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Preface

This book is the proceedings of the conference “Forum Math-for-Industry 2016
(FMfI2016)” held at Queensland University of Technology (QUT), for November
21–23, 2016, for which the unifying theme was “Agriculture as a metaphor for
creativity in all human endeavors” and collects together selected papers presented
there.

The agricultural process of planting a seed, fertilizing, growing, and harvesting
has a clear parallel with the application of mathematics to a practical problem. The
seed becomes the question being asked, the fertilization is the conceptualization
of the mathematical framework within which to seek the answer, the growing is the
solution process, and the harvesting is the articulation and implementation of the
answer.

In agriculture, the breeding of the seed to plant involves genetics; the germi-
nation of the plant involves moisture alone; the growth involves the interaction
between the biology and environment with soil, water, and weather the key drivers;
the survival depends on its ability to respond to viral and fungal infections and
stress challenges; and the flowering and setting of the seed for the next generation
depend on the occurrence of environmental cues.

For understanding the processes and mechanisms involved with each of these
steps, mathematical modeling is central. This is reflected in the emergence of new
mathematically focused agriculture endeavors such as “precision agriculture,”
“smart agriculture analytics,” and “digital agriculture.”

The success of agriculture practice relies fundamentally on its interconnections
with and dependence on biology and the environment. Both play fundamental roles
including the adaption of biology to cope with environmental challenges of biotic
and abiotic stresses and global warming. FMfI2016 explored the contribution of
mathematics within the framework of the interaction of agriculture with biology and
the environment.

The contents of this volume report on productive and successful interaction
between industry and mathematicians, as well as on the cross-fertilization and
collaboration that occurred. The book contains excellent examples of the roles of
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mathematics in innovation and, thereby, the importance and relevance of the
concept Mathematics_FOR_Industry.

We would like to thank the participants of the forum and the members of the
Scientific Board of the Forum, especially Troy Farrell, Matthew Simpson, and Ian
Turner of QUT. Without their cooperation and support, we would never have
experienced the great excitement and success of the forum. Moreover, we would
like to express our deep appreciation for the great help of the conference secretaries
during the preparation and organization of the forum, and Chiemi Furutani for the
proceedings.

Fukuoka, Japan Yasuhide Fukumoto
April 2017 On behalf of the Organizing Committee of

the Forum Math-for-Industry 2016 and the
Editorial Committee of the Proceedings
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The Shape of Things to Come—Using
Geometric and Morphometric Analyses
to Identify Archaeological Starch Grains

Adelle C. F. Coster and Judith H. Field

Abstract Starch grains are tell-tale characteristics of plants that can remain long
after the decomposition of the rest of the material. The understanding of historical
plant use, for sustenance and plant-based medicines, as well as agricultural practices
is enhanced by the identification of residual starch remains. Classifications, however,
have previously relied on expert identification using largely subjective features. This
can be enormously time consuming and subject to bias. Amethod has been developed
to construct robust classifiers for starch grains of unknown origin based on their
geometrical and morphometric features. It was established to allow insight into plant
food use from archaeological remains but could be used in many different contexts.

Keywords Mathematics-for-Industry · Starch grains · Identification
Geometric analysis ·Morphometric analysis

1 Introduction

Starch grains can be preserved for millennia on grinding tools and surfaces. They
are insoluble granules of carbohydrates that build up in plants. They have an initial
growth point, or hilum, and then layers of material build up around this point. As they
are simply carbohydrate, it is not possible to tell from their chemical composition
the species from which they came. However, due to the different cellular structures
of different plants, the starch grains have shapes that are characteristic of the partic-
ular species and organelle from which they are derived. The features of the starch
grains from known plant species can form a reference library. The within-species

A. C. F. Coster (B)
School of Mathematics and Statistics, UNSW, Sydney, Australia
e-mail: A.Coster@unsw.edu.au
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School of Biological, Earth and Environmental Sciences, UNSW, Sydney, Australia
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2 A. C. F. Coster and J. H. Field

features and variability can then be utilised to both describe the species and also as a
discriminator to classify unknown samples, recovered from artefacts, soils or other
materials.

2 Experimental Methods

The starch grains can be recovered from the artefact, soil or othermaterial, suspended
in a mixture of glycerol and water and imaged using a brightfield, differential inter-
ference contrast microscope. In the current approach, we extract the two-dimensional
maximum-projection-area grain shape (identified as the in-focus edge of the grain),
or region of interest, ROI, from the light micrograph. Additionally, the hilum point
is identified. In our method, a hybrid approach to edge detection is employed which
combines automatic outline analysis with some expert intervention to finalise the
outline and hilum positioning. This is because purely automated edge detection is
difficult across a large variety of images—the grains have different depths of fields,
and the assessment of the in-focus edge can be unclear when the morphology causes
different shadowings [1]. An accurate edge is important as the ROI is used to obtain
the discriminative features to classify the grains. Morphological dilation and erosion,
common image analysis techniques for edge detection and object separation, degrade
the features of the ROI.

