positive constant and d is unknown but
bounded external disturbances. It is assumed that the state vector is given as
x= ðx1, x2, . . . , xnÞT = ðx, x ̇, . . . , xðn− 1ÞÞT ∈Rn. In order to (1) to be controllable in
certain controllability region Ux⊂R, we require that b≠ 0. Thus, without loss of
generality we can assume that b>0.
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The control objective is to track the reference signal ym(t) and thus, the tracking
error is e= y− ym. The objective is to design a stable AFLC for the system described
in (1). Here we need to find a feedback control law u= ucðxjθÞ, using fuzzy logic
system and an adaptive law for adjusting the parameter vector θ such that the
closed-loop system must be globally stable in the sense that all variables must be
uniformly bounded, and the e− θ space should be stable in the large for the system
[7]. Let the error vector be e= ðe, e ̇, . . . , eðn− 1ÞÞT and k= ðk1, k2, . . . , knÞT ∈Rn be
such that all the roots of the Hurwitz polynomial sn + knsn− 1 +⋯+ k2s+ k1 are in
the left half of s-plane.

Now the ideal control law for the system in (1) as:

u* =
1
b

− f ðxÞ+ yðnÞm + kTe− ur
h i

ð2Þ

where yðnÞm is the nth derivative of the output of the reference signal, and the control
signal ur is applied to attenuate the external disturbance and the error due to fuzzy
approximation of the AFLC [4].

For some specific class of plants the error differential equation as

eðnÞ = − k1e− k2e ̇−⋯− kneðn− 1Þ + ur − d ð3Þ

This definition implies that u* guarantees perfect tracking, i.e.
yðtÞ≡ ymðtÞ if Lt

t→∞
eðtÞ=0. As f and b are not known precisely, the ideal u* of (2)

cannot be implemented in practice. The design objective of asymptotically stable
tracking may be achieved if the fuzzy approximation error (ε) and the external
disturbance d are zero; otherwise, the H∞ tracking performance will come to the
play as [4, 8]:

ZT
0

eTQedt≤ eTð0ÞPeð0Þ+ 1
ν
θTð0Þθð0Þ+ ρ2

ZT
0

εTεdt ∀T ∈ 0,∞½ Þ ε∈L2 0.T½ �

ð4Þ

for given weighting matrices Q=QT ≥ 0, P=PT ≥ 0, an adaptation gain ν>0 and
prescribed attenuation level ρ.

Let us assume that the AFLC is constructed using a zero order Takagi–Sugeno
(T-S) fuzzy system. Then ucðxjθÞ for the AFLC is given in the form [5, 6]:

ucðxjθÞ= θT*ξðxÞ ð5Þ

where θ= ½θ1 θ2 . . . θN �T = the vector of the output singletons, N = the total
number of rules and ξðxÞ = vector containing normalized firing strength of all fuzzy

IF–THEN rules = ðξ1ðxÞ, ξ2ðxÞ, . . . , ξNðxÞÞT , for details see [4, 7].

CMA—H∞ Hybrid Design of Robust … 147



Now if b is a known constant, then for direct adaptive control, as suggested in
[4], the direct AFLC can form as

u= ucðxjθÞ− 1
b
urðxÞ ð6Þ

and

urðxÞ= −
1
r
BTPe ð7Þ

where ur(x) is the H
∞ robust term to compensate the fuzzy approximation error and

the external disturbance d, r is a positive scalar value and P can be obtained from
the solution of Riccati-like equation stated as [4, 8]:

ATP+PA−PB
2
r
−

1
ρ2

� �
BTP= −Q ð8Þ

The parameter update law is chosen as [4, 5]:

θ= νeTbPBξðxÞ ð9Þ

where ν is adaptation gain or learning rate.
Now, to ensure stability it is assumed that the control law u(t) is actually the

summation of the fuzzy control ucðxjθÞ and robust control term, given as:

uðtÞ= ucðxjθÞ− 1
b
urðxÞ= θT*ξðxÞ− 1

b
urðxÞ ð10Þ

Now the closed-loop error equation in (3) becomes

e ̇=Λce+ bc½ucðxjθÞ− u* +
1
b
ur�− bc

b
d ð11Þ

where

Λc =

0 1 0 0 ⋯ 0 0
0 0 1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ 0 1

− k1 − k2 ⋯ ⋯ ⋯ − kn− 1 − kn

2
66664

3
77775 and bc =

0
⋮
0
b

2
664
3
775 ð12Þ

148 K. Das Sharma et al.



Now defining the Lyapunov function as

V =
1
2
eTPe+

1
2ν

θTPθ ð13Þ

where θ* = the optimal parameter vector and θ= θ− θ*.
After some straightforward calculations and using (9), (10), (11) and (13):

V ̇ ≤ −
1
2
eTQe+

1
2
ρ2εTε ð14Þ

Using (13) and (14)

1
2

ZT
0

eTQedt≤
1
2
eTð0ÞPeð0Þ+ 1

2ν
θTð0ÞPθð0Þ+ 1

2
ρ2
ZT
0

εTε ð15Þ

Equation (15) is identical to that of (4), i.e. the condition for the H∞ tracking
control. Thus, using the control law ur(x), one can guarantee the boundedness in
x. Hence, the closed-loop stability is guaranteed [4, 5]. The flowchart representation
of H∞-based approach (HBA) of tracking control scheme is shown in Fig. 1.

Fig. 1 Flowchart
representation of H∞-based
approach (HBA) of tracking
control
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3 Covariance Matrix Adaptation (CMA)

CMA was introduced by Hansen et al. [1] in 1995, and further improvements were
developed by Hansen et al. in 2001 [9] and 2003 [10]. Originally, CMA was
designed for small population sizes and was interpreted as a robust local search
strategy [1, 9]. The drawbacks of basic CMA were the complexity of the adaptation
process and the dependence on the design parameter formulae for which very little
theoretical knowledge is available. In [10], the rank-μ-update version of CMA was
proposed and it exploits the advantage of large population size without affecting the
performance for small population size. In 2005, Hansen et al. proposed restart
version [10] of CMA which arguably proved the best performing evolutionary
algorithm for continuous optimization for a set of test functions [2]. The present
paper utilizes the rank-μ-update and weighted recombination version CMA [9].

Rank-μ-update and weighted recombination version CMA

It is considered that there λ number of potential candidate solutions, and each λ
individual is generated at (g + 1)th generation as [9]:

zg+1
k =N ⟨z⟩gw, σ

g2Cg
� �

= ⟨z⟩gw + σgBgDgNð0, IÞ, k=1, . . . , λ ð16Þ

where N(m,C) = normally distributed random vector with mean m and covariance
matrix C. ⟨z⟩gw = ∑μ

i=1 ωiz
g
i: λ = weighted mean of the selected individuals, ωi >0,

∀i=1, . . . , μ and ∑μ
i=1 ωi =1. The adaptation of the covariance matrix Cg is cal-

culated along the evolution path pg+1
c and by the μ weighted difference vectors

between the recent parents and ⟨x⟩gw as [1, 9]:

pg+1
c = ð1− ccÞ.pgc +Hg+1

σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ccð2− ccÞ

p
.
ffiffiffiffiffiffiffiμeff

p
σg

⟨z⟩g+1
w − ⟨z⟩gw

� 	 ð17Þ

Cg+1 = ð1− ccovÞ.Cg + ccov
1

μcov
pg+1
c pg+1

c

� 	T
+ ccov. 1−

1
μcov

� �
∑
μ

i=1

ωi

σg2
zg+1
i: λ − ⟨z⟩gw

� �
zg+1
i: λ − ⟨z⟩gw

� �T ð18Þ

where Hg+1
σ =1, if

pg+ 1
σk kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− 1− cσð Þ2ðg+ 1Þ
p < 1.5 + 1

n− 0.5

� 	
E Nð0, IÞk kð Þ, and 0, otherwise.

μeff =1 ̸∑μ
i=1 ω

2
i = variance effective selection mass and μeff = μ, if ωi =1 ̸μ,

i.e. the condition of intermediate recombination [2, 9]. The weights ωi are a matrix
with rank minðμ, nÞ. ccov≈min 1, 2μeff ̸n2

� 	
= learning rate for the covariance

matrix C.
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The adaptation of the global step size σg is calculated from the conjugate evo-
lution path pg+1

σ as [9]:

pg+1
σ = ð1− cσÞ.pgσ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cσð2− cσÞ

p
.BgDg− 1

BgT
ffiffiffiffiffiffiffi
μeff

p
σg

⟨z⟩g+1
w − ⟨z⟩gw

� 	 ð19Þ

Bg, the orthogonal matrix, and Dg, the diagonal matrix, are both obtained from
the principal component analysis of Cg. Thus, the global step size can be calculated
as [9]:

σg+1 = σg. exp
cσ
dσ

pg+1
σ



 


E Nð0, IÞk kð Þ − 1
� �� �

ð20Þ

where E Nð0, IÞk kð Þ= ffiffiffi
2

p
Γ n+1

2

� 	
̸Γ n

2

� 	
≈
ffiffiffi
n

p
1− 1

4n +
1

21n2
� 	

= the expected length
of pσ under random selection.

The initial values are to be selected as p0σ = p0c =0 and C0 = I, whereas x0 and σ0

are problem dependent. The default strategy parameters are given as [3, 11]:

λ=4+ ⌊3.lnðnÞ⌋, μ= ⌊λ ̸2⌋, ωi=1...μ =
ln μ+1ð Þ− ln ið Þ

∑μ
j=1 ln μ+1ð Þ− ln ið Þ ð21Þ

cσ =
μeff +2

n+ μeff +3
, dσ =1+2.max 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μeff − 1
n+1

r
− 1

 !
+ cσ , cc =

4
n+4

ð22Þ

μcov = μeff , ccov =
1

μcov
.

2

n+
ffiffiffi
2

p� 	2 + 1−
1

μcov

� �
min 1,

2μeff − 1

ðn+2Þ2 + μeff

 !
ð23Þ

In this evolutionary strategy, 1 ̸cσ and 1 ̸cc are considered as memory time
constants and dσ as damping parameter. Details about these parameters are dis-
cussed in [2].

CMA-based adaptive fuzzy controller design scheme

In this paper, rank-μ-update and weighted recombination version CMA are
employed to design the adaptive fuzzy controller. In H∞ theory-based adaptive
design methodology [4, 8], only the optimized values of singletons are obtained and
the scaling gains are manually tuned by trivial method. The CMA-based design
methodology not only tunes the singletons properly but also it can optimize the
values of the scaling gains and can determine the optimum controller structure [5].

In CMA-based controller design, a candidate solution vector in solution space is a
vector containing all required information to construct a fuzzy controller, e.g. (i) in-
formation about the positions of the MFs, (ii) values of scaling gains, (iii) positions of
the output singletons, etc. The candidate solution vector (CSV) can be formed as [12]:
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z= ½center locations of the MFs j scaling gains j learning ratej j . . .
. . . jpositions of the output singletons�

ð24Þ

Figure 2a shows the flowchart representation of CMA-based AFLC design
algorithm. In this design process, a CSV is employed to simulate the system for
each candidate controller by using the candidate controller simulation (CCS) algo-
rithm [10], as shown in Fig. 2b, and the fitness function is evaluated for that CSV.
The fitness function is chosen as the integral absolute error (IAE= ∑PST

k=0 eðkÞj jΔtc),
where PST = plant simulation time, Δtc = step size or sampling time.

4 Hybrid Stable Adaptive FLC Design

In hybrid design approach, H∞ theory-based local adaptation of output singleton of
fuzzy controllers as presented in (9) and rank-μ-update and weighted recombination
version CMA-based global optimization technique are combined to achieve a
superior performance for the stable adaptive fuzzy controllers, and this design
strategy is termed as hybrid adaptation strategy-based approach (HASBA) in this
paper. In this hybrid design model, the H∞-based local adaptation and CMA-based
global optimization run concurrently to explore the solution space for achieving a
robust stable tracking performance.

Fig. 2 Flowchart representation of a CMA-based AFLC design scheme and b CCS algorithm
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In this method, a candidate solution vector z is divided into two subgroups given
as [5, 6, 12]:

Z = ½ψ
��� θ� ð25Þ

where

ψ [centre locations of the fuzzy MFs | scaling gains | learning rate]
θ [position of the fuzzy output singletons]

Here the decision variables comprising ψ have a non-linear influence, and the
decision variables comprising θ have a linear influence on the control signal from
the AFLC [5, 7]. For each CSV chosen as a candidate controller, it is first subjected
to the adaptation of the θ portion according to (9) and the finally adapted values are
then used to update the candidate controller. Then this updated CSV is subjected to
an usual pass of the HASBA. In this process, θ vector is subjected to both local and
global search experiences in every update of CSV. The flowchart representation of
this HASBA is shown in Fig. 3.

Fig. 3 Flowchart
representation of HASBA
algorithm
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5 Simulation Case Study

The effectiveness of the proposed AFLC design methodologies is evaluated for a
benchmark non-linear system like DC motor system with non-linear friction
characteristics [7]. The non-linear plant model is simulated each utilizing fixed step
fourth-order Runge–Kutta method with sampling time Δtc = 0.01 s. A fixed
structure (5 × 5 mf) zero-order T-S type fuzzy controller is used. The HBA
algorithm is simulated for 210 s where 200 s is utilized for the adaptation purpose
and then 10 s evaluation period with ν=0. In CMA and HASBA-based schemes,
also the plant is simulated for 10 s duration in evaluation after a 200 number of
CMA iterations. These CMA-based algorithms are run for 10 times each to cal-
culate the stochastic variation of the results. An external disturbance d is applied to
the plant in both case studies where d is a square wave of random amplitude within
the range [−1, 1] and a period of 0.5 s. [5].

The controlled plant under consideration is a second-order DC motor containing
non-linear friction characteristics described by the following model [5, 7]:

x1̇ = x2
x2̇ = − f ðx2Þ

J + CT
J u+ d

y= x1

9=
; ð26Þ

where y= x1 is the angular position of the rotor (in rad), x2 is the angular speed (in
rad/sec) and u is the current fed to the motor (in A). CT = 10 Nm/A, J = 0.1 kgm2

and f ðx2Þ=5 tan− 1ð5x2Þ Nm. The control objective is to track a reference signal
ym = sin(t). The results are provided in Table 1, and sample performances are
shown in Fig. 4. In this case study, HASBA design scheme is superior in terms of
IAE value.

Table 1 Comparison of
simulation results

Control strategy IAE values
Best IAE Avg. IAE Std. Dev.

HBA 0.5526 – –

CMABA 0.6024 0.6698 0.0548
HASBA 0.4902 0.5340 0.0451

(a) (b)
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6 Conclusion

In this paper, rank-μ-update and weighted recombination version CMA
algorithm-based optimization approach and H∞-based robust adaptive control
technique have been concurrently hybridized for designing the AFLCs. The pro-
posed hybrid design model has evolved as a superior technique for designing the
stable AFLCs with external disturbances when compared with the design schemes
discussed in this paper. The stability of closed-loop system and the convergence of
the plant output to a desired reference signal in the presence of external disturbances
are guaranteed precisely in the proposed design methodology. The main advantage
of these proposed methods is that it requires no a priori knowledge about the
controlled plant, and the inherent approximation error of the system is greatly
reduced. The proposed design scheme can also be exploited to design the variable
structure stable AFLCs [5, 6].
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A Genetic Algorithm-Based Clustering
Approach for Selecting Non-redundant
MicroRNA Markers from Microarray
Expression Data

Monalisa Mandal, Anirban Mukhopadhyay and Ujjwal Maulik

Abstract During the last few years, different studies have been done to reveal the

involvement of microRNAs (miRNAs) in pathways of different types of cancers. It is

evident from the research in this field that miRNA expression profiles help classify

cancerous tissue from normal tissue or different subtypes of cancer. In this article,

miRNA expression data of different cancer types are analyzed using a novel multi-

objective genetic algorithm-based feature selection method for finding reduced non-

redundant set of miRNA markers. Three objectives, viz. classification accuracy, a

cluster validity index call Davies–Bouldin (DB) index, and the number of miRNAs

encoded in a chromosome of genetic algorithm is optimized simultaneously. The

classification accuracy is maximized to obtain the most relevant set of miRNAs. DB

index is optimized for clustering the miRNAs and choosing representative miRNAs

from each cluster in order to obtain a non-redundant set of miRNA markers. Finally,

the number of miRNAs is minimized to yield a reduced set of selected miRNAs. The

performance of the proposed genetic algorithm-based method is compared with that

of the other existing feature selection techniques. It has been found that the perfor-

mance of the proposed technique is better than that of the other methods with respect

to most of the performance metrics. Lastly, the obtained miRNA markers with their

associated disease and number of target mRNAs are reported.
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1 Introduction

MicroRNAs (miRNAs) are small noncoding RNA molecules which do not partic-

ipate in protein synthesis. They are mostly involved in discouraging the process of

translation from mRNA to proteins. Literally, miRNA dampens the production of

proteins. Within the last few years, noncoding miRNAs have become a focus of

interest as possible biomarkers for different diseases. Specifically, the changes in

miRNA expression levels have been found to be highly related to different types of

cancer [21, 25]. Extensive studies have been done for analyzing miRNA expression

data [11]. However, there are several problems in miRNA expression study such as

(1) a particular miRNA targets a number of mRNAs, (2) there are some miRNAs

which have identical sequences, thus difficulty lies in interpretation of those miR-

NAs, (3) and finally different miRNAs having different sequences may have same

target mRNAs. Moreover, to establish an association between miRNA expression

and cancer is really a more complicated issue for the researchers. Furthermore, for a

complex disease like cancer various transcripts are regulated by individual miRNAs

and thus, its function in oncogenesis is completely dependent on the biological cir-

cumstances. Despite all these complexities, researchers get an obvious profit in terms

of comparatively less size than mRNAs while experimenting on cancer biomarkers

discovery.

Previously, microarray gene expression analysis has been performed for cancer-

related gene selection and gene clustering [12, 16, 18, 20]. Currently, miRNA

microarray expression [17, 21, 22, 25] analysis has gained popularity in associa-

tion with cancer marker identification. A miRNA microarray dataset is organized as

a matrix, in which each row represents a miRNA and each column represents a sam-

ple or an experimental condition. Each sample is associated with a class label (such

as normal or malignant). The miRNAs which have differential expression pattern

in two different classes of expressions are called differentially expressed miRNAs

and are treated as miRNA markers. Hence to distinguish different subtypes of miR-

NAs related to different diseases, researchers have employed microarray analysis of

differential expression.

Many supervised and unsupervised classification approaches are available in the

literature [7, 14, 15] which have been utilized for classification or clustering of

disease samples, respectively. In most of the cases, the existing approaches yield

some top-ranked miRNAs or features which are often found to be redundant. In

this article, to select a small set of non-redundant miRNA markers, a multiobjec-

tive clustering-based feature selection strategy encoded in a genetic algorithm (GA)

has been proposed. The multiobjective GA is guided by non-dominated sorting [5,

19] and crowding distance measure [5, 19]. Clustering of miRNAs (features) and

picking up the center (prototype) feature from each cluster ensures non-redundancy.

The intention here is to achieve a good fscore (representing classification accuracy)

while optimizing a clustering validity index [4] (for better clustering of miRNAs)

and the number of encoded miRNA markers. Davies–Bouldin (DB) cluster validity

index [4] used for clustering purpose. The yielded miRNAs of this proposed study

are considered as miRNA markers.
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Genetic algorithms (GAs) are widely known class of popular evolutionary algo-

rithms [8]. GAs simulate reproduction with solutions represented as chromosomes.

Usually, a binary encoding is used for presenting a candidate solution having one

or more objectives and selection, crossover and mutation are done while optimiz-

ing the objectives. As multiple objectives have been considered, the GA has been

modeled as multiobjective optimization (MOO) [5, 19] problem where the objec-

tives may estimate different aspects of typically conflicting solutions. The concept

of Pareto optimality in MOO arises to solve the inconsistency among the objectives.

The Pareto optimal set contains all those solutions so that it is not possible to improve

any solution in this set with respect to an objective without simultaneously worsen-

ing it in terms of another objective. As there exist various “trade-off” solutions of

the problem with respect to different objective functions, the Pareto optimal set usu-

ally consists of multiple non-dominated solutions. In this article, we have used the

popular non-dominated sorting GA-II (NSGA-II) [5] as the basis of developing the

proposed multiobjective GA-based miRNA marker selection technique.

The rest of the article is organized as follows. The next section describes the

proposed multiobjective approach for miRNA marker selection in detail. Section 3

discusses various existing feature selection techniques used for comparison purpose.

In Sect. 4, the datasets used for experiments are described along with preprocessing

techniques applied on the datasets. Subsequently, Sect. 5 introduces the metrics used

for performance evaluation of the algorithms. In Sect. 6, the results of experiments

are reported and discussed. Finally, Sect. 7 concludes the article.

2 Proposed Multiobjective Feature Selection Technique

In this section, we describe in detail the proposed multiobjective feature selection

technique for obtaining relevant, non-redundant, and reduced set of miRNA markers.

NSGA-II has been utilized as the underlying multiobjective GA-based optimization

tool. Given a population of solutions P, an individual x ∈ P (chromosome) repre-

sents a binary encoding of a candidate solution. While optimizing the objectives, in

each iteration, a new population of different individuals is created. The fitnesses or

objectives are calculated, and fittest solutions are kept in an archive. The steps from

encoding, initialization, objective calculation, reproduction, archive updation, and

final solution selection are described in the following subsections.

2.1 Encoding Scheme and Initialization

A chromosome encodes all the miRNAs contained by the dataset. Thus, a chromo-

some has m cells if there are m miRNAs in the data matrix. The cells contain values

0 or 1. If a cell of a chromosome contains value 1, it means that the correspond-

ing miRNA can be treated as representative center of a cluster of miRNAs. Hence,
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each chromosome encodes a set of cluster centers. Since total number of 1’s in a

chromosome is different from another, the number of cluster centers encoded in a

chromosome is different. Each cell of a chromosome is initialized with randomly

generated with value 0 or 1. After that their corresponding fitness values are calcu-

lated. For each dataset, the proposed technique has been executed for 100 iterations.

The other input parameters, i.e., population size, crossover probability, and mutation

probability are set to 20, 0.9, and 0.1, respectively.

2.2 Computing the Objectives

Each chromosome encodes some cluster centers in form of cell having value. These

miRNAs are used for objective computation. Three objective functions are consid-

ered here to be optimized simultaneously.

The first objective function is fscore as defined in Eq. 1 for the selected miRNAs.

This is calculated by cross-validation using support vector machine (SVM) classifier

[24]. Basically, fscore (Eq. 1) measure combines precision (Eq. 2) and recall through

the harmonic mean of precision and recall:

fscore = 2 × Precision × Recall
Precision + Recall

, (1)

Precision =
tp

tp + fp
, (2)

Recall =
tp

tp + fn
. (3)

In information retrieval, positive predictive value, which is also called as precision,

is defined as in Eq. 2. Here tp, tn, fp, and fn represent the number of true positives,

true negatives, false positives, and false negatives, respectively. Sensitivity, which

is also known as recall, is defined as per Eq. 3. The objective is to maximize fscore

which indicates better relevance of the set of miRNA markers. Since the algorithm

is modeled as minimizing one, 1-fscore is minimized.

To have compact clusters, a cluster validity index is optimized as the second

objective. Here we have considered DB index for cluster validation. The Davies–

Bouldin (DB) index [4] is defined a function of the ratio of the within-cluster scatter

to between-cluster separation. The scatter within the ith cluster, Si, is found as

Si =
1

|Ci|

∑

x∈Ci

D2(zi, x). (4)

Here |Ci| represents the number of points in cluster Ci. The separation between

two clusters Ci and Cj, represented as dij, is defined as the distance between the
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corresponding cluster centers.

dij = D2(zi, zj). (5)

The DB index is then defined as

DB = 1
K

K∑

i=1
Ri, (6)

where

Ri = max
j,j≠i

{Si + Sj
dij

}

. (7)

The value of DB index should be minimized to achieve proper clustering. A smaller

value of DB index indicates that the chosen miRNA markers are non-redundant.

Therefore, the objective is to minimize the value of DB index for obtaining suitable

clustering.

Finally, less number of tight clusters is another objective. Hence, the number of

cluster centers (number of 1 bits in a chromosome) is minimized as well. Therefore,

the last objective value for a chromosome ch is defined as

NCC =
m∑

i=1
ch(i), (8)

where ch(i) = {0, 1} and m is the length of the chromosome.

2.3 Reproduction Using Selection, Crossover and Mutation

For generating new offspring solution from parent population, first, selection of best

chromosomes in terms of fitness value is considered. But to maintain a bit variety

in the populations, less suitable chromosomes should also be included. Here, for

selection mechanism we have employed crowded binary tournament selection [5].

Therefore, as output, a set of chromosomes is selected for crossover.

The process of selecting two parent chromosomes from the current population

based on the adopted selection mechanism and producing new offspring from those

parents is called crossover. A single-point crossover has been used in which a

crossover point is chosen randomly from both parent chromosomes, and at this point,

two parent chromosomes are interchanged to produce two new offspring chromo-

somes. The process of alternating some characteristics of each chromosome in ran-

dom manner to generate better solutions is called mutation. To get some more diver-

sity in the offspring chromosomes, bit-flip mutation has been employed. Here, muta-

tion is done by just replacing the randomly selected cell value with alternating value,

i.e., 0 turns to 1 and vice versa depending on mutation probability.
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2.4 Maintaining an Archive of Non-dominated Solutions

The non-dominated population is stored in an archive. Initially, the archive stores the

non-dominated solutions from the initial population. The next-generation population

is added to it. But the archive size should be fixed; hence, again non-domination

sorting and crowded distance measure [5] are applied on this combined population.

If still the size of the archive is larger than user-defined size (taken as 15 here), then

it is reduced to the given length by eliminating chromosomes from the end (based

on crowding distance). Non-dominated sorting and crowded distance measure are

applied to improve the adaptive fit of the candidate solutions to get better diversity

of the Pareto optimal front, respectively.

2.5 Selecting the Final Solution

The proposed feature selection technique yields a set of non-dominated solutions in

the final generation each of which encodes a possible set of miRNA markers. As the

relevance (represented by fscore) and non-redundancy (represented by DB index)

are the two most important aspects of the set of miRNA markers, the solution with

the minimum product of fscore and DB index is chosen as the final solution.

3 Adopted Comparative Methods

Over the years, many feature selection techniques have been developed. Here some

of them from the existing literature are considered for comparison purpose. These are

minimum redundancy maximum relevance (mRMR) scheme, statistical significance

tests [1] like t-test and Ranksum test, graph-based feature selection, cluster-based

feature selection, and Fisher score.

The statistical tests like t-test [13], Ranksum test [23], and Fisher score are first

executed on the preprocessed datasets. The p values of the features (miRNAs) are

sorted in ascending order, and the required numbers of features are taken for vali-

dation. The number of resultant features of our proposed approach is the input of

mRMR schemes, t-test, Ranksum test, and Fisher score. In mRMR feature selection

method [6, 10], the relevance of a miRNA is computed by mutual information [2]

between the miRNA and its associated class labels, whereas redundancy is obtained

as the mutual information among the selected miRNAs. The basic idea of mRMR

is to identify the miRNAs which are relevant and mutually maximally dissimilar to

each other simultaneously. Let S be the set of output miRNAs. The average minimum

redundancy is given as per Eq. 9:
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MinimumW = 1
|S|2

∑

i,j∈S
I(i, j), (9)

where I(i, j) represents the mutual information between the ith miRNA and the jth
miRNA and |S| is the number of miRNAs in S. The power of differentiability of a

miRNA is given by the mutual information I(h, gi) which is computed as per Eq. 10.

Thus, the maximum relevance condition is to maximize the average relevance of all

miRNAs in S.

MaximumV = 1
|S|

∑

i∈S
I(h, i). (10)

Therefore, the redundancy and relevance of a miRNA are to be minimized and

maximized, respectively. Since both the conditions are equally important, two sim-

plest combined criteria can be Max(V −W) and Max(V∕W). Here we describe the

mRMR for discrete variable using mutual information quotient (mRMRmiq) only.

The mRMR with MIQ scheme is formulated as shown in Eq. 11.

mRMR(miq) = max
i∈ΩS

⎧
⎪
⎨
⎪
⎩

I(i, h)
1
|S|

∑

j∈S
I(i, j)

⎫
⎪
⎬
⎪
⎭

. (11)

Here Ω is the set of all features and ΩS = Ω − S.

The state-of-the-art methods like a graph-based feature selection method [26] and

cluster-based feature selection method [3] are also used for comparative analysis. The

graph-based method uses a dominant-set clustering technique to cluster the feature

vectors and find the optimal feature subset from each dominant set employing the

multidimensional interaction information (MII) criterion. The cluster-based feature

selection technique [3] employs partitioning for clustering of similar features

4 Datasets and Preprocessing

For evaluation of the proposed method, a publicly available real-life miRNA expres-

sion dataset has been collected and preprocessed. This data can be obtained from

http://www.broad.mit.edu/cancer/pub/miGCM. The actual dataset has expression

values of 217 mammalian miRNAs in different cancer tissue types. In the prepro-

cessing step, at first we have extracted four datasets by separating the samples corre-

spond to uterus, colon, kidney, and prostate cancers, respectively. Now each dataset

is formed with 217 miRNAs and the number of samples belonging to different cancer

types as described in Table 1.

Subsequently, these datasets are normalized to set the mean and standard devia-

tion of each miRNA vector to 0 and 1, respectively.

http://www.broad.mit.edu/cancer/pub/miGCM
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Table 1 Number of normal and tumor samples in different miRNA datasets

Cancer types Number of normal samples Number of tumor samples

Uterus 9 10

Colon 5 11

Kidney 3 5

Prostate 8 6

These two-class datasets (whose columns are miRNAs and rows are samples) are

further processed by calculating signal to noise ratio (SNR) [9] for each miRNA

(column). The mean and standard deviation (SD) of samples belonging to class 1

and class 2 are computed first. The |SNR| of each miRNA is defined as in Eq. 12.

|SNR| =
|
|
|
|

mean(class1) − mean(class2)
SD(class1) + SD(class2)

|
|
|
|

(12)

After sorting in the decreasing order of obtained |SNR|, top 100 miRNAs are con-

sidered for the final application.

5 Evaluation Metrics

Here, as evaluation criteria the sensitivity, specificity, accuracy, precision, fscore,

and area under ROC curve (AUC) have been computed. Linear SVM-based classi-

fier has been considered for fivefold cross-validation and as a result false positives

(fp), true negatives (tn), false negatives (fn), and true positives (tp) are obtained.

Then using these four terms, sensitivity (Eq. 13), specificity (Eq. 14), and accuracy

(Eq. 15) are determined as per the following equations.

sensitivity =
tp

tp + fn
, (13)

specificity = tn
tn + fp

, (14)

accuracy =
tp + tn

tp + tn + fp + fn
, (15)

The precision and fscore have already been defined in Eqs. 2 and 1, respectively. A

receiver operating characteristic (ROC) curve shows the plot of sensitivity against
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(1-specificity) for a binary classifier system, while its discrimination threshold

between two classes is varied. The area under the ROC curve (AUC) is an approach

to convert the performance of a classifier with respect to ROC curve into a single

value signifying the expected performance.

6 Results and Discussion

To compare the proposed scheme with other comparative methods, first the pro-

posed scheme is executed, then, using the output miRNAs, fivefold cross-validation

has been done by linear support vector machine [24]. Thus, sensitivity, specificity,

accuracy, precision, fscore, and AUC have been calculated. The number of output

miRNAs is the input for the comparative algorithms which need the number of fea-

tures as input such as mRMR schemes, t-test, Ranksum test, and Fisher score. Also,

the outcome of these comparative methods is tested by fivefold cross-validation.

From Table 2, it is evident that for uterus dataset; although sensitivity is less than

mRMR schemes, for other comparative methods the proposed method scores better.

Except Fisher score, the specificity, and AUC of the proposed method are better

than other methods. In case of other performance metrics, the performance of the

proposed method is best among all the methods. In case of colon dataset, except

specificity and fscore, the score of the proposed scheme for all the other performance

metrics is better or same with other comparative strategies. Even the differences

with Fisher score and mRMR for specificity and fscore are too small. When the

kidney dataset is considered, it is clear that the proposed method outperforms other

techniques although in some cases the outcome of the proposed method is similar to

other schemes. It can also be noticed from the prostate dataset, sensitivity, accuracy,

fscore, and AUC for the proposed algorithm are 1.0000, 1.0000, 1.0000, and 0.9837,

respectively, and these scores are the best among all the schemes. But for specificity

and precision, it is poorer slightly. Overall, it can be concluded that the proposed

schemes undoubtedly the best performer among all.

The expression values of miRNA markers are presented through heatmaps in

Fig. 1. The blocks of the heatmap are described as the expression levels of a miRNA

in terms of colors. The shades of red represent high-expression levels, the shades

of green represent low-expression levels, and the colors toward black represent the

middle-level expression values. It is evident from Fig. 1 that the miRNA markers

for each tumor subtype have either high-expression values (up-regulated) or low-

expression values (down-regulated) mostly across all the samples. The regulation

information of the miRNA markers is given in Table 3. Also, the table describes the

probe-ID, miRNA, number of target mRNAs. Here we have used mirbase database

for finding the number of target mRNAs of each miRNA.
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Table 2 Performance analysis for the four real-life miRNA datasets

Dataset Algorithm Sensitivity Specificity Accuracy Precision Fscore AUC

Uterus

dataset

Proposed 0.9000 0.8889 0.8947 0.9000 0.9000 0.9778

mRMR(miq) 1.0000 0.7629 0.8781 0.8800 0.8703 0.9591

t-test 0.8000 0.7778 0.7895 0.8000 0.8000 0.9444

Ranksum test 0.9145 0.7981 0.8373 0.8800 0.8575 0.9474

Cluster-based 0.8170 0.8865 0.8730 0.8170 0.8634 0.9701

Graph-based 0.8241 0.8537 0.7834 0.8378 0.8106 0.9441

Fisher Score 0.8234 0.9001 0.8947 0.8612 0.8231 0.9811

Colon

dataset

Proposed 1.0000 0.8000 0.9333 0.9091 0.9524 0.9000

mRMR(miq) 1.0000 0.7429 0.8954 0.9091 0.9723 0.9000

t-test 0.9809 0.7791 0.7157 0.3080 0.8448 0.8102

Ranksum test 0.9000 0.7981 0.8667 0.7428 0.9000 0.8600

Cluster-based 0.8130 0.7865 0.8321 0.8001 0.8444 0.8539

Graph-based 0.8410 0.7571 0.7831 0.8399 0.7881 0.8172

Fisher Score 1.0000 0.8104 0.8921 0.8879 0.9343 0.8880

Kidney

dataset

Proposed 1.0000 0.9887 1.0000 0.9890 1.0000 0.9837

mRMR(miq) 0.9792 0.9887 0.7477 0.7633 0.9800 0.9565

t-test 0.9709 0.8979 0.7157 0.7308 0.9829 0.9524

Ranksum test 0.9667 0.8544 0.7273 0.7428 0.8943 0.9443

Cluster-based 0.9312 0.9091 0.7023 0.7110 0.8102 0.8999

Graph-based 0.8755 0.9355 0.8788 0.9232 0.9266 0.9482

Fisher Score 0.9399 0.9292 0.9286 0.9583 0.9697 0.9468

Prostate

dataset

Proposed 1.0000 0.9887 1.0000 0.9890 1.0000 0.9837

mRMR(miq) 0.8333 1.0000 0.8713 0.9967 1.0000 0.9792

t-test 0.8571 0.9779 0.9396 0.9331 0.8667 0.9691

Ranksum test 0.8904 0.9792 0.9518 0.9649 0.9438 0.9444

Cluster-based 0.7833 0.8215 0.6762 0.7915 0.8425 0.7898

Graph-based 0.7917 0.8139 0.6974 0.7827 0.8333 0.8102

Fisher Score 0.9006 0.9118 0.8924 0.9228 0.9172 0.9417
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(a) uterus dataset (b) colon dataset

(c) kidney dataset (d) prostate dataset

Fig. 1 miRNA markers for different datasets identified by the proposed method

Table 3 Identified miRNA markers by the proposed method

Dataset Probe-id miRNA Number of

target mRNAs

Regulation

Uterus EAM380 rno − miR − 140∗ 405 Down

EAM339 hsa − miR − 99b 9 Down

EAM183 hsa − let − 7i 4340 Up

EAM230 hsa − miR − 183 3282 Down

Colon EAM271 hsa − miR − 30c 670 Down

EAM222 hsa − miR − 15a 5150 Down

EAM203 hsa − miR − 135 2654 Up

Kidney EAM303 hsa − miR − 199a∗ 1450 Down

EAM186 hsa − miR − 106a 5152 Down

Prostate EAM369 mmu − miR − 340 53 Down

EAM311 hsa − miR − 101 2576 Down

EAM271 hsa − miR − 30c 670 Down

7 Conclusion

The gene regulatory information is very vital and the biomolecule which regulates or

dis-regulates those genes are also important in bioinformatics domain. This article

gives an insight into the differential patterns contained by the miRNA which basi-

cally obstruct the process of translation. These miRNA may participate in cancer

growth and progression by preventing important genes from being translated into

proteins. Therefore, to recognize the marker miRNAs, a multiobjective GA-based

feature selection technique has been proposed here. Three objective functions repre-

senting relevance, non-redundancy, and size of the set of miRNA markers are opti-

mized simultaneously. Four real-life miRNA microarray expression datasets have
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been utilized for analysis of performance of the proposed technique. The perfor-

mance of the proposed method is found to be significantly better than that of the

other existing feature selection strategies in terms of adopted performance metrics.

In subsequent studies, we plan to analyze the proposed approach using the miRNA-

gene-TF network to explore the complete view of the regulatory information.
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Abstract WiMAX is an emerging technology for next-generation wireless networks

which supports a large number of users in an economic way. To achieve quality of

service (QoS) requirements, an efficient and reliable scheduling algorithm is needed.

The existing approaches in the literature have been proven to provide the best per-

formance in allocating bandwidth to subscriber stations to maximize the throughput

and ensure the constraints of delay in each class of traffic. In these approaches, star-

vation of lower priority class was not considered, which is of great significance in

reality. In this paper, we have considered the starvation of lower priority classes to

provide QoS requirement to each class of traffic in an acceptable way, and a band-

width scheduling algorithm is proposed. A comparative study between the proposed

scheduling algorithm and the existing scheduling algorithm shows the better per-

formance in terms of maximizing the network throughput in given network, while

minimizing the starvation of lower priority classes.
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1 Introduction

Fixed WiMAX based on IEEE 802.16 standard is cost effective for fixed wireless

networks. IEEE 802.16e is the new version to the fixed WiMAX mobility. WiMAX

provides high data rate mobile wireless services for metropolitan areas. WiMAX

coverage range is up to thirty-mile radius and data rates between 1.5 to 75 Mbps

theoretically. The WiMAX defines the two modes of operation namely mesh and

point-to-multipoint (PMP) mode. In mesh mode, each subscriber station (SS) can

communicate to each other and to the base station (BS). In point-to-multipoint mode,

subscriber stations can communicate only through base station. The base station is

responsible for providing the QoS to each of its subscriber stations.

The scheduling algorithm must be simple to implement because real-time appli-

cation supported by subscriber station needs the quick response from the central-

ized base station. So the time complexity of scheduling algorithm must be simple.

Lots of research on scheduling algorithm has been investigated in [1, 2]. The issues

in allocating resource are more challenging. In our proposed scheduling algorithm,

base station uses the ageing and priority-based scheduling (APBS) to schedule the

traffic of different classes. The downlink scheduler at the base station schedules the

entire bandwidth among the subscriber stations depending on the grant per connec-

tion type.

The rest of the paper is organized as follows: Sect. 2 presents the previous works.

In Sect. 3, problem is defined in formal notation. The proposed approach is presented

in Sect. 4. The complexity analysis and results are described in Sect. 5 and Sect. 6,

respectively. Finally, conclusion and future work are drawn in Sect. 7.

2 Previous Works

Our study focuses on centralized scheduling in point-to-multipoint (PMP) mode. In

the literature, many scheduling algorithms have been proposed for downlink schedul-

ing. There are different types of scheduling algorithm, namely traditional, dynamic

scheduling. In [3] traditional scheduling algorithms uses the same Schelling tech-

nique as in computer operating system. It shares the equal network resources to all

the subscribers without concern about the priority. However, this technique is not

suitable for WiMAX scheduling, where the traffic demand of varying size arrives

in random fashion. The authors Sagar et al. in [4] proposed the weight round robin

(WRR) for scheduling the bandwidth to each queue. But it is not suitable for WiMAX

scheduling because the main drawback of WRR is that when the traffic has a variable

packet size, WRR provides an incorrect percentage of bandwidth allocation.

The dynamic schedulers are adaptive in bandwidth allocation. The authors Fathi

et al. [5] proposed joint scheduling and call admission control (CAC) technique for

scheduling packets. In [6] proposed the joint routing and scheduling algorithm for
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WiMAX network with the provision for fairness in bandwidth allocation and increase

in throughput.

Best of our knowledge, no work has been conducted to overcome the starvation of

lower ordered traffic request, while maintaining the quality of service to each class

of traffic.

3 Problem Formulation

The WiMAX network consists of base station (BS), subscriber station (ss) and users.

The base station is connected to subscriber station in point-to-point mode. The user

under the coverage of base station is directly connected through wireless links. The

user not under the coverage area of base station is connected through subscriber sta-

tions. Given a network topology, which is a directed graph G(V,E), where V is a set

of subscriber stations/user and E is the set of bidirectional wireless link between

the base station and subscriber station/user at the particular instant of time. ‘C’

is the capacity of each link between the base station to subscriber station/users.

The base station is responsible for allocating network resource to subscriber sta-

tions. The connection requests from all class of traffic are represented by notation(S,

B.requested, Classtupe, B, stattimeofrequest, request.duration), where S, B.requested and

startimeofrequest, request.duration represent the source node, bandwidth demanded and

arrival time of each request and duration of the request, respectively. The centralized

uplink bandwidth scheduling with the prime objective is to maximize the network

throughput and meanwhile eliminate the starvation due to the higher class traffic is

considered.

Assumptions:
We use the following assumptions in this work.

∙ Traffic demands is static in nature. i.e. traffic demands are known in advance.

∙ The total number of traffic is Ri = N.

∙ wMn is 1 if the relay station M associated to base station n, M ∈ ss and j ∈ BS 0

otherwise.

∙ Ri, where Mss
i is the number of subscriber station(M)/user including the traffic

class i in the network.

∙ Bk,i bandwidth request of kth subscriber/user with traffic class belong to i th class

of traffic.

∙ 𝛽n is 1 if the BS is installed at site n, n𝜀BS 0 otherwise.

∙ 𝛾M is 1 if the ss is installed at site M, M𝜀ss 0 otherwise.

∙ We have reserved 60% of bandwidth for UGS traffic in terms of bytes per seconds

(Bps), and 20% is reserved for RTPS, and 10% is reserved for nRTPS and BE.

However these are not rigid limits and are flexible if requests of another class are

missing or are lesser.

∙ 𝛼 value is assumed as 0.5.
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Objective:

The objective here is to maximize the network throughput, while meeting the quality

of service to each class of traffic requirement of WiMAX standard. The objective

function to maximize the network throughput is defined as follows:

Ri =
Mi

ss∑

k=1
Bk,i (1)

Maximize
N∑

i
Ri ∗ p (2)

p =

{
1, ifRi is established.

0, otherwise.

Subjected to:

Base station to relay station constraints

∑

∀n𝜀BS
wMn = 𝛾M where ∀M𝜀ss (3)

wMn ≤ 𝛽n where ∀M𝜀ss n𝜀BS (4)

Equation 3 ensures the constraint that each relay station is connected to only one base

station. Equation 4 assures the base station to relay station connection. The number

of base station is less than or equal to the relay station installed.

n∑

i=1
Tssi ≤ T (5)

n∑

i=1
Tssi × 𝛽 ≤ T (6)

𝛽 =

{
1, if ssi used time slotTssi and associated with base station BS.

0, otherwise.

ssi refers to the number of subscriber station attached. BS refers to the number of

base station. Tssi refers to the time slot allocated to each subscriber station. Equation 5

indicates the number of time slot allocated to each subscriber station should be less

than or equal to the total number of time slot(T) available with base station BS.
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4 Proposed Approach

In this section, the proposed algorithm (APBS) is presented with the objective to

maximize the throughput of given network. Our algorithm is categorized in two

stages. The first stage of our algorithm is to assign the base station to subscriber

stations/nodes under the coverage area. Base station executes the uplink scheduler

at every frame interval of time (t) and sends the grant requests to subscriber station

in uplink map message. In the second stage, each subscriber station associated with

four different class of traffic, namely UGS, RTPS, nRTPS and BE are checked for the

expire time and stored in the list Lreq. The base station maintains four types of prior-

ity queues. The request is stored in respective priority queues (UGS, RTPS, nRTPS,

BE). The scheduler function is called to schedule the requests of each base stations.

This type of scheduling is known as grant per connection (GPC). The algorithm,

namely Ageing and Priority-Based Scheduling (ABPS), is depicted in Algorithm

1, to schedule the traffic of different classes. The downlink scheduler at the base

station schedules the entire bandwidth among the subscriber stations. Scheduling

technique considers the two factors, while serving the request. The scheduler has

the age and deadline associated with each class of traffic. The scheduler calculates

the weight associated with each request in each queue and stores it in the priority

queue of respective class. The scheduler schedules each request before the deadline.

The early deadline requests are served first. When alpha is 0, then the priority of

all the requests is same and only the time in which they arrive is the only measure

that we use to sort the requests; hence this turns out to be FCFS scheduling. And for

any other value of alpha, we have taken both age and deadline of the requests into

consideration, so it turns out to be APBS algorithm.

Age = currenttimeofsystem − starttimeoftherequest (7)

Deadline = Endtimeofrequest − currenttimeofsystem (8)

Weight =
𝛼 × (age + 1)
(deadline + 1)

(9)

𝛼 can vary between 0 and 1.

First, the UGS traffic is admitted in priority queue and calculate the weight asso-

ciated with each request. The UGS connection is served depending on the bandwidth

requirement. The request is served in queue depending on the deadline. The request

with early deadline is served first. In this case,
∑n

i=1 BUGS are the total request with

early deadline in UGS class, are served first. The remaining request of UGS class (in

priority queue) are served in the next slot of frame allocation time. Thereafter, the

RTPS connections are served by ordering them according to queue size information.

In this case,
∑n

i=1 BRTPS are the total request with early deadline in RTPS class. The

request which are waiting for a long time in a priority queue of RTPS are served
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according to their weight factor. The remaining request of RTPS class whose dead

line is remaining are served in the next time slot of frame allocation. In our algo-

rithm, we have fixed the percentage of bandwidth allocated to each class of traffic.

If there is no higher priority traffic flows, the reserved bandwidth can be utilized by

the lower class traffic including the intermediate queue.

4.1 Example

We have considered an WiMAX network connected to subscriber and mobile nodes

shown in Fig. 2 to illustrate the working principle of APBS algorithm. There are just

one base station and two subscriber stations that are connected to the base station.

There are four nodes/end users, namely N0, N1, N2 and N3. The nodes N0 and N1

are connected directly to the base station. The N2 and N3 are connected via the

subscriber stations. We have currently four requests for each class with bandwidth

demand in kilo bytes. The traffic pattern are shown in Table 1 (and are graphically

depicted in Fig. 1).

We use the following example to explain our algorithm. We have set the frame

size as 100 KBps (kilo bytes per second) and frame duration as 0.5 s.

This frame allocation in Table 2 shows very simple distribution of the frame size.

An important thing to watch here is that the UGS class is allocated just 60% of the

total frame size despite being the highest priority class. Hence, other classes also get

their requests served.

Fig. 1 Scheduler for uplink

at base station

Fig. 2 The WiMAX

network structure
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Table 1 Bandwidth demanded from different class of traffic

Request Node Classtype B.requested(KB) S.time(s) Duration(s)

R0 0 UGS 120 0 1

R1 1 RTPS 50 0.5 2

R2 2 RTPS 36 0 1

R3 3 nRTPS 27 1 2

R0 0 nRTPS 10 0.5 1

R1 1 BE 3 0 1

R2 2 BE 8 1 2

R3 3 BE 5 0.5 1

Table 2 After running the scheduling algorithm, time t = 0s

Request Classtype B.requested(KB) Age Deadline Weight B.allocated

R0 UGS 120 0 1 0.25 60

R2 RTPS 36 0 1 0.25 20

R5 BE 3 0 1 0.25 3

Table 3 Frame allocation for time t = 0.5s

Request Classtype B.requested(KB) Age Deadline Weight B.allocated

R0 UGS 60 0.5 0.5 0.5 60

R2 RTPS 16 0.5 0.5 0.5 16

R1 RTPS 50 0 2 0.33 4

R4 nRTPS 10 0 1 0.25 10

R4 BE 5 0 1 0.2 5

Table 4 Frame allocation for time t = 1s

R Classtype B.requested(KB) Age deadline Weight B.allocated

R1 RTPS 46 0.5 1.5 0.3 46

R3 nRTPS 27 0 2 0.167 27

R6 BE 8 0 2 0.1672 8

This frame shows the competitive frame allocation among requests of same class.

Here, we can see that there are two requests from RTPS class. However, the one with

greater weight value gets served first. The frame allocation at t = 0.5 as shown in

Table 3. There is also competition for frame allocation between traffic requests from

same class. Here, we can see that there are two requests from RTPS class. However,

the one with greater weight value gets served first.

This frame allocation in Table 4 shows the reallocation property among the

classes in terms of frame size for each class. We can observe that 46 KBps of

RTPS request is satisfied despite the limit for RTPS request being 20 KBps initially.
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It is because of the reallocation of frame size. Hence, RTPS is able serve up to

50 KBps (initially limited to 20 KBps) request in the above frame, and nRTPS is

able to serve up to 27 KBps (initially limited to 10 KBps). All requests are served in

an efficient manner.

RTPSF.size =
[
RTPS F.size+RTPS frame%
Remaining classes F.size%

∗ F.size leftout
]

Example: RTPS frame size = 20 +
[

20
20+10+10

× 60
]
= 50KB.

Similarly for nRTPS = 10 +
[

10
20+10+10

× 60
]
= 25KB.

Also after RTPS leaves out 4 KB:

nRTPS new size = 25 +
[

10
10+10

× 4
]
= 27KB. RTPS size actually reflects the

extra bandwidth available for RTPS class, when no higher class traffic request are

made.

Algorithm 1: Ageing and Priority-Based Scheduling (APBS) in WiMAX
network
1 Input: P is a instance of of traffic requests. The P consists of

[S,B.requested,Classtype, starttimeofrequest, request.duation] and BS =[ss1......ssn] attached

2 Output: Magazining the network throughput of given network.

3 step 1: Allot all subscriber stations to Nearest base station.

4 step 2:for i = 1 to stime do
5 step 2.1: for framestart to frameend do
6 step 2.2: currenttimeofsystem = i + j
7 step 2.3: if (request.startTime <= currenttimeofsystem)

and(starttimeofrequest + request.duration >= currenttimeofsystem)and
(B.requested! = B.maxAllocated) then

8 step 2.4: Add the request to list Lreq
9 step 2.5: Check to which node the request belong, assign the node object to the

request.

10 step 2.5.1: Get the current co-ordinates of the nodes.

11 step 2.5.2: Assign nodes to nearest station(whether BS/SS) on the distance and

range.

12 end
13 step 3: for k = 1 to BSk do
14 step 3.1: for each request of Lreq do
15 step 3.2: Arrange them in queues in the base station.

16 /* where Priority Queue of all classes. */
17 end
18 3.3: call scheduling(Priority queues, currenttimeofsystem);

19 step 3.4: Proceed with the request in the queue. Add the scheduled request to

get final request of all base station

20 end
21 end
22 end
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Algorithm 2: Scheduling algorithm in WiMAX network
1 Input: A Priority Queues of all classes Classtypes
2 Output:Scheduling the bandwidth among the higher to lower priority classes to avoid

starvation of lower priority classes.

3 step 1: for i = 1 to |Classtypen| do
4 /* For each class in (UGS,RTPS,nRTPS,BE)*/
5 step 1.1: for reqj to classi do
6 Calculate weight of request using the formula.

7 step 1.2: Weightj = (𝛼 × (age + 1))∕(deadline + 1).
8 step 1.3: agej = currenttimeofsystem − reqj.startimeofrequest
9 step 1.4: deadlinej = reqj.Endtimeofrequest − reqj.currentstarttimeoftherequest
10 step 1.5: Schedule request according to weight in priority queue.

11 end
12 end
13 step 2: Initialize all size of classi.
14 step 2.1: while reqj in priority queue classi do
15 step 2.2: Check allocable request frame size for the class.

16 /* For each class in (UGS,RTPS,nRTPS,BE)*/
17 step 2.3: if (req.Allocationi ≤ size.classi) then
18 step 2.3.1: size.classi-=B.requestedi
19 step 2.3.2: B.allocationi+=B.requestedi
20 else
21 step 2.4: B.allocationi+=size.classi.
22 step 2.5: size.classi = 0;
23 end
24 end
25 end
26 step 3: if size.classi > 0 then
27 step 3.1: Distribute the remaining bandwidth among all classes.

28 RTPSF.size =
[
RTPSF.size+RTPSframe%
RemainingclassesF.size%

∗ F.size leftout
]

29 end

5 Complexity Analysis

By algorithmic analysis, the total complexity of the algorithm is O((no.BS) ∗
((no.RN) ∗ (ssn) + (no.RN) ∗ log(no.RN))). The algorithm is efficient and is feasi-

ble. We also notice that the complexity of the algorithm is eventually indepen-

dent of the number of subscriber/relay stations. The ABPS algorithm based on

multiple queues performs much better than the traditional first come first serve

(FCFS) algorithm. We assume that number of requests is going to be much greater

than number of base stations and subscriber stations. Hence, complexity reduces to

O(BS ∗ (ssn ∗ RN + RNlogRN)), where BS is the number of base stations, ssn is the

number of nodes/end users, and RN is the number of requests generated.
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Fig. 3 Relationship of total number of requests demanded versus total number of requests served

in UGS class

6 Results

In this section, the simulation results are observed under several scenarios by varying

the traffic request of different classes. Total traffic request generated by subscriber

stations under categories UGS:RTPS:nRTPS and BE are in ratio of 20:20:60, and

requests are generated between the range of 64 KBps–128 KBps, 30–64 KBps and

1 KBps–30 KBps, receptively.

Figures 3, 4, 5 and 6 show the results of APBS with FCFS scheduling algorithm.

They demonstrate the relationship between the number of the number of requests

served in all four class with the number of requests demanded in all four class of

traffic. The proposed algorithm outperforms the existing algorithm FCFS.

Figures 7, 8, 9 and 10 depict the results of APBS with FCFS scheduling algorithm.

The proposed algorithm performed better in terms of serving the total bandwidth

demanded in all classes compared to the existing algorithm FCFS.
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Fig. 4 Relationship of total number of requests demanded versus total number of requests served

in RTPS

Fig. 5 Relationship of total number of requests demanded versus total number of requests served

in nRTPS class
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Fig. 6 Relationship of total number of requests demanded versus total number of requests served

in BE class

Fig. 7 Relationship of total bandwidth demanded versus total bandwidth served in UGS class
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Fig. 8 Relationship of total bandwidth demanded versus total bandwidth served in RTPS class

Fig. 9 Relationship of total bandwidth demanded versus total bandwidth served in nRTPS class
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Fig. 10 Relationship of total bandwidth demanded versus total bandwidth served in BE class

7 Conclusion and Future Work

In this work, we have designed algorithm, Ageing and priority-Based Scheduling

(APBS) to eliminated the bandwidth starvation due to the higher class monopoliz-

ing the lower class traffic. We have also significantly reduced starvation of requests,

particularly of the less priority classes (like best effort traffic). The proposed algo-

rithm can be extended to dynamic traffic demands in the hybrid networks in future.
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Recognition System to Separate Text
Graphics from Indian Newspaper

Shantanu Jana, Nibaran Das, Ram Sarkar and Mita Nasipuri

Abstract Identification of graphics from newspaper pages and then their separation
from text is a challenging task. Very few works have been reported in this field. In
general, newspapers are printed in low quality papers which have a tendency to
change color with time. This color change generates noise that adds with time to the
document. In this work we have chosen several features to distinguish graphics from
text as well as tried to reduce the noise. At first minimum bounding box around each
object has been identified by connected component analysis of binary image. Each
object was cropped thereafter and passed through geometric feature extraction
system. Then we have done two different frequency analysis of each object. Thus we
have collected both spatial and frequency domain features from objects which are
used for training and testing purpose using different classifiers. We have applied the
techniques on Indian newspapers written in roman script and got satisfactory results
over that.

Keywords Edge detection ⋅ Connected component analysis ⋅ Text graphics
separation ⋅ FFT ⋅ 2D-DWT ⋅ Water marking ⋅ News paper segmentation

1 Introduction

Over a decade, a number of works have been done on text graphics separation from
document images. But specifically on newspaper document few works were pro-
posed. Those systems convert textual part of scanned newspaper documents in
machine editable format for further processing. Such applications are available
online but accuracy level is very poor. R. Garg proposed an Expectation Maxi-
mization based optimization framework which is an iterative method to find out
maximum likelihood estimates of parameters in statistical model [1]. They first
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eliminated background by binarizing the document image then applied the algo-
rithm. But binarization of the document may destroy valuable grayscale information
relevant to graphics. The most used documents in text graphics separation works
are geographical maps. P. P. Roy described a technique to segment text and
symbols from colormaps [2]. They used long line identification technique to
remove symbols from map. This technique works fine for map documents but not
fruitful to recognize graphics from news paper documents. Layout analysis, con-
nected component labeling are noticeable features considered by Mollah et al. [3],
Rege [4], Strouthopoulos et al. [5]. A clustering based technique described by Garg
is very effective for these works [6]. Cao and Tan [7], Science [8], Vieux et al. [9]
used cluster based techniques. Chinnasarn [10] used a modified kFill algorithm to
remove noise from the document. This type of noise is basically salt and pepper
noise where unwanted isolated black pixels are removed. In many cases of noise
removal, mathematical morphology operations described by Haralick, S. E. Poland
give best result [11, 12]. Mathematical morphology is an algebraic approach based
on set theory. Two basic morphological operations are erosion and dilation.
R. Verma has shown various noise removal techniques [13]. He focused on two
types of noise, which are produced by photon nature of light and thermal energy of
heat inside the image sensor. Noise reduction techniques described in this paper are
effective for specific type of noise. Among those noises poisson noise is a kind of
similar noise which is frequently identified in newspaper documents. Indian
newspapers are printed in low graded paper materials which absorb water from
moister and change its color gradually.

This type of noise is different from salt and pepper noise. The best procedure to
extract such noise is to use a high pass filter. In our work we have used 2-d wavelet
transform for this purpose. Newspaper graphics are combination of different grey
shades where characters are all in single grey shade. Therefore a frequency trans-
form can be used to detect this difference. Fast Fourier Transform (FFT) of such
image objects has produced satisfactory result. Geometric features are not alone
sufficient for this work because newspapers are printed in different fonts and styles.

The system we have developed in this work is highly efficient with an accuracy
rate of the current system is 95.78%, achieved using Sequential Minimal Opti-
mization (SMO) classifier on data set which are prepared at CMATER Laboratory.
We have collected 27 article images from various Indian newspapers printed in
roman script.

2 Connected Component Analysis

There are popular edge detection techniques compared by Kumar and Saxena [14].
Sobel, Canny, and other Gradient based classical edge operators, Laplasian based
Marr Hildreth operators are efficient to detect edge in different perspective. In our
work we needed an edge detection technique which rejects single discontinuity from
connected component chain. We have calculated object’s edge by 8- connected
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neighbourhood system. Let A(x) and B(x) are 8 connected neighbours, connected to
the black pixel ‘x’. Here ‘A’ denotes black pixels and ‘B’ denotes white pixels.

The edge region starts from one black pixel A(x) and grows looking connected
A(x)s. During this process of growing, an A(x) is always connected with at least
one B(x) shown in Fig. 3. Thus we have got the edge of each object. This algorithm
starts from a black pixel and grows through the edge and stop somewhere when it
finds a discontinuity. Thus it creates a black pixel chain detecting the edge or a
portion of edge of objects, shown in Fig. 1. Depending on this edge we have drawn
a minimum bounding box around each object, shown in Fig. 2. We have cropped
each minimum bounding box from the image which denotes qualified objects for
further processing.

Fig. 1 Sample newspaper image written in roman script for system testing

Fig. 2 Minimum bounding box has been drawn around each object
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3 Feature Extraction

3.1 Geometric Features

We have calculated height to width ratio and black pixel density of each object box.
Height to width ratio is not an effective feature as the newspapers are printed in
different fonts. To calculate black pixel density we assign a threshold ť to draw
discernment boundary between white and black pixel (Fig. 3).

rb́ =
number of black pixel

height ×width
produce black pixel density and rh́ =

height
height +width

produce height to width ratio.

3.2 Fast Fourier Transform

FFT reduces number of computation of Discreet Fourier transform (DFT). A DFT
of N data points of a continuous signal f(t) can be denoted by the Eq. (1).

F jωð Þ=
ZN − 1ð ÞT

0

f tð Þe− jωt ð1Þ

Danielson Lancozos Lemma describes the decomposition of DFT into FFT.
N Data points can be repeatedly divided by 2. A DFT of data point N can be written
as a sum of two DFT of each length N/2 shown in Eq. (2).

F nð Þ= ∑
N − 1

K =0
x kð Þe− j2Πkn

N = ∑
N
2 − 1

K =0
x 2kð Þe

− j2Πkn
N
2 +Wn

N ∑
N
2 − 1

K =0
x 2k+1ð Þe

− j2Πkn
N
2 . ð2Þ

Thus repeatedly division of data point can decompose an eight point DFT into 4
two point FFT shown in Figs. 4 and 6.

Fig. 3 8 connected
neighborhood system for edge
detection
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We have decomposed each object vector into 8-point, 30-point and 60-point Fast
Fourier transform (FFT). In each case we took first and last three points of FFT.
Among these cases we found that if we keep only all point DFT derived from whole
object then it gives best result than FFT. We have extracted 12 features from DFT
analysis (Fig. 5).

Fig. 4 An eight point DFT

Fig. 5 2-D Wavelet transforms

Fig. 6 An eight-point DFT,
divided into four two-point
FFTs
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3.3 2-D Discrete Wavelet Transform

Wavelet means small wave. We can define a wavelet by Eq. (3).

CWTφ
x τ, sð Þ=φφ

x τ, sð Þ= 1ffiffiffiffiffi
sj jp ∫ x tð Þφ t− τ

s

� �
dt ð3Þ

In Eq. (3)‘s’ is scaling factor. Changing this scaling factor, we can change the
window size of frequency. Smaller window size creates smaller waves and gives
higher time information. ‘τ’ is translation factor. ‘τ’ determines the window position
in given time frame. Discrete wavelet transform (DWT) coefficients are sampled
from Continuous wavelet transform (CWT) in discrete time function. DWT consists
of scaling function and wavelet function which are associated with low pass and
high pass filters respectively. Frequencies at different time scales are passed through
the series of low pass and high pass filters shown in Fig. 5. 2-D wavelet transform
decomposes an image into layers explained by Jiansheng to [15, 16]. Images feed to
a high pass and low pass filters. Then each frequency is down sampled by factor of
some positive integer. Down sampling simply reduces few frequency components
from original frequency. Each level of decomposition creates an approximation
level. In every approximation level, we get image details level. Low pass filter
creates low details level and high pass filter creates high details level shown in
Figs. 7, 8 and 9.

Fig. 7 Original graphics

Fig. 8 Lowest detailing of
Fig. 7
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For our work, we have calculated up to approximation level 2 and down sampled
the frequency by the factor of 2. We only have taken second highest details level to
extract features. We have considered 10 features from second highest details. We
have used ‘Daubechies’ wavelet and its filters.

4 Experimental Results and Discussion

For experimentation, we have selected 27 articles from Indian newspapers. All
articles were scanned at 200 dpi resolution by HP Deskjet F380 scanner. We have
collected 39 graphics and 181 text regions from 27 pages. From each image object
we have extracted 24 features. We have trained the system with 125 data set and
tested it with 95 data set. We have used four well known classifiers, which are
Bayes Net, Support vector machine (SVM), Multilayer perceptron (MLP),
Sequential minimal optimization (SMO). Recognition rates are shown in Tables 1
and 2. Figure 11 is output image of the system that we have built. System removes
graphics from the newspaper page and stores it in different location. From Table 2

Fig. 9 Highest detailing of Fig. 7

Fig. 10 Input image with connected characters
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we find that SMO classifier gives best result. We have got this result tuning the
classifier, choosing kernel type ‘polykernal’ and complexity parameter (c) = 2. We
have used weka 3. 6 tool to train classifiers. To calculate black pixel density, we
have chosen value of threshold ť is 100. We have chosen boxes below 13 × 13 size
as characters because such small sizes of graphics are rare in newspaper documents.
From Table 1 also it is found that SMO gives best result than other classifiers but
we may conclude a decision form cross validation folds that, it is training data set
that is creating such differences in results. Creating a training dataset with more
numbers of images can give better result. It is observed from the output image
shown in Fig. 11 that from same word “approves” one ‘p’ was recognized as
character and another ‘p’ was recognized as graphics where both ‘p’ ware in same
style and size. This type of error is reducing recognition rate of system. This error
was occurred due to the addition of some gray shade with character ‘p’ at the time

Fig. 11 Output image after removing graphics from the page (Fig. 11 was produced using SVM
classifier)

Table 1 Recognition rate achieved using cross validation on 220 data set

Cross validation

3 fold 5 fold 7 fold
Bayes Net (%) 86.36 86.81 86.36
SVM (%) 82.27 82.27 82.27
MLP (%) 93.18 91.36 92.27
SMO (%) 94.54 93.18 95

Table 2 Recognition rate achieved using 125 training data set and 95 test data set

Bayes Net SVM MLP SMO

Recognition Rate (%) 90.52 85.26 92.63 95.78
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of scanning the document. That is the reason that FFT has failed to recognize the
first ‘p’ from the word “approves” as character. Table 3 shows the recognition rate
of system when we are using FFT as only feature.

In some cases in an image two or more characters ware found connected by
printing mistake by press. In those cases two characters together are creating single
minimum bounding box which are rejected by the height to width ratio feature and
system consider those characters as graphics. These types of errors are reducing
overall recognition rate of the system. In Fig. 10 the word “twice” has such con-
nected characters. In the word ‘tw’ is connected and considered as graphics by the
system.

5 Conclusion

This work aims to design a system to separate graphics from texts in the newspaper
document on the basis of frequency transformation. Proper selection of FFT data
points and wavelet level may increase recognition rate. Changing few implemen-
tation details, this work can be applied on logo, graphics recognition from visiting
cards and camera captured nameplates. In those cases, analyzing shape of contour
can be a vital feature. This is a robust system we have developed which is efficient
for recognition on a defined dataset for a specific purpose. A larger good training
dataset can destroy limitations.
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Ant Lion Optimization: A Novel
Algorithm Applied to Load Frequency
Control Problem in Power System

Dipayan Guha, Provas Kumar Roy and Subrata Banerjee

Abstract In this article, an attempt has been made to find an effective solution of
load frequency control problem in power system employing a powerful and
stochastic optimization technique called “Ant Lion Optimization” (ALO). The
proposed algorithm is inspired by the interaction strategy between ants and ant lions
in nature. To appraise the effectiveness of ALO algorithm, a widely used two-area
multi-unit multi-source power plant equipped with distinct PID-controller is
investigated. The integral time absolute error-based objective function has been
defined for fine tuning of PID-controller gains by ALO algorithm. To judge the
acceptability of ALO algorithm, the simulation results are compared with some
recently published algorithms. The simulation results presented in this paper con-
firm that the proposed ALO algorithm significantly enhanced the relative stability
of the power system and can be applied to the real-time problem.
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1 Introduction

The main interest of power system operation and control is to maintain a balance
between total generation with load demand plus losses associated in the system. Any
mismatch between the generation and demand causes serious deviation of system
frequency from its tolerance value. A considerable change in the frequency may lead
to asynchronization between the nearby control areas and produces high magne-
tizing current in electric motors, transformers, etc. Thus to have a reliable and stable
operation of power system, the control of generation and, hence, frequency is the
most important subject in the power system dynamics. In the past, fly ball mecha-
nism of speed governor was employed to maintain the equilibrium condition in the
power system. But recent research founds that the conventional method is not suf-
ficient to hold the stability of power system because of rapid advancement of the
power system, high power consumption, and excessive load demand. An intelligent
controller in the name of “load frequency controller (LFC)” has been employed in a
power system in coordination with speed governor to overcome the above-
mentioned problem. In the power system, LFC is used as a regulator to monitor the
net amount of change between generation and demand, and accordingly, regulate the
valve position of the governor to control the steam flow through the turbine.

In the recent time, LFC has gained a huge attention and considerable research
efforts in order to explore new control algorithms or to update the existing control
theory. The literature review reveals that the work on LFC was proposed by Chon [1]
in 1957; however, the use of optimal control theory in LFC area was coined by
Elgerd and Fosha [2] in 1970. Tripathy et al. [3] have examined the effect of governor
dead band (GDB) nonlinearity on the system dynamics of an interconnected power
system. Yousef [4] has described an adaptive fuzzy logic control (FLC) strategy for
LFC of a multi-area power system. Several classical controllers such as integral (I),
proportional integral (PI), integral derivative (ID), proportional integral derivative
(PID), integral double derivative (IDD) controllers have been proposed in [5] and
their performances are compared for the LFC system. A neuro-fuzzy hybrid intel-
ligent PI-controller has been applied to the LFC system by Prakash and Sinha [6]. In
[7], the differential evolution (DE) algorithm was used to tune the PID-controller
gains for multi-area power system network and show the superiority over the optimal
controller. Guha et al. [8] in his most recent endeavor solved LFC problem using
gray wolf optimization and shows the excellence of same over other existing control
algorithms. The effective use of biogeography-based optimization (BBO) in LFC
area is available in [9, 10]. In [11], the author has employed teaching-learning-based
optimization (TLBO) to solve the LFC problem. A novel krill herd algorithm with
optimal PID-controller is proposed for LFC in [12].

The aforementioned techniques effectively improved the system performances
leaving behind some drawbacks which are further revised by the researchers. For
example, in the FLC, the selection of rules in knowledge-based process, scaling
factor, membership function is essential for effective implementation of same. In the
neural network, large training data set is required for supervised learning. The
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neuro-fuzzy controller is insufficient to give the satisfactory performance when
measurement noise and parametric variations are included in the analysis. The
performance of DE is controlled by the mutation factor and crossover rate. Further,
premature convergence degrades the search ability of DE. The control parameters of
BBO are habitat modification probability, mutation probability, maximum emigra-
tion rate, maximum immigration rate, the step size of integration. If the parameters
are not properly elected, then the algorithm may trap into suboptimal solution.

It is quite clear from the above discussion that the performance of the afore-
mentioned techniques more or less is controlled by some input parameters. Further,
in the line of “no-free-lunch” algorithm, no optimization algorithm is suitable for
all optimization problems. Hence, it is very much essential to search a
parameter-free algorithm that can solve a maximum number of optimization
problems. Therefore, it may be justified to propose a new optimization scheme for
the betterment of the existing results. Inspired from the above discussion, an
attempt has been made in this paper to design and implement a population-based
stochastic optimization technique called ant lion optimization (ALO) [13] for the
effective solution to LFC problem. The main advantage of this technique is that its
functionality is only controlled by the population size and maximum iteration
count. To show the effectiveness, a multi-area multi-source power system with
distinct PID-controller is investigated. The superiority of ALO algorithm has been
established over DE, TLBO, and BBO algorithms for the same test system.

Rest of the paper is organized as follows: Sect. 2 describes the mathematical
model of the test system with controller structure. Section 3 offers an overview of
ALO algorithm. Section 4 highlights the algorithmic steps of ALO. Comparative
transient responses and discussion are given in Sect. 5. Finally, Sect. 6 concludes
the present study.

2 Problem Formulation

To demonstrate the ability of proposed ALO algorithm to cope with interconnected
multi-source power system with distinct secondary controller, the simulation study
is performed on a widely used interconnected two-area multi-unit multi-source
power system having thermal, hydro, and gas power plants [7, 11, 14]. The transfer
function model of concerned power system is shown in [7, 11, 14]. In Table 1,
R1,R2,R3 are the speed regulation parameters of thermal, hydro, and gas units in
Hz/p.u. MW, respectively; uth, uhy, ug are the controlled input to thermal, hydro, and
gas power plants, respectively; Tsg is time constant of speed governor of thermal
unit in sec; Tt is time constant of steam turbine of thermal unit in sec; Kr and Tr are
the reheater gain and time constant of thermal unit, respectively; Tw is nominal
starting time of water in penstock in sec; TRS is hydro turbine speed governor reset
time constant in sec; TRH is hydro turbine speed governor transient droop time
constant in sec; TGH is hydro turbine speed governor main servo time constant in
sec; XC is lead time constant of gas turbine speed governor in sec; YC is lag time
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constant of gas turbine speed governor in sec; cg is gas turbine valve positioner; bg
is gas turbine constant of positioner; TF gas turbine fuel time constant in sec; TCR
gas turbine combustion reaction time delay in sec; TCD gas turbine compressor
discharge volume time constant in sec; B1,B2 are the bias factor; T12 is synchro-
nizing time constant of tie-line in sec; TPS is time constant of power system in sec;
KPS is the gain of power system in Hz/p.u. MW; Δf1,Δf2 are the incremental
change in frequency of the respective area in Hz; ΔPD is incremental load change in
p.u. The nominal system parameters are collected from [11] and shown in Table 1.
The step load increase of 1% in area-1 at t=0s is considered to assess the tuning
efficacy of the proposed ALO algorithm.

The main concern in LFC study is to minimize the ACE as early as possible. In
order to do that an optimized PID-controller has been designed employing ALO
algorithm. In optimal control theory, different performance indices are defined for
optimal tuning of controller parameters. The integral time absolute error (ITAE)
integrates the absolute error multiplied by time over a specific time horizon, and
therefore, the errors which exist after a long time will be much more heavily
affected than those at the start of the response. This motivates authors to select
ITAE-based ACE of the respective area as an objective function for fine tuning of
LFC gains. The proposed objective function is defined in (1).

J =
RTFinal

t=0
ACEij j * t * dt i=1, 2, 3 ð1Þ

where TFinal is the final simulation time in sec. The defined LFC problem can be
defined as a constraint optimization problem bounded by the control parameters.
Thus, the said problem can be expressed as follows:

Minimize J
Subjected to: Kp, min ≤Kp ≤Kp, max;Ki, min ≤Ki ≤Ki, max;Kd, min ≤Kd ≤Kd, max

where KPID, min, KPID, max are the minimum and maximum gains of
PID-controller, respectively. In this case, the controller settings are selected
between [0, 6] [11, 14].

3 Ant Lion Optimization Algorithm (ALO)

Ant lion (doodlebugs: the larvae of ant lion), shown in Fig. 1a, belongs to the
“Myrmeleontidae” (scientific name) family and “net-winged insects.” The complete
lifespan of ant lion mainly consists of two phases: larvae and adult. In a lifespan of
3 years, the ant lion can take 3–5 weeks for adult phase and mostly undergo as a
larvae. The ant lion go through the metamorphosis process in cocoon to become
adults. They mostly hunt in larvae, and adult phase is only for reproduction. The
name originates from their distinct hunting mechanism, as shown in Fig. 1b and
their favorite prey (ant).
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Fig. 1 a Ant lion, b hunting mechanism, c general flowchart of ALO algorithm
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3.1 Mathematical Modeling of ALO Algorithm

The main inspiration of ALO algorithm is the interaction strategy between ant lion
and ant in trap. As stated earlier that the hunting process of ant lion consists of five
different steps namely random walk of ant, building traps, entrapment of ants in the
traps, catching prey, and rebuilding of traps.

To model ALO algorithm, the ants are allowed to move randomly within the
search space and ant lions are allowed to hunt them and become the fittest solution.
The random walk of ants during the searching of foods can be modeled by (2).

xðtÞ= ½0, cumsum 2r t1ð Þ− 1ð Þ, cumsum 2r t2ð Þ− 1ð Þ, − − − , cumsum 2r tnð Þ− 1ð Þ�
ð2Þ

where cumsum is the cumulative sum, n defines the total no. of iteration, t is the
steps of random walk, and r tð Þ is a stochastic function and defined in (3).

rðtÞ= 1 if , rand >0.5
0 if , rand ≤ 0.5

�
ð3Þ

where rand is a random number uniformly generated between ½0, 1�.

3.1.1 Random Walk of Ant

Random movement of ant during the searching of food in nature is monitored by
(2). Since the ant walk is completely stochastic in nature, it is very much essential to
check whether the ants are within the defined search area or not. To ensure the
position of ants in the search area, normalized random walk as defined in (4)
updates the current position of ant in each step of generation.

xti =
xti − ai
� �

* di − cti
� �

dti − aið Þ + ci ð4Þ

where ai and bi are the minimum and maximum of random walk of ith ant,
respectively, cti and dti are the minimum and maximum of ith ant at tth iteration, in
order.

3.1.2 Trapping Ants in Ant Lions Pits

As discussed earlier that the ant lions are gets hidden in pit to trap the ants and
following mathematical relationship is defined to model such hunting mechanism in
ALO algorithm.
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ctj = antliontj + ct

dtj = antliontj + dt

�
ð5Þ

where antliontj indicates the position of selected jth ant lion at tth iteration, ct and dt

are the minimum and maximum, in order, value of all variables at tth iteration, ctj
indicates the minimum of all variables for ith ant, and dtj indicates the maximum of
all variables for ith ant.

3.1.3 Building of Trap

In order to model the hunting capability of ant lion, a “roulette wheel” is employed
in [13]. In roulette wheel selection algorithm, a set of weights or numbers represents
the probability of selection of each individual in a group of choices. This mecha-
nism ensures high possibility to the fitter ant lions for catching ants.

3.1.4 Sliding Ants into the Pit: Exploitation

Having knowledge of above discussion, it is identified that the ant lions are now at
the position to build trap in proportional to their fitness value. But the ants are not
easily caught into the pit, they try to escape themselves from the tarp. At this stage,
ant lions cleverly throw sands toward the ant to trap into pits. To model such
technique, the radius of ants during the random walk is decreased and defined by (6).

ct =
ct

10W t
T

� �
dt =

dt

10W t
T

� �

8>>><
>>>:

ð6Þ

where T is the maximum number of iteration and w is a constant and selected based
on current iteration tð Þ, i.e., w=2 when t>0.1T ; w=3 when t>0.5T; w=4 when
t>0.75T ; w=5 when t>0.9T ; w=6 when t>0.95T . Actually, w is defined to
show the accuracy level of exploitation.

3.1.5 Catching Prey and Rebuilding Pit

This is the final stage of hunting process of ant lion in ALO algorithm where preys
(ant) are caught in the ant lion’s jaw. The ant lion pulls ant inside the sand and
consumes its body. To mimic this strategy, it is anticipated that catching of prey is
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occured when ants become the fittest solution than its corresponding ant lions.
Mathematically, it is defined in (7)

antliontjupdateant
t
j if f antti

� �
> f antlionti

� � ð7Þ

3.1.6 Elitism

Elitism is an important attribute of any optimization technique that permits the
algorithm to holds best possible solution obtained at any stage of generation.
In ALO algorithm, the best ant lion computed so far is saved as elite and defined
by (8).

Antti = Rt
Antlion +Rt

elite

� �
̸2 ð8Þ

where Rt
elite is the random walk of ant around elite and Rt

antlion is the random walk of
ant around ant lion at tth iteration. The general flowchart of proposed ALO algo-
rithm is shown in Fig. 1c. For more details regarding the ALO algorithm, readers
are referred to [13].

4 ALO Applied to LFC Problem

In this section, the algorithmic steps of ALO algorithm for solving the LFC problem
in power system are discussed. The steps are enumerated as follows:

Step 1. Initialize the position of ant and ant lion within the search space with
dimension of np* dim and calculate the fitness value, minimum ACE, for
the individual solution using (1).

Step 2. Identify the best solution based on fitness value, as calculated in step 1,
and marked the best solution as an elite solution.

Step 3. Create a random walk of ants toward the ant lion, employing roulette
wheel mechanism, by performing the following pseudocodes:

Step 4. Update the position of ants, i.e., PID-controller gains, by (8).
Step 5. Calculate the fitness value, i.e., minimum ACE, for all the updated ants

using (1).
Step 6. Replace the current position of ants by the updated solution if

f ðantÞ< f ðantlionÞ and update the elite solution.
Step 7. Go to step 3 until the termination criterion is met and print the optimal

solution.
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5 Results and Discussion

In this section, simulation results are presented and compared with the existing
algorithms in order to evaluate the effectiveness of proposed ALO algorithm in LFC
area. The study has been done in MATLAB/SIMULINK environment. The model
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of the test system, as shown in [7, 11, 14], is developed in SIMULINK domain,
whereas the codes for ALO algorithm has been separately written in the .m file. The
simulation was done on a personal computer having 2.4 GHz core i3 processor with
2 GB RAM in MATLAB R2009 environment. As it is already stated that the
performance of ALO is independent on the prior initialization of control parameter,
therefore only population size np =50 and maximum iteration count itermax = 100
have been defined for the successful operation of ALO. The step load perturbation
of 1% of nominal value is considered to assess the dynamic stability of the con-
cerned test system.

The simulation is performed under two phases; initially, the test system is
investigated with AC transmission line. The ALO algorithm has been employed to
design PID-controller using the defined fitness function. At the end of optimization,
optimal controller gains and minimum fitness value are presented in Table 2. In
order to make a fair comparison, the test system is also studied with DE [7], TLBO
[11], and BBO [14] algorithms, and the results are shown in Table 2. It is clearly
noticed from Table 2 that the error criterions are further decreased with ALO
algorithm that justifies the tuning superiority of ALO over DE, TLBO, and BBO.
The signals of the closed-loop system are shown in Fig. 2. For comparison, the
results with DE, TLBO, and BBO are also presented in Fig. 2. It is clearly viewed
from Fig. 2 that the number of oscillations, overshoot, and settling time of fre-
quency and tie-line power deviation is drastically reduced with ALO-tuned
PID-controller. A comparative study on settling time is given in Table 3. It can be
easily inferred from Fig. 2 and Table 3 that the proposed controller significantly
improved the degree of relative stability.

The convergence behaviors of proposed ALO algorithm with PID-controller
structure are shown in Fig. 3. It is viewed from Fig. 3 that proposed algorithm
smoothly approaches to the global optimal solution. It is further noticed from Fig. 3
that ALO takes 70–80 iterations to reach the optimum point, which further justified
the choice of maximum iteration of 100 for present study.

In the second phase of analysis, DC transmission line in parallel with AC line is
included in the system model. The same procedure as described in Sect. 4 is fol-
lowed to tune the PID-controllers. The optimal controller value with minimum
ITAE value is deployed in Table 4. The comparative transient behavior of the test
system is painted in Fig. 4. The setting time of Δf and ΔPtie are noted down from
Fig. 4 and shown in Table 5. Critical observation of Fig. 4 and Table 5 reveals that
proposed ALO-based PID-controller outperforms over DE, TLBO, and BBO-tuned
PID-controllers for the identical test system.
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Fig. 2 Transient responses with AC tie-line only a change in frequency, b change in tie-line
power

Table 3 Settling time of frequency and tie-line power excluding DC tie-line

Parameters ALO % of
improvement
by ALO

DE
[7]

% of
improvement
by ALO

TLBO
[11]

% of
improvement
by ALO

BBO
[14]

Δf1 5.35 61.98 14.06 69.93 17.79 62.67 14.33
Δf2 9.96 34.43 15.19 60.06 24.94 50.55 20.14
ΔPtie 12.97 45.42 23.85 – 9.86 0.154 12.99
Boldface shows the best value
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Fig. 3 Convergence characteristic of ALO, a with AC tie-line, b with AC–DC tie-line
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6 Conclusion

ALO algorithm is suggested in this article to tune the parameters of PID-controllers
for effective, simple, and robust solution of LFC problem. Two-area multi-unit
multi-source power plants with and without AC–DC tie-line have been considered
to appraise the acceptability of proposed algorithm in LFC domain. The
ITAE-based ACE has been defined as a fitness function for fine tuning of
PID-controller gains. The supremacy of ALO algorithm has been established by
comparing the system performances with DE, TLBO, and BBO algorithm. Simu-
lation results confirm that proposed ALO algorithm effectively increases the sta-
bility of the power system. The favorable impact of DC tie-line in parallel with AC
tie-line on the system dynamics is also demonstrated in this article. However, the
solution accuracy and enhancement of convergence speed of ALO algorithm can be
further achieved by incorporating the quasi-oppositional-based learning into orig-
inal ALO.
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Fig. 4 Transient responses with AC–DC tie-line a change in frequency, b change in tie-line
power

Table 5 Settling time of frequency and tie-line power after 1% SLP with AC–DC tie-line

Parameters ALO % of
improvement

DE
[7]

% of
improvement

TLBO
[11]

% of
improvement

BBO
[14]

Δf1 5.34 37.6 8.56 11.74 6.05 75.4 21.7
Δf2 16.36 32.2 24.13 12 18.59 46 30.3
ΔPtie 13.05 11.35 14.72 10.3 14.55 35.87 20.35

Boldface shows the best results
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ICMP-DDoS Attack Detection Using
Clustering-Based Neural Network
Techniques

Naorem Nalini Devi, Khundrakpam Johnson Singh and Tanmay De

Abstract DDoS comprises of one of the biggest problems in the network security.
Monitoring the traffic is the fundamental technique used in order to discover the
entity of probable irregularity in the traffic patterns. In this paper, we used SOM to
divide the dataset into clusters, as analysis of clusters is easier than the whole
dataset. We select the features such as mean inter-arrival time and mean probability
of occurrence of the IP addresses that have the greater impact on the DDoS attack
from the incoming packets. These features are given as input to the SOM to cluster
the structure of similar member in a collection of unlabeled data. The comparison is
made between pre-observed features from already trained datasets and features
present in each cluster. MLP classifier is used to categorize the incoming clients as
normal and attack. In this paper, we used CAIDA 2007 attack datasets and CAIDA
2013 anonymized trace datasets as pre-observed samples. The proposed method
detects a DDoS attack with maximum efficiency of 97% and with a low false
positive rate of 3.0%.

Keywords DDoS attack ⋅ SOM ⋅ ICMP ⋅ MLP ⋅ Clusters

1 Introduction

The explosive growth rate of interconnection among computer systems has created
a lot of instability and network security problems. One of the severe threats faced
by the network security is Distributed Denial of Service (DDoS) where legitimate
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users are denied from serving the services, thereby exhausting the available
resources of the servers. Intrusion detection system (IDS) [1, 2] is being designed
and developed in order to protect computer networks against the repeated expansion
of different types of threats along with the DDoS attack. In general, IDS can be of
two approaches, anomaly detection and misuse (or signature) detection. Misuse
detection [3] relies on prior knowledge of DDoS attack patterns. Although misuse
detection system gives accurate results in detecting known attacks, its major
drawback is that network attacks are covered by repeated expansion that required
the latest knowledge base for all attacks. Anomaly detection has a greater advantage
to detect unknown attacks and mainly focuses on comparing the normal behavior
and abnormal behavior of the system. Processing and analyzing of large data
samples to observe similarities for each and every data is not an easy task since it
takes time and requires patience in grouping the data of similar properties which
can also lead to an inaccurate grouping of data. Our paper proposes a new approach
that designs a model to detect Internet Control Message Protocol (ICMP) DDoS
attack in the network layer based on a class of neural networks known as
self-organizing maps (SOMs), popularly known as Kohonen’s self-organizing maps
(KSOMs). Using of SOM can easily interpret and understand any given data
samples and cluster the data more accurately based on their identical properties in
few seconds. Using of SOM reduces time, and reduction of dimensionality and grid
clustering makes it simpler to observe similarities in the data. Therefore, SOM gives
a better technique than the existing techniques without SOM application, and it is
experimentally proven that will be discussed in the further sections. The proposed
method is used for determining the real-time incoming network traffic. For the
estimation of our approach, we used the CAIDA 2007 attack dataset [4] and
CAIDA 2013 anonymized trace dataset [4].

The paper is systematized as follows: Sect. 2 presents the related work that
attempts to detect DDoS attack. Section 3 describes our proposed methodology,
using of SOM algorithm, and also displays the classification of cluster datasets
using MLP classifier. Section 4 presents the results and discussion of the proposed
method. We conclude our paper in Sect. 5 and highlight some future work.

2 Related Work

With the rise in threat of DDoS attack on the Internet, Du et al. [5] proposed a
credit-based accounting mechanism where sender needs to send their packets based
on their credit points. When credit points exceed a pre-defined threshold, the client
is well-behaving client. Otherwise, the client is an ill-behaving client, and it is
blocked. Karanpreet et al. [6], Saurabh and Sairam [7], and Bhavani et al. [8]
proposed IP traceback and post-attack analysis of traffic that helps in reducing the
possibility of future attacks by disclosing the compromised systems and sometimes
the actual attacker. Sang et al. [9] proposed an enhanced detection model using
traffic matrix. Furthermore, researchers use genetic algorithm for optimization of
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parameters utilized in the traffic pattern and decide whether inbound traffic is an
attack or normal by comparing the computed variance and threshold value set by
the GA. Alan et al. [10] described the detection and mitigation of known and
unknown DDoS attacks in real-time environment using ANN algorithm to recog-
nize DDoS attack based on distinct patterns where it defends DDoS attacking traffic
from reaching the target but allows legitimate traffic to pass through. Rashmi and
Kailas [11] proposed the DDoS defense mechanisms and different countermeasures
such as prevention technique and detection technique that are used for mitigating
against the DDoS attack mostly dominated by an attacker that desires to build an
authorized access to the victim. Hongbin et al. [12] proposed identifier/locator
separation for defending a DDoS attack which proves to be more secure than the
networks without identifier/locator separation. Sujatha et al. [13] differentiated flash
crowd traffic from attack traffic by using AYAH Webpage that allows dynamic
determination of whether a signature truly represents an attack or non-human users
like robots or a legitimate human user. Liao et al. [14] proposed the detection of
application-layer DDoS attack during a flash crowd event based on aggregate-traffic
analysis and differentiation between user behaviors based on Web log analysis.

3 Proposed Methodology

Figure 1 represents the workflow of the proposed methodology for the classification
of incoming network traffic. The workflow consists of the modules, viz. data
clustering using SOM, training datasets, MLP classifier, and some unknown
datasets. First, we collect the datasets, i.e., CAIDA attack 2007 and CAIDA 2013
anonymized trace datasets from the CAIDA data center. The received data are
observed and analyzed. From the observed data, features such as mean inter-arrival
time (MIAT) and mean probability of occurrence of IP (POIP) are chosen. Since the
behavioral changes of these two features are relatively high for each IP comparing
to the other features, i.e., time-to-live (TTL), sequence number, total length, etc.
MIAT is calculated by choosing 20 instances from the arrival time and taking their
mean. POIP is computed by fixing a time window of 20 ms each for 3 min and
finding the average value of the results found in the 20-ms time windows. The
selected parameters are presented as an input to the SOM clustering to separate the
datasets into clusters. The cluster data are compared with the CAIDA datasets and
subdivided the datasets into two training datasets, i.e., training dataset 1 and
training dataset 2 based on their behaviors. The training datasets having identical
properties with that of the CAIDA attack dataset are assigned as an attack and the
other as normal. The two training datasets are given as input to the multilayer
perceptron (MLP) for classification. The MLP classifier will classify the given input
as an attack or normal. Lastly, an unknown dataset is tested with MLP to classify
the input data as either attack or normal.
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3.1 Self-organizing Maps

SOM popularly known as KSOM [1, 15–18] is neurobiologically motivated. It is a
type of artificial neural network that is trained using unsupervised learning. SOM
uses a competitive learning mechanism. SOM organizes the neurons in the structure
of the lattice. The lattice can be 1D, 2D, or even high-dimensional space. For
practical applications, 1D and 2D are normally used. When the input patterns are
fed to the output neurons, these input patterns will be acting as stimuli to those
neurons which are output, and neurons in the output layer compete among them-
selves; then, one of the neurons will emerge as a winner whose weight vector lies
closest to the input pattern. It is solely determined by calculating the Euclidean
distance between the input vector and the weight vector. It is also referred to as the
winner takes all mechanism since all the synaptic weights of the neighboring
neurons are adjusted for the winning neuron. So if the same pattern is presented
once more, then it has the greater chance of winning the competition. Neurons
which are closed to the winning neuron tend to have an excitatory response,
whereas inhibitory response is created for the neurons which are far

Fig. 1 Workflow of the
proposed methodology for
DDoS detection
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apart. With SOM, dimensions will be reduced, and similarities will be displayed.
In SOM, the topological relations are fixed from the beginning.

3.1.1 Learning Steps of SOM

Algorithm 1: Learning of SOM.

BEGIN

Step 1: Initialization of random weights with small random values.
Step 2: Using X as an input pattern.
Step 3: Finding of winning neuron (Best Matching Unit) can be determined

using the Euclidean Dist. (1) [1] between the input data and weight of
each neuron.

Dist. =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i=0
X −Wij
� �

s

ð1Þ

Step 4: Winning neuron [1] updates all the weights of neighboring neurons
using the Eq. (2).

∀j:WijðtÞ=Wijðt− 1Þ+ αðtÞηðt0Þ. XiðtÞ−Wijðt− 1Þ� ð2Þ

where,

α is the learning rate
η is the neighborhood function
t′ is the time that was spent in the current context

The neighborhood function t′ increases as η decreases.
Step 5: Repeat steps b, c and d until convergence.

END

3.1.2 Example of SOM Clustering

Figure 2 represents the SOM network architecture where input units are fully
connected to the output units, and by randomly initializing the weight matrix, we
determine the winning neuron using the Euclidean Dist. formula.

Weight matrix (0 < W<1) (using step 1)

units1:
units2:

�

0.2 0.6
0.8 0.4

� �

is the weight of the output unit.
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Sample 1: (1.211, 0.052) (using step 2)
Dist. from unit 1 weight and unit 2 weight is calculated using Eq. (1).
Dist. from unit 1 weights = sqrt ((1.211 − 0.2)2 + (0.052 − 0.6)2) = 1.149
Dist. from unit 2 weights = sqrt ((1.211 − 0.8)2 + (0.052 − 0.4)2) = 0.5385

(winner)
Similarly, using the same procedure and weight matrix, we find the winning

neuron for the remaining training samples as given in Table 1.
SOM clustering results as shown in Fig. 3 are computed using Neural Network

Clustering Tool (nctool), a pre-defined function of MATLAB. In Fig. 3a, lines
between the clusters give their relations. In Fig. 3b, dark colors between clusters
indicate that the two clusters are closely related, whereas light colors are not closely
related. Figure 3c gives the SOM input planes, and Fig. 3d presents SOM hits.

Fig. 2 SOM network
architecture

Table 1 Clustering of training samples

Training
samples

Dist. from unit 1
weight

Dist. from unit 2
weight

Winning
neuron

Class

(1.211,0.052) 1.149 0.5385 Unit 2 1
(1.516,0.009) 0.5702 0.8669 Unit 2 1
(0.016,0.03) 1.4426 0.8158 Unit 1 0
(0.013,0.04) 0.5903 0.8654 Unit 1 0
(1.187,0.008) 1.1504 0.5508 Unit 2 1
(0.016,0.03) 0.5989 0.8669 Unit 1 0
(2.379,0.04) 2.2498 1.6195 Unit 2 1
(1.743,0.022) 1.6477 1.0159 Unit 2 1
(3.503,0.008) 3.3556 2.7312 Unit 2 1
(0.01,0.06) 0.5724 0.8600 Unit 1 0
(0.017,0.09) 0.5418 0.8421 Unit 1 0
(0.015,0.03) 0.5992 0.8678 Unit 1 0
(3.423,0.012) 3.2761 2.6515 Unit 2 1

(3.171,0.006) 2.9970 2.4035 Unit 2 1
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3.2 Multilayer Perceptron

MLP [19, 20] is a feed-forward neural network model, consisting of multiple layers
of nodes (neurons) in a directed graph where each layer is completely connected to
the next layer. Every node is a neuron with a nonlinear activation function
excluding the input nodes. The nodes are arranged in multiple layers, i.e., an input
layer, hidden layer, and an output layer as shown in Fig. 4. MLP exercises
supervised learning method known as back-propagation for training the network.

3.2.1 Training Steps of Back-Propagation Algorithm

Algorithm 2: Training of MLP.

BEGIN

Step 1: Initialization of weights and biases.
Step 2: Provide training samples.

Fig. 3 SOM clustering results, a SOM neighbor connections, b SOM neighbor weight distances,
c SOM input planes, and d SOM hits
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Step 3: Forward pass: We calculate the net input and output of each unit in the
hidden layer and output layer using Eqs. (3) and (4) [21].

Ij = ∑
j

WijOi + θj
� � ð3Þ

where, Ij is the inputs present to the neuron. Wij is the weight of the
connection from unit i in the previous layer to unit j. Oi is the output of
unit 1 from the previous layer. θj is the bias of the unit. Assuming that
the activation function [21] in all three neurons are sigmoid functions
given by

Oj =
1

1+ eð− IjÞ ð4Þ

where Oj is the actual output of unit j (computed by the activation
function).

Step 4: Backward pass: For a unit K in the output layer, the error is calculated by
using the Eq. (5) [21].

Errk =Ok 1−Okð Þ TK −Okð Þ ð5Þ

where, OK is the actual output of unit k. Tk is the true output based on
known class label. OK 1−Okð Þ is a derivative (rate of change) of the

Fig. 4 Topology of a typical
feed-forward network with
three hidden layers

218 N. Nalini Devi et al.



activation function. For a unit j in the hidden layer, the error is computed
using Eq. (6) [21].

Errj =Oj 1−Oj
� �

∑
k
ErrkWjk ð6Þ

where, Wjk is the weight of the connection from unit j to unit k in the
next higher layer. Errk is the error of unit K.

Step 5: Update weights and biases to match the propagated errors. Weights are
updated using the Eqs. (7) and (8) [21]. Where, α is the constant
between 0.0 and 1.0 matching the learning rate, this learning rate is fixed
for implementation.

ΔWij = ðαÞErrjOi ð7Þ

Wij =Wij +ΔWij ð8Þ

Biases are updated using the Eqs. (9) and (10) [21].

Δθj = ðαÞErrj ð9Þ

θj = θj +Δθj ð10Þ

Step 6: At the end of the epoch → check if the stopping criteria are satisfied.
The stopping criteria are given by ((Maximum number of itera-
tions > Iteration threshold) || (Error Function < Error threshold))

END

Algorithm 3: Assigning threshold value.
In the paper, we set the threshold to 0.5.
BEGIN 
If (Stopping criteria are satisfied)

Stop training
Else 
Continue training

Epoch++
Go to Step 1 
END 

Training samples are presented to the input layers which are then propagated
forward through the hidden layers and yield an output activation vector in the
output layer. Training samples are classified using MLP classifier as shown in
Table 5. Some unknown dataset is provided which is to be tested and classified
based on their identity properties. The connection weights in the hidden layer are
Wij, and Wjk is the connection weights in the output layer. Temp is the result
obtained from Wjk (connection weight in the output layer) * Yj (output obtained
from the hidden layer).
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4 Results and Discussions

To test the efficiency of the classifier, we have used Neural Network Pattern
Recognition Tool (nprtool), a pre-defined function of MATLAB. Using this
pre-defined function, we find the accuracy and the corresponding ROC curve of the
classifier. Unknown test samples are classified as an attack and normal using the
Neural Network/Data Manager (nntool), which is also a pre-defined function of
MATLAB. A confusion matrix [22] includes information on actual and predicted
classification which is used to describe the efficiency of a classification model on a
test dataset for which the values are known. The efficiency of the confusion matrix
is computed using Eq. (11).

Accuracy=
TP+ TN

TP+FN +FP+TN
ð11Þ

where
TP is the true prediction that an instance is (+)ve.
FN is the true prediction that an instance is (−)ve.
FP is the false prediction that an instance is (+)ve.
TN is the false prediction that an instance is (−)ve.

To provide a comprehensive evaluation, we compared the data of CAIDA
dataset before SOM application and after SOM application as displayed in Fig. 5.
In this comparison, data after SOM application have the higher proficiency on
classifying the incoming traffics as normal and attack with an efficiency of 97% as
shown in Table 2 than that of the data before SOM application. The corresponding
receiver operating characteristic (ROC) curve is computed for each confusion
matrix. The more the curve tends toward the left-hand corner and the top outline of
the ROC space, more is the accuracy. The area below the curve is a measure of test
efficiency. An unknown test sample which is given in Table 3 is classified using
MLP classifier before SOM application, whereas test samples in Table 4 are clas-
sified using the same classifier after SOM application according to their behavioral
changes. Based on the class that is classified, as shown in Tables 3 and 4, some test
samples are misclassified in Table 3. However, in Table 4 test samples are more
accurately classified. Hence, Table 4 gives a better performance in classifying
unknown datasets, as either attack or normal.

4.1 Time Complexity

In the paper, we use both SOM and MLP algorithms for classification. The time
complexity for SOM algorithm is given by T1, and the time complexity for MLP
algorithm is given by T2.

T1 = O(S2), where S is the number of samples used in SOM.
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T2 = O(2^n), where n is the number of neurons used in the MLP structure.
Therefore, the total time complexity for the proposed method is T1 + T2.

In Table 5, Wij represents the weights between the input layer and hidden layer.
Since the number of input attributes is two and the number of hidden neurons is
three, we have only six weights from input layer to hidden layer. Similarly, Wjk

represents the weights from hidden layer to output layer of MLP. Since we have
three hidden neurons and one output neuron, the number of weights is three.

Fig. 5 MLP results, a and c confusion matrices before and after SOM application, b and
d corresponding ROC curves of confusion matrices before and after application of SOM

Table 2 Accuracy
comparison table of MLP
before and after SOM
application

Conditions Accuracy
(%)

TP TN FP FN

Before SOM
application

93 83.3 97.1 6.8 7.4

After SOM
application

97 88.9 100 3.9 0
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Table 3 A sample MLP classification before SOM application

MIAT POIP Class

1.502 0.012 Attack
1.187 0.008 Normal
0.016 0.03 Attack
1.743 0.022 Attack
0.01 0.06 Attack
3.423 0.012 Normal
2.379 0.04 Normal
3.503 0.008 Normal
0.013 0.04 Attack
3.171 0.006 Normal
0.017 0.09 Attack
0.015 0.03 Attack
0.021 0.18 Attack

Table 4 A sample MLP classification after SOM application

MIAT POIP Class

1.502 0.012 Normal
1.187 0.008 Normal
0.016 0.03 Attack
1.743 0.022 Normal
0.01 0.06 Attack
3.423 0.012 Normal
2.379 0.04 Normal
3.503 0.008 Normal
0.013 0.04 Attack
3.171 0.006 Normal
0.017 0.09 Attack
0.015 0.03 Attack
0.021 0.18 Attack

Table 5 A sample classification using MLP

Testing samples Wij Wjk Temp=Wjk *Yj Output Class

(0.012,0.301) −12.234049 0.000005 0
(1.019,0.001) 6.001845 0.997532 1
(0.01,0.255) −7.484483 −12.106938 0.000006 0
(0.022,0.299) 7.923808 −13.026509 0.000002 0
(0.009,0.405) 0.181681 −8.306628 −11.653962 0.000009 0
(2.475,0.005) −9.161539 −11.283950 6.006293 0.997543 1
(1.811,0.008) 10.763251 −6.006293 6.006283 0.997543 1
(0.017,0.117) −0.040093 −7.948537 0.000353 0
(0.02,0.199) −10.3813309 0.000031 0

(2.512,0.010) 6.006293 0.997543 1
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4.2 Comparison with the Existing Methods

To determine the superiority of the proposed method with the other existing
methods, the efficiency of the proposed method before SOM and after SOM
application is compared with other methods. Multivariate correlation analysis
(MCA) [23] is proposed to accurately figure out the network traffic using ISCX
2012 IDS evaluation dataset which results in an accuracy of 90.12%. Pearson’s
correlation coefficient (PCC) [24] approach is used to discover known patterns and
tested the method with generated dataset from a Web site of the World Cup 98 with
an accuracy of 94%. KDD Cup 1999 dataset is trained using SVM [25] classifier
and results in an accuracy of 95.72%. The comparison results as shown in Fig. 6
illustrate that our proposed detection system based on MLP classifier after SOM
application achieves 97% on CAIDA dataset, which significantly exceeds the other
methods based on accuracy.

5 Conclusions and Future Work

In this paper, CAIDA dataset is observed, analyzed, and clustered using SOM. Our
approach is an attempt to detect the malicious incoming traffic and classify them
into an attack and normal based on MLP classifier to prevent the illegitimate clients
and permit only the legitimate clients to access the service. From the simulation
results, it is found that the MLP classifier algorithm before SOM application results

Fig. 6 Accuracy comparison graph of various classifiers
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in lower detection accuracy of 93%, whereas results after SOM application give
high detection accuracy of 97% in classifying the trained datasets into normal and
attack.

As future works, we can compare the efficiency of various classifiers using
different datasets such as KDD Cup datasets, DARPA dataset, ISCX dataset,
CONFICKER dataset, etc. It could be used to determine which classifier using a
particular dataset gives highest accuracy results in classifying the incoming packet
as malicious and provide services only to the legitimate clients.
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Bio-economic Prey–Predator Fishery
Model with Intratrophic Predation, Time
Delay in Reserved and Unreserved Area

D. Sadhukhan, B. Mondal and M. Maiti

Abstract In this paper, we have studied the dynamics of a fishery system by
dividing the marine aquatic environment in two zones, one is free fishing zone
where harvesting and predation are allowed and other is reserve zone which is used
only for growing the small fishes to make the marine ecosystem stable. Here
harvesting and predation are not allowed. In harvesting zone, there are predators
which follow intratrophic predation. We also incorporate time delay in this intrat-
rophic interaction. At the first part of the problem, we have studied the local
stability and bionomic equilibrium of the system without time delay, and in the
second part of the study, the stability and bifurcation of the model have been
discussed taking delay parameter into account. Optimal harvesting policy with
Pontrygian’s maximal principle has also been discussed for the model. Finally,
some numerical results and simulation are given to illustrate the model.

Keywords Prey–predator ⋅ Stability ⋅ Reserved area ⋅ Intratrophic predation
Optimal harvesting

1 Introduction

Biological resources are renewable resources. Since from the time of Lotka [1] and
Volterra [2], there are numerous studies considering the prey–predator interaction
for fisheries and other renewable resources such as Nicholson et al. [3], Gurtin and
Maccamy [4], De Angelis [5], Dekker [6], Landhal and Hansen [7], Kapur [8] and
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Smith Maynard [9]. Economic and Biological aspect of renewable resources
management has been considered by Clark [10]. In recent years, the optimal
management of renewable resources, which has a direct relationship to sustainable
development, has been studied extensively by many authors. Again as the har-
vesting is a very important phenomenon for fishery in modern day life so there is
need for some limit to use the natural resources for a long period of time. For the
harvesting of natural resources, Clark [11] has studied few papers on optimal
harvesting policy, Mesterton-Gibbons [12, 13], which presented a dynamic model
for fishery resources and showed that the use of diesel-powered trawling may lead
to the extinction of predator as well as prey species if the trawling efficiency in the
catch of prey species is improved. Chaudhuri [14] studied the problem of combined
harvesting of two competing fish species. Pitchford and Brindley [15] investigated a
prey–predator model under intratrophic predations. Kar and Misra [16] have
developed a prey–predator fishery model with influence of prey reserve and also
noted that the fish population maintains at an equilibrium level in absence or
presence of predator provided the population in the unreserved area lies in a certain
interval. Dubay et al. [17] have proposed and analysed a fishery resources system
with reserved area. He has also investigated optimal harvesting policy of this
system. Dubay [18] has developed a model to study the role of a reserved zone on
the dynamics of prey–predator system and also established that the reserved zone
has a stabilizing effect on predator-prey interactions. Louartassi et al. [19] have
studied the stability and static output feedback design for a model the fishery
resource with reserve area. Chakraborty and Kar [20] have studied a bio-economic
model of a prey–predator fishery with protected area and also discussed the system
numerically and observed that marine protected area can be used as an effective
management tool to improve resource rent under a number of circumstances.

In our work, we have considered prey–predator model with ratio dependant
response function and also intratrophic predation under time delay. We have also
assumed that no migration from unreserved zone to reserved zone and a combined
harvesting in unreserved zone. We have discussed the local stability, global sta-
bility, bionomic equilibrium for the system without time delay and after that we
have investigated the local stability with time delay and checked the bifurcation
condition of the model taking time delay as bifurcation parameter. Optimal har-
vesting policy with Pontrygian’s maximal principle has also been discussed for the
model. Finally, some numerical results and simulation are given to illustrate the
model.

2 Model Formulation

Consider a fishery habitat, in an aquatic ecosystem, with reserved and unreserved
areas. In reserved area, it is considered that no harvesting and predation will take
place while the unreserved area is the harvesting and predation zone. Let x tð Þ and
y tð Þ be the respective population size of the prey in unreserved and reserved zone
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and let z tð Þ be the biomass densities of the predator at time t. Let r, s are intrinsic
growth rate of prey in unreserved and reserved area; K, L are the carrying capacity
of prey in unreserved and reserved area and b, d are the birth and death rate of
predator. Let the prey subpopulation of unreserved area migrate into reserved area
at a rate σ1 and prey subpopulation of reserved area migrate into unreserved area at
a rate σ2.

Also let ‘E’ be the combined harvesting effort for the fish population in unre-
served areas and q1, q2 are catchability coefficient of prey and predator in unre-
served area. Again, we assume that in each area prey population follows logistic
growth. Therefore, with this condition in view the dynamics of the prey–predator
system may be written in the form of a system of differential equation as:

dx
dt = rx 1− x

K

� �
− σ1x+ σ2y− mxz

x+ az −Eq1x
dy
dt = sy 1− y

L

� �
+ σ1x− σ2y

dz
dt = bz+ mxz

x+ az +
amzz t− τð Þ

x+ az − mzz t− τð Þ
x+ az − dz−Eq2z

9>=
>; ð1Þ

In this model, τ represents the time delay, which is to incorporate the interaction
in between mature and juvenile predators in intratrophic predation. The model
differs from the standard predator-prey model as here the food available to the
predator depends on the linear combination of both the prey and predator densities.
Explicitly as in [15] food available to z= x+ az. Where a is the measure of intensity
of intratrophic predation. If a=0, there is no intratrophic predation and conse-
quently the prey is the only food resource for the predator. If a=1, the predator
regards prey and predator alike and thus depends on both populations.

In our model, we consider that no migration will take place unreserved zone to
reserved zone, so σ1 = 0. Now let us take σ2 = σ. Therefore, considering β=m− am
the model (1) reduces to

dx
dt

= rx 1−
x
k

� �
+ σy−

mxz
x+ az

−Eq1x

dy
dt

= sy 1−
y
l

� �
− σy

dx
dt

= bz+
mxz
x+ az

−
βzz t− τð Þ
x+ az

− dz−Eq2z

ð2Þ

In this model, the response function blows up at the point where x=0 and z=0
since there is an apparent division by zero. However, since both xz

x+ az ≥ 0ð Þ and
z2

x+ az ≥ 0ð Þ→ 0+ as x, z→ 0+⋯ [15].
It is clear that dx

dt =0 at ð0, 0, 0Þ. Similar argument is applicable for dz
dt atð0, 0, 0Þ.

Now the problem is that the system (2) is to be analysed along with the initial
conditions x 0ð Þ>0, y 0ð Þ≥ 0, and z 0ð Þ>0.
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3 Existence of Steady States

The equilibrium point of the system (2) is obtained by solving, dx
dt =

dy
dt =

dz
dt =0.

Suppose P x*, y*, z*ð Þ be the positive solution of the algebraic equations:

rx 1−
x
k

� �
+ σy−

mxz
x+ az

−Eq1x=0 ð3Þ

sy 1−
y
l

� �
− σy=0 ð4Þ

bz+
mxz
x+ az

−
βzz t− τð Þ
x+ az

− dz−Eq2z=0 ð5Þ

Now from Eq. (4) we get

y=
l s− σð Þ

s
ð6Þ

Again from (5)

z=
b− d−Eq2 +m

β− a b− d−Eq2ð Þ x ð7Þ

Therefore, with the help of (3), (6) and (7), the equation for x is

r
k
x2 +

m b− d−Eq2 +mð Þ
β+ am

− r+Eq1

� �
x−

σl s− σð Þ
s

=0 ð8Þ

As s> σ, , Eq. (8) has a unique positive solution x*, if the following condition
holds

m b− d−Eq2 +mð Þ
β+ am

> r−Eq1 ð9Þ

Therefore with the condition (9), z of (7) will be positive if

b−
β

a
< d+Eq2 < b+m ð10Þ
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4 Dynamical Behaviour of Steady States for τ =0

The variational matrix corresponding to the steady state P x*, y*, z*ð Þ is

V x*, y*, z*
� �

=

− r
k x

* − σy*

x*

+ mx*z*

x* + az*ð Þ2

 !
σ − mx*2

x* + az*ð Þ2

0 − s
l y

* 0

am− βð Þz*2
x* + az*ð Þ2 0

− amx*z*

x* + az*ð Þ2 +
aβz*

x* + az*ð Þ2

− βz*

x* + az*ð Þ

0
@

1
A

2
66666664

3
77777775

ð11Þ

Therefore, the characteristic equation corresponding to the variational matrix
(11) is

μ3 + a1μ2 + a2μ+ a3 = 0 ð12Þ

where

a1 =
r
k
x* +

σy*

x*
−

mx*z*

x* + az*ð Þ2 +
s
l
y* +

amx*z*

x* + az*ð Þ2 −
aβz*

x* + az*ð Þ2 +
βz*

x* + az*ð Þ

" #
,

a2 =
s
l
y*

r
k
x* +

σy*

x*
−

amx*z*

x* + az*ð Þ2
( )

− −
amx*z*

x* + az*ð Þ2 +
aβz*2

x* + az*ð Þ2 −
βz*

x* + az*ð Þ

( )" #
+

am− βð Þx*2z*2
x* + az*ð Þ2

+
r
k
x* +

σy*

x*
−

amx*z*

x* + az*ð Þ2
( )

amx*z*

x* + az*ð Þ2 −
aβz*2

x* + az*ð Þ2 +
βz*

x* + az*ð Þ

( )" #
and

a3 = −
s
l
y*

am− βð Þx*2z*2
x* + az*ð Þ2 + r

k x
* + σy*

x* − mx*z*

x* + az*ð Þ2
n o

×
amx*z*

x* + az*ð Þ2 −
aβz*2

x* + az*ð Þ2 +
βz*

x* + az*ð Þ
n o

2
664

3
775

ð13Þ

Therefore, the condition for the system to be asymptotically stable in the first
octant is that the eigenvalues corresponding to the variational matrix V x*, y*, z*ð Þ
have negative real parts, i.e. Re μð Þ<0. So by Routh–Hurwitz criteria, the equiv-
alent conditions are

a1 > 0, a1a2 − a3 > 0 and a3 > 0 ð14Þ

where a1, a2and a3 are given by (13).
With the help of above conditions, we can find a small sphere with centre at

P x*, y*, z*ð Þ such that any solution P x, y, zð Þ of the system (2), which is inside the
sphere at time t= t′ will remain inside the sphere for all t≥ t′ and will tend to
P x*, y*, z*ð Þ as t→∞.
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5 Bionomic Equilibrium

The biological equilibrium of the system (2) is given by the solution of
dx
dt =

dy
dt =

dz
dt =0. Now for bionomic equilibrium (in which the net revenue obtained

by selling the harvested species equals to the total cost of harvesting), we have to
solve dx

dt =
dy
dt =

dz
dt =0 together with the equation in which economic rent is zero. So

if c be the constant fishing cost per unit effort with p1 and p2, which are the constant
prices per unit biomass of the landed prey and predator, respectively, from the
unreserved area, then the economic rent, i.e. the revenue at any time t is given by

π x, y, z,Eð Þ= p1q1x+ p2q2z− cð ÞE ð15Þ

Therefore, the bionomic equilibrium is B xb, yb, zb,Ebð Þ where xb, yb, zb and Eb

are the positive solutions of dx
dt =

dy
dt =

dz
dt = π =0.

Thus,

xb =
c β− a b− d−Ebq2ð Þf g

p1q1 β− a b− d−Ebq2ð Þf g+ p2q2 b− d−Ebq2 +mð Þ
yb =

l s− σð Þ
s

zb =
b− d−Ebq2 +mð Þ

β− a b− d−Ebq2ð Þf g xb

9>>=
>>; ð16Þ

where Eb is the positive solution of the equation

acq1q2 ap1q1q2 − p2q22
� �� 	

E3 + acq2 ap1q1q2 − p2q22
� �
 m b+ d−mð Þ

am+ β
− r

� �
− ap1q1q2ð

− p2q22
� lσ s− σð Þ

s
+ cq1 β− ab+ adð Þ ap1q1q2 − p2q22

� �
+ acq1q2 p1q1 β− ab+ adð Þf

+ p2q2 b+ d−mð Þg�E2 +
2rac2q2

k
β− ab+ adð Þ+ c β− ab+ adð Þ ap1q1q2 − p2q22

� ���

+ acq2 p1q1 β− ab+ adð Þ+ p2q2 b+ d−mð Þf gg m b+ d−mð Þ
am+ β

− r
� �

+ cq1 β− ab+ adð Þ

× p1q1 β− ab+ adð Þ+ p2q2 b+ d−mð Þf g− 2 ap1q1q2 − p2q22
� �

p1q1 β− ab+ adð Þf

+ p2q2 b+ d−mð Þglσ s− σð Þ
s

�
E+

rc2

k
β− ab+ adð Þ2 + c β− ab+ adð Þ p1q1 β− ab+ adð Þf

+ p2q2 b+ d−mð Þg m b+ d −mð Þ
am+ β

− r
� �

+ p1q1 β− ab+ adð Þ+ p2q2 b+ d−mð Þf g2lσ s− σð Þ
s

=0

ð17Þ

6 Local Stability Analysis for Delay Model

We now investigate the dynamics of the given system (2) for τ>0. Let
P x*, y*, z*ð Þ be the only interior equilibrium of the system (2). Now taking X =
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x− x*, Y = y− y*and Z = z− z* as the perturbed variables and removing the
nonlinear term using equilibria conditions, we obtain the linear variational system
as

dX
dt

= −
r
k
x* −

σy*

x*
+

mx*z*

x* + az*ð Þ
� �

X + σY +
amx*z*

x* + az*ð Þ2 −
mx*

x* + az*ð Þ

" #
Z,

dY
dt

= −
sy*

l

� �
Y

and

dZ
dt

=
mz*

x* + az*ð Þ −
mx*z*

x* + az*ð Þ +
βz*2

x* + az*ð Þ2
" #

X + −
amx*z*

x* + az*ð Þ2 +
aβz*2

x* + az*ð Þ2
" #

Y

−
βz*

x* + az*ð Þ
� �

Z t− τð Þ

ð18Þ

From the above-linearized system, we get the characteristic equation as

Δ λ, τð Þ= λ3 −Aλ2 +Bλ+C+ Dλ2 − Iλ+F
� �

e− λτ =0 ð19Þ

where

A= −
r
k
x* −

σy*

x*
−

sy*

l
+

a− 1ð Þmx*z*
x* + az*ð Þ +

aβz*2

x* + az*ð Þ2 ,

B= −
r
k
x* −

σy*

x*
−

sy*

l
+

mx*z*

x* + az*ð Þ2
" #

× −
amx*z*

x* + az*ð Þ2 +
aβz*2

x* + az*ð Þ2
" #

−
amx*z*

x* + az*ð Þ2 −
mx*

x* + az*ð Þ

" #
×

mz*

x* + az*ð Þ −
mx*z*

x* + az*ð Þ2 +
βz*2

x* + az*ð Þ2
" #

+ −
r
k
x* −

σy*

x*
+

mx*z*

x* + az*ð Þ2
" #

× −
sy*

l

� �
,

C=
amx*z*

x* + az*ð Þ2 −
mx*

x* + az*ð Þ

( )"
×

mz*

x* + az*ð Þ −
mx*z*

x* + az*ð Þ2 +
βz*2

x* + az*ð Þ2
( )

− −
r
k
x* −

σy*

x*
+

mx*z*

x* + az*ð Þ2
( )

× −
amx*z*

x* + az*ð Þ2 +
aβz*2

x* + az*ð Þ2
( )#

× −
sy*

l

� �
,

D=
βz*

x* + az*ð Þ ,

I = −
r
k
x* −

σy*

x*
−

sy*

l
+

mx*z*

x* + az*ð Þ2
" #

×
βz*

x* + az*ð Þ
� �
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and

F = −
r
k
x* −

σy*

x*
+

mx*z*

x* + az*ð Þ2
" #

× −
sy*

l

� �
×

βz*

x* + az*ð Þ
� �

For τ=0, the characteristic Eq. (19) becomes

λ3 + D−Að Þλ2 + B− Ið Þλ+ F +Cð Þ=0 ð20Þ

As Eq. (20) is same as Eq. (12), Eq. (20) has roots with negative real parts by
the condition (14). Now for nonzero τ, if λ= iω is a root of the characteristic
Eq. (19), then we have

Δ iω, τð Þ= − iω3 −Dω2 cosωτ− i sinωτð Þ+Aω2 + iBω− iωI cosωτ− i sinωτð Þ+
F cosωτ− i sinωτð Þ+C=0

ð21Þ

Separating real and imaginary parts, we get

−ω2D cosωτ+Aω2 −ωI sinωτ+F cosωτ+C=0
−ω3 +ω2D sinωτ+Bω− Iω cosωτ−F sinωτ=0

�
ð22Þ

From the above system (21), we obtain the sixth-order equation for ω as

ω6 + A− 2B−D2� �
ω4 + B2 + 2AC− I2 + 2DF

� �
ω2 + C2 −F2� �

=0 ð23Þ

The above Eq. (23) does not have any real roots if

A− 2B−D2� �
>0, B2 + 2AC− I2 + 2DF

� �
>0 and C2 −F2� �

>0 ð24Þ

then Eq. (22) does not have any real roots. So, there will be no purely imaginary
roots for the characteristic Eq. (19). Again as the condition (14) ensures that all the
roots of Eq. (12) have negative real parts, so by Rouche’s theorem, it is clear that
Eq. (23) also have the roots with negative real parts.

Theorem A necessary and sufficient conditions for P x*, y*, z*ð Þ is to be locally
asymptotically stable in presence of delay τ≥ 0 if the following conditions are
satisfied:

(i) the real parts of all the roots of Δ λ, 0ð Þ=0 are negative;
(ii) for all real ω and any τ>0, the following holds:
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Δ iω, τð Þ≠ 0, where i=
ffiffiffiffiffiffiffiffi
− 1

p
ð25Þ

Proof In Eq. (19) considering τ=0, we get Eq. (20), which is same as (12). So
first condition of the theorem is satisfied if (14) holds along with the conditions (9)
and (10). Again from (24) the second condition of the theorem is obvious.

7 Bifurcation Analysis

In this section, we find out the condition for Hopf bifurcation considering the
discrete time delay τ. For this, we start from the characteristic equation

Δ λ, τð Þ= λ3 −Aλ2 +Bλ+C+ Dλ2 − Iλ+F
� �

e− λτ =0 ð26Þ

Since we are interested the bifurcation analysis around the interior equilibrium
point P x*, y*, z*ð Þ for the variation of delay parameter. The stability of the interior
equilibrium P x*, y*, z*ð Þ is determined by the sign of the real part of the charac-
teristic root of (26).

Here λ is a function of time delay τ, so if we write λ= μ+ iν, then μ and ν are
also functions of τ, that is, μ= μ τð Þ, ν= ν τð Þ.

Now substituting,

λ τð Þ= μ τð Þ+ iν τð Þ ð27Þ

in the characteristic equation and separating real and imaginary parts we get

μ3 − 3μν2 + μ2 − ν2
� �

De− μτ cos ντ−Að Þ+2μνDe− μτ sin ντ+ B− Ie− μτ cos ντð Þμ
− νIe− μτ sin ντ+Fe− μτ cos ντ+C=0

ð28Þ

and

3μ2ν− ν3 + 2μν De− μτ cos ντ−Að Þ− μ2 − ν2
� �

2μνDe− μτ sin ντ+ B− Ie− μτ cos ντð Þν
+ μIe− μτ sin ντ−Fe− μτ sin ντ=0

ð29Þ

A necessary condition for the change of stability near interior equilibrium point
P x*, y*, z*ð Þ is that the characteristic Eq. (26) has purely imaginary roots. As
λ, μ and ν are functions of τ, the change of stability occurs at such values of τ such
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that μ τð Þ=0 and ν τð Þ≠ 0. Let τ ̂ be the critical values of τ, such that μ τ ̂ð Þ=0 and
ν τ ̂ð Þ≠ 0 then (28) and (29) become

− ν̂2 De− μτ cos ν̂τ−Að Þ− ν̂I sin ν̂τ+F cos ν ̂τ+C=0
− ν̂3 + ν ̂2D sin ν ̂τ+ B− I cos ν ̂τð Þν̂−F sin ν̂τ=0

�
ð30Þ

Now we study the change of stability behaviour near the interior equilibrium
point P x*, y*, z*ð Þ when the value of the parameter τ passes through their critical
value τ ̂.

For this, we eliminate τ ̂ from the above set of Eq. (30) and arranging we get

ν̂6 + A− 2B−D2� �
ν̂4 + B2 + 2AC− I2 + 2DF

� �
ν ̂2 + C2 −F2� �

=0 ð31Þ

Without any detailed analysis of the above Eq. (31), we assume that there exists
at least one positive real root denoted by τ ̂. At this point, it is quite clear that the
non-existence of such a real positive root will terminate our further analysis. So, on
the assumption that τ ̂ is a positive real root of Eq. (31), we can find the critical
values of the delay parameter τ ̂ for ν= ν ̂ as

τ=
1
ν ̂
arc tan

ν̂5D+ AI −BD−Fð Þν̂3 + BF + ICð Þν ̂
AD− Ið Þν ̂4 + IBν3̂ + DC−AFð Þν2̂

� �
+

nπ
ν̂

ð32Þ

where n=0, 1, 2, . . ..
One possible value of τ ̂ denoted by τ0̂ can be obtained from (32) for n=0 as

follows:

τ ̂0 =
1
ν̂
arc tan

ν̂5D+ AI −BD−Fð Þν̂3 + BF + ICð Þν ̂
AD− Ið Þν ̂4 + IBν3̂ + DC−AFð Þν̂2

� �
ð33Þ

The expression (31) and (33) give the critical values ν and τ for which the
characteristic root of (19) will have a pair of purely imaginary roots.

To verify the transversality condition of Hopf bifurcation, we examine the value
of dμ

dτ evaluated at τ= τ ̂ with the condition that μ τ ̂ð Þ=0 and ν τ ̂ð Þ≡ ν ̂≠ 0. If dμ
dτ is

anon-vanishing quantity, stabilization cannot take place at the critical parametric
value τ ̂. We differentiate Eq. (30) with respect to τ and putting τ= τ ̂ and using
μ τ ̂ð Þ=0 and ν= ν̂ we get

A′ dμ
dτ


 �
τ= τ ̂ +B′ dν

dτ


 �
τ= τ ̂ =C′

−B′ dμ
dτ


 �
τ= τ ̂ +A′ dν

dτ


 �
τ= τ ̂ =D′

)
ð34Þ
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where

A′ = − 3ν2̂ + ν2̂Dτ̂ cos ν̂τ̂+2Dν̂ sin ν̂τ̂+B−F cos ν̂τ̂+ Iν̂τ̂ sin ν̂τ̂+Fτ̂ cos ν̂τ̂
B′ = ν̂2Dτ̂ sin ν̂τ̂− 2Dν̂ cos ν̂τ̂+2Aν̂− I sin ν̂τ̂− Iν̂τ̂ cos ν̂τ̂− Fτ̂ sin ν̂τ̂

C′ = Fν̂−Dν̂3
� �

sin ν̂τ̂
D′ = Fν̂−Dν̂3

� �
cos ν̂τ̂− Iν̂2 sin ν̂τ̂

9>>=
>>;
ð35Þ

Solving (34) for dμ
dτ


 �
τ= τ ̂ we obtain

dμ
dτ

� �
τ= τ ̂

=
A′C′ −B′D′

A′2 +B′2 ð36Þ

Clearly, the sign of dμ
dτ


 �
τ= τ ̂ is same as that of the sign of A′C′ −B′D′ Now it is

clear that A′C′ −B′D′ ≠ 0.
Therefore, for the appropriate values of the parameters and with the help of

Eq. (36) and A′C′ −B′D′ ≠ 0, we see that dμ
dτ


 �
τ= τ ̂ ≠ 0 and consequently the

transversality condition of Hopf bifurcation is satisfied for τ= τ ̂0 which is given in
(33). Thus, the model system exhibits Hopf bifurcation of small amplitude periodic
solutions as τ passes through its critical value τ= τ ̂0.

8 Optimal Harvesting Policy

In this section, the present value J of continuous time-stream of revenues is given
by

J =
Z ∞

0
e− δtπ x, y, z,E, tð Þdt ð37Þ

where π x, y, z,E, tð Þ= p1q1x+ p2q2z− cð ÞE, δ denotes the annual discount rate.
Now we maximize J subject to the system of Eq. (2) using Pontryagin’s Maximal
Principle [21]. The control variable E tð Þ is subjected to the constraints,
0≤E tð Þ≤Emax, so that Vt = 0,Emax½ � is the control set and Emax is a feasible upper
limit for the harvesting effort.

The Hamiltonian for the problem is given by

H = e− δt p1q1x+ p2q2z− cð ÞE+ λ1 rx 1−
x
k

� �
+ σy−

mxz
x+ az

−Eq1x
� �

+ λ2 sy 1−
y
l

� �
− σy

n o
+ λ3 bz+

mxz
x+ az

−
βz2

x+ az
− dz−Eq2z

� � ð38Þ
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Here, Hamiltonian H depends linearly on E with coefficient
σ = e− δt p1q1x+ p2q2z− cð Þ+ λ1q1x+ λ3q2z. Consequently, its maximum value is
reached for extremes of E, i.e. the harvest rate must be either 0 or Emax. This
observation leads to the rule that one must harvest as such as possible when the
switching function σ >0 and will not harvest at all when σ <0. Furthermore, when
σ =0 the harvest rate is undetermined. In this case, three solutions for E are pos-
sible, namely 0,Emax or E* which is the singular control, that maintains the condi-
tion σ =0. Therefore, the optimal control path will be either “bang-bang” control or
singular. Our job is to reach optimal solution optimally from the initial state
x 0ð Þ, y 0ð Þ, z 0ð Þð Þ. This can be achieved by applying a “bang-bang” control (Pon-
tryagin et al. [21]) to the system as presented below.

Define

E ̃ tð Þ= Emax for σ >0
0 for σ <0

�

Moreover, let T be the time at which the path ðxðtÞ, yðtÞ, zðtÞÞ, which generated
via the “bang-bang” control E tð Þ=E ̃ tð Þ, reaches the steady state xδ, yδ, zδð Þ. Then,
the optimal control policy is

E tð Þ= E ̃ tð Þfor 0≤ t≤ T
E* for t> T

�

and the optimal path is given by the trajectory generated by the above optimal
control. In view of the stability property of the interior equilibrium of the system
(2), we can also reach the singular optimal solution through a suboptimal by
choosing the control policy E tð Þ to be equal to E* for all t. The advantage of
choosing the optimal path is that it leads to the optimal singular solution more
rapidly than does the suboptimal path.

Now the adjoint equations are

dλ1
dt

= −
∂H
∂x

,
dλ2
dt

= −
∂H
∂y

and
dλ3
dt

= −
∂H
∂z

ð39Þ

Therefore using Eqs. (38), (39) and (2), we have

dλ1
dt

= a1λ1 + b1λ2 + c1λ3 − p1q1Ee− δt;

dλ2
dt

= a2λ1 + b2λ2 + c2λ3 and

dλ1
dt

= a3λ1 + b3λ2 + c3λ3 − p2q2Ee− δt

ð40Þ
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where

a1 = − r+
2rx
k

+
amz2

x+ az
+Eq1,

b1 = 0, c1 =
amz2

x+ azð Þ2 ;

a2 = − σ, b2 = σ − s+
2sy
l
,

c2 = 0 and a3 =
mz2

x+ azð Þ2 ,

b3 = 0, c3 =
β 2xz−mx2 + amz2ð Þ

x+ azð Þ2 + d+ b−Eq2ð Þ

Now we use the steady-state solution from the system (40), as we are concerned
with optimal equilibrium and we consider x, y and z as constants in the subsequent
steps.

The solutions of the above system of linear differential equations are given by

λ1 =A1em1t +A2em2t +A3em3t +
M1

N
e− δt ð41Þ

where m1,m2 andm3 are the roots of the cubic equation

β0m
3 + β1m

2 + β2m+ β3 = 0 ð42Þ

With, β0 = 1, β1 = − a1 + b2 + c3ð Þ, β2 =
a1 0
a2 b2

����
����+ b1 0

0 c3

����
����+ a1 c1

a3 c3

����
���� and

β3 = −
a1 0 c1
a2 b2 0
a3 0 c3

������
������.

Here λi is bounded iff mi <0 for i=1, 2, 3 or Ai=0 for i=1, 2, 3.
The Hurwitz matrix is

β1 1 0
β3 β2 β1
0 0 β3

0
@

1
AwithΔ1 = β1,Δ2 = β1β2 − β3,Δ3 = β3 β1β2 − β3ð Þ ð43Þ

Therefore, the roots of the cubic equation are real negative or complex conjugate
having negative real parts iff. Δ1,Δ2 and Δ3 are all greater than zero.

But Δ1 < 0, so it is difficult to check whether mi <0, therefore we assume Ai =0.
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Then

λ1 tð Þ= M1

N
e− δt ð44Þ

By similar process, we get

λ2 tð Þ= M2

N
e− δt ð45Þ

and

λ3 tð Þ= M3

N
e− δt ð46Þ

where

M1 =E p1q1 c3 + δð Þ− p2q2c1½ � ð47Þ

M2 = −Eδ p1q1 a2c3 + a2δ− b2a3ð Þ+ p2q2 b2a1 + b2δ− a2c3ð Þ½ � ð48Þ

M3 =E p2q2 a1 + δð Þ− p1q1a3½ � ð49Þ

and

N = δ2 + a1 + c3ð Þδ+ a1c3 − a3c1ð Þ ð50Þ

We find that the shadow prices λi tð Þeδt, i = 1, 2, 3 of the three species remain
bounded as t→∞ and hence satisfy the transversality condition at ∞. The
Hamiltonian must be maximized for E∈ 0,Emax½ �. Assuming that the control con-
straints 0≤E≤Emax are not binding (i.e. the optimal equilibrium does not occur
either at E=0 or,E=Emaxð Þ, so we consider the singular control.

Therefore,

∂H
∂E

= e− δt p1q1x+ p2q2z− cð Þ− λ1q1x− λ3q2z=0 ð51Þ

or,

e− δt ∂π

∂E
= λ1q1x+ λ3q2z ð52Þ

As we know from (15) that,

∂π

∂E
= p1q1x+ p2q2z− cð Þ ð53Þ
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This Eq. (53) indicates that the total user cost of harvest per unit effort must be
equal to the discounted value of the future profit at the steady-state effort level (cf.
Clark [11]).

Now from (52) and (53), we get

e− δt p1q1x+ p2q2z− cð Þ= λ1q1x+ λ3q2z ð54Þ

Substituting the values of λ1 and λ2, we get

p1 −
M1

N

� �
q1x+ p2 −

M3

N

� �
q2z= c ð55Þ

The above Eq. (51) together with Eq. (2) gives the optimal equilibrium popu-
lation densities as x= x∞, y= y∞and z= z∞. Now when δ→∞, the above equation
leads to the result

p1q1x∞ + p2q2z∞ = c ð56Þ

which gives that π x∞, y∞, z∞,Eð Þ=0.
Using (55), we get

π = p1q1x+ p2q2z− cð ÞE=
M1q1x+M3q2zð ÞE

N
ð57Þ

As the each M1 and M2 is of o δð Þ and N is of δ2
� �

, therefore π is of o δ− 1
� �

.
Thus, π is a decreasing function of δ ≥ 0ð Þ. We therefore conclude that δ=0 leads
to maximization of π.

9 Numerical Experiments

Let us choose the parametric values as r=10, s=5, k=200, l=200, σ =0.9,
m=0.6, a=0.1, b=10,
β=0.54, d=0.001, q1 = 0.5, q2 = 0.3, p1 = 2, p2 = 10, c=50,E=10 and τ=0. With
these parametric values having suitable units, we get non-trivial steady states
(30.17, 164, 463.3) asymptotically stable, which shows pictorially in Fig. 1, and
corresponding Bionomic equilibrium point is (22.64, 164, 9.12) with the value of
E=30.31.

We find that the value of the optimal harvesting effort E corresponding to the
optimal equilibrium (389.312,164, 73.645) is 5.28 units Also for the optimal effort
Emin = 0, Emax = 20.01 and E* = 5.28, time taken to reach the optimal equilibrium
point through optimal path is 1.66 unit and along suboptimal path, the time is 2.08
unit (shown in Fig. 4).

Now we check the behaviour of the system for E=10 and τ=0.2ð Þ and for
E=10, τ=0.21ð Þ, respectively, which are depicted following in the two figures.
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10 Conclusion and Further Extension

In this work, a mathematical model has been formulated for an aquatic ecosystem
consisting of two aquatic zones, one is predation and harvesting prohibited and
other is free for harvesting and pre-predator interaction. We assumed that species

Fig. 2 Represent the stable behaviours of the populations for τ=0.2 and τ=0.21withE=10

Fig. 1 Variation of the populations against time, beginning with x=130, y=50 and z=50.
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Fig. 3 Represent the unstable behaviours of the populations for τ=0.2 and τ=0.21withE=10

Fig. 4 Optimal and suboptimal approach paths with Emin = 0, Emax = 20.01, x(0) = 10, y
(0) = 50 and z(0) = 20

Bio-economic Prey–Predator Fishery Model with Intratrophic … 243



follow the logistic growth law inside and outside of reserved zone and only
migration takes place from reserved zone to unreserved zone but not vice versa.

Also, we incorporate intratrophic predation on predator populations using time
delay.

Using Routh–Huwritz criteria, we derived the condition for local stability of the
system and plotted the stability diagram in Fig. 1 for τ. Also, we have obtained the
conditions for local stability with τ≠ 0 along with the bifurcation for the system
taking τ as bifurcation parameter. Also, we pictorially checked that as τ passes
through its critical value τ=20, the stable behaviour of the system becomes unstable,
which has been depicted in Figs. 2 (stable), 3 (unstable) and Fig. 4 represents the
optimal approach path for the system under consideration.

Similar type models can be developed with finite time horizon and will be useful
for the inland fisheries.
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Applying OR Theory and Techniques
to Social Systems Analysis

Tatsuo Oyama

Abstract The paper describes applications of Operations Research (OR) theory
and techniques used to solve various types of social problems occurring in our
social system. Social systems analysis has for quite some time been the main
analytical and scientific approach used to investigate systems and to solve various
problems related to modern social systems, including industry, business, the mili-
tary, public administration, politics, and society in general. We will present here
three major roles that operations research (OR) and social systems analysis
(SSA) technique have played both practically and theoretically in the solution of
social systems problems since it was developed almost 60 years ago. Firstly, we
explain briefly OR, SSA, and public policy (PP) regarding what they are, how OR
can be contributing to SSA and PP, and how traditional academic disciplines are
related each other with the SSA. Secondly, we introduce several examples of the
quantitative data analysis, which we have investigated in our school (National
Graduate Institute for Policy Studies) to solve various types of social problems
including population, traffic and accident, higher education policy, energy policy,
and agriculture policy data analyses. Thirdly, we give mathematical modeling
analysis with its application to the optimal location model analysis for integrating
promotion branch offices in the local government. Fourthly, as an important role of
OR as a theory building analysis technique, we explain two problems of appor-
tionment problem and shortest path counting problem. Finally, in the summary
section future perspectives of OR are given.
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1 OR, Social Systems Analysis and Public Policy

Operations Research (OR) is a scientific approach to solve various types of
problems and make decisions to deal with these problems appropriately. Histori-
cally, OR appeared for the first time in the military sector during the World War II
period in the 1950s, then it was applied to the private sector of business and
industry, and subsequently began to be applied furthermore to the public sector. OR
has been defined differently between the USA and the UK as follows. In the USA,
the Operations Research Society of America defined OR in 1990 as follows.

(i) Scientific approach for decision making.
(ii) Making an optimal decision for designing and operating the system con-

suming a limited amount of resources under certain conditions.

In the UK, the Operational Research Society defined OR in 1962 as follows:
“Operational research: applying mathematical models to investigate complex
problems in industries, business, government, defense, and so on with respect to
workers, machines, materials, budgets, and so on.”

The characteristics of OR can be given as follows.

(i) Applying an interdisciplinary and scientific approach, and modeling the
system through simplification and abstraction.

(ii) Providing the information to the top of the organization in order to make
reasonable and desirable decisions regarding operation, planning, and
management.

(iii) Trying to solve problems through “soft techniques” for management rather
than through “hard techniques” for manufacturing.

(iv) Aiming for the long-term optimal operation of the whole system by applying
mathematical programming modeling techniques with formulation, opti-
mization, and analysis.

Social Systems Analysis tries to apply theories and methods for solving various
types of societal problems occurring in our society and needing to be solved
urgently. Generally, societal problems are complex, various, large scale, and
diversified, which means that one unique discipline should not be sufficient to solve
these problems, and thus an interdisciplinary approach is required. In the area of
social systems analysis, we can say that there is no theory to define societal
problems and to solve them, and also there is no principle to validate and justify
these problems. Generally, in the academic field of social sciences, there is no
repetition at all as societal problems can never occur under the same conditions and
situations. A mathematical modeling approach can be applicable to solve these
societal problems as OR theory and techniques can provide certain, e.g., opti-
mization and/or simulation models. However, we know that these solutions
obtained from applying these modeling approaches cannot be exact solutions for the
original societal problems.
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The basis of social systems analysis would be expressed by the census as we can
say that almost all decisions made in both local and central governments would be
based upon the census from the past in any country. The census was started in the
USA and the UK in 1790 and 1801, respectively, while Japan started it very late in
1920. The word “statistics” originates from the German “Statistik.” In the 1830s,
so-called political arithmetic was initiated as “quantitative population data analysis”
at London Statistics Institute. Since then, many distinguished scholars such as Jon
Graunt, William Petty, Ernst Engel, and Adolphe Quetelet became interested in
social phenomena such as crime, disease, politics, economics, industry, making
great contributions in social science areas. Experimental observations, objective
facts, and data itself are very important and can contribute to developing
policy-related research, making decisions for the public sector by applying scien-
tific methods to public policy-related problems. We find that the social sciences
have been ramified and professionalized since then, and thus demographical
statistics, sociology, economics, political science, public administration, and so on,
including natural science and engineering and their application, have been devel-
oped. Saint Shimon, who is called the “Father of Technocracy,” says that, “Science
can solve not only technical problems but also social problems,” and thus “technical
experts” are needed to operate society.

In the twentieth century, big capitalistic businesses appeared in the USA and
then they started to dominate the world economically and politically. “The
American dream represented and expressed by liberty, democracy, wealth” has
been realized internationally. In 1929, American President Franklin Roosevelt
advocated the “New Deal Policy” consisting of NIRA, AAA, and TVA. In the
1950s, a new academic discipline called “The Policy Science” appeared in the
Symposium Report at Stanford University in 1951, which is called the “Birth of
Policy Sciences.” In the 1960s, US President Lyndon B. Johnson proposed the
“Great Society” Plan consisting of interdisciplinary researchers such as economists,
OR researchers, mathematicians, computer engineers. People called this the
“End-of-Ideology era.” Thus, “social engineers” and “technocrats” have played
major roles in all fields such as industry, university, government, and military,
where all these people jointly participated to develop technology and for economic
cooperation. We may say that in the “intellectual development system,” the intel-
lectually most advanced group, e.g., universities and research institutes, tries to
develop science and technology and attain economic prosperity through obtaining
governmental financial support and aggregating various types of research issues and
research organizations.

OR may be said to be the theory and technique for conducting systems analysis
or more specifically social systems analysis. Therefore, OR can be used to solve
various types of societal problems appearing in the social system and making
decisions in the area of public policy. Figure 1 shows the relationship among
various academic disciplines focusing on social systems analysis.

We believe that OR could play three major analytical roles, through which we
expect we can solve societal problems occurring in the public sector even though
these solutions might not be exact, complete, and final decisive solutions. Three
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major roles are as follows: (i) quantitative data analysis, (ii) mathematical modeling
analysis, (iii) theory building analysis. In the following sections, we give several
examples representing each type, respectively.

2 Quantitative Data Analysis

Quantitative data analysis is indispensable as a preliminary process for finding and
defining problems. This process sometimes brings us new problems and new
insights into the actual world. Thus, we can find an appropriate mathematical
model.

We will give several examples of quantitative data analysis.

(1) Population data analysis

There are 61 cities in Japan with populations of over 300 thousand people. The
graph of the descending order data is shown in Fig. 2.

Applying Jipp’s law (George Kingsley Zipf, 1941) given by the following
mathematical formula to the descending order data given in Fig. 2

Political Science

Public Administration EconomicsLaw

Business Economics
Social Science

Statistics

History

OR Management Science

Sociology

Anthropology

Psychology

Computer Science

Information Science

Social Engineering
HumanityNatural Science

Social System Analysis

Research on Public Policy and Related Disciplines

Fig. 1 Relationship between social systems analysis and various academic disciplines
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y= axb

where y: population, x: rank, a and b: parameters, and we can estimate the
parameters a and b. We can interpret the estimate of parameter b as indicating the
degree of concentration to the top populated cities in Japan or the degree of
domination (“dominance power”) by them. Thus, by investigating the historical
trend, geographically regional characteristics, and international comparison, we can
obtain new facts and insights with their reasons.

(2) Traffic and accident data analysis

Using survey data (Road Traffic Census) conducted by the Ministry of Land,
Infrastructure, Transport and Tourism, we find the following: (i) regression models
showing the relation between the factors given below were obtained. Figure 3
shows a diagram indicating the relation between various factors determining the
traffic situation in Japan. (ii) Twenty-four-hour traffic data in the whole country
follows the Weibull distribution. (iii) Each city’s 24 h traffic data follows a logistic
distribution. (iv) Twenty-four-hour travel speed data follows a Gamma distribution.
(v) Investigating serious train accidents occurring in Japan over the last 35 years,
we elucidated the causes for them and then have shown countermeasures to prevent
these train accidents [1, 2]. (vi) Applying Bayes’ theorem to actual traffic accident
data, we concluded that wearing a seat belt while driving is almost four times more
effective than not for avoiding deaths and serious injuries due to accidents.
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Fig. 2 Graph of the descending order population data in Japan
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(3) Higher education policy data analysis

Japanese primary and secondary education systems have been evaluated highly and
favorably in both domestically and internationally. However, higher education
system focusing upon public and private universities in Japan has been argued quite
frequently regarding how to reform and how to improve them in order to attain and
maintain much higher quality. In [3], the Japanese government’s subsidy policy for
private universities has been investigated using actual historical data during the
period from 1975 to 2004, and applying statistical approaches. We found the
structural properties of the policy by applying statistical data analysis techniques
including correlative rank approaches. Thus, we measured quantitatively the
“dominance power” of the top-ranking subsidy-recipient private universities in
Japan. Conclusively, we showed that the number of faculty members and the
number of students were the most influential factors for general and special sub-
sidies in Japan, respectively.

(4) Energy and environmental policy data analysis

The Kyoto Protocol, an international treaty linked to the United Nations Framework
Convention on Climate Change (UNFCCC), was agreed in Kyoto, Japan, 1997, and
entered into force in 2005. The CO2 emission reduction targets set for OECD
Annex I countries to the Kyoto Protocol have raised questions about its rationality.
In [4], we tried to evaluate the emission reduction targets in the Kyoto Protocol by

Fig. 3 Diagram indicating the relation between determining factors of the traffic situation in Japan
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reviewing and investigating the energy supply and consumption structure for major
developed and developing countries. The energy supply and consumption are
focused upon these factors such as per capita energy consumption, per capita
emission, and the share of clean energy in the energy supply structure for both 13
OECD and non-OECD Annex I and non-Annex I countries. Arguing that the
emission reduction targets set in the Kyoto Protocol for various Annex I countries
were neither rational nor consistent from the viewpoint of detailed energy data
analysis, we recommended a more rational and simple approach, e.g., a common
per capita emission norm in order to set an emission reduction target.

(5) Agricultural policy data analysis

In Japan, food self-sufficiency ratio has been measured and discussed commonly in
calorie base for a long time as its sharp drop from 69% in 1960 to 39% in 2005,
staying around since then until now, has become a very big political and economic
issue. In [5], we investigate an internationally more common indicator,
“weight-based food self-sufficiency ratio,” which is more favorable for Japan than a
calorie-based one, for a 45-year period from 1961 to 2005. We apply the factorial
component analysis technique in order to measure the affecting and dynamically
changing factors in the weight-based and calorie-based food self-sufficiency ratios.
Thus, we found quantitatively the drivers of those changes. We conclude that
Japanese experience of the drastic decline in its food self-sufficiency ratio during
the above period was caused by the changes in the self-sufficiency ratio of the food
groups/items rather than the quantity of the food supply. Presenting a list of major
food groups and a number of characteristics for these changes, we made clear the
causes of the above problem.

3 Mathematical Modeling Analysis

In the process of quantitative data analysis, various basic statistical theories can be
applied. This process is necessary before we “build” a mathematical model. Once
we find and define problems, necessary approaches (including mathematical
modeling approaches) can be found rather “easily.” When we try to build a
mathematical model, it is necessary to investigate the quantitative data in detail as
the first and preparatory stage. The common and usual process for mathematical
modeling analysis can be expressed as follows: (i) define the problem → (ii)
design the model → (iii) formulate the model → (iv) solve the model → (v)
obtain an “optimal” solution. We need to say that the process for showing the
justification and validity of the model is necessary before we try to apply our
“optimal solution” to solve the problem occurring in the actual system. The diagram
for indicating the common and usual mathematical modeling approach is shown in
Fig. 4.
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Once the problem is defined such that we are interested in solving and finding an
optimal solution, we first design our framework, formulate the problem, and build a
mathematical model. This process is not so difficult when the problem is well and
clearly defined and the quantitative data are available and investigated in detail.

In the public sector, decision making needs to be done when we make policies
and we try to find or decide, e.g., which policy would be more desirable compared
with others. Under such conditions in the public sector, criteria corresponding to the
objective function in the optimization model might not be as clear as maximizing
the profit, minimizing the cost, maximizing the efficiency, and/or minimizing the
loss. Therefore, the criteria in the public sector cannot be applied to the whole
population of the society while some other criteria like equality and fairness may be
required also. We give examples of the mathematical modeling analyses used for
making policies in the public sector.

(1) Optimal location model for the promotion branch offices in the local govern-
ment [6]

We apply the mathematical modeling analysis technique in order to find the optimal
integration of local promotion branch offices in Iwate Prefecture, a local government
in Japan. Defining several indices for indicating the quality of services provided by
local governmental offices, we try to obtain certain leveling for them. For the “de-
mand” side, the indices we consider are the population, area, and the number of towns
and villages, while for the “supply” side, the indexwe take is the number of staff in the
offices. The research problems that we are interested in solving are as follows.

(i) What is the optimal integration of local promotion branch offices in Iwate
Prefecture in Japan?

(ii) How would the optimal integration be changed by choosing different kinds
of “gap indices,” e.g., population gap, area gap?

Fig. 4 Diagram for the mathematical modeling approach
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(iii) Would the optimal integration be changed by choosing combined “gap
indices”?

(iv) How do we evaluate the optimal integration of local promotion branch
offices compared with the current situation?

(v) How can we derive a policy proposal obtained from the optimal integration
by the model analysis?

In order to answer the questions above, we built a mixed-integer type opti-
mization model to minimize the gap between the branch offices with respect to
population and area. First, we define the diagram shown in Fig. 5 where the nodes
correspond to the local branch offices and the edges correspond to the possibility
that the “head” office can be integrated with the “tail” office.

Figure 6 shows how the objective function values can be different for each
optimal solution under a different criterion for each fixed total number of local
branch offices after integration, namely indicating that the optimal solution under
the population gap minimization may be different from another optimal solution
under the area gap minimization.

Then by linearly combining two criteria into the objective function, we try to
investigate how the optimal solution under each criterion can be distant from others.
Also, by adding more criteria such as the staff gap and city gap into consideration,
we conclude that the best integration of local branch offices in Iwate Prefecture
would be the one shown in Fig. 7.

Fig. 5 Diagram of local
promotion branch offices in
Iwate and their integration
possibilities
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Fig. 6 Objective function gap under two criteria

Fig. 7 Best integration of local branch offices in Iwate Prefecture
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(2) Optimal railway track maintenance scheduling model [7, 8]

Japanese Railway Utilities have been evaluated highly due to their services for
especially passengers maintaining safe, reliable, and punctual system as major
transportation utilities in Japan for a long time. We believe that this fact has been
based upon the reliable and sophisticated track maintenance work conducted by
these railway utilities. As seen in [7, 8], we have been building and revising optimal
track maintenance scheduling (OTMS) models to be used actually and practically in
Japanese Railway Utilities in order to maintain the adequate track condition for
achieving the efficient management of the railway service. Our optimization models
have been already used by several major Japanese railway companies to develop
their optimal track maintenance schedule.

Our OTMS optimization model tries to minimize the total maintenance cost by
taking both the track tamping cost and the risk of derailment accidents into account.
Our optimization model is formulated as an all-integer linear programming model
to obtain the optimal railway track maintenance plan. Our model shows quantita-
tively the relation between the tamping cost and the quality level of track irregu-
larities. In [7, 8], we show how to estimate the tamping cost by the quality level of
the track irregularities and also how to estimate the risk of derailment accidents
caused by large track irregularities considering both casualties and the probability
of occurrence. In these papers, we confirm that our models are effective and useful
enough to obtain an optimal track maintenance strategy.

However, once a train accident occurs in the real railway system, the losses
caused by the accidents are huge and enormous not only for the railway company
but also for the society itself. Thus, we can say that it is critically important to
identify measures for quantitatively evaluating the risk of accidents to ensure safe
and stable transportation. We propose a method for estimating the track mainte-
nance cost and related cost associated with the risk of train derailment due to the
railway track irregularities. We also try to show a desirable condition of railway
tracks by applying the accident cost estimation method and the OTMS model to an
actual railway section. Finally, we demonstrate how to apply these models to actual
railway networks in general in addition to several special cases by validating the
estimation results using actual numerical data.

4 Theory Building Analysis

OR theory and techniques have been developed and used to solve various types of
problems occurring in the social system of the society or the real world. In other
words, in order to solve various types of problems we are required to develop a new
theory or a new technique. We give two examples such that the first one has been
considered for a long time, e.g., hundreds of years so far, but is still unsolved even
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now, and the second one is a newly proposed problem that needs to be solved
furthermore for the coming still unsolved problems.

(1) Apportionment problem [9, 10]

In the last 200 years, many apportionment methods have been proposed and var-
ious types of properties, which they should desirably satisfy, have been proposed
and investigated. Given the total number of seats and the distribution of each
constituency’s population, the apportionment problem tries to allocate seats “fairly”
among political constituencies. The apportionment problem can be formulated as
follows: Given the set of N political constituencies as S= f1, 2, . . .Ng, the popu-
lation of political constituency i∈ S as pi, the total population as P, and the total
number of seats as K, the “ideal” number of seats allocated to the constituency i,
i.e., the “exact quota” qi, is given by qi =

piK
P , i∈ S where P= ∑i∈ S pi. Then the

apportionment problem is to partition a given positive integer K into nonnegative
integral parts fdiji∈ Sg such that

∑
i∈ S

di =K; di ≥ 0, integer, i∈ S

and such that these parts are “as near as possible” proportional, respectively, to a set of
nonnegative integers p1, p2, . . . ., pNf g, i.e., q1, q2, . . . ., qNf g.

Let vðdÞ be a monotone increasing function defined for all integers d≥ 0 and
also satisfying d≤ vðdÞ≤ d+1. Then we define the rounding process for the divisor
λ by

pi
λ

h i
r
= di i∈ S

where

v di − 1ð Þ< pi
λ
≤ v dið Þ i∈ S

Defining the rank function r pi, dið Þ as

r pi, dið Þ= pi
v dið Þ i∈ S

then we can write the above relation as

max
di ≥ 0

r pi, dið Þ≤ min
dj >0

r pj, dj − 1
� �

Based upon different divisor functions, we can define an infinite number of
different divisor methods. There are five traditional divisor methods as well as the
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parametric divisor method (PDM). The method of greatest divisors, which we
denote by GDM, was also called the Jefferson method in Balinski and Young’s
papers. The method of major fractions, which we denote by MFM, was called the
Webster method, the equal proportion method (EPM), the harmonic method
(HMM), and the smallest divisor method (SDM) after the names of their advocates,
i.e., the Hill method, the Dean method, and the Adams method, respectively.

Using a parameter t0 such that 0≤ t0 ≤ 1, the divisor function of the parametric
divisor method, which we denote by PDM, can be written as

vPD di, t0ð Þ= di + t0

We generalize the parametric divisor method as follows, which we call the
general parametric divisor method (GPDM).

v di; t0, t1ð Þ= di + t0ð Þt1 di − t0 + 1ð Þ1− t1

where we assume 0≤ t0, t1 ≤ 1. Then traditional divisor methods including PDM
and GPDM and their corresponding global optimization criteria can be summarized
as in Table 1.

Unbiasedness is an important unsolved issue in the apportionment problem. It
may be said that the LFM method would be the most unbiased as it satisfies the
quota property, i.e., difference between allocated number of seats and the real quota
being less than 1, while all other divisor methods do not. However, deciding which
divisor method should be the most unbiased is very difficult to answer correctly as it
is not completely solved yet. We may be able to say that EPM or MFM among the
divisor methods will give closely similar allocations to LFM, and also PDM with
parameter values approximately 0.46≤ t≤ 0.48 will be close to LFM as shown in
[10]. We have been looking for the most unbiased divisor method.

(2) Shortest path counting problem and path counting problem [11, 12]

The shortest path counting problem (SPCP) asks how many shortest paths each
edge of the network N = (V, E) with the vertex set V and the edge set E is contained
in. There are n(n − 1) shortest paths in the network with |V| = n, so among all these
shortest paths, the SPCP requires us to count the number of shortest paths passing
each edge. This implies that we can measure the importance of each edge in the
network. When the network N = (V, E) has certain special structures such as trees,
grid type, circular type, polar type, we can obtain theoretical results for the SPCP in
the form of the explicit expression of the number of shortest paths passing each

Table 1 Divisor methods and parameter values

GDM MFM EPM SDM PDM GPDM

(1,0), (0,1) (1/2,*) (0,1/2), (1,1/2) (0,0), (1,1) (*,0) (*,*)
*Arbitrary
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edge in these networks. Then we consider the weight of the shortest paths for each
edge in the network obtaining explicit expressions and finding their relation to the
median and center location problem in the network. Furthermore, we consider the
optimal connection problem of two networks from the viewpoint of minimizing the
total weight of the shortest paths in the newly combined network. Finally, we can
find the correspondence between these theoretical results of the SPCP and their
implication in the location problems.

As an application of the SPCP, we can measure the “importance of traffic road
segments in Tokyo.” Figure 8 shows the road network of Tokyo.

The Tokyo metropolitan traffic road network in Fig. 8 [11, p. 560] has 529
vertices and 855 edges. Applying the SPCP to the network in Fig. 8 and calculating
the frequency distributions on the weight of edges for each network of Tokyo, we
find that the gap (ratio) between the maximum and the minimum of the weights of
edges is extremely large as around 104. The huge gap results from the assumption
that any shortest path between any two different vertices can be always available
theoretically as each edge in the network has an infinite capacity. Figure 9 [11,
p. 561] shows the cumulative distributions indicating the set of edges belonging to
the corresponding weights interval between the smallest weight and above for each
on the Tokyo metropolitan traffic road network given in Fig. 8. Thus, the first
figure (1) in Fig. 9 corresponds to the original traffic road network given in Fig. 8.
From these cumulative distributions networks, we can see that the actual traffic road
segments appearing in Fig. 9 with the largest weights correspond to the most

Fig. 8 Traffic road network of Tokyo [11, p. 560]
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congested traffic road segments in Tokyo. This implies that highly important traffic
road segments remain in these graphs consecutively and continuously.

Firstly, we assume that a certain number of edges (nodes) are deleted from the
originally given network. Then the path counting problem (PCP) tries to calculate
how many paths exist between any two different nodes in a network after deletion.

Fig. 9 Cumulative distribution of the weight of edges [11, p. 561]
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By applying path counting methods for the PCP, we propose a method for mea-
suring quantitatively the strength of the connectivity (robustness in other word) of
the network-structured system. We define two types of function denoted by the
connectivity function and the expected connectivity function, respectively, for the
given network. Applying the Monte Carlo method, we can estimate the expected
edge (node) deletion connectivity functions when an arbitrary number of edges
(nodes) are deleted from the original network. Thus, we can approximate the
expected edge deletion connectivity function by using an appropriate nonlinear
function with two parameters, which we call the survivability function. We also
show the numerical results of applying path counting methods in order to evaluate
the connectivity quantitatively. The PCP has several different research objectives
such as evaluating the strength of the connectedness of the “lifeline” network
quantitatively, and developing a general methodology for the quantitative evalua-
tion technique. Figure 10 [11, p. 567] shows all the Japanese traffic roads, and we
apply the PCP to this network.

Fig. 10 Traffic road network in Japan [11, p. 567]
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Figure 11 [11, p. 568] illustrates the expected stable-connected functions men-
tioned above for all the prefectures in Hokkaido and the Tohoku regions. We see
that Hokkaido and all six prefectures in Tohoku, which are located in the nothern
part of Japan, show closely similar curves.

We attempt to approximate the expected stable-connected function using the
following function with two parameters p and q which we call the survivability
function.

f ðxÞ= xpq

xpq + 1− xpð Þq

Applying the survivability function to the expected stable-connected functions
for all 47 prefectures’ traffic road networks and estimating the parameters p and q,we
obtain the distribution of the parameter estimates as shown in Fig. 12 [11, p. 572].

5 Summary and Future Perspectives

Dr. Brenda Dietrich, former President of INFORMS, stated1 that we have been
working in the “OR comfort zone” including transportation problems, scheduling
problems, production systems, facility locations, the airline industry where we can

Fig. 11 Expected stable-connected functions for Hokkaido and Tohoku [11, p. 568]

1OR/MS Today, April, 2007.
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find and obtain optimal solutions rather easily from our mathematical modeling
formulation. However, from now on we should “venture outside the OR comfort
zone.” We believe that the application of OR in the public sector should be one of
these areas we should venture into by challenging various types of “complex”
problems as there remain many “unsolved” problems in the public sector including
energy, environment, transportation, traffic, agriculture, social security, medical
policy, education, risk management, natural disaster [13, 14].

Applying OR theory and techniques to solve societal problems, it is true that
mathematical modeling analysis could be one of the strong tools [15]. However, we
believe that the following would be necessary to be considered and paid attention to:

(i) The problems we are interested in solving and the solutions that are required
need to be clearly defined and explained.

(ii) The objectives and reasons for using mathematical models need to be
explained in detail so that people can understand them.

(iii) The decision variables, constraints, and criteria need to be explained by using
“words” people understand.

(iv) The validity and justification of the mathematical models need to be
explained and shown using actual data.

Additionally, when we try to apply mathematical modeling techniques to solve
actual problems, we believe we should not aim at obtaining a model solution and an
optimal solution only. We should rather have a good command of the models by
manipulating them freely and easily. Namely, we should try to derive new insights
and useful information from our model as much as possible. This process will bring

Fig. 12 Parameter estimates for all prefectures in Japan [11, p. 572]
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us the validity of the model and then justify our results. In this sense, sensitivity
analysis would be sometimes a more important and useful tool than finding a model
solution and an optimal solution.

Regarding future prospects and future problems for applying OR theory and
techniques, mathematical model analyses still contain various kinds of “unsolved”
problems. Thus, the applicability of mathematical models in the future is highly
expected as there exist so many fields to which the mathematical modeling
approach has never been applied before.

On the future prospects for OR in the public sector, we still have unexplored
potential applicability in the fields of public policy such as medical health care,
public administration, higher education, science and technology policy, innovation,
IoT and ICT, risk management, global management of natural resources, climate
change, environmental problems, energy problems. These global problems arise in
the areas of environment, energy resources, complex societal problems such as
recycling, information technology industries, natural disasters, and other emergent
risk situations; they all require appropriate policy decision making. They are worthy
challenges to OR researchers. Policy evaluation has also become more necessary,
important, and also very common with the emerging attention to the new public
management (so-called New Public Management (NPM)). Also, much quantitative
data has been gathered and prepared by all Japanese governmental organizations.

We believe that OR theory and techniques should take advantage of data
analysis techniques more carefully and effectively as this approach should be the
first step we need to check before we apply, e.g., modeling techniques, and
moreover this could be easily explained and comfortably understood by the prac-
titioners including administrative decision makers. We know that there are still so
many policy issues and problems that have been neither considered seriously nor
taken up as research issues by OR researchers in spite of the fact that their solutions
are important and urgently needed in the near future. Finally, we conclude the paper
by proposing several future research issues related to our “remaining problems.”
We believe it is desirably effective if we could contribute to improve and develop
certain new ideas and techniques regarding the following items.

• Developing new data analytical or modeling techniques for analyzing complex
societal problems.

• Developing a new theory and some computational techniques to deal with
uncertainty, fuzziness, complexity, drastic and emergent changes, and so on.

• Developing more accurate and justifiable theoretical approaches regarding, e.g.,
the shortest path theory and the apportionment problem.

We hope that OR theory and techniques could contribute more in the future in
challenging and solving urgent, complex, and important societal problems.
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Facility Location and Distribution
Planning in a Disrupted Supply Chain

Himanshu Shrivastava, Pankaj Dutta, Mohan Krishnamoorthy
and Pravin Suryawanshi

Abstract Most facility location models in the literature assume that facilities will

never fail. In addition, models that focus on distribution planning assume that trans-

portation routes are disruption-free. However, in reality, both the transportation

routes and the facilities are subject to various sorts of disruptions. Further, not many

supply chain models in the literature study perishable products. In this paper, we

address issues of facility location and distribution planning in a supply chain network

for perishable products under uncertain environments. We consider demand uncer-

tainty along with random disruptions in the transportation routes and in the facili-

ties. We formulate a mixed-integer optimisation model. Our model considers several

capacitated manufacturers and several retailers with multiple transportation routes.

We investigate optimal facility location and distribution strategies that minimise the

total cost of the supply chain. We demonstrate the effectiveness of our model through

an illustrative example and observe that a resilient supply chain needs to have a dif-

ferent design when compared to a disruption-free supply chain. The effects of various

disruption uncertainties are also studied through statistical analysis.
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1 Introduction

A supply chain (SC) must perform its planned operations effectively and efficiently

and remain competitive in global markets. Thus, a SC has to consider multiple objec-

tives such as (a) an increased level of responsiveness, (b) a reduction in the overall

cost of the supply chain cost and (c) better distribution management [1]. Supply

chain planning decisions are categorised on the basis of the time horizon into strate-

gic, tactical and operational. According to Simchi et al. [2], strategic decisions will

be long-term decisions and, typically, this includes the location of plants, the num-

ber and location of warehouses, the modes of transportation, the product that is to

be manufactured or stored at various locations and the types of information sys-

tems that need to be employed. Tactical decisions reflect mid-term planning scenar-

ios and deal with procurement contracts, production schedules and guidelines for

meeting quality and safety standards. Operational decisions include planning that

is related to machine/personnel/vehicle scheduling, sequencing, lot sizing, defining

vehicle routes and so on.

The design of a supply chain network is an important aspect of supply chain man-

agement. This primarily involves the determining of facility location and distribution

strategies in the supply chain. In the review paper, Melo et al. [3], the authors empha-

sise the role that facility location decisions play in the making of strategic supply

chain decisions. Klibi et al. [4] describe a design of the supply chain network (SCN)

by considering uncertain factors; they present a comprehensive review of the natu-

ral environmental factors that are responsible for SC disruptions. The paper covers

aspects of SC modelling under uncertainty, robustness and resilience.

Qiang et al. [5] state, “supply chain disruption risk[s] are the most pressing

issue[s] [that are] faced by firms in today’s competitive global environment”.

Baghalian et al. [6] point out that disruptions are inevitable and are present in most

business scenarios. One of the highlights of the World Economic Forum Report

(2013) about global risk indicates that extreme weather events, major natural disaster

and weapons of mass destruction can hinder the working of supply chains, which,

in turn, results in financial losses to the industry. The report shows that there is, on

an average, a 7% reduction in the share price of the affected companies [7]. This is

alarming and indicates the pressing need for SC professionals to modify the exist-

ing working style and improve upon mitigation policies for the management of SC

glitches. SC disruptions can be classified as “high-likelihood-low-impact, medium-

likelihood-moderate-impact and low-likelihood-high-impact” [8, 9]. Further, Ray

et al. [9] proposed an optimal ordering policy for sourcing decisions under disruption

by maximising the expected profit and simultaneously minimising the buyers vari-

ance in a two-echelon SC structure. On the other hand, Ferrari [10] tries to ascertain

the causes of major supply chain disruptions. The authors conclude by stating that

“supply chain disruption remains a key executive level concern, and disruption takes

on many dimensions, including lost business and industry competitive dimensions”.
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One of the early studies on facility location considering disruption was carried by

Drezner et al. [11]. The authors used the reliability theory in order to capture the dis-

ruption effect. The authors had considered a predetermined probability of failure in

facilities which were unreliable and could fail at any time. Ivanov et al. [12], in their

recent study on SC disruption review, constructed a “risk-recovery” matrix that pri-

marily includes the prominent risks that are responsible for the disruption in the SC

and recovery strategies that are followed by various authors. The authors have also

explained the various methodologies that are implemented to mitigate consequences

due to SC disruptions.

Gupta et al. [13] proposed a stochastic programming-based approach in order

to plan for manufacturing decisions that are termed as “here-and-now” decisions,

which are made before the realisation of the demand. The logistics decisions, which

are termed as “wait-and-see”, are made when practitioners realise the uncertainty

in the demand pattern. The authors have used the CPLEX optimisation solver, and

the framework is illustrated using a real-life case study. Nasiri et al. [14] proposed

two models for the designing of an optimal supply chain distribution network under

demand uncertainty. Location and allocations decisions are made in the first model,

while decisions that are related to production plan, such as production quantity, are

made in the second model. The authors used a mixed-integer nonlinear model and

solved it using the Lagrangian approach. Tang et al. [15] proposed robust strategies

in order to handle disruption scenarios. Outlining the two properties for the strate-

gies, the author stated, “(a) these strategies will manage the inherent fluctuations

efficiently regardless of major disruptions, and (b) these strategies will make the

SC more resilient in the face of major disruptions”. Claypool et al. [16] designed a

supply chain network for a new product in which the novelty lies in the combining

of the effects of risk due to product development and due to SC. Sadghiani et al.

[17] developed a retail SCN by considering operational and disruption risks. The

authors validated the model by using illustrative examples and a real-life case study

in retail SC. A review study by Snyder et al. [18] in the field of supply chain net-

work design under disruptions describes various modelling approaches in the con-

text of SC disruptions. The authors gathered 180 research articles under the four

disruption-mitigating categories, namely “(a) mitigating disruption through inven-

tories; (b) mitigating disruptions through sourcing and demand flexibility; (c) mit-

igating disruptions through facility location and (d) mitigating disruptions through

interaction with external partners.”

The impact of disruption in global SC is extravagant in its magnitude, because

the impact in this case trickles between interlinked countries. Therefore, global enter-

prises should mitigate these disruptions and reduce vulnerabilities to disruption with

resilient techniques. Mitigating disruptions has become an important research issue

in the recent past [18–20].
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The literature that has been discussed has been limited to “regular products”,

for which perishability is not a major concern. India stands second in the produc-

tion of fruits and vegetables in the world, after China.
1

Moreover, the SC chal-

lenges of perishable goods are unexceptional when compared to the regular prod-

ucts, because the value of the product deteriorates significantly over time. In addition

to quality-level challenges, the production and distribution of perishable goods are

non-administrable. Furthermore, economic chocks, government implication, prod-

uct varieties and management issues are unavoidable in the overall working of an SC.

Shankar et al. [21] and Nasiri et al. [14] have developed a production–distribution

problem under demand uncertainty for regular products. However, the diminishing

value of the product is not taken into consideration. The review article on agri-food

SC that was proposed by Ahumada and Villalobos [22] sheds light on the mathe-

matical models that are developed in order to address SC-related challenges for both

non-perishable and fresh products. Authors Pathumnakul et al. [23] addressed the

inventory problem of cultivated shrimp and attempted to ascertain the optimal har-

vest that could maximise a farmer’s bottom line by optimising the SC cost. Along

similar lines, authors Lin et al. [24] discussed the optimal inventory levels, the price

and the profit in the white shrimp SC industry in Taiwan. Negi et al. [25] studied the

SC of the fruits and vegetables sector in India and addressed the following objec-

tives: “(a) to identify the factors affecting [the] supply chain of fruits and vegetables

sector in India and (b) to suggest mitigation strategies for the identified challenges

in [the] supply chain of fruits and vegetables sector”. In India, the food and gro-

cery industries account for approximately 31% of India’s consumption basket. This

industry is currently valued at USD 39.71 billion and is expected to reach USD 65.4

billion with a Compounded Annual Growth Rate (CAGR) of 11% by 2018.
2

The most cited examples (from the literature) of disruptions that severely affected

the operations of SC in the past are Hurricane Katrina and Hurricane Rita in 2005

on the US Gulf Coast. These natural calamities had crippled the oil refineries and

resulted in huge losses. The adverse effects were also palpable due to the destruction

of large quantities of lumber and coffee produce, and the rerouting of bananas and

other fresh produce [20]. The destruction highlighted the fact that, in the future, the

designing of an SC network that is resilient to disruption is important. This research

article is motivated by the need to quantify and mitigate the effects of disruptions in

SC in the case of perishable products.

Shrivastava et al. [26] have studied the resilient supply chain network of the per-

ishable product under random disruptions. The objective of their paper is “to address

some practical issues of decision-making under uncertain environments; the focus is

the designing of an optimal supply chain distribution network for perishable products

under uncertain demand”. They considered the disruption in the transportation links

and formulated a mixed-integer optimisation model. However, they have assumed

that the facilities are disruption-free. In reality, the facilities are also prone to dis-

ruption risks. In such a case, it could be challenging to determine the location of the

1
http://mofpi.nic.in/documents/reports/annual-report.

2
http://www.ibef.org/industry/indian-food-industry.aspx.

http://mofpi.nic.in/documents/reports/annual-report
http://www.ibef.org/industry/indian-food-industry.aspx
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facility when it is subjected to disruption risks. Another limitation of their study is

that they have considered only single transportation routes between the supply chain

entities. In reality, there could be multiple routes of transportation with the possibil-

ity of different risks of disruptions in each route.

The present paper extends the study of Shrivastava et al. [26] by considering mul-

tiple routes of transportation and disruption in facilities. The paper also examines the

supply chain network for the perishable product under uncertain demand. The aim

is to determine optimal facility locations and a distribution strategy in which the

transportation routes and the facilities are subjected to disruption risks.

We have organised the rest of the sections of the study as follows: Sect. 2, which

deals with the problem description and model formulation; Sect. 3, which presents

an illustrative example of the developed model; Sect. 4, which presents the uncer-

tainty analysis and Sect. 5, which concludes our study and suggests an area for future

research.

2 Problem Description and Model Formulation

In this paper, we assume a two-echelon single-period supply chain system that con-

sists of several manufacturers and retailers. The manufacturer produces a single prod-

uct that is perishable. The demands are realised by the retailers, who anticipate their

demand and order it from the manufacturer at the start of the period. The potential

location and the capacities of the manufacturers are known in advance. There are

multiple routes of transportation between each manufacturer and retailer. We assume

that these transportation routes are subjected to disruptions, as a result of which some

quantity of finished goods may be fully or partially lost in the transportation routes.

Also, the manufacturing units are assumed to be prone to disruptions. If disruption

occurs in the manufacturing units, the units may fully or partially lose their capac-

ities. In order to ensure a full supply to the retailer, the manufacturers outsource

the disrupted quantity from a third party manufacturer. It is assumed that the third

party manufacturer has infinite capacity. We assume that demand and disruption are

uncertain and follow a known probability distribution function. In this paper, we

use the mixed-integer programming approach to formulate the mathematical model

that determines the optimal supply chain structure under probabilistic disruptions.

We also intend to determine a suitable distribution planning, while minimising the

total supply chain’s cost. We use the following notations to formulate mathematical

model:

Indices:

m ∈ M ⟶ The set of potential locations for manufacturers;

r ∈ R ⟶ The set of retailers;

f ∈ F ⟶ The set of transportation routes;
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Decision variables:

ym ⟶ Binary variable equals 1 if manufacturer is open at candidate locationm and 0 otherwise;
xmrf ⟶ Quantity of final product shipped from manufacturerm to retailer r through route f ;

xm𝜂 ⟶ Quantity shipped from third party manufacturer to primary manufacturerm;

Parameters:

Fm ⟶ Manufacturer’s fixed opening cost at candidate locationm;
Dr ⟶ Demand at retailer r;
E(Dr) ⟶ Expected demand at retailer r;
F(Dr) ⟶ Cumulative distribution function ofDr;
Kr ⟶ Handling cost per unit at retailer r which includes holding cost and processing/packaging cost;
𝜙m ⟶ Capacity of manufacturerm;
Lm ⟶ Sum of unit production and unit holding cost at manufacturerm;
B ⟶ Budget limit of opening manufacturer’s facilities;

Cmrf ⟶ Unit cost of transportation from manufacturerm to retailer r through route f ;

Cm𝜂 ⟶ Unit cost of transportation from third party manufacturer to primary manufacturerm;

𝜃m ⟶ Percentage of capacity disrupted at manufacturerm;
𝛾mrf ⟶ Fraction of supply disruption in the transportation route f betweenm and r;

𝜐 ⟶ Unit penalty cost of disruption;

Ω ⟶ Desired level of fill rate;

CS ⟶ Unit shortage cost to retailer;

CE ⟶ Unit excess cost to retailer.

We assume that 𝛾mrf and 𝜃m follow a certain known distribution whose mean and

standard deviation are known in advance. We deployed the same formulation style

as used by Shrivastava et al. [26].

The total cost of the supply chain from manufacturer m to retailer r through
route f :

Fm ⋅ ym + Lm ⋅ xmrf + Cmrf ⋅ xmrf + 𝛾mrf ⋅ xmrf ⋅ 𝜐 + ym ⋅ xm𝜂 ⋅ Cm𝜂 (1)

The first term in Eq. (1) indicates the fixed opening cost of the manufacturer’s facili-

ties, and the second term denotes the production and holding costs at manufacturerm,

while the third term indicates the transportation cost from manufacturer m to retailer

r. The fourth term in the above equation denotes the penalty cost due to disruption

in the transportation routes. If disruption occurred 𝛾mrf % of supply is assumed to be
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disrupted. Hence, the quantity arriving at the retailer r is (1 − 𝛾mrf ) ⋅ xmrf . The last

term in the above equation computes the transportation cost from third party man-

ufacturer’s location to primary manufacturer’s locations when the disruption occurs

at the primary manufacturing units.

The total cost at retailer r:

∑

m∈M

∑

f∈F
Kr ⋅ (1 − 𝛾mrf ) ⋅ xmrf + CE

( ∑

m∈M

∑

f∈F
(1 − 𝛾mrf ) ⋅ xmrf − Dr

)+

+ CS

(
Dr −

∑

m∈M

∑

f∈F
(1 − 𝛾mrf ) ⋅ xmrf

)+

(2)

where, A+
= max {A, 0}.

In retailer’s total cost expression, first term denotes the handling cost (which is a

combination of holding cost and processing/packaging cost) while the second term

is the excess cost and the last term is the shortage cost. To capture the product per-

ishability, we are using news vendor concept [27–30] for managing inventory at the

retailer. Equation (2) is simplified by using the following equations:

(
∑

m∈M

∑

f∈F
(1 − 𝛾mrf ) ⋅ xmrf − Dr

)+

= ∫
∑

m∈M
∑

f∈F(1−𝛾mrf )⋅xmrf

0
F
(
Dr

)
dDr (3)

(
Dr −

∑

m∈M

∑

f∈F
(1 − 𝛾mrf ) ⋅ xmrf

)+

=
( ∑

m∈M

∑

f∈F
(1 − 𝛾mrf ) ⋅ xmrf − Dr

)+

−
∑

m∈M

∑

f∈F
(1 − 𝛾mrf ) ⋅ xmrf + E(Dr) (4)

From Eqs. (3) and (4), the final expression of total cost at retailer r(Tr) is:

Tr =
∑

m∈M
Kr ⋅ (1 − 𝛾mrf ) ⋅ xmrf + CE

(

∫
∑

m∈M
∑

f∈F (1−𝛾mrf )⋅xmrf

0
F
(
Dr

)
dDr

)

+CS

(

∫
∑

m∈M
∑

f∈F (1−𝛾mrf )⋅xmrf

0
F
(
Dr

)
dDr −

∑

m∈M

∑

f∈F
(1 − 𝛾mrf ) ⋅ xmrf + E(Dr)

)
(5)

The total cost of the supply chain is the sum of Eqs. (1) and (5), and on rearranging

the resulting equation, we get the following mathematical model:
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Objective function:

Min U =
∑

m∈M
Fm ⋅ ym +

∑

m∈M

∑

r∈R
Pm ⋅ xmrf +

∑

r∈R

∑

m∈M
Cmrf ⋅ xmrf

+
∑

r∈R

∑

m∈M
𝛾mrf ⋅ xmrf ⋅ 𝜐mrf +

∑

m∈M
ym ⋅ xm𝜂 ⋅ Cm𝜂

+
∑

r∈R

∑

m∈M
Kr ⋅ (1 − 𝛾mrf ) ⋅ xmrf

+
(
CE + Cs

)
[
∑

r∈R

(

∫
∑

m∈M(1−𝛾mrf ) ⋅ xmrf

0
F
(
Dr

)
dDr

)]
(6)

−CS

[
∑

r∈R

(
∑

m∈M
(1 − 𝛾mrf ) ⋅ xmrf − E(Dr)

)]

Subject to:

∑

r∈R

∑

f∈F
xmrf ≤ xm𝜂 +

(
(1 − 𝜃m)ym

)
𝜙m ; ∀ m ∈ M ; ∀ f ∈ F (7)

∑

m∈M
Fm ⋅ ym ≤ B (8)

Ω ≤
∑

f∈F
∑

m∈M(1 − 𝛾mrf ) ⋅ xmrf
E(Dr)

; ∀ r ∈ R (9)

xmrf ≥ 0 ; ∀ m ∈ M, ∀ r ∈ R, ∀ f ∈ F (10)

ym ∈ {0, 1} ∀ m ∈ M (11)

The objective function minimises the total cost of the supply chain network. Con-

straint Eq. (7) imposes disruption capacity constraint which ensures that the supply

to the retailer should not be affected by the disruption at the manufacturing facili-

ties. Equation (8) represents the budget limit. Constraint Eq. (9) ensures that service

level should be greater or equal toΩ%. Constraint Eq. (10) and Eq. (11), respectively,

impose the non-negativity and binary restrictions.

The decision variables address the optimal network structure. The decision

variable in our model includes binary variables that represents the existence of man-

ufacturers and the continuous variable that represent the material flow from manu-

facturers to retailers.

The mathematical model explained above is nonlinear due to its nonlinear objec-

tive function described in Eq. (6). The term responsible for nonlinearity is ym ⋅ xm𝜂 .
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To handle this nonlinearity, we define new variable, Ξm, such that Ξm = ym ⋅ xm𝜂 , and

add the following additional constraints to the model:

Ξm ≤ xm𝜂 ; ∀ m ∈ M (12)

Ξm ≤ N ⋅ ym ; ∀ m ∈ M (where N is a large number) (13)

Ξms ≥ xm𝜂 + N ⋅ (ym − 1) ; ∀ m ∈ M (14)

We assume demand to be uniformly distributed. However, the model can be used

for other distributions too. The uniform demand distribution, F(D), in the interval

[a, b] is given as:

F(D) = D − a
b − a

a ≤ D ≤ b (15)

Substituting F(D) in the objective function, the resulting expression is:

Min U =
∑

m∈M
Fm ⋅ ym +

∑

m∈M

∑

r∈R

∑

f∈F
Lm ⋅ xmrf +

∑

r∈R

∑

m∈M

∑

f∈F
Cmrf ⋅ xmrf

+
∑

r∈R

∑

m∈M

∑

f∈F
𝛾mrf ⋅ xmrf ⋅ 𝜐 +

∑

m∈M
ym ⋅ xm𝜂 ⋅ Cm𝜂

+
∑

r∈R

∑

m∈M

∑

f∈F
Kr ⋅ (1 − 𝛾mrf ) ⋅ xmrf

+
(
CE + Cs

)
⎡
⎢
⎢
⎢⎣

∑

r∈R

⎛
⎜
⎜
⎜⎝

(∑
m∈M

∑
f∈F(1 − 𝛾mrf ) ⋅ xmrf

)2

2 ⋅ (br − ar)

−ar ⋅

(∑
m∈M

∑
f∈F(1 − 𝛾mrf ) ⋅ xmrf

)

br − ar

⎞
⎟
⎟
⎟⎠

⎤
⎥
⎥
⎥⎦

−CS

[
∑

r∈R

(
∑

m∈M

∑

f∈F
(1 − 𝛾mrf ) ⋅ xmrf − E(Dr)

)]

(16)

subject to: Eqs. (7)–(11) and Eqs. (12)–(14).

The above expression is quadratic expression, and hence we have mixed-integer

quadratic model.
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3 Illustrative Example

In this section, we validate our model through a two-echelon supply chain design,

which is subjected to disruption risks at facilities and transportation routes. We con-

sider four manufacturing units and five retail zones and assume that there are two

routes from each manufacturing unit to each retail zone. We solved our model by

using the default settings of the CPLEX optimisation solver. The input parameters

of the problem are shown in Tables 1 and 3. The unit excess cost and unit shortage

cost are assumed to be 1 and 2, respectively. The disruption in the transportation

routes and facilities are characterised by 𝛾 and 𝜃, respectively. The disruption prob-

ability matrix (𝛾) for both the routes is shown in Table 2. 𝜃 for m1 is assumed to be

0.35, while it is 0.20, 0.05 and 0.15 for m2, m3 and m4, respectively.

The total cost of the supply chain is 44,980. It is observed that this design (which

is the resilient design) selects all the four manufacturers. The quantity shipment deci-

sions from the manufacturing units to the retailers are shown in Table 4. The quantity

that needs to be outsourced from the third party manufacturer are 35, 30, 0 and 0 for

manufacturerm1,m2,m3 andm4, respectively. We have also analysed the disruption-

free design. In the disruption-free design, 𝛾 and 𝜃 are considered to be zero. The total

cost of the supply chain for the disruption-free design is 41,330. This disruption-

free design selects only three manufacturers, m2, m3 and m4. The quantity shipment

decisions from the manufacturing units to the retailers are shown in Table 5. Here

it should be noted that the supply chain network structure that is obtained for the

Table 1 Manufacturers and retailers input parameters

Manufacturers Retailers

Manufactuer Capacity Fixed opening

cost

Per unit

production

cost

Retailer Handling cost

m1 100 2000 30 r1 9

m2 250 3500 35 r2 12

m3 180 2000 40 r3 9.5

m4 200 2500 37 r4 10

r5 11

Table 2 Disruption probabilities

Supply disruption probability in route f1 Supply disruption probability in route f2

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

m1 0.02 0.04 0.03 0.04 0.01 m1 0.3 0.25 0.1 0.17 0.15

m2 0.04 0.02 0.04 0.05 0.03 m2 0.22 0.16 0.12 0.26 0.27

m3 0.05 0.02 0.04 0.05 0.03 m3 0.15 0.1 0.8 0.05 0.07

m4 0.07 0.03 0.3 0.2 0.02 m4 0.07 0.03 0.3 0.2 0.02
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Table 4 Distribution decisions in resilient model

Quantity shipment through route f1: Quantity shipment through route f2:

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

m1 100 0 0 0 0 m1 0 0 0 0 0

m2 0 0 103.1 25.7 0 m2 21.2 0 0 0 0

m3 0 113.5 0 0 0 m3 0 0 0 57.7 0

m4 0 0 0 0 0 m4 0 69 0 0 100

Table 5 Distribution decisions in disruption-free model

Quantity shipment through route f1: Quantity shipment through route f2:

r1 r2 r3 r4 r5 r1 r2 r3 r4 r5

m1 0 0 0 0 0 m1 0 0 0 0 0

m2 0 0 70.8 0 0 m2 100 0 0 79.2 0

m3 0 0 28.2 0 0 m3 0 96 0 0 0

m4 21 0 0 0 0 m4 0 82.2 0 0 100

resilient supply chain is different from the disruption-free supply chain. The resilient

supply chain selects all four manufacturers, while the disruption-free supply has only

three manufacturers. Also, the total cost of the resilient supply chain is 8% higher

than that of the disruption-free supply chain.

We further analyse the effect of fill-rate measures on the total cost of the supply

chain. We observed that as the fill rate increases the total cost of the supply chain

also increases. The variation of the total SC with the fill-rate measures is observed

through the graph shown in Fig. 1.

Fig. 1 Variation of the total SC cost with fill rate
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Fig. 2 Percentile analysis of the total SC’s cost

4 Uncertainty Analysis

This section analyses the disruption effects that are present in the facilities and the

transportation routes. We have assumed that these disruptions are uncertain and that

they follow a normal distribution with known mean and variance. On executing a

simulation of 1000 iterations by using @Risk,
3

the uncertainty effect (due to dis-

ruptions in the manufacturing facilities and in the transportation routes) is analysed

through various graphs (Figs. 2 and 3).

The graph shown in Fig. 4 represents the overall nature of the objective func-

tion (the total cost of the supply chain). The Kolmogorov–Smirnov normality test

is performed on the 1000 observed data of the total cost of the supply chain, and it

is found that the outcome is also normal. Through simulation and t-test analysis by

using @Risk, it is observed that the overall cost of the supply chain would lie between

44,972.7 and 44,989.6 with 90% confidence. The chance that the total cost exceeds

44,989.6 is only 5%. Figure 2 statistically summarises the objective function.

We now analyse the effect of the uncertain parameters, 𝛾 and 𝜃 on the supply

chain by using the tornado graph. Figure 3 shows the tornado graph of top five most

dominated uncertain parameters. In this figure, we calculated the variability on the

total cost due to uncertainty in the parameters using the simulation output of the

Pearson coefficient value. The 𝛾 in the transportation route, f2, which is between

m4 and r3, is highly effective and causes a huge variation in the total cost of the

supply chain. In other words, this is the most risky route. The route f1, between

m4 and r3, causes approximately 63.5% variability in the total cost of the supply

chain. However, route f1, between m4 and r3, is less risky than route f2, because the

variation in the cost of its supply chain is lesser. This route is responsible for 11%

variation in the total cost. This route is best for the risk-averse decision maker, while

the risk-seeking decision maker could choose route f2. Similarly, the least variation

3
http://www.palisade.com/risk/.

http://www.palisade.com/risk/
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Fig. 3 Effect of uncertainty on supply chain’s total cost

Fig. 4 Variation in supply chain’s total cost due to uncertain disruptions

in the total cost of the supply chain is observed in route f1, between m1 and r2. The

Pearson coefficient in this route is negative, and the variability due to this route is

2.7%. It should be noted that the disruption in facilities causes very less variation in

the total cost, and hence, the uncertainty effect of 𝜃 is not dominant.

5 Conclusions and Future Work

In this paper, we have extended the model of Shrivastava et al. [26] and formulated

the problem of facility location and the allocation of a two-echelon supply chain

system under uncertainty as a mixed-integer quadratic model. The model addresses
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the decision variable, which corresponds to the location of the manufacturer and the

quantity flow from the manufacturer to the retailer. We have considered disruption

in the transportation routes and in the facilities, simultaneously. During disruptions,

the manufacturing facilities may fully or partially lose their capacity. In order to

ensure full supply to the retailer, we assumed that the manufacturer outsources its

disrupted capacity from the third party manufacturer. We observed that the supply

chain decisions in the resilient model and the disruption-free model are not same.

We have also carried out an extensive analysis of the uncertain disruptions that are

present in the transportation link between the manufacturers and the retailers, and

in the manufacturing facilities. We have statistically studied the overall nature of the

cost function. In the current parameter setting, we have found that the disruption

parameter, 𝛾 , is highly effective in the link, f2, which is between m4 and r3; this

parameter also causes a large amount of variation in the cost function.

Realising a more realistic supply chain that has a greater number of echelons

could be a possible extension of this study. We have assumed a single-product and

single-period model, which can be extended for multi-products and multi-periods.

Along with demand and disruption uncertainties, cost parameter uncertainties can

be considered as well.
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A Hybrid Heuristic for Restricted
4-Dimensional TSP (r-4DTSP)

Arindam Roy, Goutam Chakraborty, Indadul Khan, Samir Maity
and Manoranjan Maiti

Abstract In this paper, we proposed a hybridized soft computing technique to solve

a restricted 4-dimensional TSP (r-4DTSP) where different paths with various num-

bers of conveyances are available to travel between two cities. Here, some restrictions

on paths and conveyances are imposed. The algorithm is a hybridization of genetic

algorithm (GA) and swap operator-based particle swarm optimization (PSO). The

initial solutions are produced by proposed GA which used as swarm in PSO. The

said hybrid algorithm (GA-PSO) is tested against some test functions, and efficiency

of the proposed algorithm is established. The r-4DTSPs are considered with crisp

costs. The models are illustrated with some numerical data.

Keywords Hybrid algorithm ⋅ GA-PSO ⋅ r-4DTSP

1 Introduction

Optimization has been an active area of research for several decades. In optimiza-

tion, the TSP is one of the most intensively studied problems. TSP is a well-known

NP-hard combinatorial optimization problem [1]. Different types of TSPs have been

solved by the researchers during last two decades. These are TSPs with time windows

[2], stochastic TSP [3], double TSP [4], asymmetric TSP [5], TSP with precedence
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constraints [6], etc. All these developed TSPs are two-dimensional. Recently, dif-

ferent types of classical 2D, 3D (solid) TSPs are studied by Maity et al. [7, 8] in

different uncertain environments. Nowadays, real-world optimization problems are

increasingly complex, and better algorithms are always needed to solve them. TSPs

require a great powerful heuristics learning technique to find the near-optimal solu-

tions. The research on the efficient algorithm for TSP is still a frontier subject.

In real life, for travelling from one city to another, different paths are available with

a set of conveyances at each station. In that case, a salesperson has to design the tour

for minimum cost maintaining the TSP conditions and using the appropriate paths

with suitable conveyances at different cities. This problem is called 4-dimensional

TSP (4DTSP), which involves ‘paths’ and ‘vehicles’ between two cities—from ‘ori-

gin’ to ‘destination.’ Again, it is not always possible to travel in a particular path or

vehicles; i.e., the number of alternatives paths and vehicles is not same at different

stations. For this reason, it is designed as a restricted 4DTSP (r-4DTSP).

The intelligent algorithm is another resolution for TSP. The motivation behind

hybridizations of different algorithmic concepts is usually to obtain better-performing

systems that exploit and unite advantages of the individual pure strategies; i.e., such

hybrids are believed to be benefited from synergy. Recently, some intelligent algo-

rithms such as anterior artificial neural network [9], particle swarm optimization

(PSO), and the combinations of ACO with simulated annealing (SA) [10] have been

applied for TSP. A survey of hybrid metaheuristics in combinatorial optimization by

Bluma et al. [11] is done. Also, a novel imperialist competitive algorithm for gener-

alized TSP has been proposed by Ardalan et al. [12]. Psychas et al. [13] are advised

a hybrid evolutionary algorithm for the multi-objective TSP.

PSO is a population-based swarm intelligence algorithm that was proposed by

Kennedy and Eberhart [14]. This algorithm simulates the ability of bird flocking

and fish schooling, organizing a heuristic learning mechanism to achieve various

goals [15–17]. The PSO algorithm involves a simple learning strategy that efficiently

selects the best solution from particle positional values. Different kinds of discrete

PSO are developed by researchers to solve many discrete optimization problems.

Wang et al. [18] proposed swap operator-based discrete PSO to solve TSP. Again,

Mahi et al. [19] developed a new hybrid method based on PSO-ACO-3-Opt for solv-

ing TSP. Marinkis et al. [20] proposed a hybrid PSO for vehicle routing problem.

Proposed hybrid heuristic algorithm which is the combination of GA and PSO

to solve the r-4DTSP. Here initial solutions are given by GA, then PSO which uses

swap sequence and swap operator on different nodes for update the solution. For the

GA, classified the fitness of the chromosomes, then each chromosome has a linguis-

tic value—Very Very Small (VVS), Very Small (VS), Small (S), Medium (M), High

(H), Very High (VH), and Very Very High (VVH). According to the linguistic values,

probability of crossover pc is created of each chromosome. Comparison crossover

[7] and a new generation-dependent random mutation are also implemented in the

present algorithm. The proposed algorithm is tested with standard data set from

TSPLIB [22] against the simple GA (SGA) which is the combination of Roulette

Wheel Selection (RWS), cyclic crossover, and random mutation, and hence, the effi-

ciency of the new hybrid algorithm is established.
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2 Mathematical Preliminaries

Rough Variable [21]

Let (Λ,Δ, 𝜅,Π) be a rough variable 𝜉 which is a measurable function from the rough

space (Λ,Δ, 𝜅,Π) to the set of real numbers, i.e., for every Borel set(B) of ℜ, {𝜆 ∈
Λ|𝜉(𝜆) ∈ B} ∈ 𝜅.

Here, first time the trust measure for 7-point scale of the rough event ̂𝜉 ≥ r, Tr{ ̂𝜉 ≥

r} and its function curve is presented, where r is a crisp number and ̂
𝜉 is a rough

variable given by ̂
𝜉 = ([a, b], [c, d]), 0 ≤ c ≤ e ≤ f ≤ a ≤ b ≤ g ≤ h ≤ d.

Tr{ ̂𝜉 ≥ r} =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 for d ≤ r
(d−r)
4(d−c)

for h ≤ r ≤ d
(d−r)
4(d−c)

+ (h−r)
4(h−e)

for g ≤ r ≤ h
1
4
( (d−r)
(d−c)

+ (h−r)
(h−e)

+ (g−r)
(g−f )

) for b ≤ r ≤ g
1
4
( (d−r)
(d−c)

+ (h−r)
(h−e)

+ (g−r)
(g−e)

+ (b−r)
(b−e)

) for a ≤ r ≤ b
1
4
( (d−r)
(d−c)

+ (h−r)
(h−e)

+ (g−r)
(g−e)

+ 1) for f ≤ r ≤ a
1
4
( (d−r)
(d−c)

+ (h−r)
(h−e)

+ 2) for e ≤ r ≤ f
1
4
( (d−r)
(d−c)

+ 3) for c ≤ r ≤ e
1 for r ≤ c.

(1)

3 Proposed Hybrid GA-PSO

We propose an evolutionary hybrid algorithm, GA-PSO using the swap sequence-

based PSO with rough set-based rank selection (7-point), comparison crossover, and

generation-dependent random mutation. The proposed GA-PSO and its procedures

are presented below.

3.1 Representation

Here, a complete tour of N cities represents a solution of ants. So, an N-dimensional

integer vector Xi = (xi1, xi2, ..., xiN), Yi = (ri1, ri2, ..., ris), and Zi = (vi1, vi2, ..., viP)

are used as cities with route, and vehicles to represent a solution, where xi1, xi2, ...,

xiN represent N consecutive cities in a tour. In the algorithm, initially GA is used to

produce a set of paths (tours) for the salesman which is a set of potential solutions

for the PSO part of the algorithm.
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3.2 GA

3.2.1 Rough Set-Based Rank Classification

After finding the initial solution, we rank the fitness and then classify the rank

depending on the minimum, average, and maximum rank. Since rank is represented

by crisp values, we construct the common rough values from it,

Rough Rank = ([r1 × avg rank, r2 × avg rank], [r3 × avg rank, r4 × avg rank]),

where r1 =
Max−Avg

Avg
, r2=

Max+Min
2

, r3=
Max−Min

2
, r4=

Avg−Min
Avg

.

According to the rank of the chromosome, it belongs to any one of the common

rough rank values and corresponding pc’s are created of each chromosome as VVL,

VL, L, M, H, VH, VVH.

3.2.2 Comparison Crossover

(i) Determination of Probability of Crossover (𝐩𝐜): For a pair of chromosomes

(Xi,Xj), we construct the following rough set. At first, the states of Xi and Xj, i.e.,

(VVS, VS, S, M, H, VH, VVH ), are determined by making trust measures of rough

values w.r.t their ranks in common rough rank region given in Eq. (1). After the

determination of states of rank intervals of the chromosomes, their crossover prob-

abilities are determined as linguistic variables (VVL, VL, L, H, VH, VVH) using

rough trust measures which are presented in Table 1 following Eq. (1).

(ii) Crossover Mechanism: For crossover, we choose two individuals (parents) to

produce new individuals (child). To get optimal result of a TSP, we compare the cost

between two corresponding cities and minimum cost route will be taken using the

following algorithm (cf. [7]).

Table 1 Rough-extended trust-based linguistic

Gene VVS VS S M H VH VVH

VVS VVL VL VL L VL VL VVL

VS VL VL L M L VL VL

S VL L L H L L VL

M L M H VH H M L

H VL L L H L L VL

VH VL VL L M L VL VL

VVH VVL VL VL L VL VL VVL
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3.2.3 Generation-Dependent Random Mutation

(a) Generation-Oriented Mutation (Variable Method): Here, we model a new

form of mutation mechanism where probability of mutation (pm) is determined by

pm = k
√
1 + Current generation number

, k ∈ [0, 1].

(b) Selection for Mutation: For each solution of P(t), generate a random number r
from the range [0, 1]. If r < pm, and then the solution is taken for mutation. Here,

pm decreases gradually as generation increases. After calculating the pm, mutation

operation follows the conventional random mutation.

3.3 Particle Swarm Optimization (PSO)

After finding the paths by above GA, we use the swap sequence for updating the

paths. A PSO normally starts with a set of potential solution (called swarm) of the

decision-making problem [14] .

For the TSP where swap sequence and swap operations are used to find velocity of

a particle and its updating [18]. For swap sequence based PSO where different nodes

/cities are used to update a solution. A sequence of swap operators known as swap

sequence which to transform a solution to updated solution. We used the procedure

of Wang et al. [18].

3.3.1 Discrete PSO Updating

Now the original PSO updated for TSP as follows:

{
Vi(t + 1) = wVi(t)⊕ c1r1(Xpbest(t)⊖ Xi(t))⊕ c2r2(Xgbest(t)⊖ Xi(t)),
Xi(t + 1) = Xi(t)⊕ Vi(t + 1)

}

(2)

as earlier given the parameters r1, r2, c1, c2 and w, now c1r1(Xpbest(t)⊖ Xi(t)) gives

all swap operators in BSS. Similarly for the c2r2(Xgbest(t)⊖ Xi(t)) also.

Hybrid Algorithm (GA-PSO):
Input: Set iterGA = 0, maxiter and Maxgen (S0), Population Size (pop−size),

Probability of Mutation (pm), Problem Data (cost matrix, time matrix, route and

vehicle set).

Output: The optimum and near optimum solutions.

Step 1. Start
Step 2. Set initial generation iterGA = 0, iterPSO = 0 and Maxgen(S0).
Step 3. Initialize // randomly generate the path

Step 4. Evaluate// determine the fitness
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Step 5. For (iterGA ≤ S0)

Step 6. Rank the chromosome.

Step 7. Sum the rank of all individual chromosomes.

Step 8. Clustered the rank.

Step 9. Develop the linguistic values as VVF, VLF, LF, MF, HF, VHF, VVHF

Step 10. Trust based pc created.

Step 11. Crossover operation.

Step 12. Mutation operation.

Step 13. Update the chromosome.

Step 14. Update the rank.

Step 15. Find best optimum and near optimum solutions.

Step 16. iterGA = iterGA+1

Step 17. End for
Step 18. Set initial solution find from GA.

Step 19. For (iterPSO ≤ maxiter1)

Step 20. Initialize the Xi(t), Yi(t), Zi(t)

Step 21. Determine Xpbest, Xgbest
Step 22. Updating by Eq. (2)

Step 23. iterPSO = iterPSO + 1
Step 24. End for
Step 25. Store the best solutions

Step 26. Store global and near optimum solutions.

Step 27. End

4 Proposed Restricted 4-Dimensional TSP (r-4DTSP)

4.1 Classical TSP with Time Constraints (2DTSP)

Let c(i, j) and t(i, j) be the cost and time, respectively, for travelling from ith city to

jth city. Then, the problem can be mathematically formulated as:

Minimize Z =
∑

i≠j
c(i, j)xij

subject to

N∑

i=1
xij = 1 for j = 1, 2, ...,N
N∑

j=1
xij = 1 for i = 1, 2, ...,N

N∑

i∈S

N∑

j∈S
xij ≤ |S| − 1,∀S ⊂ Q

N∑

i=1

N∑

j=1
t(i, j)xij ≤ tmax

where xij ∈ {0, 1}, i, j = 1, 2,… ,N.

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎭

(3)
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where Q = {1, 2, 3, . . . , N} set of nodes, xij is the decision variable, and xij = 1 if

the salesman travels from city-i to city-j, otherwise xij = 0 and tmax is the maximum

time that should be maintained for the entire tour to avoid unwanted delay. Then, the

above CTSP reduces to

determine a complete tour (x1, x2, ..., xN , x1)

to minimize Z =
N−1∑

i=1
c(xi, xi+1) + c(xN , x1)

subject to

N−1∑

i=1
t(xi, xi+1) + t(xN , x1) ≤ tmax

where xi ≠ xj, i, j = 1, 2,… ,N.

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

(4)

along with sub-tour elimination criteria

N∑

i∈S

N∑

j∈S
xij ≤ |S| − 1,∀S ⊂ Q

where xij ∈ {0, 1}, i, j = 1, 2, … , N.

⎫
⎪
⎬
⎪
⎭

(5)

4.2 STSP with Time Constraints (3DTSP)

Let c(i, j, k) and t(i, j, k) be the cost and time, respectively, for travelling from ith

city to jth city using kth type conveyance. Then, the salesman has to determine a

complete tour (x1, x2, ..., xN , x1) and corresponding conveyance types (v1, v2, ..., vP)

to be used for the tour, where xi ∈ {1, 2,… ,N} for i = 1, 2, ...,N, vi ∈ {1, 2,…P}
for i = 1, 2, ...,N and all xi’s are distinct. Then, the problem can be mathematically

formulated as:

minimize Z =
N−1∑

i=1
c(xi, xi+1, vi) + c(xN , x1, vl),

subject to

N−1∑

i=1
t(xi, xi+1, vi) + t(xN , x1, vl) ≤ tmax,

where xi ≠ xj, i, j = 1, 2 … , N, vi, vl ∈ {1, 2,… or P}

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(6)

along with Eq. (5).

4.3 4DTSP with Time Constraints (4DTSP)

Let c(i, j, r, k) and t(i, j, r, k) be the cost and time, respectively, for travelling from ith

city to jth city by the rth route using kth type conveyance. Then, the salesman has
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to determine a complete tour (x1, x2, ..., xN , x1) and corresponding available route

types (r1, r2, ..., rS) with conveyance types (v1, v2, ..., vP) to be used for the tour,

where xi ∈ {1, 2,… ,N} for i = 1, 2, ...,N, ri ∈ {1, 2,… S} and vi ∈ {1, 2,… P} for

i = 1, 2, ..., N and all xi’s are distinct. Then, the problem can be mathematically for-

mulated as:

minimize Z =
N−1∑

i=1
c(xi, xi+1, ri, vi) + c(xN , x1, rl, vl),

subject to

N−1∑

i=1
t(xi, xi+1, ri, vi) + t(xN , x1, rl, vl) ≤ tmax,

where xi ≠ xj, i, j = 1, 2 … N, ri, rl ∈ {1, 2,… , or S}, vi, vl ∈ {1, 2,… , or P}

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(7)

along with Eq. (5).

4.4 4DTSP in Restricted Routes with Time Constraints
(r-4DTSP)

In real life, it is seen that in all stations, all types of routes may not be available due to

the geographical position of the station, weather conditions, etc. So, it is more real-

istic that restricted routes are considered to travel different stations. Let c(i, j, r, k)
and t(i, j, r, k) be the cost and time, respectively, for travelling from ith city to jth

city by the rth route using kth type conveyance. Then, the salesman has to deter-

mine a complete tour (x1, x2, ..., xN , x1) and corresponding available route types (rm1,
rm2, ..., rms) with conveyance types (vq1, vq2, ..., vqp) providing maximum available

s1(≤ S) and p1(≤ P) types of routes and conveyances to be used for the tour, where

xi ∈ {1, 2,… ,N} for i = 1, 2, ..., N, rmi ∈ {1, 2,… , s1} and vqi ∈ {1, 2,… , p1} for

i = 1, 2, ...,N and all xi’s are distinct. Then, the problem can be mathematically for-

mulated as:

minimize Z =
N−1∑

i=1
c(xi, xi+1, rmi, vqi) + c(xN , x1, rml, vql),

subject to

N−1∑

i=1
t(xi, xi+1, rmi, vqi) + t(xN , x1, rml, vql) ≤ tmax,

where xi ≠ xj, i, j = 1, 2, ..., N,m = 1, 2, ... s1, q = 1, 2,… , p1,
rmi, rml ∈ {1, 2,… , or s1}, vqi, vql ∈ {1, 2,… , or p1},

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

(8)

along with Eq. (5).
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5 Numerical Experiments

5.1 Testing for Hybrid GA-PSO

The performance of the proposed GA-PSO algorithm is established solving 15 stan-

dards benchmarked from TSPLIB [22]. Table 2 gives the results of hybrid GA-PSO

with the standard GA and ACO with their hybridization ACO-GA. We compare the

problems in terms of total cost. The results are under 20 independent runs, the aver-

age results, best found solution. The results are taken for four algorithms as proposed

hybrid algorithm (HA) GA-PSO, ACO-GA, known ACO, and simple GA.

The parameters for the hybrid GA-PSO are set as those in Table 3 for different

nodes of the TSP. As increases of the size of the TSP as increases of the popsize,

Maxgen, ant numbers for convergence of the optimal solution (Table 4).

5.2 r-4DTSP with Time Constraint in Crisp Environment

For r-4DTSP, here we consider three types of conveyances and maximum three types

of route are consider as Eq. (8). The cost and time matrices for the r-4DTSP are repre-

sented below: Here, we consider a deterministic 2DTSP given by Eq. (4). The prob-

lem is solved by proposed hybrid GA-PSO, and the results are presented in Table 5.

Here, we have taken maximum generation = 1000, and we see that as time factor

decreases the corresponding cost increases as real-life demand. Here, we consider a

deterministic 3DTSP given by Eq.(6). The problem is solved by GA-PSO, and the

results are presented in Table 6.

Here, we consider a deterministic 4DTSP given by Eq. (7). The problem is solved

by GA-PSO, and the results are presented in Table 7.

Again, we consider a deterministic restricted 4DTSP given by Eq. (8). The prob-

lem is solved by GA-PSO, and the results are presented in Table 8.

6 Conclusion

In this paper, a new hybrid heuristic algorithm GA-PSO is proposed and illustrated

in r-4DTSP formulated in different environments. In the proposed algorithm, where

initial solution are generated by GA then swap operator based discrete PSO used

for optimized the TSP path. Here, GA is applied with a new rough 7-point selec-

tion of rank of each chromosome and comparison crossover is used along with

virgin generation-dependent random mutation. Restricted 4DTSP is first time intro-

duced in the area of TSPs and regarded as highly NP-hard combinatorial
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Table 5 Results of 2DTSP in crisp environment

Algorithm Path Value Tmax
GA-PSO 2-7-3-1-5-9-10-4-6-8 143 Without Tmax

2-7-3-1-5-9-10-4-6-8 147 8.54

4-7-8-1-5-9-10-3-6-2 157 8.51

2-6-3-1-9-5-4-7-8-10 167 8.42

4-6-2-8-5-9-10-7-3-1 176 8.25

5-8-2-1-5-9-10-3-6-7 184 8.02

ACO 6-3-9-7-5-2-1-10-8-4 193 8.7

GA 2-8-5-7-6-10-4-3-9-1 197 8.7

ACO-GA 4-8-9-1-3-7-2-10-5-6 204 8.00

GA-PSO 5-7-3-2-4-6-8-10-9-1 193

8-7-3-2-4-6-5-10-9-1 206

ACO 3-8-5-7-6-10-4-2-9-1 227

GA 8-2-1-3-4-10-7-9-6-5 221

GA-PSO 8-2-7-9-4-3-5-6-10-1 216 7.5

GA-PSO 4-8-9-1-3-7-2-10-5-6 204

ACO 5-6-2-7-8-10-3-9-4-1 392

GA 10-6-2-7-8-5-3-9-4-1 398

Table 6 Results of 3DTSP in crisp environment

Algorithm Path (Vehicle) Cost Time Tmax
GA-PSO 9(1)-7(2)-8(3)-4(1)-3(1)-2(2)-5(1)-1(1)-10(2)-6(2) 170 8.75 8.75

2(2)-1(3)-10(1)-3(1)-6(2)-7(1)-4(2)-5(2)-10(1)-9(2) 193 8.62

6(1)-9(2)-10(1)-7(2)-3(1)-8(2)-5(1)-4(1)-2(1)-1(3) 205 8.59

6(1)-10(2)-5(1)-7(1)-4(2)-3(3)-1(2)-10(3)-9(1)-2(1) 213 8.54

6(1)-7(2)-9(2)-8(1)-4(1)-5(2)-1(2)-2(2)-3(2)-10(1) 228 8.46

ACO 3(2)-10(1)-8(1)-2(3)-3(3)-1(3)-5(1)-4(2)-6(2)-8(1) 242 8.7

GA 3(2)-5(1)-8(2)-4(1)-2(1)-10(3)-5(1)-4(2)-6(2)-7(1) 247 8.7

3(2)-7(1)-4(1)-3(1)-1(1)-5(2)-10(2)-8(1)-6(1)-2(3) 282 7.95 8.00

GA-PSO 7(2)-9(1)-8(1)-10(2)-1(2)-3(2)-6(2)-5(1)-4(3)-2(1) 315 7.71 7.75

10(1)-7(2)-6(1)-5(3)-4(2)-2(3)-3(1)-1(2)-8(2)-9(1) 376 7.58

optimization problems. Such r-4DTSPs are here formulated in crisp costs and time

boundary and solved by the proposed GA-PSO. Here, development of GA-PSO is in

general form and it can be applied in other discrete problems such as network opti-

mization, graph theory, solid transportation problems, vehicle routing, VLSI chip

design.
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Table 7 Results of 4DTSP in crisp environment

Algorithm Path (Route, Vehicle) Cost Time Tmax
GA-PSO 10(2, 1)-7(3, 2)-8(1, 3)-4(2, 1)-3(1, 1)-2(1, 2)-5(2,

1)-1(3, 1)-9(1, 2)-6(2, 2)

183 8.75 8.75

2(1, 2)-10(2, 3)-1(1, 1)-4(1, 2)-6(1, 2)-7(3, 1)-3(2,

2)-5(1, 2)-10(2, 1)-9(2, 2)

187 8.67

6(1, 3)-9(2, 1)-10(1, 1)-7(1, 2)-3(1, 3)-8(2, 2)-5(3,

1)-4(2, 1)-2(1, 1)-1(2, 3)

216 8.53

6(2, 1)-10(2, 2)-5(1, 1)-7(2, 1)-4(2, 3)-3(3, 1)-1(2,

1)-10(3, 1)-9(2, 1)-2(3, 1)

219 8.42

6(1, 3)-7(2, 1)-9(2, 1)-8(1, 1)-4(2, 1)-5(2, 2)-1(1, 2)-2(3,

2)-3(1, 2)-10(3, 3)

245 8.34

ACO 3(1, 2)-10(2, 1)-8(3, 1)-2(2, 3)-3(3, 1)-1(1, 1)-5(2,

1)-4(1, 2)-6(2, 2)-8(1, 2)

253 8.73

GA 4(3, 3)-5(1, 2)-8(3, 1)-3(2, 3)-2(1, 1)-10(2, 3)-5(2,

1)-4(1, 2)-6(1, 2)-7(2, 2)

262 8.7

3(2, 3)-7(1, 2)-4(3, 1)-3(2, 1)-1(1, 1)-5(2, 1)-10(2,

2)-8(1, 3)-6(1, 1)-2(3, 2)

303 7.91 8.00

GA-PSO 8(3, 2)-7(2, 1)-9(3, 1)-10(2, 3)-1(2, 2)-3(2, 1)-6(2,

1)-5(1, 2)-4(3, 3)-2(1, 2)

338 7.66 7.75

10(1, 2)-7(, 12)-6(3, 1)-5(3, 2)-4(2, 2)-2(1, 3)-3(2,

1)-1(3, 2)-8(2, 2)-9(2, 1)

381 7.48

Table 8 Results of r-4DTSP in crisp environment

Algorithm Path (Route, Vehicle) Cost Time Tmax
GA-PSO 10(1, 1)-7(3, 1)-8(1, 3)-4(2, 1)-3(1, 1)-2(1, 2)-5(2,

1)-1(3, 1)-9(1, 2)-6(2, 2)

192 8.75 8.75

2(1, 2)-10(2, 2)-1(1, 1)-4(1, 2)-6(2, 2)-7(3, 1)-3(2,

1)-5(1, 2)-10(2, 1)-9(2, 2)

201 8.67

6(1, 3)-9(2, 1)-10(1, 1)-7(1, 2)-3(1, 3)-8(2, 2)-5(3,

1)-4(2, 1)-2(1, 1)-1(2, 3)

229 8.53

6(2, 1)-10(2, 2)-5(1, 1)-7(2, 1)-4(2, 3)-3(3, 1)-1(2,

1)-10(3, 1)-9(2, 1)-2(3, 1)

236 8.42

6(1, 3)-7(2, 1)-9(2, 1)-8(1, 1)-4(2, 1)-5(2, 2)-1(1, 2)-2(3,

2)-3(1, 2)-10(3, 3)

278 8.34

ACO 3(1, 2)-10(2, 1)-8(3, 1)-2(2, 3)-3(3, 1)-1(1, 1)-5(2,

1)-4(1, 2)-6(2, 2)-8(1, 2)

253 8.73

GA 4(3, 3)-5(1, 2)-8(3, 1)-3(2, 3)-2(1, 1)-10(2, 3)-5(2,

1)-4(1, 2)-6(1, 2)-7(2, 2)

281 8.7

3(2, 3)-7(1, 2)-4(3, 1)-3(2, 1)-1(1, 1)-5(2, 1)-10(2,

2)-8(1, 3)-6(1, 1)-2(3, 2)

303 7.91 8.00

GA-PSO 8(3, 2)-7(2, 1)-9(3, 1)-10(2, 3)-1(2, 2)-3(2, 1)-6(2,

1)-5(1, 2)-4(3, 3)-2(1, 2)

338 7.66 7.75

10(1, 2)-7(, 12)-6(3, 1)-5(3, 2)-4(2, 2)-2(1, 3)-3(2,

1)-1(3, 2)-8(2, 2)-9(2, 1)

381 7.48
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An Integrated Imperfect
Production-Inventory Model
with Lot-Size-Dependent Lead-Time
and Quality Control

Oshmita Dey and Anindita Mukherjee

Abstract In this article, an integrated single-vendor single-buyer production-

inventory model with stochastic demand and imperfect production process is inves-

tigated. The lead-time is assumed to be dependent on the lot-size and a fixed delay

due to non-productive times. A methodology is developed to derive the optimal ven-

dor investment required to reduce the defect rate and thereby minimize the total cost

of the integrated system. Under the n-shipment policy, an algorithm is proposed so

as to minimize the expected integrated total cost and determine the optimal values

of the number of shipments, lot-size, safety stock factor, and percentage of defec-

tives. Numerical results are used to illustrate the effect of various parameters on the

system.

Keywords Economic order quantity ⋅ Integrated model ⋅ Imperfect production

Process quality ⋅ Variable lead-time

1 Introduction

The integrated single-vendor single-buyer production-inventory problem is inspired

by the expanding focus on supply chain management which has been proved to be

an adequate means by which both the buyer’s and the vendor’s interest can be bene-

fited simultaneously [8]. A significant amount of literature [1, 9, 11–13, 17, 19] is

available in this regard. In the existing literature, it is mostly found that the demand

is deterministic and that shortages are not allowed. This was first extended by Ben-

Daya and Hariga [3] where the authors assumed the annual customer demand to be

stochastic, thus allowing shortages. Since then various researchers [4, 6, 7, 14] and

the references therein have extended the stochastic models under various assump-

tions. However, in most of these works, the production process quality is presumed

to be perfect. Even in models with imperfect production, the production process qual-

ity is not taken to be a control parameter [2, 10, 15–17, 21–23]. Ouyang et al. [18]
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did consider process quality improvement but neglected the duration of screening.

Dey and Giri [5] extended this existing literature by assuming optimal vendor in-

vestment in a stochastic single-vendor single-buyer imperfect production-inventory

model with non-negligible screening time. But, they assumed the lead-time to be

constant. However, in reality, lead-time is usually not a constant and assuming it to

be so is an unreal restriction imposed on the model. Recently, Glock [6] developed a

model with variable lead-time extending the Ben-Daya and Hariga’s model [3] and

permitting batch shipments increasing by a fixed factor. Glock [7] further extended

this model by studying the alternative methods for reducing the lead-time and its

effect on the expected total costs. Ben-Daya and Hariga [3] assumed the lead-time is

taken to be proportional to the lot-size produced by the vendor in addition to a fixed

delay due to transportation, non-productive time, etc. This makes sense intuitively

since, from a practical point of view, lead-time should be considered as a function

of the production lot-size [3]. Keeping this argument in mind, a linear relationship

between lead-time and lot-size, including non-productive time, is taken into consid-

eration. Thus, in order to make the model more attuned to reality, the present paper

extends Dey and Giri’s model [5] by assuming the lead-time to be linearly dependent

on the production lot-size and non-productive times.

2 The Model

2.1 Notations

D expected demand rate in units per time for non-defective items

P production rate, p = 1
P

A buyer’s ordering cost per order

F transportation cost per delivery

B vendor’s setup cost

L lead-time

hv vendor’s holding cost per item per year

hb1 buyer’s holding cost for defective items per item per year

hb2 vendor’s holding cost for non-defective items per item per year

s buyer’s unit screening cost

x buyer’s screening rate

w vendor’s unit warranty cost for defective items

y percentage of defective items produced

k safety stock factor

𝜋 buyer’s shortage cost per item per year

𝜂 fractional opportunity cost

𝛿 percentage decrease in defective items per dollar increase in investment
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2.2 Assumptions

∙ Items of a single product are ordered from a single vendor by a single buyer.

∙ Demand per unit time is normally distributed with mean D and standard deviation

𝜎.

∙ An order of nQ (non-defective) items is placed by the buyer to the vendor. These

items are produced and, on average, transferred to the buyer in n equal sized ship-

ments by the vendor, n being a positive integer.

∙ The buyer follows the classical (Q, r) continuous review inventory policy.

∙ It is assumed that the lead-time depends on the lot-size as per the form L = pQ + b,

where b is the fixed delay due to transportation, non-productive times, etc. The

lead-time demand is defined as the demand during the lead-time period. The lead-

time demand is normally distributed with mean D(pQ + b) and standard deviation

𝜎

√
pQ + b.

∙ The re-order point r = expected demand during lead-time + safety stock (SS), i.e.,

r = D(pQ + b) + k𝜎
√
pQ + b, where k is the safety stock factor.

∙ Shortages are allowed and completely backlogged.

∙ y0 (0 ≤ y0 ≤ 1) is the percentage of defective items produced in each batch of size

Q.

∙ The vendor’s rate of production of non-defective items is greater than the demand

rate, i.e., P(1 − y0) > D.

∙ The screening rate x is fixed and is greater than the demand rate i.e., x > D.

∙ The vendor incurs a warranty cost for each defective item produced.

∙ The vendor invests money to improve the production process quality in terms of

buying new equipment, improving machine maintenance and repair, worker train-

ing, etc. We consider the following logarithmic investment function I(y) [20]:

I(y) = 1
𝛿

ln
(
y0
y

)

where 𝛿 is the percentage decrease in y per dollar (or any other suitable currency)

increase in investment and y0 is the original percentage of defective items pro-

duced prior to investment.

It is assumed that the vendor accepts an order of size nQ for non-defective items

from the buyer. The vendor then produces these nQ items all at once, and then, n
batches of Q items are delivered each at a regular interval of Q(1 − y)∕D units of

time on average. Hence, we can say that each ordering cycle is of length Q(1 − y)∕D,

and the complete production cycle is of length nQ(1 − y)∕D.
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2.3 Buyer’s Perspective

The buyer is assumed to follow the classical (Q, r) continuous review inventory sys-

tem. That is, the buyer places an order of Q items to the vendor once the inventory

level falls to the re-order point r. The vendor delivers these items after a lead-time

L = pQ + b. Here, the safety stock factor k is taken to be a decision variable instead

of the re-order point r. On receiving the order from the vendor, the buyer inspects

the items at a fixed non-negligible screening rate x. The defective items are discov-

ered in each lot, kept in hold separately and returned to the vendor when the next

lot of items arrive. Therefore, the buyer incurs two types of holding cost—one for

defective items and one for non-defective items [5]. The average inventory level for

non-defective items for the buyer (including those defective items which have not yet

been detected before the end of the screening time Q∕x) is given by Eq. (1) (Fig. 1).

nQ(1 − y)
D

[
k𝜎

√
pQ + b +

Q(1 − y)
2

+
DQy

2x(1 − y)

]
(1)

Equivalently, the average inventory level for defective items is given as below:

nQ2y
[
1 − y
D

− 1
2x

]
(2)

Thus, the annual expected total cost for the buyer including the ordering cost,

shipment cost, holding cost, shortage cost, and screening cost is given as

Fig. 1 Inventory of the buyer
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ETCB(Q, k, n) = D(A + nF)
nQ(1 − y)

+ hb1

[
Qy −

DQy
2x(1 − y)

]

+hb2
[
k𝜎

√
pQ + b +

Q(1 − y)
2

+
DQy

2x(1 − y)

]

+
𝜋D𝜎

√
pQ + b𝜓(k)

Q(1 − y)
+ sD

1 − y
(3)

where 𝜓(k) = ∫
∞
k (z − k)𝜙(z)dz, 𝜙(z) being the standard normal density function.

2.4 Vendor’s Perspective

In the course of the production process, Q items are produced by the vendor in the

first instance and then, these items are delivered to the buyer. Thenceforth, a quantity

of Q items is delivered by the vendor to the buyer after an interval of every T units

of time, where T = Q(1 − y)∕D. This process of delivering the items to the buyer is

carried on till the vendor’s production run is completed (Fig. 2).

Now, the average inventory holding cost for the vendor [15] is calculated as given

below in Eq. (4):

EHCV = hv
Q
2

[
n(1 −

Dp
1 − y

) − 1 +
2Dp
1 − y

]
(4)

Fig. 2 Inventory of the vendor
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Thus, the total cost incurred by the vendor is the sum of the setup cost, holding

cost, warranty cost, and investment for reducing the percentage defective items [5]

and it is given as

ETCV(Q, y, n) = BD
nQ(1 − y)

+ hv
Q
2

[
n(1 −

Dp
1 − y

) − 1 +
2Dp
1 − y

]

+
wDy
1 − y

+ 𝜂

𝛿

ln
(
y0
y

)
(5)

where 𝜂 is the fractional opportunity cost. It should be taken into account here that

the logarithmic investment function considered above is convex in y.

2.5 Integrated System

The total expected annual cost of the integrated system can therefore be expressed

as the sum of the buyer’s and the vendor’s total expected annual costs which is given

as below:

ETC(Q, y, k, n) = D(A + B + nF)
nQ(1 − y)

+ hb1

[
Qy −

DQy
2x(1 − y)

]
+ hv

Q
2

[
n(1 −

Dp
1 − y

) − 1 +
2Dp
1 − y

]

+hb2
[
k𝜎

√
pQ + b +

Q(1 − y)
2

+
DQy

2x(1 − y)

]

+
𝜋D𝜎

√
pQ + b𝜓(k)

Q(1 − y)
+

(s + wy)D
1 − y

+ 𝜂

𝛿

ln
(
y0
y

)
(6)

Here, the control parameters are the lot-sizeQ, the percentage of defectives produced

y, the safety stock factor k, and the number of shipments n.

Showing analytically that the expected total cost function, ETC, is convex in all

the decision variables Q, y, k and n is not always possible. Nevertheless, the same

can be demonstrated numerically. For given fixed values of n (where n is a positive

integer) and y (0 ≤ y ≤ y0 ≤ 1), the convexity of total cost function ETC w.r.t Q and

k can be easily shown by means of a 3D-graph (Fig. 4). Keeping this potential non-

convexity in mind, an iterative algorithm is proposed, in the subsequent section, to

derive the optimal values of Q, y, k, and n for which the expected annual total cost

for the integrated system ETC is minimized.

3 Solution Procedure

Taking the second-order partial derivative of the total cost function ETC with respect

to n, we find,
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𝜕
2ETC
𝜕n2

= 2D(A + B)
n3Q(1 − y)

> 0 ∀ n ≥ 1 (7)

Thus, from the above equation, we can conclude that ETC is convex in n.

Again, taking the second-order partial derivative of ETC with respect to k and Q,

we get,

𝜕
2ETC
𝜕k2

=
D
√
pQ + b𝜎𝜋𝜙(k)
Q(1 − y)

> 0 (8)

𝜕
2ETC
𝜕Q2 = 2DG(n)

Q3(1 − y)
−

hb2k𝜎p2

4(pQ + b)
3
2

+𝜋D𝜎𝜓(k)
(1 − y)

[2
√
pQ + b
Q3 −

p
Q2

√
pQ + b

−
p2

4Q(pQ + b)
3
2

]
> 0 (9)

where G(n) = A+B+nF
n

.

Hence, from Eqs. (8) and (9), ETC is seen to be convex in k and Q for fixed val-

ues of n and y (0 ≤ y ≤ y0 ≤ 1). Although y is bounded, it is not possible to prove

conclusively that ETC is convex in y. So in order to arrive at an optimal solution, the

following procedure is followed:

For fixed value of n, the first derivative of ETC w.r.t k is set to zero. That is,

𝜕ETC
𝜕k

= hb2 +
𝜋D

Q(1 − y)
(F(k) − 1) = 0 (10)

where F(⋅) is the cumulative distribution function.

Thus, we have,

F(k) =
hb2Q(1 − y)

𝜋D
(11)

where F(⋅) = 1 − F(⋅).
Next, taking the first derivatives of ETC with respect to Q and y and setting those

equal to zero, we get

𝜕ETC
𝜕Q

= − DG(n)
Q2(1 − y)

+ yhb1
{
1 − D

2x(1 − y)
} + hb2

{1 − y
2

+
Dy

2x(1 − y)
}

+
hb2k𝜎p

2
√
pQ + b

+
hv
2
{
− 1 + n

(
1 −

Dp
1 − y

) +
2Dp
1 − y

}

−𝜋D𝜎𝜓(k)
(1 − y)

[
−

√
pQ + b
Q2 +

p
2Q

√
pQ + b

]
= 0 (12)

and
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𝜕ETC
𝜕y

= Dw
1 − y

+
D(s + wy)
(1 − y)2

− 𝜂

y𝛿
+ DG(n)

Q(1 − y)2
+ Qhb1

{
1 − D

2x(1 − y)
}

−
DQyhb1
2x(1 − y)2

+ hb2
{
− Q

2
+ DQ

2x(1 − y)
+

DQy
(1 − y)2

}

+
Qhv
2

{ 2Dp
(1 − y)2

−
Dnp

(1 − y)2
} −

𝜋D𝜎
√
pQ + b𝜓(k)

Q(1 − y)2
= 0, (13)

respectively.

The algorithm presented by Dey and Giri [5] is modified and used here to derive

the optimal solution. It is given as below:

The Algorithm

Step 1: Set ETC∗ = ∞, n = 1
Step 2: Set y = y0 and k = 0 and compute 𝜓(k) and then compute Q = Q0 using the

values of y0, k, 𝜓(k) in equation (12)

Step 3: Compute k from (11) using Q0, y and 𝜓(k) = ∫
∞
k (z − k)𝜙(z)dz

Step 4: Compute y from (13) using the values k,Q0 obtained in the previous step. If

y ≥ y0, then set y = y0.

Step 5: Compute Q from (12) using the updated values of k, y.

If |Q − Q0| ≤ 𝜖, then compute ETC(Q, k, y, n) and go to Step 6.

Else set Q0 = Q and go back to Step 3.

Step 6: If ETC∗ ≥ ETC, we set ETC∗ = ETC,Q∗ = Q, y∗ = y, k∗ = k, n = n + 1 and

go back to Step 2. Else put n∗ = n − 1 and stop.

The corresponding values of the control parameters for n∗ = n − 1 give the

optimal solution.

It is to be noted here that we only get a local optimum by adopting the solution

procedure mentioned. Since proving analytically that the objective function ETC
is convex in all control parameters is not possible, we cannot say that the solution

obtained above is a global optimum. In order to showcase the effects of the original

process quality, the investment option and other model parameters on the optimal

decisions, numerical studies are carried out in the following section.

4 Numerical Results and Discussions

For numerical studies, the following data set is considered:

D = 1000, P = 3200, A = 50, F = 35, K = 400, L = 10∕365, hv = 4, hb1 = 6, hb2 =
10, s = 0.25, x = 2152, w = 20, 𝜋 = 100, b = 0.01, 𝜎 = 5, y = 0.22, 𝜂 = 0.2, 𝛿 =
0.0002

For fixed values of Q, k, n, it is shown that the total expected cost function ETC
is convex in y (0 ≤ y ≤ y0) (Fig. 3). For fixed values of n, y, the convexity of ETC
w.r.t.Q, k is shown in Fig. 4.
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Fig. 3 ETC w.r.ty

Fig. 4 ETC w.r.t Q, k

Table 1 depicts that the increase in the warranty cost w paid by the vendor results

in an increase in the optimal total cost incurred by the supply chain. Also, with an

increase in warranty cost, we find a decrease in the optimal value of the percentage

of defective items. This is intuitively correct since if a higher warranty cost is to be

paid by the vendor as a penalty for producing defective items, it would reasonably be

beneficial for him if the number of defective items produced reduces considerably.

Following the same logic, an increase in the value of b should imply an increase in

the total cost incurred as also shown in Table 1.

A significant conclusion that can be reached from Table 2 is that the investment

which is made in order to improve the production process quality is not indepen-

dent of the original quality. That is, the necessity of an investment and the extent

of it being beneficial is decided by the original production process quality. This is

evident from Table 2 which clearly shows that investment to improve the production

process quality is not needed when the original percentage of defectives is very low.
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Table 1 Effect of parameters w and b
Q∗ n∗ y∗ ETC∗

w 20 86.42 7 0.043 5213.31

24 86.10 7 0.037 5378.61

30 95.05 6 0.030 5584.26

b 0.005 86.38 7 0.043 5211.48

0.010 86.42 7 0.043 5213.31

0.100 96.01 6 0.043 5235.53

Table 2 Effect of y0
y0 Q∗ n∗ y∗ ETC∗ I(y∗)
0.010 86.41 7 0.043 2122.27 0.00

0.040 86.41 7 0.043 3508.57 0.00

0.100 86.42 7 0.043 4424.86 843.63

0.220 86.42 7 0.043 5213.31 1632.09

0.418 86.42 7 0.043 5855.17 2273.93

0.680 86.42 7 0.043 6341.78 2760.05

Table 3 Effect of demand rate

d Q∗ n∗ y∗ ETC∗ I(y∗)
800 84.31 6 0.052 4752.10 1438.87

900 90.09 6 0.047 4993.20 1541.46

1000 86.42 7 0.043 5213.31 1632.09

1100 91.53 7 0.039 5413.49 1716.48

1200 96.60 7 0.037 5598.41 1794.05

However, with an increase in the value of y0, the amount of investment required to

optimize the supply chain also increases noticeably.

Table 3 shows that the production lot-size increases with an increase in demand

rate, which is very obvious since the buyer would need to place an order of a larger

quantity to satisfy the increase in demand. Also, an increase in the lot-size implies

that there is an increase in number of both the defective and non-defective items

produced, and consequently, the amount of investment needed to optimize the total

cost will also increase. So, an increase in demand causes an increase in the optimal

lot-size, the total expected cost incurred, and also the optimal vendor investment

amount. All these intuitively correct effects are illustrated numerically.

It is seen from Table 4 that for very small values of y0, the optimal value of ETC
obtained for the two cases—with investment and without investment—differs by a

small amount. However, as the percentage of defectives increases in the system, there
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Table 4 Effect of investment

y0 ETC* (with investment) ETC* (without investment)

0.100 4424.86 5069.14

0.220 5213.31 8873.63

0.418 5855.17 18296.6

0.680 6341.78 48540.7

is a significant increase in the value of ETC without investment compared to that

of ETC with investment. Therefore, it can reasonably be concluded that making an

investment turns out to be significantly profitable for the supply chain as a whole,

especially when the percentage of defectives produced is high.

5 Concluding Remarks

An attempt is made in this paper to analyze the problem of variable lead-time for an

integrated single-vendor single-buyer imperfect production-inventory model under

optimal vendor investment. It is shown that, as in the case of constant lead-time, for

the variable lead-time model also, the investment by the vendor helps in reducing the

production yield rate of non-defective items. Further, in case of the vendor making

such an investment, the integrated system is better optimized in terms of minimizing

the joint expected annual total cost. As a scope of future research, the variable lead-

time may be assumed to be controllable. Also, setup cost reduction, inspection errors,

variable shipment size, multiple buyers, etc., may also be included.
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Fixed Charge Bulk Transportation
Problem

Bindu Kaushal and Shalini Arora

Abstract This paper discusses an exact method to solve fixed charge bulk

transportation problem (FCBTP). The fixed charge bulk transportation problem is

a variant of the classical transportation problem in which a fixed cost is incurred

in addition to the bulk transportation cost. This paper comprises of two sections.

In Sect. 2, an algorithm based on lexi-search approach is proposed to solve FCBTP

which gives the optimal solution in a finite number of iterations. Section 3 reports

and corrects the errors which occurred in the paper entitled ‘Solving the fixed charge

problem by ranking the extreme point’ by Murty (Oper. Res. 16(2): 268–279, 1968)

[24]. Towards the end, some Concluding Remarks are given.

Keywords Fixed charge bulk transportation problem (FCBTP) ⋅ Bulk

transportation problem (BTP) ⋅ Lexi-search

1 Introduction

In classical transportation problems, the aim is to find that scheduled flow of the

homogeneous material from a number of sources to a number of destinations which

is least expensive. In BTP and FCTP, also the cost is independent of the quantity

shipped; hence in the FCBTP, the total cost of transportation is also independent of

the transported quantity due to the addition of the step function which results in the

objective being a step function. This could be effective in shipping bulk cargo, in han-

dling bulk material such as cereals, milk, petroleum/crude oil, ores, coal, sand, wood

chips, crushed rocks and stone in loose bulk form. Various authors have studied the
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fixed charge transportation problem and bulk transportation problem separately but

the FCBTP includes both of these. The fixed charge transportation problem (FCTP)

is an extension of classical transportation problem in which a fixed cost is associ-

ated with each route in addition to the usual cost coefficient. Unlike the usual cost,

a fixed cost which affects the total cost is independent of the transported quantity.

This might be the expense of leasing a vehicle, arrival charges at airplane terminal,

setup cost required for assembling the item, and so forth.

Mathematically FCTP can be Stated As:

min
m∑

i=1

n∑

j=1
(cijxij + fijyij)

subject to

n∑

j=1
xij = ai for i = 1, 2, 3,… ,m

m∑

i=1
xij = bj for j = 1, 2, 3,… , n

xij ≥ 0 ∀(i, j)

yij =
{

1 xij > 0
0 xij = 0

m∑

i=1
ai =

n∑

j=1
bj ai, bj, cij, fij ≥ 0

Here,

I = (1, 2,… ,m) ∶ number of sources

J = (1, 2,… , n) ∶ number of destinations

ai = availability at each source, bj = requirement at each destination

xij = the quantity transported from ith source to jth destination

cij = cost of transportation from ith source to jth destination∑m
i=1 ai =

∑n
j=1 bj; this shows the case of balanced transportation problem

fij = fixed cost of transportation from ith source to jth destination.

The fixed charge problem was initially formulated in early 1950 s by Warren and

George [33]. It was observed that the optimum will exist in one of the extreme points

and a local minimum need not be the global minimum. Later on, Warren Hirsch and

Hoffman [34] found the sufficient condition for attainment of infimum of concave

function. Balinski [9] attempted to provide an approximate solution of FCTP and

formulated it as an integer program. Murty [24] devised an exact algorithm for solu-

tion of the fixed charge transportation problem by ranking the extreme points which

works efficiently when fixed charges are quite small as compared to the transporta-

tion cost. Section 3 reports some errors of [24] which affect the ranking limit to
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a large extent; however, the optimal solution remains the same perhaps because it

appeared at an early stage of ranking limits and is explained in Sect. 3. An alternate

approach to this algorithm was suggested by Gray [16], and the method is suitable

when fixed charge dominates the variable cost. A vertex ranking algorithm based

on Murty’s extreme point ranking scheme for the fixed charge transportation prob-

lem was developed by Sadagopan and Ravindran [28]. Steinberg [30] developed an

exact method based on branch and bound technique with some of the additional fea-

tures that the computer storage remains constant throughout for any size of the prob-

lem. However, some adjacent extreme point techniques were also developed to solve

FCTP [11, 13, 15, 26, 27]. Cooper [12] developed a ‘simplex -like’ algorithm which

replaces several vectors in the basis at a time. Various approximation techniques [1,

2, 4, 20] have been developed to solve FCTP. A paradox in a fixed charge problem

was discussed by Arora and Ahuja [6]. Thirwani [31] studied an enhanced flow in

FCTP. Various discussions have been made to find either the exact or approximate

solution for FCTP [3, 19, 21, 22]. Aguado [5] proposed a method to solve FCTP by

the intensive use of Lagrangean relaxation techniques. Several real-world problems

have been solved using branch and bound method [10, 25, 32]. Some authors [17,

18] have also used spanning tree-based genetic algorithm for solution of FCTP.

A zero-one transportation problem is also called a bulk transportation problem

in which a homogeneous material is supplied in bulk from sources (with a fixed

maximum capacity) to destinations (of known demands). In cost minimizing bulk

transportation problem objective is to find that schedule flow of material which gives

the minimum cost under the constraint that each destination is served by a single

source but a source can serve to any number of destinations subject to its capacity.

Here, transportation cost is independent of the quantity being transported.

Mathematically it can be stated as:

min
m∑

i=1

n∑

j=1
cijxij

subject to

n∑

j=1
gjxij ≤ di i ∈ (1, 2, 3,… ,m)

m∑

i=1
xij = 1 j ∈ (1, 2, 3,… , n)

xij =
{

1 if jth destination is supplied by ith source
0 otherwise

where di is the availability at the ith source, gj is the requirement at jth destination,

cij is the cost of transportation from ith source to jth destination and is independent

of the quantity shipped.
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An additive algorithm for zero-one transportation problems was first proposed

by Balas et al. [8] which is also called the filter method of Balas’s as the variables

can be grouped into subsets such that only one variable from each subset takes the

value one while the remaining take it as zero. De Maio and Roveda [14] developed

an implicit enumeration technique for this special class of transportation problem

which is also called as the sequel of Balas filter method. Later on, Srinivasan and

Thompson [29] presented a branch and bound algorithm for the same problem and

showed that optimum solution to this special transportation problem is the basic

feasible solution of some standard transportation problem. Murthy [23] solved bulk

transportation problem using the lexi-search approach with some additional features

that each destination is served by a single source but a source can serve to any number

of destinations depending upon its capacity. A variant of time minimization assign-

ment problem using lexi-search was developed by Arora and Puri [7]. A lexi-search

approach is an implicit enumeration technique in which instead of enumerating all

the solutions only manageable solutions are enumerated. In this, each solution is

defined as a word and a partial word is used to define the block of words. The tech-

nique simplifies the search by eliminating the partial words which do not provide the

better solution thereby reducing the search to a greater extent.

The algorithm using lexi-search technique is developed based on [7, 23] which

gives the optimal feasible solution in a finite number of iterations. Initial upper bound

on the objective function value is calculated using a heuristic and in many problems

is very close to the optimal feasible solution. This paper consists of two sections;

Sect. 2 deals with the solution of FCBTP. The mathematical model of the problem

is explained in Sect. 2.1, and some related definitions and results are established

in Sect. 2.2. Based upon these results, an algorithm is proposed in the Sect. 2.3.

A numerical illustration to explain the process is presented in Sect. 2.4, and com-

putational details are given in Sect. 2.5. Section 3 reports and corrects some errors

which were observed in a paper entitled ‘Solving the fixed charge by ranking the

extreme points’ by Murty [24]. Some conclusions based on the study are reported

towards the end in Concluding Remarks.

2 Problem Description

2.1 Fixed Charge Bulk Transportation Problem (FCBTP)

The fixed charge bulk transportation problem is different from classical transporta-

tion problem due to the addition of fixed cost to the bulk cost. There is a set

I = {1, 2,… ,m} of m sources and J = {1, 2,… , n} of n destinations. The avail-

ability at each source i ∈ I is di, and the requirement at each destination j ∈ J is

gj. The bulk transportation cost from source i to destination j is denoted by cij, and

fixed cost from source i to destination j is denoted by fij (i ∈ I, j ∈ J). The total fixed

charge bulk cost is denoted by Z. There is a restriction that each destination is served
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by a single source but a source can serve to any number of destinations depending

upon its capacity. The objective is to find that feasible solution which minimizes the

total cost. As the transportation is done in bulk, therefore variable xij is defined as

xij =
{

1, if ith source serves jth destination
0, otherwise

Mathematical Model:

Problem P1:-

min Z =
m∑

i=1

n∑

j=1
(cijxij + fijyij)

subject to

∑

j∈J
gjxij ≤ di, i ∈ I (i)

∑

i∈I
xij = 1, j ∈ J (ii)

xij = 0 or 1 ∀(i, j) ∈ I X J (iii)

yij =
{

1 xij > 0
0 xij = 0 (iv)

Feasibility check:-

∑

j∈J
gj ≤

∑

i∈I
di (v)

A solution which satisfies (i), (ii), (iii), (iv) is called feasible solution. A feasible

solution which minimizes the total cost is called optimal feasible solution. Equation

(v) is necessary for existence of feasible solution of the problem.

2.2 Theoretical Development

Some Definitions and Results

Notation:-

Zu:- Initial upper bound on the value of objective function

Iu:- Index of unassigned sources
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⊎:- Augmentation

∩:- Negation of augmentation.

Alphabet Matrix:- It is a matrix which is formed by the position of the elements

of bulk cost matrix when they are organized in non-decreasing order of their val-

ues. It is denoted by AB, and any jth column of this consists of the position of

the entries of the jth column of bulk cost matrix when they are arranged in non-

decreasing order of their values. Here, ab(y, j) indicates yth entry in the jth column

of matrix AB. So for any y < z the corresponding bulk cost is cab(y,j)j ≤ cab(z,j)j. Thus,

any jth column of Alphabet Matrix AB consists of [ab(1, j), ab(2, j),… , ab(m, j)]′ s.t.

cab(1,j)j ≤ cab(2,j)j ≤ … ≤ cab(m,j)j.

Partial Word:- A partial word of length r is represented as Pw =
(
ab(y1, 1),

ab(y2, 2),… , ab(yr, r)
)
, (i1,… , ir), r ≤ n.

The partial solution corresponding to the partial word is denoted by XPw
, and it

consists of transportation to the jth destination by the source ab(yj, j), j = 1, 2,… , r
whereas the destinations (r + 1, r + 2,… , n) are still to be served. Each partial word

Pw defines a block of words and is also called the leader of the block of words. Partial

words are generated systematically by considering rows of AB and in decreasing

order of their contribution to the objective function. If at any stage let a partial word

of length r is under study, r ≤ n, i.e. Pw =
(
ab(y1, 1), ab(y2, 2),… , ab(yr, r)

)
then it

means that all the partial word which start with ab(y, 1) where 1 ≤ y ≤ y1 − 1 have

not generated value better than Zu. Contribution of Pw to the objective function is

denoted by Z(XPw).

Theorem 1 Let Pw =
(
ab(y1, 1), ab(y2, 2),… , ab(yr, r)

)
, r ≤ n be a partial

word for which Z(XPw) ≥ Zu,∀yr = 1, 2,… ,m, where Zu is the upper bound on the
optimal value of the objective function Z. Then the partial word ̃Pw defined as
̃Pw =

(
ab(y1, 1), ab(y2, 2),… , ab(yr−1, r − 1)

)
cannot generate a word with the cor-

responding value of Z(X̃Pw) less than Zu.

Proof Z(XPw) ≥ Zu,∀yr = 1, 2,… ,m. This imply that the value of the objective

function for Pw is greater than upper bound and cannot generate a word with bet-

ter value of the objective function, i.e. Zu, when rth destination was checked for

being served by all the m sources. This also means that supply to (r − 1) destinations

respectively by ab(y1, 1), ab(y2, 2),… , ab(yr−1, r − 1) sources have not generated a

partial word corresponding to which Z(XPw) is less than Zu. This implies that ̃Pw can

not be augmented further to generate a word corresponding to which Z
(
XPw)

is less

than Zu.

Remark 1 If for the feasible partial word Pw, we find Z(XPw) < Zu. Then the partial

word Pw(Z(XPw) < Zu) may contain a word with the corresponding value

Z
(
XPw)

less than Zu, ∀yr = 1, 2,… ,m. And if Z(XPw) ≥ Zu where

Pw =
(
ab(y1, 1), ab(y2, 2),… , ab(yr, r)

)
, r ≤ n, then the partial word is rejected

and supply to some or all the first (r − 1) destinations respectively by the sources

ab(y1, 1), ab(y2, 2),… , ab(yr−1, r − 1) must be rearranged, means to find the possi-

bility of supply to (r − 1)th destinations by ab(y, r − 1), yr−1 < y ≤ m. If yr−1 = m
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then find the possibility of supply to (r − 2)th destination by ab(y, r − 2) s.t. yr−2 ≤
y ≤ m, and so on. If y1 = y2 = … = yr = m then partial word ̃Pw can not be altered.

Theorem 2 Let Pw = ab(y1, 1) be a partial word and Z(XPw) ≥ Zu, where Zu be the
upper bound on the value of the objective function. Then Zu is the optimal value of
the objective function.

Proof As we have Z(XPw) ≥ Zu, then from the above Theorem 1 the partial word

ab(y1, 1) cannot generate a feasible word corresponding to which Z(XPw) less than

Zu. Also as ∀ z > y1, cab(z,1)1 ≥ cab(y1,1)1, it means that for every partial word ̃Pw =
(ab(z, 1)), z ≥ y1,Z(X

̃Pw) ≥ Zu. Therefore, no partial word ̃Pw = ab(z, 1), z ≥ y1 can

generate a word for which Z
(
XPw)

less than Zu. Further, as the words are generated

systematically in decreasing order of their contribution to the objective function, it

means that any word ab(y, 1), 1 ≤ y ≤ y1, must have the corresponding value not less

than Zu. And hence Zu is the optimal value of the objective function. Therefore, for

every partial word for which its first entry ab(y1, 1) is such that Z(XPw) ≥ Zu, then

for all ab(z, 1), z ≥ y1 it cannot contain a word for which Z
(
XPw)

less than Zu. This

implies that Zu is the optimal value of the objective function.

Theorem 3 Let us consider a partial word Pw = (ab(m, 1), ab(m, 2),… ,

ab(m, r)), r ≤ n such that Z(XPw) < Zu, Zu be the upper bound on the value of the
objective function. Let Pw be a partial word defined as Pw = Pw ⊎ (ab(yr+1, r + 1)
which is derived from Pw such that Z(XPw) ≥ Zu,∀yr+1 = 1, 2,… ,m then Zu is the
optimal value of the objective function.

Proof As Z(XPw) ≥ Zu,∀yr+1 = 1, 2,… ,m. Then by virtue of Theorem 1, it follows

that Pw cannot contain a word for which the corresponding objective value is less

than Zu. Therefore by Remark 1, supply to r destinations respectively by the sources

ab(m, 1),… , ab(m, r) must be altered. But these transportations are corresponding

to last entries of r columns of Alphabet Matrix. It follows that Pw cannot be altered

as all the partial word generated systematically in decreasing order of their con-

tribution to the objective function. It means that before Pw, all the partial words,

i.e.
(
ab(y1, 1), ab(y2, 2),… , ab(yr, r)

)
for all possible permutation

(
y1, y2,… , yr

)

where r = 1, 2,… ,m, have not generated value better than Zu except for the case

y1 = y2 = … = yr = m. Hence we cannot have a word with Z(XPw) < Zu. So Zu is

the optimal value.

Remark 2 (i) If the partial word Pw is s.t,

∑
i∈I

dui <
∑n

j=r+1
gj, where dui is

the updated availability at source i for i ∈ I then it cannot contain a feasible

word. And if

∑
i∈I

dui ≥
∑n

j=r+1
gj then partial word is called feasible partial

word. A partial word Pw = (ab(m, 1), ab(m, 2),… , ab(m, r)) , r ≤ n for which∑n

j=r+1
gj >

∑
i∈I

dui , is rejected because of infeasibility.

(ii) If duab(y,r) is the updated availability at any source ab(y, r) ∈ I is less than gr,∀y =
1, 2,… ,m, the partial word ̃Pw = (ab(y1, 1),… , ab(ym,m)) is rejected as it can

not contain a feasible word.
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(iii) A partial word Pw = (i1, i2,… , ir), r ≤ n is also rejected if ∃ an i ∈ Iu s.t, di <
gj, ∀j ∈ {r + 1,… , n} because further augmentation of Pw cannot generate a

word, i.e. feasible word.

(iv) If n − r < |Iu|, the partial word Pw = {i1, i2,… , ir}, r < n is rejected.

Remark 3 Method to find initial upper bound Zu

Step 0 Initially check the following conditions for all sources I and destination

Jn = J

(a) If ∃ atleast one j ∈ J s.t gj > di ∀i, then go to Step (vi).

Or

(b) if

∑
i∈I

di <
∑

j∈J
gj, then go to Step (vi).

Or

(c) if ∃ i ∈ I s.t., di < gj ∀ j ∈ J, then update Iu = I − {i} as this source

would not be able to serve any destination.

Now if

∑
i∈I

di <
∑

j∈J
gj then go to Step (vi).

else

Set I = Iu, i = 1, update m = m − 1 and go to Step (i).

If any of the above conditions are not satisfied, then set i=1 and go to

Step (i).

Step (i) For i ∈ I find j ∈ J s.t ciji= min
j∈J,di≥gj

cij. Set xiji = 1 & xsji = 0∀ s ≠ i, s ∈ I.

Update dui = di − gj , di = dui , J = J − {j}.

Now check

(a) If ∃ atleast one j ∈ J s.t gj > di∀i, then go to Step (vi).

Or

(b) if

∑
i∈I

di <
∑

j∈J
gj, then go to Step (vi).

Or

(c) if ∃ i ∈ I s.t di < gj ∀ j ∈ J, then update Iu = I − {i} as it would not

serve to any destination.

Now if

∑
i∈I

di <
∑

j∈J
gj, then go to Step (vi).

else

Set I = Iu, Find current value of i, update m = m − 1 and go to Step

(ii).

If any of the above conditions are not satisfied, then go to Step (ii).
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Step (ii) Set i = i + 1.

(a) If i ≤ m, go to Step (i).

(b) If i > m, go to Step (iii).

Step (iii) Set i = i − 1

(a) If i = m = n and J = 𝜙, then all m sources supplied uniquely to the

destinations in the set {j1, j2,… , jm}. Thus, each destination is served

uniquely by m sources and go to Step (vii).

(b) If i = m < n, go to Step (iv).

Step (iv) For the remaining n-m destinations proceed as follows:-

For k = 1, find

min
i∈Im+k

(
∑

j∈Jn−Jm+k
(cij ∶ xij = 1) + min

j∈Jm+k
(cij)) =

∑
j∈Jn−Jm+k

(cim+kj ∶ xim+kj = 1)
+ cim+kjm+k
where Im+k = {i ∈ I ∶ di ≥ gj, j ∈ Jm+k}.

Thus, jm+k destination served by the source im+k & duim+k = duim+k − gjm+k .
Set xim+kjm+k = 1 & xijm+k = 0 ∀ i ∈ I, i ≠ im+k,
J = J − {jm+k}, dim+k = duim+k
If J ≠ 𝜙, then check the following conditions, otherwise go to Step (vii).

(a) If ∃ atleast one j ∈ J s.t gj > dim+k∀i, then go to Step (vi).

Or

(b) if

∑
i∈I

dim+k <
∑

j∈J
gj, then go to Step (vi).

Or

(c) if ∃ i ∈ I s.t dim+k < gj ∀ j ∈ J, then update Iu = I − {im+k} as it would

not supply to any destination.

Now if

∑
i∈I

dim+k <
∑

j∈J
gj, then go to Step (vi).

else

Set I = Iu, Find current value of k, update m = m − 1 and go to

Step (v).

If any of the above conditions are not satisfied, then go to Step (v).

Step (v) Set k=k+1.

(a) If k ≤ n − m, go to Step (iv).

(b) If k > n − m, go to Step (vii).

Step (vi) The given problem is infeasible.

Step (vii) Hence the upper bound Zu can be calculated as

Zu =

∑
(i∈I,j∈J)

(cij + fij ∶ xij = 1)
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2.3 Algorithm

In the algorithm, partial word will be updated in the following three ways.

A-I (Augmentation) If Pw =
(
ab(y1, 1), ab(y2, 2),… , ab(yr, r)

)
be the partial word

of length r for which Z(X)Pw < Zu, then it is augmented with (r + 1) element say

ab(yr+1, r + 1) as Pw = Pw ⊎ ab(yr+1, r + 1), duab(yr+1,r+1) = duab(yr+1,r+1) − gr+1.

If dui = 0, update Iu = Iu ∩ {i}, set xab(yr+1,r+1)r+1 = 1

A-II (Negation) If Pw =
(
ab(y1, 1), ab(y2, 2),… , ab(yr, r)

)
be a partial word of

length r for which either Z(XPw) ≥ Zu or the above Remark 2 holds, then

update the partial word as follows :

Pw = Pw ∩ ab(yr, r), duab(yr ,r) = duab(yr ,r) + br
Iu = Iu ⊎ ab(yr, r), if ab(yr, r) ≠ ab(yt, t), 1 ≤ t ≤ r − 1; setxab(yr ,r)r = 0

A-III (Negation of more than one element) If Pw be a partial word of length r and

more than one element say last (r − s) elements are to be removed, r ≤ n. If

Pw = (ab(y1, 1)… ab(yr, r)), r ≤ n, then it is updated as follows:

Pw = Pw ∩ (ab(ys+1, s + 1)… ab(yr, r))

In this Iu and the availabilities are updated for each source {ab(ys+1, s + 1)…
ab(yr, r)} as in (A-II) & setxab(yt ,t)t = 0 ∀t ∈ {s + 1,… , r}.

The algorithm runs in the following steps, and some notations are used throughout

the process, i.e. J is used to show the position of a column in the Alphabet Matrix

AB, K is used to show the position of an entry in the column of AB which is under

investigation.

Step 0 (Initialization) Initialize J = 1, I = Iu,K = 1,Pw = 𝜙, compute AB,Zu
(Ref. Sect. 2.2, Remark 3), & di, gj are available and go to Step II.

Step I If K < m, then update as in (A-II). Set K = K + 1 and go to Step II. If

K = m, then update as in (A-II). Set J = J − 1 and for this J go to Step III.

Step II If duab(K,J) < gj, then go to Step IV.

If

∑m

i=1
di <

∑n

j∈J
gj then go to Step I (Ref. Sect. 2.2, Remark 2(i))

If Iu = 𝜙 and ∃ an i ∈ Iu for which di < gj ∀j ∈ {J, J + 1… n} or

n − r < |Iu| then go to Step I (Ref. Sect. 2.2, Remark 2(iii)).

If none of the above holds, then update as (A-I). Find Z(XPw).
If Z(XPw) < Zu, then go to Step V (Ref. Sect. 2.2, Remark 1).
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Z(XPw) ≥ Zu and J > 1, go to Step I (Ref. Sect. 2.2, Remark 1).

Z(XPw) ≥ Zu and J = 1, go to Step VI (Ref. Sect. 2.2, Theorem 2).

Step III If J ≥ 1 and each yj = m in ab(yj, j), then go to step VI. Otherwise set

K = yj and go to Step I (Ref. Sect. 2.2, Theorem 3).

Step IV If K < m, then set K = K + 1, go to Step II. If K = m and

(i) J > 1, Set J = J − 1,K = yj and go to Step I.

(ii) J = 1, go to Step III.

Step V If J < n, then J = J + 1 and K = 1, go to Step II.

If J = n, we get word w for which Z(Xw) < Zu. Set w = Pw, Z = Z(Xw),
go to Step III.

Step VI Stop. Zu is the optimal fixed charge bulk transportation cost.

2.4 Numerical Illustration

Consider the following FCBTP having four sources with respective availabilities

d(i), i = 1, 2, 3, 4 and five destinations with demands g(j), j = 1, 2, 3, 4, 5 respectively

as shown in Table 1.

Step 0 Initialize J = 1, I = Iu = {1, 2, 3, 4},Pw = 𝜙,Zu = 21 (Ref. Sect. 2.2,

Remark 3) is the upper bound, AB (Table 2), d(i), g(j) are available; K = 1,

go to Step II.

Table 1 In each cell, the entry in the lower right corner shows the bulk cost and upper left corner

shows the fixed cost of transportation

3 3 2 3 1 5

2 3 4 7 1

1 1 5 4 4 4

4 1 1 8 8

4 3 4 1 3 3

1 7 11 1 6

4 4 3 3 1 2

∞ ∞ 10 3 5

3 3 2 2 1
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Table 2 Alphabet matrix

3 2 2 3 1

1 1 1 4 4

2 3 4 1 3

4 4 3 2 2

Step II Find ab(K, J) = ab(1, 1) = 3. If duab(K,J) = du3 = 3 = g1 then update as in

(A - I). Pw = Pw ⊎ ab(1, 1) = {3}, duab(1,1) = duab(1,1) − g1 = 0. As ab(1, 1)
= 3 ∈ Iu then update Iu ∩ ab(1, 1) = Iu ∩ {3} = {1, 2, 4}, set xab(1,1),1 = 1,

Z(XPw) = 5 < Zu = 21 then go to Step V.

Step V J = 1 < n then set J = 2 and K = 1 and go to Step II.

Step II Find ab(K, J) = ab(1, 2) = 2, du2 > g2 then update as in (A-I). Pw = Pw ⊎

ab(1, 2) = {3, 2}, du2 − g2 = 1, set x2,2 = 1, Z(XPw) = 7 < Zu, Iu = {1, 2, 4}
then go to Step V.

Step V J = 2 < n then set J = 3 and K = 1 and go to Step II.

Step II Find ab(K, J) = ab(1, 3) = 2, du2 < g3 then go to Step IV.

Step IV K = 1 < m then set K = 2 and go to Step II.

Step II Find ab(K, J) = ab(2, 3) = 1, du1 = 5 ≥ g3 then update as in (A-I). Pw =
Pw ⊎ ab(2, 3) = {3, 2, 1}, du1 = 5 − 2 = 3, Iu = {1, 2, 4}, set x1,3 = 1, Z(XPw) =
13 < 21 then go to Step V.

Step V J = 3 < n, then set J = 4 and K = 1 and go to Step II.

Step II Find ab(K, J) = ab(1, 4) = 2, du3 < g4 then go to Step IV.

Step II Find ab(K, J) = ab(2, 4) = 4, du4 = 2 ≥ g4 then update as in (A-I). Pw =
Pw ⊎ ab(2, 4) = {3, 2, 1, 4}, du2 = 2 − 2 = 0, Iu = {1, 2, 4} ∩ {4}
= {1, 2}, set x4,4 = 1, Z(XPw) = 19 < 21 then go to Step V.

Step V J = 4 < n, then set J = 5 and K = 1 and go to Step II.

Step II Find ab(K, J) = ab(1, 5) = 1, du1 = 3 ≥ g5 then update as in (A-I). Pw =
Pw ⊎ ab(1, 5) = {3, 2, 1, 4, 1}, du1 = 3 − 1 = 2, Iu = {1, 2}, set

x1,5 = 1, Z(XPw) = 21 ≥ 21 then go to Step I.

Step I K = 1 < 5 = m then update as in (A-II), set K = K + 1 = 2 and go to Step

II.

And continuing like this, we obtain a word {3, 2, 1, 4, 1} corresponding to which

the value of the objective is 21. This is the optimal value of fixed charge bulk trans-

portation problem, and the run-time is also calculated for the same using the test

code in MATLAB which is equal to 0.0825 second.
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Table 3 Average run-time of FCBTP for randomly generated problem of different sizes (taken

over about 1000 instances) using MATLAB

Source Destination Run-time(sec)

10 11 0.2099

10 15 0.0699

10 20 0.0862

20 21 0.1280

20 25 0.2015

20 30 0.2379

20 40 0.3474

30 31 0.3528

30 35 0.4197

30 40 0.4818

40 41 0.6461

40 45 0.8564

40 50 0.9730

50 51 1.1975

50 55 1.4085

50 60 1.5546

2.5 Computational Details

The algorithm has been coded in MATLAB and runs efficiently for various randomly

generated FCBTP of different sizes. The problems are tested using Intel Processor

i5 with 2.40 GHZ, 4 GB RAM on 64-bit Windows operating system. Some of them

are reported in the above Table 3.

3 Observations in the Paper [24]

Some observations are made from a paper entitled ‘Solving the fixed charge by rank-

ing the extreme points’ by Murty [24]. It is noticed that some errors were there,

which majorly affect the ranking limit of the solution procedure. In the paper [24],

the extreme points were ranked in increasing order of their objective value. The math-

ematical model of [24] is defined as

Minimize 𝜉(x) =
∑

j
dj(1 − 𝛿0,xj) +

∑
j
cjxj

Subject to
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Table 4 Solution S2
4 9 18 14 5 21 11

9 31 25 6 17 26
6 89 7 16 8 24 9

72 8 35 6 17 31 9
16 3 9 40 86 29 6

Z2 = 2230 D2 = 59(𝟒𝟔) 𝜉 = 2289

Table 5 Solution S5
4 9 24 14 13 27 17

3 25 25 0 8 17 18
83 7 10 2 38 9

66 2 35 6 17 17 17
22 3 15 34 92 35 12

Z5 = 2250 D5 = 105(𝟖𝟎) 𝜉 = 2355

Ax = b, x ≥ 0

𝛿0,xj =
{

1 xj > 0
0 xj = 0

In this paper [24], we found the solution of fixed charge transportation problem

by ranking the extreme points with respect to Z. The same numerical example which

was discussed in the paper [24] is solved on same lines, and only the tables which

contain the errors are shown above in Tables 4 and 5. The ranking of the basic fea-

sible solution in the algorithm took place using pivoting which was same as done in

simplex method, and each ranking stage was labelled as {S1, S2,… ,…}. Therefore,

the next element in the ranking sequence can easily be obtained with each iteration

using pivoting. When ranking is done using pivoting at stage 2 and stage 5, i.e. cor-

responding to the solution S2 and S5, the total cost which is the sum of variable cost

and fixed cost was wrong. Because some errors were found in calculating the fixed

cost corresponding to the solutions S2 and S5. The reported fixed cost values at stages

2 and 5 corresponding to the solutions S2 and S5 were 46 and 80 which are actually

59 and 105. Hence, the solution which was found after stage 6 corresponding to the

solution S6, as done in the paper [24], will have to be carried out up to stage 13, i.e.

S13, as a number of basic feasible solutions which must exist in the ranking limit

were missed by the author. So, due to the errors in solutions S2 and S5, the whole

solution got affected, however the final solution is same as it appeared in early stage

of ranking corresponding to S2.

The errors which occurred in the paper are shown in Tables 4 and 5, and the

wrong values reported in the paper marked bold, i.e. (D2&D5). Each cell contains

the relative cost whereas each bold entry inside it shows the basic feasible solutions.
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At each stage, Z shows minimum cost of transportation, D shows fixed cost incurred

with each transportation. 𝜉 shows the total cost of transportation, i.e. the sum of

minimum cost and fixed cost of transportation. Hence, the ranking limit which is

reported by the author after stage 6, i.e. for Z ≤ 2260 was wrong and the corrected

limit upto which the ranking has to be carried out is stage 13, i.e. for Z ≤ 2273.

4 Concluding Remarks

1. An exact method to solve fixed charge bulk transportation problem is developed

using lexi-search approach. The algorithm converges to the optimality in a finite

number of steps because:

(a) Maximum number of generated words are nm.

(b) Every new word in the process gives a tighter upper bound on the optimal

value.

(c) All the partial words that yield a value greater than upper bound are rejected.

(d) Infeasible partial words when encountered in the process are also rejected.

2. It is also noted that as the partial word under investigation needs to be stored in

the active memory hence almost negligible active memory is required. The time

complexity of the algorithm is found to be O(n2). The algorithm has been coded

in MATLAB and verified for variety of test problem. The algorithm runs suc-

cessfully for randomly generated problems of different sizes for different input

data. All the instances, i.e. availabilities, demands, bulk cost, fixed cost, sources

and destinations are generated randomly in MATLAB following the uniform dis-

tribution as reported in Sect. 2.5 computational details.

3. Consider a problem P2 which is defined as

Problem P2

min Z =
m∑

i=1

n∑

j=1
(cij + fij)xij

subject to

∑

j∈J
gjxij ≤ di, i ∈ I (i)

∑

i∈I
xij = 1, j ∈ J (ii)

xij = 0 or 1 ∀(i, j) ∈ I XJ (iii)
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Feasibility check:-

∑

j∈J
gj ≤

∑

i∈I
di (iv)

It can be seen that an optimal solution of problem P1 is an optimal solution of

problem P2. From here it is concluded that the fixed charge bulk transportation

problem is equivalent to a cost bulk transportation problem which can be solved

using [14, 23, 29] although a method to solve FCBTP is developed using lexi-

search in this paper for the problem P1.

4. The proposed study can also be extended for more generalized case when n′(m <

n′ < n) destinations are to be served or when each source has to serve atleast a

specified number of destinations.
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Reduction of Type-2 Lognormal
Uncertain Variable and Its Application
to a Two-Stage Solid Transportation
Problem

Dipanjana Sengupta and Uttam Kumar Bera

Abstract The main focus of the paper is to develop a multi-objective solid
transportation problem under uncertain environment, where transportation param-
eters are taken as type-2 lognormal uncertain variables. For reduction of the type-2
uncertain lognormal variables, expected value-based reduction method has been
proposed. A two-stage solid transportation model has been also proposed here.
Finally, an illustrative example with real-life data has been solved with the pro-
posed expected value-based reduction method. A comparison has been shown
between the result obtained using linear variable and lognormal variable. Lingo
13.0 optimization software has been used to find the optimal result.

Keywords Solid transportation problem ⋅ Type-2 lognormal uncertain variable
Expected value-based reduction method

1 Introduction

Logistic management manages the upward and downward movement of logistics
from supply centres to demand centres to meet the customers’ meet with less cost
and more profitability. Initially, transportation problem was stated by Hitchcock [1].
Shell [2] stated the extension of transportation problem which is solid transportation
problem (STP). The solution procedure of STP was described by [Haley] in the year
1962.

Uncertainty is the general part of transportation problem. Uncertainty arises due
to different practical situation which arises in the everyday’s life. It occurs in case of
transportation of goods. When goods are transported from one place to another, this
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transportation depends on road conditions, environmental condition, share market’s
condition, availability of fuels, availability of drivers, toll tax, insurance cost, etc.
Due to uncertainty, different situations like fuzziness, randomness roughness may
occur. In the literature, there are many researchers who have done many devel-
opments. For these the readers may refer [2–11]. Uncertainty theory which is the
effective branch of mathematics was described by Liu [12–14].

To deal with those types of uncertainties in real-life situations, theories of
probability, fuzzy set and rough set have been introduced. There are so many
uncertain variables, namely linear, zigzag, normal, lognormal. All are practically a
series of uncertain variables, which are represented by their corresponding series of
uncertain distribution. In developing the different study of uncertainty theory, Liu
et al. [15, 16] have a great contribution. So many researchers have been developed
many models in this field. Cui and Sheng [5] presented the uncertain programming
model for solid transportation problem. Sheng and Yao studied a transportation
model with uncertain costs and demands in [17]. They also presented fixed charge
transportation problem and its uncertain programming model in [18].

In this paper, our aim is to minimize transportation cost with the help of pro-
posed expected value-based reduction method of type-2 lognormal uncertain
variables by developing a two-stage solid transportation model. The major contri-
bution of the paper is described below:

• Reduction method of type-2 lognormal uncertain variables with the use of
expected value has been proposed.

• A multi-objective two-stage solid transportation problem has been proposed
here.

• An illustrative example with real-life data is presented here.
• The model has been solved with the use of this expected value-based reduction

method.
• A comparison has been shown between reduction methods of linear uncertain

variable and lognormal uncertain variable.

With this introductory part, the rest of the paper is as follows, Sect. 2 describes
some preliminaries, Sect. 3 represents the proposed expected value-based reduction
method of type-2 lognormal uncertain variables. Section 4 presents the problem
description and formulation. In Sect. 5, solution technique has been presented. An
illustrative example using real-life data is presented in Sect. 6. Some managerial
insights have been drawn in Sect. 7. In the last, conclusion and future scope have
been given in Sect. 8.

2 Preliminaries

From mathematical point of view, uncertainty theory is essentially an alternative
theory for measurement. Uncertainty theory should begin with a measurable space.
Uncertainty theory depends on some certain sets like algebra, σ-algebra, measurable
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set, Borel-algebra, Borel set and measurable function. To learn uncertainty theory,
we have to know about some definitions of uncertainty theory. In order to provide
an axiom-based mathematical tool for describing and handling realistic inexactness,
Liu introduced uncertainty theory and also successfully applied to handling and
solving a variety of optimization problems. For completeness of the research, some
basic concepts and definitions of uncertainty theory will be introduced in the
following.

2.1 Definition

2.1.1 Uncertain Measure

Let Γ be a nonempty set. A collection L of subsets of Γ is called a σ-algebra if,

(a) Γ∈L;
(b) if Λ∈L, then Λc ∈L and
(c) if Λ1,Λ2, . . . ∈L, then Λ1 ∪Λ2 ∪⋯∈L.

Each element Λ in the σ-algebra L is called an event. Uncertain measure is a
function from L to [0, 1]. In order to present an axiomatic definition of uncertain
measure, it is necessary to assign each event Λ a number MfΛg which indicates
the belief degree that the event Λ will occur. In order to ensure that the number
MfΛg have certain mathematical properties, Liu [12] proposed the following three
axioms:

Axiom 1. (Normality Axiom) MfΓg=1 for the universal set Γ.
Axiom 2. (Duality Axiom) MfΛg+M Λcf g=1 for any event Λ.
Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1, Λ2,

…, we have

M ⋃
∞

i=1
Λi

� �
≤ ∑

∞

i=1
M Λif g.

The set function M is called an uncertain measure if it satisfies the normality,
duality and subadditivity axioms.

Example 2.1.1 Let Γ= γ1, γ2, γ3f g. In this case, there are only 8 events. Define
M γ1f g=0.6, M γ2f g=0.3, M γ3f g=0.2, M γ1, γ2f g=0.8, M γ1, γ3f g=0.7,
M γ2, γ3f g=0.4,M ∅f g=0,MfΓg=1. Then M is an uncertain measure because
it satisfies the three axioms.
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2.1.2 Uncertain Variable (Liu [12])

An uncertain variable is a measurable function ξ from an uncertainty space
Γ,L,Mð Þ to the set of real numbers, i.e. for any Borel set B of real numbers, the set
ξ∈Bf g= γ ∈ΓjξðγÞ∈Bf g is an event.

Example 2.1.2 Take Γ,L,Mð Þ to be γ1, γ2f g with M γ1f g=M γ2f g=0.5. Then
the function

ξðγÞ= 0, if γ = γ1
1, if γ = γ2

�

is an uncertain variable.

2.1.3 Uncertainty Distribution (Liu [12])

The uncertainty distribution Φ of an uncertain variable ξ is defined by
ΦðxÞ=M ξ≤ xf g for any real number x.

Example 2.1.3 The uncertain variable ξðγÞ≡ b on the uncertainty space Γ,L,Mð Þ
(i.e. a crisp number b) has an uncertainty distribution

ΦðxÞ= 0, if x< b
1, if x≥ b

�
.

2.1.4 Regular Uncertainty Distribution

An uncertainty distribution Φ is said to be regular if its inverse function Φ− 1ðαÞ
exists and is unique for each α∈ ð0, 1Þ.

For example, linear uncertainty distribution, zigzag uncertainty distribution,
normal uncertainty distribution and lognormal uncertainty distribution are all
regular.

2.1.5 Expected Value of Uncertain Variable (Liu [12])

Let ξ be an uncertain variable. Then the expected value of ξ is defined by
E ξ½ �= R +∞

0 M ξ≥ rf gdr− R 0−∞ M ξ≤ rf gdr Provided that at least one of the two
integrals is finite. Let ξ be uncertain variable with uncertainty distribution Φ. If the
expected value exists, then E ξ½ �= R 10 Φ− 1ðαÞdα.
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2.2 Theorem

If lnξ ̃=N e, σ; θl, θrð Þ is a type-2 lognormal uncertain variable, then the distribution
of the generated type-1 uncertainty distribution via expected value criterion is
described below. For uncertainty distribution of optimistic and pessimistic value
criterion, people can refer the paper of Yang [10].

ϕexp
ξ̃ ðxÞ

=

1+ exp
πðe− lnxÞffiffiffi

3
p

σ

� �� �− 1

−
1
2

θl − θrð Þ 1+ exp
πðe− lnxÞffiffiffi

3
p

σ

� �� �− 1

, 0≤ x≤ expðeÞ ̸3
ffiffi
3

p
σð Þ ̸π

1+ exp
πðe− lnxÞffiffiffi

3
p

σ

� �� �− 1

−
1
2

θl − θrð Þ 1
2
− 1+ exp

πðe− lnxÞffiffiffi
3

p
σ

� �� �− 1
" #

expðeÞ ̸3
ffiffi
3

p
σ

π ≤ x≤ expðeÞ

1+ exp
πðe− lnxÞffiffiffi

3
p

σ

� �� �− 1

−
1
2

θl − θrð Þ 1+ exp
πðe− lnxÞffiffiffi

3
p

σ

� �� �− 1

−
1
2

" #
, expðeÞ≤ x≤ expðeÞ.3

ffiffi
3

p
σð Þ ̸π

1+ exp
πðe− lnxÞffiffiffi

3
p

σ

� �� �− 1

−
1
2

θl − θrð Þ 1− 1+ exp
πðe− lnxÞffiffiffi

3
p

σ

� �� �− 1
" #

, x≥ expðeÞ.3
ffiffi
3

p
σð Þ ̸π

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

For any x∈ ða, bÞ∪ ðb, cÞ.

3 Proposed Expected Value-Based Reduction Method
of Type-2 Lognormal Uncertain Variables

Let ξi be the E reduction of the type-2 lognormal uncertain variable
lnξi =N e, σ; θl, i, θr, ið Þ, i= ð1, 2, . . . , nÞ. Suppose ξ1, ξ2, ξ3, . . . , ξn are mutually
independent, and for θr, 1 − θl, 1 ≤ θr, 2 − θl, 2 ≤ . . . θr, n − θl, n for i=1, 2, . . . n.

(i) If α ∊ (0, 0.25], then Cr ∑n
i=1 ξĩki ≤ t

� �
≥ α equivalent to

∑
n

i=1
exp e−

ffiffiffi
3

p
σ

π
ln 2 1− αð Þ+ θr − θlð Þ− ln2αf g

	 

ki ≤ t

(ii) If α ∊ (0.25, 0.5], then Cr ∑n
i=1 ξĩki ≤ t

� �
≥ α equivalent to

∑
n

i=1
exp e−

ffiffiffi
3

p
σ

π
ln 4ð1− αÞ+ θl − θrð Þf g− ln 4α+ θl − θrð Þ

	 

ki ≤ t
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(iii) If α ∊ (0.5, 0.75], then Cr ∑n
i=1 ξĩki ≤ t

� �
≥ α equivalent to

∑
n

i=1
exp e−

ffiffiffi
3

p
σ

π
ln 4ð1− αÞ− θl + θrð Þf g− ln 4α− θl + θrð Þ

	 

ki ≤ t

(iv) If α ∊ (0.75, 1], then Cr ∑n
i=1 ξĩki ≤ t

� �
≥ α equivalent to

∑
n

i=1
exp e−

ffiffiffi
3

p
σ

π
ln 2ð1− αÞ½ �− ln 2α+ θl − θr½ �f g

	 

ki ≤ t

4 Problem Description and Formulation

4.1 Notation

The following are the lists of notation which have been used here for the formu-
lation of the two-stage solid transportation problem:

• c ̃1ijk: denotes the per unit type-2 lognormal uncertain transportation cost from ith
supply centre to jth distribution centre using kth conveyance in stage-1.

• c2̃ijk: denotes the per unit type-2 lognormal uncertain transportation cost from jth
distribution centre to rth retailer using kth conveyance in stage-2.

• fj: denotes crisp per unit fixed cost including operating cost of jth distribution
centre.

• Mk: denotes crisp per unit maintenance cost of kth conveyance.
• zj: denotes the binary variable of fixed cost.

zj =
1, if operating cost needed for jth distribution centre.
0, otherwise.

�

• djrk: denotes distance between jth distribution centre to rth retailer through kth
vehicle.

• ak: denotes the binary variable of maintenance cost,

ak =
1, if maintenance cost needed for kth conveyance.
0, otherwise.

�
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• a1̃i , b
1̃
j and q

1̃
k : denotes source, demand and conveyance constraints, respectively,

for stage-1.

• b
2̌
r , q

2̃
k : denotes demand and conveyance constraints, respectively, for stage-2.

• x1ijk: denotes quantity transported in the stage-1.
• x2jrk: denotes quantity transported in the stage-2.

Assumption:

• The model is an unbalanced problem.
• Here all vehicles are fully loaded. Partially loaded case is not considered here.
• The fixed cost and maintenance cost are taken only in stage-2.

The solid transportation problem focuses on decision making for transporting
some products from ith source to jth destination using kth conveyance with mini-
mum cost and maximum profit. Here the problem is a two-stage problem. In
stage-1, supply centre is source point and distribution centre is demand point. In
stage-2, distribution centre works as source point and retailer works as demand
point. All the transportation is done with same type of vehicles.

Min Z = ∑
m

i=1
∑
n

j=1
∑
l

k=1
c ̃1ijkx

1
ijk + ∑

n

j=1
∑
R

r=1
∑
l

k =1
c ̃2jrkx

2
jrk + fjzj +Mkdjrkak

� �
ð1Þ

S. t ∑
n

j=1
∑
l

k=1
x1ijk ≤ a1̃i i=1, 2, . . . ,m ð2Þ

∑
m

i=1
∑
l

k=1
x1ijk ≥ b

1̃
j j=1, 2, . . . , n ð3Þ

∑
m

i=1
∑
n

j=1
x1ijk ≤ q1̃k k=1, 2, . . . , l ð4Þ

∑
R

r=1
∑
l

k=1
x2jrk ≤ ∑

m

i=1
∑
l

k=1
x1ijk j=1, 2, . . . , n ð5Þ

∑
n

j=1
∑
l

k=1
x2ijk ≥ b

2̃
r r=1, 2, . . . ,R ð6Þ

∑
n

j=1
∑
R

r=1
x2ijk ≤ q2̃k k=1, 2, . . . , l ð7Þ

where x1ijk ≥ 0, x2jrk ≥ 0, ∀i, j and k and they denote the unknown quantity to be
transport from supply centre to distribution centre and distribution centre to
retailers, respectively.
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Here, the objective function (1) denotes the minimization of total transportation
cost of the proposed model. The transportation cost c ̃1ijk of stage-1 is multiplied with
the transported amount x1ijk. The transportation cost c2jrk of stage-2 is multiplied with
the transported amount x2jrk. Here in the model, fixed cost including operating cost
and maintenance cost of kth conveyance is added with the transportation cost. Here,
fixed cost and maintenance cost are included only in stage-2. Equations (2)–(4)
denote the source, demand and conveyance constraints of stage. In stage-1, Eqs. (2)
and (4) denote source and conveyance constraint, respectively, which should be less
than or equal to capacity of source and demand. Equation (3) denotes demand
constraint which should be greater than or equal to capacity of demand.
Equations (5)–(7) denote the source, demand and conveyance constraints of second
stage. In stage-2, Eq. (5) denotes that the transported amount of stage-2 is less than
or equal to transported amount of stage-1. Equations (6) and (7) are the demand and
conveyance constraint, respectively.

5 Solution Procedure

5.1 Crisp Conversion of Type-2 Lognormal Uncertain
Variable Using Proposed Expected Value-Based
Reduction Method

Here c ̃1ijk, c2̃ijk are type-2 lognormal uncertain variable. The deterministic form has
shown below.

Min Z = ∑
m

i=1
∑
n

j=1
∑
l

k=1
Fc1ijk

x1ijk + ∑
n

j=1
∑
R

r=1
∑
l

k=1
Fc2jrk

x2jrk + + fjzj +Mkdjrkak
� �

ð8Þ

S. t ∑
n

j=1
∑
l

k=1
x1ijk ≤Fa1j

i=1, 2, . . . ,m ð9Þ

∑
m

i=1
∑
l

k =1
x1ijk ≥Fb1j

j=1, 2, . . . , n ð10Þ

∑
m

i=1
∑
n

j=1
x1ijk ≤Fq1k

k=1, 2, . . . , l ð11Þ

∑
R

r=1
∑
l

k=1
x2jrk ≤ ∑

m

i=1
∑
l

k=1
x1ijk j=1, 2, . . . , n ð12Þ
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∑
n

j=1
∑
l

k =1
x2ijk ≥Fb2r r=1, 2, . . . ,R ð13Þ

∑
n

j=1
∑
R

r=1
x2ijk ≤Fq2k

k=1, 2, . . . , l ð14Þ

where x1ijk ≥ 0, x2jrk ≥ 0, ∀i, j and k and they denote the unknown quantity to be
transport from supply centre to distribution centre and distribution centre to
retailers, respectively.

Equations (9)–(11) denote the source, demand and conveyance constraints of
first stage and Eqs. (12)–(14) denote the source, demand and conveyance con-
straints of second stage. Here, Fc1ijk

, Fc2jrk
, Fa1j

, Fb1j
, Fq1k

, Fb2r and Fq2k
are equivalent

crisp form of type-2 uncertain lognormal variable.
There are four cases in deterministic form (0–25), (0.25–0.50), (0.50–0.75) and

(0.75–1). Here we have taken only (0.25–0.50) case

(i) Case-1: when α∈ (0.25–0.50), then the equivalent deterministic form of the
model is as under

Min f ̄

S.t

∑
m

i=1
∑
n

j=1
∑
l

k=1
exp ec1ijk −

ffiffiffi
3

p
σc1ijk
π

ln4ð1− αÞ+ θl − θrf g− ln 4α+ θl − θrð Þ
" #

x1ijk +

∑
n

j=1
∑
R

r=1
∑
l

k=1
exp ec2ijk −

ffiffiffi
3

p
σc2ijk
π

ln4ð1− αÞ+ θl − θrf g− ln 4α+ θl − θrð Þ
" #

x2jrk

 
+

fjzj +Mkdjrkak



ð15Þ

S. t ∑
n

j=1
∑
l

k=1
x1ijk ≤ a1̃i i=1, 2, . . . ,m ð16Þ

∑
m

i=1
∑
l

k=1
x1ijk ≥ b

1̃
j j=1, 2, . . . , n ð17Þ

∑
m

i=1
∑
n

j=1
x1ijk ≤ q1̃k k=1, 2, . . . , l ð18Þ

∑
R

r=1
∑
l

k =1
x2jrk ≤ ∑

m

i=1
∑
l

k=1
x1ijk j=1, 2, . . . , n ð19Þ
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∑
n

j=1
∑
l

k=1
x2ijk ≥ b

2̃
r r=1, 2, . . . ,R ð20Þ

∑
n

j=1
∑
R

r=1
x2ijk ≤ q2̃k k=1, 2, . . . , l ð21Þ

where x1ijk ≥ 0, x2jrk ≥ 0, ∀i, j and k and they denote the unknown quantity to be
transport from supply centre to distribution centre and distribution centre to
retailers, respectively.

Equations (16)–(18) imply the source, demand and conveyance constraint of
stage-1, respectively, and Eq. (19)–(21) denote source, demand and conveyance
constraint of stage-2.

6 Numerical Example with Real-Life Data

For numerical experiment, we have considered a two-stage solid transportation
problem model with two sources, two distribution centres, two retailers and two
conveyances. Here the problem is a two-stage problem. In stage-1, supply centre is
source point and distribution centre is demand point. In stage-2, distribution centre
works as source point and retailer works as demand point. We have taken the
real-life data from Tarasankar plastic industry and RFL plastic industry. Both are
situated in the Bodhjungnagar, Special Economic Zone. They supply plastic
products to the distribution centres located in different parts of Tripura and outside
Tripura. From them, we have chosen two distribution centres located in Agartala
and Udaipur. The distribution centres supply them to the retailer. From them, we
have taken only two retailers. All the transportation is done with two same type of
vehicles. Truck and Tripper are two vehicles which have been taken here. All the
data are taken according to expert opinion. The respective inputs for objective
function in type-2 lognormal uncertain variables are given in Table 1 (Table 2).

Here per unit crisp fixed cost fx =Rs. 5 and per unit crisp maintenance cost
Mk =Rs. 4 are same in all cases. The sources are a ̃11 = ð3, 0.9; 0.5, 0.6Þ,
a1̃2 = ð2.3, 1.2; 0.5, 0.6Þ, demands are b

1̃
1 = ð2, 0.8; 0.5, 0.6Þ, b1̃2 = ð2.4, 1.6; 0.5, 0.6Þ,

capacities of conveyances are q1̃1 = ð2.5, 0.8; 0.5, 0.6Þ, q1̃2 = ð3.1, 0.7; 0.5, 0.6Þ in first
stage. The demand and conveyance in case of second stage are

b
2̃
1 = ð1.8, 1.3; 0.5, 0.6Þ, b

2̃
2 = ð1.9, 1.4; 0.5, 0.6Þ and q2̃1 = ð2.1, 0.6; 0.5, 0.6Þ,

q2̃2 = ð1.8, 0.9; 0.5, 0.6Þ. Here credibility level is taken as 0.35. When we solve this
by LINGO 13.0 software the result is as below:
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7 Discussion and Managerial Insights

From Table 3, we can find that the minimum transportation cost is Rs. 1676.42 and
Rs. 1662.05, respectively, which have been found by two different reduction
methods using linear type-2 and lognormal type-2 uncertain variables, respectively.
The results are somehow almost same. So both the reduction methods are helpful.
But lognormal uncertain variables are used when the complexity is much higher.
The table shows that the amount transported in stage-1 is more than amount
transported in stage-2. It occurs because in stage-2 distribution centre may not
transfer the whole amount to the retailer. Some amount may store in the warehouse.
This type of problem occurs due to uncertain conditions. So type-2 uncertain
lognormal variables are used with the help of expert opinion. The above model is
helpful for a manager as he can decide how to transport goods in two-stage
transportation problem in minimum cost. The type-2 uncertain lognormal and linear
variables are used according to expert opinion.

Table 1 Inputs for stage-1 cost parameters ln ξi =N e, σ; θl, i, θr, ið Þ
c̃1111 = ð3, 1.0; 0.8, 1.0Þ c1̃112 = ð1.2, 1.5; 0.5, 1.5Þ c1̃121 = ð1, 0.5; 0.6, 1.3Þ c1̃122 = ð1.2, 2.0; 0.9, 1.9Þ
c̃1211 = ð1.5, 1.5; 0.5, 1.0Þ c1̃212 = ð1.5, 1.0; 1.4, 2.0Þ c1̃221 = ð1.7, 1.0; 0.5, 1.5Þ c1̃222 = ð2.7, 1.0; 1.2, 1.8Þ

Table 2 Inputs for stage-2 cost parameters ln ξi ¼ N e; σ; θl;i; θr;i
� 


c2̃111 ¼ ð2:3; 1:0; 0:8; 1:0Þ c2̃112 ¼ ð1:1; 1:5; 0:5; 1:5Þ c2̃121 ¼ ð0:8; 0:5; 0:6; 1:3Þ c2̃122 ¼ ð1:1; 2:0; 0:9; 1:9Þ
c2̃211 ¼ ð1:2; 1:5; 0:5; 1:0Þ c2̃212 ¼ ð1:3; 1:0; 1:4; 2:0Þ c2̃221 ¼ ð1:5; 1:0; 0:5; 1:5Þ c2̃222 ¼ ð2:4; 1:0; 1:2; 1:8Þ

Table 3 Result of the STP model obtained by comparison of proposed solution methods using
type-2 lognormal and linear uncertain variables

Solution using expected value-based
reduction method using type-2 lognormal

Solution using expected value-based
reduction method using type-2 linear

Total cost = 1676.42 Total cost = 1662.045
Solution of first stage Solution of first stage

x1111 = 0, x1112 = 9, x1121 = 0, x1122 = 23,
x1211 = 32, x1212 = 0, x1221 = 0, x1222 = 0

x1111 = 8.5, x1112 = 0.5, x1121 = 23, x1122 = 0,
x1211 = 0, x1212 = 32, x1221 = 0, x1222 = 0

Solution of second stage Solution of second stage

x2111 = 0, x2112 = 3, x2121 = 0, x2122 = 38,
x2211 = 2.71, x2212 = 0, x2221 = 1.35, x2222 = 0

x2111 = 0, x2112 = 3, x2121 = 0, x2122 = 38,
x2211 = 2.71, x2212 = 9, x2221 = 1.35, x2222 = 0

Reduction of Type-2 Lognormal Uncertain Variable … 343



8 Conclusion and Future Scope

In this paper, a cost minimization problem with the help of two-stage solid trans-
portation has been proposed. An expected value-based reduction method has been
proposed to solve the proposed model. Linear and lognormal uncertain type-2
variables have been used to solve the proposed model. Lingo 13.0 optimization
software has been used here to solve the model. One comparison has been made
between reduction methods of two types of type-2 uncertain variables. In future,
also we can solve this type of problem with the help of different uncertain type-2
variables, viz. zigzag, normal uncertain variables.
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Abstract Under stakeholder pressure and more strict regulations, firms need to

enhance green supply chain management (GSCM) practice using multidimensional

approaches. In view of these facts, a multi-criteria decision-making (MCDM) tech-

nique can be implemented while evaluating GSCM performance of alternative sup-

pliers based on a set of criteria to deal with vagueness of human perceptions. The

grey set theory is used to interpret the linguistic preference in accordance with the

subjective evaluation. The cause–effect relationships among GSCM criteria, as well

as their weights are considered using the grey DEMATEL approach. The grey ARAS

method is also applied, using the weights obtained, for evaluating and ranking the

GSCM performance of alternative suppliers. A sensitivity analysis conducted to

ensure the reliability of solutions is described and the comparison of the applied

technique with other MCDM methods such as grey TOPSIS and grey COPRAS is

provided.
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1 Introduction

Under the conditions of stricter governmental regulations and rising public aware-

ness of the environmental protection problems, many firms are now undertaking

major initiatives to make their supply chains greener by enhancing technologi-

cal innovation and improving green activities [23]. As environmental awareness

increases, firms purchase products from suppliers that provide a high quality, low-

cost product, while displaying high environmental responsibility [8]. Since a green

partner is expected to achieve green product design and life cycle analysis, compa-

nies need rigorous partner selection and performance evaluation techniques. Thus,

firms should systematically embrace an evaluation model of supplier selection in

determining potential and appropriate partners to maintain a competitive advantage

in the globalization trend [5]. In view of the above considerations, the selection of

proper green suppliers, which is a critical issue for organizations, can be modelled

as a multi-criteria decision-making (MCDM) problem that can handle various and

conflicting criteria for making a selection among predetermined alternatives. With

structural relationships among the criteria constructed for supplier selection, firms

obtain a clear understanding of the cause–effect relationships for facilitating suppli-

ers reflecting more realistic results among decision attributes and alternatives [3].

The DEMATEL method is considered due to its ability to confirm interdependence

of the considered factors and can help identify key criteria to improve performance

and provide decision-making information [11]. However, it is unable to deal with

uncertain situations, the lack of information and conflict resolution among experts

and cannot express ambiguous values around a given discrete value [2]. Although

some fuzzy methods offset the shortcomings of the crisp methods, they suffer from

limitations of mapping the memberships functions. Grey theory, being superior in the

mathematical analysis of systems with uncertain information, can deal flexibly with

the fuzziness situation [9]. The grey set theory studies the relationships among vari-

ous attributes (criteria) in an MCDM problem, proving to be an effective approach to

theoretical analysis of systems with imprecise information and incomplete samples

[22]. Grey theory can be successfully amalgamated with any of the decision-making

process, so as to improve the exactitude of judgments, and grey numbers are easily

convertible into crisp numbers using various methods [22].

Thus, in this paper, the grey DEMATEL method is used to identify key influenc-

ing criteria in forecasting and selecting suppliers that help companies solve decision-

making problems in an imprecise environment. Particularly, this method can also be

successfully used to divide a set of complex factors (criteria) into cause and effect

groups through a causal diagram. Thus, the complexity of a problem is easier to be

captured and profound decisions can be made. Furthermore, the additive ratio assess-

ment method (ARAS) expressed in intervals in the grey theory [18] is employed to

aggregate the performance values for selecting the best supplier for the GSCM based

on the weights of criteria and using the grey DEMATEL method. The method is par-

ticularly helpful when decision-makers may hold diverse opinions and preferences
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due to incomplete information and knowledge or some inherent conflict between

various departments.

The rest of the paper is structured as follows. Section 2 discusses the scenario and

proposes the criteria for GSCM. Section 3 deals with the proposed methodology for

ranking the alternatives based on the critical risk criteria. The discussion of results

and the sensitivity analysis is presented in Sect. 4. The conclusion part is given in

Sect. 5.

2 Problem Discussion

2.1 Background Scenario

As companies in developing countries are lagging behind in adopting the GSCM

concept, the understanding of the drivers and risk criteria for adopting GSCM prac-

tices in their business strategies, is crucial [13]. The study is based on the analysis

of a electronics manufacturing company in Taiwan, adopted from Liou et al. [10],

for which five green supplier alternatives should be selected based on the proposed

green crucial criteria, determined from the extensive literature sources (discussed

in Sect. 2.2). The hierarchal structure of the GSCM initiatives is as follows. The top

level of the hierarchy represents the final goal of the problem solution, while the sec-

ond level consists of ten main risk criteria (Table 1) influencing the GSCM practices.

Finally, the bottom level of the hierarchy represents the supplier companies as the

alternatives selected for evaluation. As the company chooses the green supplier part-

ners, the last level should represent the alternative suppliers that must be prioritized

according to their greenness.

2.2 The Criteria Proposed for GSCM

GSCM has been defined as the incorporation of the ecological component into the

supply chain management [17]. Specifically, risks to the green supply chain are

unforeseen events that might affect the green or environmentally friendly material

movement, and even disturb the proposed flow of green materials and products from

their point of origin to the point of consumption in business (Yang and Li 2010).

Mangla et al. [12] identified six categories of risks and thirteen specific risks, asso-

ciated with the GSCM on the basis of the literature and inputs from industrial experts.

Mathiyazhagan et al. [14] identified twenty-six barriers based on consultation with

industrial experts and academicians and applied the ISM-based approach to barrier

analysis in implementing GSCM. Wu and Chang [19] used four dimensions and

twenty criteria to identify critical dimensions and factors to construct a digraph,

showing causal relationships among them in GSCM. Govindan and Chaudhuri [7]
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Table 1 GSC specific risk-based drivers/criteria

No. Risk drivers/ criteria References

1 Process design and planning

risks (C1)

Chan and Wang [4]

2 Lack of technical expertise

(C2)

Deleris and Erhun [6]

3 Non-availability of fund to

encourage green products (C3)

Mathiyazhagan et al. [14]

4 Lack of new technologies,

materials and processes (C4)

Perron [15]

5 Inflation and currency

exchange rate (C5)

Yang and Li [20]

6 Market dynamics and bullwhip

effect risk (C6)

Mangla et al. [12]

7 Procurement costs risks (C7) Yang and Li [20]

8 High cost of hazardous waste

disposal (C8)

Mathiyazhagan et al. [14]

9 IT and information sharing

risks (C9)

Selviaridis et al. [16]

10 Supplier quality issues (C10) Mangla et al. [12]

analysed the interrelationships between risks faced by the third-party logistics ser-

vice providers (3PLs) with respect to one of its customers, using DEMATEL. Based

on the above papers, we identified ten (mainly risk driven) criteria for prioritizing

the green supplier alternatives (see Table 1).

3 The Methodology Proposed for Ranking the Alternatives
Based on Criteria Weight

After setting the decision goal, construct a committee of experts with K members

for determining the evaluation criteria and the alternatives. The evaluation criteria

are already discussed in Table 1. Based on the interviews with academicians and

industry experts, the computational steps of the above hybrid MCDM framework

are implemented.

3.1 The Grey DEMATEL Method for Criteria Weight

The aim is to investigate the major relationships among the criteria (Table 1) that

have been identified in the literature. The analysis is performed based on the method
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Table 2 The grey linguistic scale of respondent’s assessments

Linguistic terms Grey numbers Normal values

No influence (N) [0, 0] 0

Very low influence (VL) [0, 0.25] 1

Low influence (L) [0.25, 0.5] 2

High influence (H) [0.5, 0.75] 3

Very high influence (VH) [0.75, 1] 4

guidelines and steps presented in Zhang et al. [22], Dalalah et al. [5], Bai and Sarkis

[2]. Based on the above papers, grey DEMATEL algorithmic methodology is applied

here. The program code for computation is written along in MATLAB, following the

steps given below:

Step 1. Develop a complete grey direct-relation matrix
Step 1.1: Defining the grey influence comparison linguistic scale. Firstly, for the

purpose of measuring the relationships, it is required to define a comparison scale.

The different degree of influence among criteria are expressed with 5-level grey lin-

guistic scale: 0 = no influence, 1 = very low influence, 2 = low influence, 3 = high

influence, 4 = very high influence. The grey linguistic scale for respondents evalua-

tions is defined in Table 2.

Step 1.2: Acquire the initial grey direct-relation matrix.
To show the relationships among the set of the criteria (Ci|i = 1, 2,… , n), a group of

K experts developed n × n pair-wise comparison grey decision matrices Z1
,Z2

,… ,

ZK
(using Eq. 1), with the principal diagonal elements initially set to the grey value

of zero.

Zk = [⊗zkij]n×n, k = 1, 2,… ,K (1)

⊗zkij = [zkij𝛼, z
k
ij𝛼] is a grey number for the influence of criterion on criterion for expert.

The matrices constructed for four experts (K = 4) and ten criteria used in the case

study are given in Table 3.

Step 1.3: Combine all grey direct-relation matrices grey into an aggregate matrix
as:

Z =
∑K

i=1 Z
k

K
(2)

Step 2: Calculate the normalized grey direct-relation matrix (N)
The normalized grey direct-relation matrix N = [⊗nij]n×n can be obtained using Eqs.

(3)–(5). (i, j = 1, 2,… , n)

N = ⊗s ⋅ Z, where (3)

⊗nij = [s
𝛼

⋅ zij𝛼, s𝛽 ⋅ zij𝛽] (4)



352 K. Chatterjee et al.

Ta
bl
e
3

T
h
e

p
a
ir

-w
is

e
d
ir

e
c
t-

re
la

ti
o
n

m
a
tr

ix

E
x
p
e
r
t

1
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

1
0

E
x
p
e
r
t

2
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

1
0

C
1

0
2

0
1

2
1

1
4

1
1

C
1

0
2

1
0

1
1

0
2

1
1

C
2

2
0

1
1

2
1

2
0

2
2

C
2

3
0

1
0

2
2

1
1

0
1

C
3

1
2

0
2

1
1

3
4

3
3

C
3

3
2

0
1

3
3

2
3

0
0

C
4

3
2

0
0

4
1

4
0

3
1

C
4

2
2

1
0

1
1

1
1

0
1

C
5

4
1

2
1

0
2

2
0

0
4

C
5

3
2

2
3

0
2

3
2

3
2

C
6

2
1

3
2

1
0

1
3

1
2

C
6

2
1

2
2

4
0

3
3

1
3

C
7

0
3

4
3

4
3

0
4

0
1

C
7

1
3

1
1

3
1

0
3

3
0

C
8

1
4

1
3

0
1

3
0

4
3

C
8

1
3

1
1

2
2

3
0

4
0

C
9

3
2

3
3

1
4

1
3

0
1

C
9

2
1

2
0

1
2

4
4

0
1

C
1
0

2
3

1
1

0
1

2
3

1
0

C
1
0

4
1

3
1

0
1

1
3

2
0

E
x
p
e
r
t

3
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

1
0

E
x
p
e
r
t

4
C

1
C

2
C

3
C

4
C

5
C

6
C

7
C

8
C

9
C

1
0

C
1

0
1

2
1

1
4

0
2

1
2

C
1

0
2

2
3

3
3

4
1

2
4

C
2

3
0

3
2

0
1

2
1

2
1

C
2

4
0

3
3

3
3

3
2

3
3

C
3

1
4

0
2

1
4

2
2

3
2

C
3

3
3

0
1

1
1

1
3

2
1

C
4

4
1

1
0

2
1

2
3

4
3

C
4

1
2

3
0

3
2

3
1

3
2

C
5

3
3

2
0

0
2

3
4

1
1

C
5

3
4

2
4

0
2

2
1

4
3

C
6

2
1

2
1

3
0

1
1

2
2

C
6

3
3

2
3

4
0

4
1

2
3

C
7

1
1

1
1

2
4

0
2

1
3

C
7

4
2

2
3

1
3

0
3

2
3

C
8

2
2

3
1

1
3

2
0

3
4

C
8

2
1

1
1

2
2

3
0

1
1

C
9

0
0

2
3

0
1

1
3

0
1

C
9

1
1

2
2

1
1

2
4

0
2

C
1
0

1
0

2
0

1
1

0
0

1
0

C
1
0

0
2

1
2

3
1

3
2

2
0



Performance Evaluation of Green Supply Chain Management . . . 353

⊗s = [s
𝛼

, s
𝛽

] = 1
∑n

j=1 ⊗zij
(5)

Step 3: Calculate the total relationship matrix (T)
The total relationship matrix T = (tij)n×n is found by expression (6), where I repre-

sents the n × n identity matrix.

T = N + N2 + N3 +⋯ =
∞∑

i=1
Ni = N(I − N)−1 (6)

Step 4: Develop the causal influence
Sub-step 4.1: Calculate the sum of row (⊗Ri) and column (⊗Dj) for each row i

and j from the total relation matrix T as follows:

⊗Ri =
n∑

j=1
⊗tij,∀i = 1, 2,… , n (7)

⊗Dj =
n∑

i=1
⊗tij,∀j = 1, 2,… , n (8)

The row values ⊗Ri present the sum of direct and indirect influence of the criterion

i on the other criteria. Similarly, the column values ⊗Dj present the sum of direct

and indirect influence that factor 𝑗 is receiving from other. The grey numbers ⊗Ri =
[Ri𝛼,Ri𝛽] and ⊗Dj = [Dj𝛼,Dj𝛽] are transformed into white numbers using Eqs. (9)

and (10), suggested by Zhang et al. [22], as shown in Table 4.

Ri = 𝜌i × Ri𝛼 + (1 − 𝜌i) × Ri𝛽 (9)

Dj = 𝜌j × Dj𝛼 + (1 − 𝜌j) × Dj𝛽 (10)

where 𝜌i is the orientation coefficient of the grey numbers Ri and Di, i = 1, 2,… , n.

Sub-step 4.2: Determine the prominence Pi and net effect Ei of the criterion i
using the expressions:

Pi =
{
Ri + Dj|i = j

}
(11)

Ei =
{
Ri − Dj|i = j

}
(12)

The values Pi show the index representing the total cause and effect. In this

case, larger the value of Pi, the greater the overall prominence (visibility/importance/
influence) of the criterion iwith respect to others criteria. The values Ei shows the net

effect or cause of the criterion i. If Ei > 0, the criterion i represents the net cause, and

if Ei < 0, then, the criterion i represents the net effect. The result shown in Table 4.
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Table 4 The degree of prominence and net cause/effect of criteria

Criteria ⊗Di ⊗Ri Di Ri Prominence Net

effect

Di𝛼 Di𝛽 Ri𝛼 Ri𝛽 Ri + Di Ri − Di

C1 0.711 3.119 0.472 2.542 1.915 1.507 3.422 −0.408
C2 0.607 2.923 0.584 2.793 1.765 1.689 3.454 −0.077
C3 0.537 2.771 0.688 3.140 1.654 1.914 3.568 0.260

C4 0.470 2.475 0.624 2.912 1.473 1.768 3.240 0.295

C5 0.567 2.701 0.810 3.365 1.634 2.088 3.721 0.454

C6 0.581 2.926 0.695 3.779 1.754 2.237 3.991 0.483

C7 0.722 3.143 0.764 3.294 1.933 2.029 3.962 0.096

C8 0.811 3.334 0.653 3.042 2.072 1.847 3.920 −0.225
C9 0.638 2.878 0.578 2.800 1.758 1.689 3.447 −0.069
C10 0.608 3.589 0.385 2.193 2.099 1.289 3.387 −0.810

Table 5 Non-normalized and normalized weight of green supplier criteria

Criteria Weights Normalized weight Ranking

C1 5.288 0.817 8

C2 5.437 0.84 6

C3 5.726 0.885 5

C4 5.22 0.807 9

C5 6.034 0.933 4

C6 6.470 1 1

C7 6.295 0.973 2

C8 6.128 0.947 3

C9 5.428 0.839 7

C10 5.126 0.792 10

Step 5: Calculate the weights of criteria
Inspired by Dalalah et al. [5], we proposed a formula to determine the weight Wi
and normalized weight wi of criteria given in Eqs. (13) and (14) respectively. The

calculation is presented in Table 5.

Wi =
{
(Pi)2 + (Ei)2

} 1
2 (13)

wi =
Wi

max1≤j≤n(Wi)
,∀i = 1, 2,… , n (14)
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3.2 Grey Value-Based ARAS for Alternative Selection

Grey ARAS technique adapted from Turskis and Zavadskas [18] uses a utility func-

tion value to determine complex relative efficiency of a reasonable alternative that

is directly proportional to the relative weights of the main criteria.

The steps fused in the methodology are given for ten risk-based criteria Cj(j =
1, 2,… , 10) and five alternatives suppliers Ai(i = 1, 2,… , 5). Taking the weights

derived from grey DEMATEL of criteria Cj(j = 1, 2,… , 10), we can prioritize the

alternative Ai(i = 1, 2,… , 5). Applying the data from Table 6, the decision-makers

express to determine the initial direct relationship matrix.

Step 1: Form a grey decision-making matrix
Construct the decision matrix Xk

of the kth decision maker and the average decision

matrix X according to Eqs. (15)–(16). In multi-criteria decision-making problem

related to discrete optimization, any problem to be solved is represented by the fol-

lowing decision-making method (DMM) of preferences form reasonable alternatives

(rows) rated on n criteria (columns):

Xk = [⊗xkij] (15)

where ⊗xkij = [xkij𝛼, x
k
ij𝛽],∀i = 0, 1,… ,m; j = 1, 2,… , n,

and

X = [⊗xij] (16)

where ⊗xij = [xij𝛼, xij𝛽],∀i = 0, 1,… ,m; j = 1, 2,… , n

and xij =
(

x1ij⊕x2ij⊕⋯⊕xKij
K

)

.

Here, 𝑚 is the alternatives, 𝑛 is the number of criteria describing each alternative,

⊗xij represents the performance value of the ith alternative in terms of jth criterion,

⊗x0j is an optimal value of jth criterion.

If the optimal value of jth criterion is unknown, then

Table 6 Linguistic variables and grey numbers for evaluating the alternatives

Scale Grey numbers

Very Poor (VP) [0, 1]

Poor (P) [1, 3]

Medium Poor (MP) [3, 4]

Fair (F) [4, 5]

Medium Good (MG) [5, 6]

Good (G) [6, 9]

Very Good (VG) [9, 10]
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{
⊗x0i = maxi ⊗ xij, if maxi ⊗ xij is preferable

⊗x0j = mini ⊗ x∗ij, if mini ⊗ x∗ij is preferable
(17)

Usually, the performance values ⊗xij and the criteria weights wj are viewed as the

entries of a DMM. When the dimensionless value of the criteria are known, all

the criteria, originally having different dimensions, can be compared. Based on the

data given in Table 7 with (𝑖 = 0, 1,… , 5; 𝑗 = 1, 2,… , 10), the initial grey decision-

making matrix is formed.

Step 2: Calculate the normalized decision-making matrix
In the second step, the initial values of all criteria are normalized by defining the

values ⊗x̄ij of normalized decision-making matrix ⊗
̄X.

⊗
̄X = [⊗x̄ij]m×n = [x̄ij𝛼, x̄ij𝛼]m×n; ∀i = 0, 1,… ,m; j = 1, 2,… , n (18)

The criteria, whose preferable values are maxima, are normalized as follows:

⊗x̄ij =
⊗xij

∑m
i=0 ⊗xij

(19)

The criteria, whose preferable values are minima, are normalized by applying two-

stage procedure as follows:

⊗xij =
1

⊗x∗ij
;⊗x̄ij =

⊗xij
∑m

i=0 ⊗xij
(20)

Step 3: Define the weighted normalized decision-making matrix ⊗̂X
The criteria can be evaluated using weights 0 < wj ≤ 1. Only well-founded weights

should be used because weights are always subjective and influence the solution. The

weighted normalized decision matrix ⊗
̂X is calculated as follows:

⊗
̂X = [⊗x̂ij]m×n; ∀i = 0, 1,… ,m; j = 1, 2,… , n (21)

⊗x̂ij = wij × x̄ij (22)

where wij is the weight (importance) of the jth criterion and x̄ij is the normalized

rating of the jth criterion.

Step 4: Determine the values of optimality function ⊗Si

⊗Si =
n∑

j=1
⊗x̂ij; ∀i = 0, 1,… ,m (23)

Step 5: Calculate the utility degree
The result of grey decision-making for each alternative is optimal function ⊗Si
expressed in grey number. The grey number ⊗Si = [Si𝛼, Si𝛽] is transformed into the
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Table 8 The values of optimality function and ranking of the alternatives

Alternatives

Ai

Optimality function ⊗Si Crisp value Si Utility degree

Ri

Ranking

Si𝛼 Si𝛽
A0 1.9293 2.4311 2.1802 1 *

A1 0.9391 1.6721 1.3056 0.5988 5

A2 1.124 1.8668 1.4954 0.6859 2

A3 1.0436 1.8507 1.4471 0.6638 3

A4 1.0126 1.6609 1.3367 0.6131 4

A5 1.1453 1.8745 1.5099 0.6925 1

white number Si using Eq. (24) proposed by Zhang et al. [22].

Si = 𝜌i × Si𝛼 + (1 − 𝜌i) × Si𝛽 (24)

The degree of the alternative utility is determined by a comparison of the variant

analysed with the ideally best one S0. Equation (25) used for calculating the utility

degree S0 for alternative Ai is given below:

Ki =
Si
S0

; ∀i = 0, 1,… ,m (25)

Si and S0 are optimality criterion values, ordered in the increasing order. The details

are given in Table 8. The complex relative efficiency of the reasonable alternative

can be determined according to the utility function values.

4 Result Discussion

4.1 The Position of the Considered Criteria and Alternatives

The results of MCDM analysis (Table 8) suggest that supplier A5, with the weight

0.6925, should be considered the best in terms of green criteria followed by A2
(0.6859) and A3 (0.6638). The result also show that four dominant criteria based on

normalized weights (Table 5) are as follows: Market dynamics and bullwhip effect

risk (C6) with weight (1.000) make the first priority. Procurement costs risks (C7)

with the weight (0.973) make the second priority. High cost of hazardous wastes

disposal (C8), with the weight of (0.947), makes the third priority. Inflation and cur-

rency exchange rate (C5), with the weight of (0.933), make the fourth priority. Sup-

plier quality issues (C10) with the weight of (0.792) are considered to be of the lowest

importance.
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Fig. 1 DEMATEL-yielded prominence causal graphs

4.2 A Description of the Causal Diagram

Using Table 5, we can identify the most important (prominent) criteria (factors) and

most important relationships among the green supply chain key criteria. The four

most prominent criteria are market dynamics and bullwhip effect risk (C6), procure-

ment costs risks (C7), high cost of disposing hazardous wastes disposal (C8), and

inflation and currency exchange rate (C5) (see Fig. 1).

Prominence includes the integration of the criteria from both cause (influenc-

ing) and effect (resulting) perspectives. This analysis provides a temporal perspec-

tive, showing us what factors should be initiated in place and which ones should be

added in the near future. Now, each of these considered relationships will be evalu-

ated. The most important influencing criteria, producing a strong effect on GSCM,

are given the highest score: (R − D). These criteria not only play a significant role

in the evaluation, but also affect other critical criteria. In Fig. 1, five key net cause

criteria, with net effect scores over 0, can be identified. These are lack of new technol-

ogy, materials and processes (C4), Inflation and currency exchange rate (C5), market

dynamics and bullwhip effect risk (C6). The remaining similar net cause criteria

are non-availability of fund to encourage green products (C3) and procurement costs

risks (C7) but they are not as prevalent in terms of their relationships with others. The

key net effect green criteria denote the most strongly influencing resulting criteria

that are the last ones to be addressed. From Fig. 1, we can identify five key net effect
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Table 9 Sensitivity analysis of ranking based on the variation of risks criteria weight

Scenarios Priority based criteria Green supplier alternatives

A1 A2 A3 A4 A5

1 C6 C7 C8 5 2 3 4 1

2 C3 C8 C7 4 3 2 5 1

3 C1 C9 C10 4 1 3 5 2

4 C5 C3 C10 4 3 2 5 1

5 C10 C1 C7 4 1 3 2 5

6 C7 C3 C8 3 4 1 5 2

7 C3 C8 C5 3 5 2 4 1

criteria as follows: IT and information sharing risks (C9), Lack of technical exper-

tise (C2), High cost of disposing hazardous wastes disposal (C8), Process design and

planning risks (C1) and Supplier quality issues (C10), with net effect scores below 0.

4.3 Sensitivity Analysis

A sensitivity analysis of the alternatives ranking results based on various weights of

criteria was performed and the obtained data are presented in Table 9. Six scenarios

were considered to prioritize the criteria. The change in ranking indicates the robust-

ness of the method. The criteria C3 and C8 have a strong effect on the ranking of the

alternatives.

4.4 The Comparison of the Results with Those Yielded by
Other MCDMMethods

When analysing multiple criteria evaluation of alternatives, one can observe that

relative significances of alternatives and change in the priority order of alternatives,

established by applying several MCDM methods. The aim of presented case study is

to determine priorities as well as produce some recommendations concerning ratio-

nal redevelopment of buildings. A comparative analysis was performed using five

alternatives as shown in Table 10. For the weights based on the grey DEMATEL,

the results show that the ranking data for the alternatives A1, A3, and A4 are the same

for grey ARAS and grey COPRAS [21], while there is change of position for A2 and

A5 can be observed for grey TOPSIS [24] and grey ARAS, and only for A1 they have

similar ranking order.
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Table 10 Comparison of ranking data based on using different MCDM methods

Green supplier

alternatives

Grey ARAS [18] Grey TOPSIS [24] Grey COPRAS [21]

As per utility degree

Ki

As per closeness

coefficient CCi

As per utility degree

Ni

A1 5 5 5

A2 2 1 1

A3 3 4 3

A4 4 3 4

A5 1 2 2

4.5 Reliability Test of Alternative Ranking Using Spearman’s
Rank Correlation

In Sect. 4.4, multiple criteria analysis of different methods are performed (Table 10)

and results are compared. Spearman’s correlation coefficient analysis is performed

among the ranking results of alternatives, for every possible pair of MCDM meth-

ods in uncertain domain, to show the reliability of ranking [1]. The current coeffi-

cient best fits the aim of the presented research as it compares ranks of alternative

decisions obtained in a process of multiple criteria analysis when applying different

MCDM methods. First of all, Spearman’s rank correlation coefficients are calculated

for three pairs of ranking results, viz. (ARAS and COPRAS), (ARAS and TOPSIS),

and (COPRAS and TOPSIS), respectively in grey number domain. Priorities of alter-

natives computed by grey-based ARAS provide significant relations with grey-based

COPRAS ranking results and grey-based TOPSIS. The value of Spearman’s rank

correlation coefficient is high enough for ARAS and COPRAS ranking results (0.9),

for ARAS and TOPSIS ranking (0.8), and COPRAS and TOPSIS (0.9), respectively,

showing the reliability of the ranking results.

5 Conclusions

Green supply chains (GSCs) are becoming ever more complex and exposed to risks

due to the increased globalization and vertical integrations. The present research

has attempted to identify the key criteria of green supply chain risk mitigation.

The plotted cause–effect relationships can help managers to identify primary causal

criteria for addressing the vulnerability issues of supply chain. Managers can also

plan the future direction of the implementation of strategies by determining how

the particular criteria influence the other criteria, adding more criteria at the cost

of complexity. The proposed method also reveals the strengths and weaknesses of

the alternative companies from the viewpoint of their greenness. Furthermore, the
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suggested approach can be used to benchmark, improve, and develop better products

and green processes. The results can guide managers in their choice of the best part-

ner among the candidates for future cooperation. The limitation of this method is

that it depends on experience and quality of statements from experts review. Inves-

tigating other hybrid techniques of DEMATEL method with other MCDM methods

would be interesting for future study.
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Performance Evaluation
of Management Faculty Using Hybrid
Model of Logic—AHP

Anupama Chanda, R. N. Mukherjee and Bijan Sarkar

Abstract The main objective of this paper is to show how the two approaches of
Boolean logic and analytical hierarchy process (AHP) can be utilized to solve
management faculty selection problem. The problem is solved in two phases. In
phase I, we use logic to find the minimal criteria required for management faculty
selection. In phase II, two different methods have been used separately: logical
analysis and AHP for final selection from the shortlisted candidates to arrive at a
decision.

Keywords LAD ⋅ Propositional logic ⋅ Computational complexity
AHP

1 Introduction

Logical analysis of data (LAD) is a data analysis technique which integrates
principles of combinatorics, optimization, and Boolean functions; the idea was first
described by Hammer [1]. It is applicable for analysis of binary data sets whose
attributes take only two values (0–1). It is very much applicable to real-life problem
including real values; hence, ‘binarization’ method was developed [2]. Binarization
consists of introduction of several binary attributes associated with each of
numerical attributes; each binary attribute is supposed to take value 1 or 0 if the
corresponding numerical attribute associated takes value which is above or below a
certain threshold value. LAD has been applied to various disciplines, e.g., medicine,
economics, and business (see [3, 4] and [5]).
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LAD is used in finding minimal size (or economical) logical formula which is
highly desirable in many problems from the view of cost or utility. The compu-
tational problem in logic arises as the size of the data increases which leads to
exponential complexity; i.e., the computation time increases exponentially with the
size of the database. LAD has been applied to various medical problems particularly
in disease diagnosis [6]. Crama et al. [7] introduced a classification rule which was
later developed into a rich classification framework named as logical analysis of
data or LAD [2, 4, 8]. Here, they discussed a rule-based classifier called ‘justifia-
bility’ in order to classify new observations. Important areas are electrical circuit
design, credit scoring, disease diagnosis, pattern recognition, etc.

When there are multiple criteria important to a decision-maker, it may pose
difficulty in taking decision. A mathematical technique such as analytical hierarchy
process (AHP) developed by Saaty [9] is a powerful technique which is used to
choose between various alternatives. The two approaches, viz. Boolean logic and
AHP are used in management faculty selection problem.

In Sect. 2, logic is used to determine the selection criteria for management
faculty. Here, computational logic is used to determine a minimal size (or eco-
nomical) logical formula [10] that can be used to predict a result from a given input
data. This minimal logical representation which consists of minimal number of
literals is based on the method of Quine’s procedure [11, 12]. It consists of
repeatedly applying resolution and absorption, with appending the resolvent clauses
and deleting the absorbed clauses, until no further simplification is possible. The
method of resolution [13, 14] is normally applied to a logical statement in con-
junctive normal form (CNF). This ends with phase I.

In Sect. 3, the final selection of the candidate based on the short list obtained in
phase I is determined by (i) data analysis technique using logic and (ii) mathe-
matical technique particularly AHP [15].

2 Minimal Criteria for Faculty Selection Process

The process of selection of minimal (optimal) criteria is deduced through a process
[6] developed by H.P. William.

Example 1 Obtain a economical (or minimum size) logical formulae which can be
used to find optimal selection criteria for faculty selection process:-

Here, five criteria are considered: age, qualification, experience, publication, and
faculty development program (FDP). There are four experts for evaluation.

The data are converted into a finite set of True (T) or False (F) observations.
‘T’ and ‘F’ denote respectively that a particular criteria is either important or
unimportant for an expert while ‘_’ indicates irrelevance of the selection critera.

To get the logical formula for job selection criteria, let us first use the notations:

Xi: Satisfies the faculty selection criteria
X ̄i: Does not satisfy the faculty selection criteria
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Table 1 is expressed in disjunctive form as follows:

X1 ⋅X2 ⋅X5ð Þ∨ ðX1 ⋅X 2̄ ⋅X4 ⋅X5̄Þ∨ ðX1 ⋅X2̄ ⋅X3 ⋅X5Þ∨ ðX1 ⋅X3 ⋅X5̄Þ ð1Þ

Equation (1) indicates the necessary selection criteria for management faculty.
Here, the logical connectives ‘.’, ‘∨ ’, and ‘_’ are ‘and’, ‘or’, and ‘not’, respectively.
Here, X1,X2 are atomic propositions which can be either true ‘T’ or false ‘F’. X1 or
its negation X1̄ is called literal. When these literals are connected by ‘.’, for example
X1 ⋅X3 ⋅X5̄, they form a clause. These clauses are connected by ‘∨ ’ disjunctions to
give a disjunctive form (DF).

It is important to obtain a logically equivalent form to (1) which contains a
minimum number of literals. It is highly desirable to obtain a minimum (number of
criteria) expression from the point of view of time or cost. It is achieved by
applying the Quine’s procedure [11, 12] which consists of applying consensus and
subsumption alternatively to obtain the complete disjunction of prime implicants.
For example, X1 ⋅X2̄ ⋅X3 ⋅X5 subsumes X1 ⋅X3 ⋅X5; hence, the subsuming clause
can be dropped. Similarly, X1 ⋅X3 ⋅X5 is consensus of X1 ⋅X2̄ ⋅X3 ⋅X5 and
X1 ⋅X2 ⋅X5 and the resultant clause can be appended in the problem.

After successively applying these procedures, we get

X1 ⋅X2 ⋅X5ð Þ∨ ðX1 ⋅X2̄ ⋅X4 ⋅X 5̄Þ∨ ðX1 ⋅X3Þ ð2Þ

This is the logically equivalent form to (1) with least number of clauses. Using
truth table, it can be shown that none of the prime implicants are redundant.

Table 2 is represented in DNF as follows:

X1 ⋅X2 ⋅X4̄ð Þ∨ ðX1 ⋅X4Þ∨ ðX1 ⋅X2 ⋅X4 ⋅X 5̄Þ∨ X3 ⋅X5̄ð Þ∨ ðX1 ⋅X4 ⋅X5Þ ð3Þ

Table 1 Criteria for faculty
selection process

Selection criteria S1 S2 S3 S4 S5
Expert 1 T T – – T
Expert 2 T F – T F
Expert 3 T F T – T

Expert 4 T – T – F

Table 2 Non-selection
criteria for management
faculty

Selection criteria S1 S2 S3 S4 S5
Expert 1 T T – F –

Expert 2 T – – T –

Expert 3 T T – T F
Expert 4 – – T – F

Expert 5 T – – T T
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Now this statement would be false if job applicant is selected for the interview.
Here, we use De Morgan’s theorem to negate the statement resulting in CNF form
of the same statement.

ðX1̄ ∨X ̄2 ∨X4Þ ⋅ ðX1̄ ∨X ̄4Þ ⋅ ðX1̄ ∨X ̄2 ∨X ̄4 ∨X5Þ ⋅ ðX3̄ ∨X5Þ ⋅ ðX1̄ ∨X ̄4 ∨X ̄5Þ ð4Þ

This statement is true if the job applicant is selected for the job interview. This
statement must be consistent with (1).

After simplification, the minimal logical expression in DNF is given by

X1 ⋅X2ð Þ∨ X1 ⋅X4ð Þ∨ X3 ⋅X5̄ð Þ∨ ðX2 ⋅X3Þ ð5Þ

The conjunction of (2) with (5) must be consistent; i.e., it must give satisfiable
set of values.

Equation (2) can be used as new (smaller) set of selection criteria for job
interview. This is given in Table 3.

Table 3 gives smaller set of selection criteria for management faculty.

3 Final Selection Procedure

Once we have determined the minimum criteria for faculty selection, we will now
use two different approaches namely data analysis using logic and mathematical
technique of analytical hierarchy process (AHP) to arrive at final decision. Figure 1
gives a comprehensive framework of faculty selection problem using a hybrid
model of logic and AHP.

3.1 Logical Analysis of Data

We take a small example which is similar to a real-life situation where a simple
scoring method [3] is used to select a suitable candidate.

Let us say there are three candidates who have been shortlisted based on the
minimum criteria set. Now based on the three experts’ opinion, one candidate will
be selected. In Table 4, there are three candidates A, B, and C with the available
information.

Table 3 New set of criteria
for faculty selection process

Selection criteria S1 S2 S3 S4 S5
Expert 1 T T – – T
Expert 2 T F – T F
Expert 3 T – T – –
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Now suppose there are three experts who develop their own selection rule. Let
expert P say that four criteria out of five are important for selection process. Hence,
expert P considers a candidate suitable for job if the vector X = (X1, X2, X3, X4,
X5) is

X1 +X2 +X3 +X4 +X5 ≥ 4 ð6Þ

According to this selection rule, candidate A is selected and B and C are
rejected. The expert P selection rule can be modeled as disjunction of five basic
rules namely:

P xð Þ = X1 ⋅X2 ⋅X3 ⋅X4ð Þ∨ X1 ⋅X2 ⋅X4 ⋅X5ð Þ∨ X1 ⋅X3 ⋅X4 ⋅X5ð Þ
∨ X1 ⋅X2 ⋅X3 ⋅X5ð Þ∨ X2 ⋅X3 ⋅X4 ⋅X5ð Þ ð7Þ

Expert Q has a different opinion: He considers criteria X3 as thrice more
important than other ones and regards X2 as irrelevant. Hence, a candidate is
selected if

Phase I

Phase II

Problem Definition

Problem Formulation & 
Minimum expression 
form using logic

Logical Approach to 
the problem

Mathematical Approach 
of AHP to the problem

Conclusion

Fig. 1 A comprehensive framework for analysis of human resource problem

Table 4 Candidates’ job
profile selection criteria

Selection criteria
Candidate S1 S2 S3 S4 S5
A 1 0 1 1 1
B 1 1 0 0 1

C 1 0 0 1 0
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X1 + 3X3 +X4 +X5 ≥ 4 ð8Þ

Here, candidate A is selected and B and C are rejected according to expert Q.
A disjunction of three rules can be used to describe the selection criteria given by
expert Q.

Q xð Þ = X1 ⋅X3 ⋅X4ð Þ∨ X1 ⋅X3 ⋅X5ð Þ∨ X3 ⋅X4 ⋅X5ð Þ ð9Þ

Expert R believes criteria X3 as twice more important than other ones and X2

and X5 as irrelevant.

X1 + 2X3 +X4 ≥ 3 ð10Þ

Similarly, expert R rule can be described by disjunction of two basic rules. His
rule is consistent with the other two experts’ view and given by:

R xð Þ = X1 ⋅X3ð Þ∨ X3 ⋅X4ð Þ ð11Þ

It can be seen easily that all the three experts have given a perfect selection rule;
i.e., in this small data set, all the three candidates are correctly judged by these rules.
Thus, the classification rules given by the three experts are well grounded in the
given data sets.

However, the selection rule adopted by the three experts is not identical in the
sense that it may give contradictory results in some possible cases. To explain this
point, let us say a candidate D has the following characteristics: XD = 10110.

Expert P will reject the candidate, thus leading to taking a candidate who is not
suitable for the job, and it may lead to inefficiency and later realizing that it was a
wrong decision. However, according to experts Q and R, the candidate D is
selected. Later, the management may wish to know the reason why expert P
rejected candidate D. Expert P found the absence of first rule, i.e., simultaneous
occurrence of criteria 1, 2, 3, and 4.

Another situation may arise shown in candidate E with characteristics: XE =
11011. According to expert P, candidate E is selected for the job. Later, he may

Table 5 Classification results given by the three classifiers: experts P, Q, and R

Selection criteria Classification by
Candidate S1 S2 S3 S4 S5 Expert P Expert Q Expert R

A 1 0 1 1 1 1 1 1
B 1 1 0 0 1 0 0 0
C 1 0 0 1 0 0 0 0
D 1 0 1 1 0 0 1 1
E 1 1 0 1 1 1 0 0
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find that the candidate is not doing his work efficiently and is not suitable for the
job. Experts Q and R reject the candidate. Then, the question comes on what basis
expert P justifies his decision? The only reason why he selected candidate E is
found in his second rule, i.e., the co-occurrence of 1, 2, 4, and 5. However, there is
no supporting evidence in the initial data to justify this rule, since this combination
of characteristics was never observed in the data set (Table 5).

3.2 Analytical Hierarchy Process

Let us solve the same problem using a mathematical approach of analytical hier-
archy process (AHP) [9]. AHP is a decision-making framework used for
multi-criteria decision analysis. The basic principle underlying AHP involves the
pair-wise comparison of various alternatives of which the best is chosen. It helps in
capturing both subjective and objective aspects of a decision. In this section, the
AHP technique will be discussed to show how it helps in management faculty
selection problem.

The pair-wise comparison matrix (PWCM) A for ‘m’ criteria is given below:

A =

a11 a12 . . . a1m
a21 a22 . . . a2m
⋮
am1 am2 . . . amm

2
664

3
775

where aij indicates how much more important the ith selection criteria is than the jth
one for a particular candidate for finding the best candidate.

For all i and j, it is necessary that aii = 1 aij = 1/aji. The pair-wise comparison
matrix is constructed based on the nine-point scale. The possible assignment value
of aij with the corresponding interpretation is shown in Table 6.

Table 6 Assessment of aij

Value of aij Interpretation

1 Criteria i and j are of equal importance
3 Criteria i is weakly more important than criteria j
5 Criteria i is strongly more important than criteria j
7 Criteria i is very strongly more important than criteria j
9 Criteria i is absolutely more important than criteria j
2, 4, 6, 8 Intermediate values
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Here, the objective is to select a candidate based on five criteria: age, qualifi-
cation, experience, publication, and FDP and there are three candidates: A, B, and C
(Table 7, 8, 9).

The composite weight of the three candidates is given in Table 10.
Since the composite weight of candidate A is higher than others, hence the best

alternative is to select candidate A.

Table 7 Pair-wise comparison matrix of factors (selection criteria) for expert P

X1    X2 X3 X4 X5      GM PV

1       1    1/3  1/5    1/3  1/2           0.407  0.068 

2       3     1  3/2   2   3    1.933  0.324 

A=       X3       5     2/3    1    2   4    1.928  0.323 

4       3     1/2  1/2         1    2    1.084  0.182 

5       2        1/3     1/4        1/2           1     0.608  0.102 

∑ GM=5.96 ∑ PV=1.000

GM Geometric Mean    PWCM Pair-wise Comparison Matrix 

Consistency Ratio CR is found to be less than 0.1. 

Table 8 Priority vector of factors (selection criteria) for expert P, expert Q, and expert R

X1    X2 X3 X4 X5      

Expert P  0.068   0.324   0.323   0.18   0.102 

Expert Q 0.088   0.218   0.372   0.197   0.126 

Expert R 0.118   0.299   0.307   0.184   0.092 

GM1 GM2 GM3 GM4 GM5     Grand Total 

0.089)  (0.276)  (0.333)  (0.187)  (0.106) (0.991)

X1 = GM1     = 0.089    X2= 0.279      X3= 0.336   X4 = 0.189    X5= 0.107 
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4 Conclusion

In this paper, we have considered to solve a faculty selection problem through
application of two methods. One method is qualitative, i.e., the Boolean logic, and
the other is quantitative, i.e., the analytical hierarchy process (AHP). It is seen that
the results obtained by the two approaches are identical. As the candidate ‘A’ is
selected by the two different set of experts through two different approaches and
only one post is to be filled up, we conclude that candidate ‘A’ is therefore selected.
The said procedure in selection of candidate has thus helped the management in
taking a correct decision.

It may also be noted that the above combined method can be made applicable for
evaluation and problem solving in different areas of management by suitably
altering and modifying for its application.
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A Multi-item Inventory Model with
Fuzzy Rough Coefficients via Fuzzy
Rough Expectation

Totan Garai, Dipankar Chakraborty and Tapan Kumar Roy

Abstract In this paper, we concentrated on developing a multi-item inventory

model under fuzzy rough environment. Here, demand and holding cost rates are

assumed as the functions of stock level. Fuzzy rough expectation method is used to

transform the present fuzzy rough inventory model into its equivalent crisp model. A

numerical example is provided to illustrate the proposed model. To show the validity

of the proposed models, few sensitivity analyses are also presented under the major

parameter, and the results are illustrated numerically and graphically.

Keywords Multi-item inventory ⋅ Trapezoidal fuzzy rough variable ⋅ Fuzzy

rough expectation

1 Introduction

Uncertainty is common to all real-life problems, for example fuzziness, roughness

and randomness. Since Zadeh [1] introduced the fuzzy set in 1965, fuzzy set the-

ory has been well developed and employed to an extensive variety of real problems

[2, 3]. Fuzziness and roughness play a significant role in among types of uncer-

tain problems. Fuzzy rough variable, which is a combination of rough variable and

fuzzy variable, can characterize both roughness and fuzziness in real problems. The

concept of fuzzy rough sets was first introduced by Dubois and Prade [4] and then

investigated by Morsi and Yakout [5], who defined the upper and lower approxima-

tions of the fuzzy set with respect to a fuzzy min–similarity relationship. Addition-

ally, some researchers [5, 6] generalized above definitions of the fuzzy rough set
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to a more general case. Liu [7] presented the some definitions and discussed some

valuable properties of the fuzzy rough variable. At present, using these approaches,

some researches [8–12] modelled different practical problems where both fuzziness

and roughness exist simultaneously.

In numerous cases, it is established that the parameters of some inventory prob-

lems are considered fuzzy and rough uncertainties. For example, production cost,

set-up cost, holding cost, repairing cost relies on various factors such as inflation,

labour travail wages, wear and tear cost, bank interest which are uncertain in fuzzy

rough sense. To be more specific, set-up cost depends on the total quantity to be pro-

duced in a scheduling period, and the inventory holding cost for an item is supposed

to be dependent on the amount of storage. Moreover, because in the inventory, the

total quantity to be produced in a scheduling period and the amount storage may be

uncertain, and range on an interval, uncertainties may in fuzzy environment. In these

circumstances, fuzzy rough can be used for the formulation of inventory problems.

In the literature, very few researchers [9, 13–15] developed and solved inventory or

production-inventory problems with the fuzzy rough environment.

For the inventory problem, the classical inventory decision-making models have

deliberated a single item. However, single item inventories rarely occur, whereas

multi-item inventories are common in real-life circumstances. Many researchers (cf.

Balkhi and Foul [16], Hartly [17], Lee and Yao [18], Taleizadeh et al. [19]) investi-

gated the multi-item inventory models under resource constraints. Dutta et al. [20]

studied an inventory model for single-period products with reordering opportunities

under fuzzy demand. An EOQ model with deteriorating items under inflation when

supplier credits linked to order quantity was proposed by Chang [21]. Shi et al. [22]

considered a probability maximization model based on rough approximation and its

application to the inventory problem. Recently, Wang [23], Taleizadeh et al. [24],

Kazemi et al. [25], Bazan et al. [26] and Das et al. [27] have investigated the inven-

tory models with the imprecise fuzzy environment. However, no attempt has been

made that includes all replenishment cost, set-up cost, purchasing cost and shortage

cost, which are fuzzy rough variables, are considered within the multi-item inven-

tory model with demand is a power function and holding cost is a nonlinear function

of the stock level. Therefore, we have developed and solved a multi-item inventory

model with fuzzy rough coefficients via expected value approaches.

The rest of the paper is organized as follows: In Sect. 2, we present some basic

knowledge of fuzzy rough theory and optimization theory. Section 3 provides the

notations and assumptions which are used throughout the paper. In Sect. 4, a multi-

item inventory model has been developed in the fuzzy rough environment and dis-

cusses its solution method. Numerical example to illustrate the model is provided in

Sect. 5. In Sect. 6, the result of the change of different parameters is discussed graph-

ically. Finally, the conclusion and scope of the future work plan have been made in

Sect. 7.
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2 Preliminaries and Deductions

Definition 1 Let 𝛬 be a non-empty [9] set, A a σ algebra of subsets of 𝛬, and 𝛥 an

element in A and π a trust measure, Then, (𝛬, 𝛥,A ,π) is called a rough space.

Definition 2 Let (𝛬, 𝛥,A ,π) be rough space. A rough variable ζ is a measurable

function [9] from the rough space (𝛬, 𝛥,A ,π) to the set of real numbers ℝ. That is,

for every Borel set 𝔹 of ℝ, we have

{η ∈ 𝛬 ∶ ζ(η) ∈ 𝔹} ∈ A

The upper (ζ) and lower (ζ) approximations of the rough variable ζ are defined as

follows:

ζ = {ζ(η) ∶ η ∈ 𝛬} ζ = {ζ(η) ∶ η ∈ 𝛥}

Definition 3 Let (𝛬, 𝛥,A ,π) be a rough space. The trust measure [9] of the event

A is defined by

Tr{A} = 1
2
(Tr{A} + Tr{A})

where the upper trust measure Tr{A} = π{A}
π{𝛬}

and lower trust measure Tr{A} =
π{A ∩ 𝛥}

π{𝛥}
. When the enough information about the measure π is not given, for this

case, the measure π may be treated as the Lebesgue measure.

Example 1 Let ζ = ([a1, a2] [b1, b2]) be a rough variable with b1 ≤ a1 ≤ a2 ≤ b2
representing the identity function ζ(η) = η from the rough space (𝛬, 𝛥,A ,π) to the

set of real numbers ℝ, where 𝛬 = {η ∶ b1 ≤ η ≤ b2}, 𝛥 = {η ∶ a1 ≤ η ≤ a2}, A is

the σ-algebra on 𝛬, and π is the Lebesgue measure.

According to the Definitions 2 and 3, we can obtain the trust measure of the event

{ζ ≥ x}(cf. Fig. 1) and and {ζ ≤ x}(cf. Fig. 1) as follows:

Tr(ζ ≥ x) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

0 if b2 ≤ x
b2 − x

2(b2 − b1)
if a2 ≤ x ≤ b2

1
2

(
b2 − x
b2 − b1

+
a2 − x
a2 − a1

)

if a1 ≤ x ≤ a2
1
2

(
b2 − x
b2 − b1

+ 1
)

if b1 ≤ x ≤ a1
1 if x ≤ b1

(1)

and
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Fig. 1 Function curve of rough variable ζ

Tr(ζ ≤ x) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

0 if r ≤ b1
x − b1

2(b2 − b1)
if b1 ≤ x ≤ a1

1
2

(
x − b1
b2 − b1

+
x − a1
a2 − a1

)

if a1 ≤ x ≤ a2
1
2

(
x − b1
b2 − b1

+ 1
)

if a2 ≤ x ≤ b2
1 if b2 ≤ x

(2)

Example 2 Let’s consider the trapezoidal fuzzy variable ζ = (r1, r2, r3, r4) with the

following membership function

μζ (x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x − r1
r2 − r1

if r1 ≤ x < r2
1 if r2 ≤ x ≤ r3r4 − x
r4 − r3

if r3 < x ≤ r4
0 otherwise

(3)

where ri ⊢ ([a1, a2] [b1, b2]) for i = 1, 2, 3, 4. Then, ζ is called trapezoidal fuzzy

rough variable.

Example 3 Let ζ = (ρ − 1, ρ − 2, ρ + 2.5, ρ + 3) with ρ = ([3, 5] [2, 7]), where the

quadruple (r1, r2, r3, r4) with r1 ≤ r2 ≤ r3 ≤ r4 denotes a trapezoidal fuzzy variable

and ρ is a rough variable, then ζ is a fuzzy rough variable.

Definition 4 Let ζ̂ be a rough variable. The expected [8] value of the rough variable

ζ̂ is denoted by Er[ζ̂] and defined by

Er[ζ̂] =
∞

∫

0

Tr{ζ̂ ≥ x}dx −
0

∫
−∞

Tr{ζ̂ ≤ x}dx (4)

provided that at least one of the two integrals is finite.
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Example 4 Let ζ̂ = ([a1, a2] [b1, b2]) be a rough variable. We then have

Er[ζ̂] =
1
4
(a1 + a2 + b1 + b2)

Particularly, when [a1, a2] = [b1, b2], the rough variable ζ̂ degenerates to an inter-

val number [a1, a2]. Then we have

Er[ζ̂] =
1
2
(a1 + a2)

Theorem 1 Let ζ̂1 and ζ̂2 be two rough variables [28] with finite expected values.
Then, for any two real numbers a and b, we have

Er[aζ̂1 + bζ̂2] = aEr[ζ̂1] + bEr[ζ̂2]

Theorem 2 Let ̂̃ζ be a trapezoidal fuzzy [28] rough variable ̂̃ζ = (̂r1, r̂2, r̂3, r̂4),
where r̂1, r̂2, r̂3, r̂4 are rough variables defined on (𝛬, 𝛥,A ,π), and

r̂1 = ([m2,m3] [m1,m4]), 0 < m1 ≤ m2 < m3 ≤ m4

r̂2 = ([n2, n3] [n1, n4]), 0 < n1 ≤ n2 < n3 ≤ n4
r̂3 = ([p2, p3] [p1, p4]), 0 < p1 ≤ p2 < p3 ≤ p4
r̂4 = ([q2, q3] [q1, q4]), 0 < q1 ≤ q2 < q3 ≤ q4

Then, the expected value of
̂̃ζ is

Er[̂̃ζ] =
1
16

4∑

i=1
(mi + ni + pi + qi)

2.1 Single-Objective Fuzzy Rough Expected Value Model

Let us consider the following single-objective model with trapezoidal fuzzy rough

coefficients:

Max

n∑

j=1

̂̃cijxj, i = 1, 2,… ,m

subject to

n∑

j=1

̂̃ajrxj ≤ ̂̃br; r = 1, 2,… , p (5)

xj ≥ 0;

where ̂̃c, ̂̃a, ̂̃b are the trapezoidal fuzzy rough variables.
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In order to solve the uncertain model with fuzzy rough coefficients, we must trans-

form into a deterministic model. The technique of computing the expected value

is a proficient method and is easily perceived. Consequently, the above problem is

equivalent to

MaxEr

[ n∑

j=1

̂̃cijxj, i = 1, 2,… ,m

]

subject toEr

[ n∑

j=1

̂̃ajrxj

]

≤ Er

[
̂̃br
]
; r = 1, 2,… , p (6)

xj ≥ 0;

where Er denote the fuzzy rough expected value operator.

Theorem 3 If the trapezoidal fuzzy rough [28] variables ̂̃cij are defined as ̂̃cij(η) =
(̂cij1, ĉij2, ĉij3, ĉij4), with ̂̃cijt ⊢ ([cijt1, cijt2] [cijt3, cijt4]), for i = 1, 2,… ,m, j = 1, 2,… ,

n, t = 1, 2, 3, 4, x = (x1, x2,… , xm), 0 ≤ cijt3 ≤ cijt1 ≤ cijt2 ≤ cijt4. Then,
Er [̂c̃

T
1 x],

Er [̂c̃
T
2 x],… ,Er [̂c̃

T
mx] is equivalent to

1
16

n∑

j=1

4∑

t=1

4∑

k=1
c1jtkxj,

1
16

n∑

j=1

4∑

t=1

4∑

k=1
c2jtkxj,… ,

1
16

n∑

j=1

4∑

t=1

4∑

k=1
cmjtkxj

Theorem 4 If the trapezoidal fuzzy rough [28] variables ̂̃arj, ̂̃br are defined as
follows:
̂̃arj(η) = (ârj1, ârj2, ârj3, ârj4), with ârjt ⊢ ([arjt1, arjt2] [arjt3, arjt4]),
̂̃br(η) = (b̂r1, b̂r2, b̂r3, b̂r4), with b̂rt ⊢ ([brt1, brt2] [brt3, brt4]),

for j = 1, 2,… , n, r = 1, 2,… p, t = 1, 2, 3, 4, 0 ≤ arjt3 ≤ arjt1 ≤ arjt2 ≤
arjt4, 0 ≤ brt3 ≤ brt1 ≤ brt2 ≤ brt4. Then Er[̂̃a

T
rjx] ≤ Er[̂̃brj], r = 1, 2,… p is

equivalent to

1
16

n∑

j=1

4∑

t=1

4∑

k=1
arjtkxj ≤

4∑

t=1

4∑

k=1
brtk, r = 1, 2,… , p.
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3 Notation and Assumptions

To develop the mathematical model of inventory replenishment intention, the nota-

tion affected in this paper is as below:

3.1 Notation

(i) Qi = the ordering quantity per cycle for ith item

(ii) Ai = the replenishment cost per order of ith item

(iii) ci = purchasing cost of each product of the ith item

(iv) c1i = shortage cost per unit time for ith item

(v) c2i =set-up cost for ith item

(vi) c3i = the cost of lost sales per unit of ith item

(vii) Si = shortage level for the ith item

(viii) Di(t) = demand rate of ith item, which is a function of inventory level at

time t

(ix) t1i = the time at which the inventory level reach zero for ith item (a decision

variable)

(x) t2i = the length of period during which are allowed for ith item

(xi) Ti = the length of the inventory cycle; hence, Ti = t1i + t2i (a decision vari-

able)

(xii) Hi[qi(t)] = holding cost for the ith item, which is function of inventory level

at time t
(xiv) hi = scaling constant for holding cost

(xv) wi = storage space per unit quantity for the ith item

(xvi) B = budget available for replenishment

(xvii) F = available storage space in the inventory system

In addition, the following assumptions are instated.

3.2 Assumption

(i) The replenishment rate is infinite and the lead time zero.

(ii) The time horizon of the inventory system is infinite.

(iii) Shortage is allowed; during the stock-out period, a fraction
1

1 + δix
of the

demand will be back order, and the remaining fraction (1 − 1
1 + δix

) will be

lost, where x is the waiting time up to the next replenishment and δi is a posi-

tive constant.

(iv) The demand rate function Di(t) is deterministic and a power function of instan-

taneous stock level qi(t) at time t; that is:
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Di(t) = Di[qi(t)] =
{

λi[qi(t)]β , if 0 ≤ t ≤ t1i, qi(t) ≥ 0;
λi, if t1i < t ≤ Ti, qi(t) > 0;

where λi > 0 and 0 < β < 1.

(v) The holding cost is nonlinear function of the stock level qi(t) at time t and is

given as Hi(t) = Hi[qi(t)] = hi[qi(t)]γ , where hi > 0 and 0 < γ < 1.

4 Model Formulation

Using the above assumption, the inventory level follows the pattern depicted in

Fig. 1. The depletion of the inventory happens due to the effect of demand in [0, t1i]
and the demand backlogged in [t1i,Ti]. Now, in the interval [0,Ti], the inventory

level gradually decreases to meet the demands. By this process, the inventory level

reaches zero at t = t1i, and shortages are allowed to occur in [t1i,Ti]. Hence, the vari-

ety of inventory level qi(t) with respect to time t can be described by the following

differential equations:

dq1i(t)
dt

= −λi[qi(t)]β , 0 ≤ t ≤ t1i (7)

with conditions q1i(0) = Ri(= Qi − Si) and q1i(t1i) = 0.

The solution of Eq. (1) is (Fig. 2).

q1i(t) =
[
R1−β
i − (1 − β)λit

] 1
1 − β (8)

By the interval [t1i,Ti], the inventory level only build on demand, and some

demand is lost while a fraction
1

1 + δi(Ti − t)
of the demand is backlogged, where

t ∈ [t1i,Ti]. The inventory level is controlled by the following differential equation:

dq2i
dt

= −
λi

1 + δi(Ti − t)
, t1i ≤ t ≤ Ti (9)

with conditions q2i(Ti) = −Si and q2i(t1i) = 0.

Fig. 2 Inventory model for

the ith item
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The solution of Eq. (3) is

q2i(t) = −
λi

δi

{
ln
[
1 + δi(Ti − t1i)

]
− ln

[
1 + δi(Ti − t)

]}
(10)

Considering the continuity of q1i(t) and q2i(t) at point t = t1i, i.e., q1i(t1i) = q2i(t2i) =
0, we have:

Ri =
[
(1 − β)λit1i

] 1
1−β Si =

λi

δi
ln
{
1 + δi(Ti − t1i)

}
(11)

Therefore, the ordering quantity over the replenishment cycle for the ith item can be

determined as

Qi = q1i(0) − q2i(Ti) =
[
(1 − β)λit1i

] 1
1−β +

λi

δi
ln
{
1 + δi(Ti − t1i)

}
(12)

Based on Eqs. (8), (10) and (12), the total inventory cost per cycle consists of the

following elements.

The ordering cost per cycle for ith item is Ai.

The inventory holding cost per cycle for the ith item is given by

hi

t1i

∫

0

[q1i(t)]γdt

= hi

t1i

∫

0

[
R1−β
i − (1 − β)λit

] γ

1−β dt

=
hi

(γ + 1 − β)λi
Rγ+1−β
i

=
hi

(γ + 1 − β)λi

[
(1 − β)λit1i

] γ+1−β

1−β (13)

Purchase cost of ith item per cycle is

ciQi

= ci
[
(1 − β)λit1i

] 1
1−β +

ciλi

δi
ln
{
1 + δi(Ti − t1i)

}
(14)

The opportunity cost due to lost sales for ith item is

c3iλi

Ti

∫
t1i

(

1 − 1
1 + δi(Ti − t)

)

dt

=
c3iλi

δi

{
(Ti − t1i) − ln

[
1 + δi(Ti − t1i)

]}
(15)
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Shortage cost for the ith item is given by

c1i

Ti

∫
t1i

−q2i(t)dt

=
c1iλi

δi

Ti

∫
t1i

{
ln
[
1 + δi(Ti − t1i)

]
− ln

[
1 + δi(Ti − t)

]}
dt

=
c1iλi

δ2i

{
(Ti − t1i) − ln

[
1 + δi(Ti − t1i)

]}
(16)

In conjunction with the pertinent costs mentioned above, we can then simplify

the total average cost per inventory cycle as follows:

TAC(t1i,Ti) =
1
Ti
[holding cost + ordering cost + purchasing cost + set up cost

+ shortage cost + opportunity cost]

TAC(t1i,Ti) =
n∑

i=1

1
Ti

[
hi

(γ + 1 − β)λi

[
(1 − β)λit1i

] γ+1−β

1−β

+ Ai + c2i + ci
[
(1 − β)λit1i

] 1
1−β +

ciλi

δi

ln
{
1 + δi(Ti − t1i)

}
+

(
c3iλi

δi
+

c1iλi

δ2i

)

{

(Ti − t1i) − ln
[
1 + δi(Ti − t1i)

]
}]

(17)

Our problem is to minimize the total average cost under two subjects to con-

straints, such as one budget constraint and another space constraint. Hence, the multi-

item crisp inventory problem is given by

Min TAC(t1i,Ti) =
n∑

i=1

1
Ti

[
hi

(γ + 1 − β)λi

[
(1 − β)λit1i

] γ+1−β

1−β

+ Ai + c2i + ci
[
(1 − β)λit1i

] 1
1−β +

ciλi

δi

ln
{
1 + δi(Ti − t1i)

}
+

(
c3iλi

δi
+

c1iλi

δ2i

)

{

(Ti − t1i) − ln
[
1 + δi(Ti − t1i)

]
}]
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subject to

n∑

i=1
ci [[(1 −β)λit1i

] 1
1−β +

λi

δi
ln
{
1 + δi(Ti − t1i)

}
]

≤ B; (18)

n∑

i=1
wi

[
[
(1 − β)λit1i

] 1
1−β +

λi

δi
ln
{
1 + δi(Ti − t1i)

}
]

≤ F;

t1 ≥ 0, T ≥ 0

where t1 = (t11, t12,… , t1n)𝐓 and T = (T1,T2,… ,Tn)𝐓 are decision variables.

When ci, c1i, c2i, c3i, hi,wi,Ai,B and F become fuzzy rough variables, the above

problem (18) can be formulated by the following model:

Min
̂̃TAC(t1i,Ti) =

n∑

i=1

1
Ti

[ ̂̃hi
(γ + 1 − β)λi

[
(1 − β)λit1i

] γ+1−β

1−β

+ ̂̃Ai + ̂̃c2i + ̂̃ci
[
(1 − β)λit1i

] 1
1−β +

̂̃ciλi

δi

ln
{
1 + δi(Ti − t1i)

}
+

(
̂̃c3iλi

δi
+
̂̃c1iλi

δ2i

)

{

(Ti − t1i) − ln
[
1 + δi(Ti − t1i)

]
}]

subject to

n∑

i=1

̂̃ci [[(1 −β)λit1i
] 1

1−β +
λi

δi
ln
{
1 + δi(Ti − t1i)

}
]

≤
̂̃B; (19)

n∑

i=1

̂̃wi

[
[
(1 − β)λit1i

] 1
1−β +

λi

δi
ln
{
1 + δi(Ti − t1i)

}
]

≤
̂̃F;

t1 ≥ 0, T ≥ 0

where t1 = (t11, t12,… , t1n)𝐓 and T = (T1,T2,… ,Tn)𝐓 are decision variables.

4.1 Solution Procedure of the Proposed Inventory Model

To solve the above multi-items fuzzy rough inventory model, we transform the multi-

items fuzzy rough inventory model (19) into the deterministic problem considering

expected value operator and solved it by using soft computing technique generalized

reduced gradient (GRG) method (Lingo-14.0). The deterministic model of the multi-

item fuzzy rough inventory problem (19) is given by
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MinEr

[
̂̃TAC(t1i, Ti)

]

subject toEr

[
n∑

i=1

(

̂̃ci
[
(1 − β)λit1i

] 1
1−β +

̂̃ciλi

δi
ln
{
1 + δi(Ti − t1i)

}
)]

≤ Er

[
̂̃B
]
; (20)

Er

[
n∑

i=1

(

̂̃wi
[
(1 − β)λit1i

] 1
1−β +

̂̃wiλi

δi
ln
{
1 + δi(Ti − t1i)

}
)]

≤ Er

[
̂̃F
]
;

t1 ≥ 0, T ≥ 0

where t1 = (t11, t12,… , t1n)𝐓 and T = (T1,T2,… ,Tn)𝐓 are decision variables.

5 Numerical Example

We have considered a numerical example to illustrate the expected value approach

for solving the multi-item fuzzy rough inventory model. A multinational manufac-

turing company produces soft drinks. It is given that the purchasing cost(ci), set-up

cost(c2i), the cost of lost sales(c3i), shortage cost(c1i), ordering cost(Ai) and storage

area per unit item(wi). The total available storage area and available budget cost are

̂̃F = (F̂ − 600, F̂ − 700, F̂ + 900, F̂ + 1000) m2
and

̂̃B = $(B̂ − 1100, B̂ − 1200, B̂ +
1800, B̂ + 2200), where F̂ ∈ ([1600, 1800] [1000, 2360]), B̂ ∈ ([2400, 3200] [2200,
3620]). The company wants to optimize the total average cost under the limitations

of budget cost and storage area.

So, the problem is to minimize total average inventory costs with the limitation of

space capacity, total budget cost. The costs and parameters of the inventory problem

are given in Tables 1 and 2. Table 3 and Table 4 represent the optimum results of the

above problem for different values of γ and β, respectively.

Table 1 Input crisp parameters

Item I II III

λi 11.5 12.5 9.40

δi 0.80 0.75 0.70
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ĥ 2

−
1.
5,
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ĉ 1

1
+

3.
5)
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ĉ 2

1
+
38
,
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Â 3

+
68
)
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ŵ
1
+
5.
0,
ŵ
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ŵ
2
+
4.
0,
ŵ
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6 Sensitivity Analysis

Here, sensitivity analysis is performed for minimization of the total average cost

(TAC) and order quantity(Qi) with respect to the parameter γ. From Table 3 and 4,

following decisions can be constructed. These are also depicted in Figs. 3 and 6.

(i) For fixed value of β, the total average cost(TAC) increases with the increase in

the value of parameter γ (cf. Fig. 4).

(ii) For fixed value of β, the order quantity(Qi) decreases with increase in the value

of parameter γ (cf. Fig. 3).

(iii) For fixed value of γ, the total average cost(TAC) increases with increase in the

value of parameter γ (cf. Fig. 5).

(iv) For fixed value of γ, the order quantity(Qi) decreases with increase in the value

of parameter γ (cf. Fig. 6).

Table 3 Optimal result for different values of γ and β = 0.12
Item γ t1i t2i Ti Qi Min TAC
I 0.35 3.2491 0.8946 4.1438 60.703 314.441

II 2.8977 1.0243 3.9220 56.985

III 3.4303 0.7654 4.1957 62.720

I 0.40 3.1958 0.9599 4.1557 60.148 318.757

II 2.8959 1.0853 3.9812 56.677

III 3.4122 0.8279 4.2401 62.112

I 0.45 3.1079 1.0374 4.1454 59.023 323.715

II 2.8831 1.1600 4.0432 56.652

III 3.4141 0.9055 4.3196 62.060

I 0.50 3.0015 1.1295 4.1310 57.636 329.372

II 2.8674 1.2526 4.1201 56.574

III 3.4177 1.0027 4.4204 61.216

I 0.55 2.6855 1.2090 3.8946 52.724 335.474

II 2.6066 1.3263 3.9329 52.724

III 3.0403 1.0860 4.1263 56.687

I 0.60 2.3739 1.2881 3.6621 47.243 341.456

II 2.3295 1.3981 3.7277 48.228

III 2.6605 1.1668 3.8274 50.204

I 0.65 2.1016 1.3689 3.4706 42.905 347.196

II 2.0805 1.4721 3.5527 44.299

III 2.3382 1.2484 3.5867 44.863
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Table 4 Optimal result for different values of β and γ = 0.50
Item β t1i t2i Ti Qi Min TAC
I 0.05 3.9334 0.6515 4.5580 58.409 290.234

II 4.0312 0.6545 4.6857 60.406

III 4.0596 0.6727 4.7324 59.331

I 0.07 3.6462 0.7704 4.4167 58.281 301.601

II 3.6803 0.8029 4.4832 59.751

III 3.8530 0.7567 4.6089 60.227

I 0.10 3.2702 0.9768 4.2471 58.358 318.455

II 3.1971 1.0613 4.2585 58.575

III 3.5578 0.8965 4.4544 61.513

I 0.12 3.0015 1.1295 4.1310 57.636 329.372

II 2.8674 1.2526 4.1201 56.574

III 3.4177 1.0027 4.4204 61.216

I 0.15 2.3675 1.3395 3.7070 50.759 344.475

II 2.1592 1.5083 3.6675 48.764

III 2.8911 1.1488 4.0400 58.890

I 0.18 1.8378 1.5414 3.3795 43.965 357.138

II 1.6069 1.7397 3.3466 41.436

III 2.3807 1.2935 3.6743 53.104

Fig. 3 γ versus Min Qi
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Fig. 4 γ versus Min TAC

Fig. 5 β versus Min TAC

Fig. 6 β versus Qi
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7 Conclusion

This paper develops a multi-item inventory model by considering demand as a power

function of instantaneous stock level and holding cost as a nonlinear function of stock

level. The time horizon and replenishment rate of the inventory system are consid-

ered as infinite. In this model, shortages are allowed and partially backlogged. To

capture the real-life business situations, the cost and other parameters are consid-

ered under fuzzy rough environment. In Table 3 and Table 4, we have shown the

optimal solutions of the problem (18) for different value of γ and β, respectively,

and the solution’s sensitivity has been analysed. The proposed model can be further

extended in several ways like assuming fuzzy demand, quantity discount, variable

rate of reworking and others.
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