2.1 Geometric and Morphometric Features

The ROI and hilum location are used to calculate the geometric and morphometric
features of the grain. These include the area, perimeter and centre of mass of each
grain. Hilum offset measures encode the position of the centre of mass and then
compared to the hilum position. The maximum length through the hilum of the grain
has previously been shown to be a good discriminant for some plant taxa [2]. This
maximum length line running through the hilum also provides a reference angle from
which other features can be observed. Other characteristics such as circularity and
other shape matching measures and curvature metrics can also be calculated.

In our case, the digitised ROI has very closely spaced edge points. For complete-
ness, however, we approximate the periphery radius as a piecewise linear function
of the angle about the hilum position relative to the maximum length line.

The starch grains in our studies have no convexity issues, so it is possible to expand
the periphery radius as a radial Fourier series. Thus, we can generate a model from
a truncated sum that can approximate the grain shape. In practice, we have found
that the perimeter features can be represented by as few as five terms (see [6]). The
radial harmonic components of the Fourier decomposition are characteristic of the
grain shape and can be used to discriminate between different species.
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However, if convexity is an issue, other decompositions can be employed such
as wavelet shape (e.g. [3]), multi-scale fractal dimension or curvature scale-space
analysis (e.g. [4]).

3 Starch Grain Classification

In order to discriminate between species, however, it is important to have a compre-
hensive, well-curated reference library with which to compare grains of unknown
origin. The reference set for the classifier also needs to be appropriate to the geo-
graphic region [5]. The reference grains need to be sourced from the appropriate plant
parts—e.g. seeds, fruiting bodies and tubers. It is also good practice to use multiple
samples for each species, to, for instance, account for variation in environmental
conditions and their possible impact on the size of the grains. The reference set for
the classifier should also be, for our archaeological purposes, of important economic
plants from the appropriate location, altitude and climate from the people occupying
the site at the period of interest. Evidence of use by the people using the land is also
important.

Samples of starch grains from the reference species were analysed to calculate the
predictor variable values for each grain in the population. Within species, the shapes
will have some variance and may also vary with orientation. We have found that the
within-species variation appears to be captured by approximately 100 grains in the
80 species we have analysed so far, [6, 7], ensuring a statistically significant result
and allowing the decomposition of the species into sub-grouping as required.

Themorphometric measures of the two-dimensional projections are used to deter-
mine the classifiers that were best able to discriminate between the grains. Classifiers
were considered for various choices of the predictor variables, the classifier type, the
training set (the species to be considered) and the output classes—the species or their
sub-groupings, and in latter case, the method of resulting species prediction.

Series of classifiers were built taking different combinations of the predictor vari-
able, which included the maximum length, area, perimeter, circularity, hilum offset
measures and the Fourier components. Other measures such as the shape matching
variables were investigated but found to be of lesser discriminative value than those
listed above.

Possible combinations of predictor variables can be explored by calculating a
MANOVA of sets of predictor variables for the reference species (or sub-species).
Separation of the species by the MANOVA is an indicator that it may be feasible
to discriminate between the species in a classifier. It may be possible, however, to
still positively identify the presence of a subset of the training set, even if others are
indistinguishable.

In these investigations, the classifiers were broadly discriminant, nearest neigh-
bour and decision tree; however, other algorithms including neural networks and
support vector machines could also be used. In deciding which algorithms to use,
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there is a trade-off in performance and the number of design parameters that need to
be explored.

The method to assess the classifiers depends on the type of output desired. For
instance, if a distribution of a particular species is to be estimated, then the classifier
needs to be designed to best classify all the unknown grains. Designing a classifier to
obtain a very high confidence, true-positive identification for some of the unknown
grains may be to the detriment of certain classifications for others.

It is the latter option which was taken in assessing the archaeologically prove-
nanced starch grains.Whilst the distribution of species was of interest, it was deemed
to be of more importance to know that there was evidence for a particular species
being present in the samples—this would, for instance, indicate that a particular plant
was consumed if the grain was found on a grinding stone or in tooth calculus.

The accuracy of the different classifiers constructed was assessed both by re-
substitution and cross-validation. Re-substitution assesses the accuracy of a classifier
that has been constructed using all the data. Each (known) grain in the training set
is identified using the classifier and the rate of true and false positive classifications
determined.Given the naturalwithin-species variation and possible overlaps between
species, it is unlikely that 100% accuracy will be achieved, even when re-substituting
the grains used in the classifier construction. Re-substitution accuracy, however, does
not necessarily correspond to the accuracy of the classifier when presented with a
grain that was not used in its construction. This accuracy can be assessed by cross-
validation, whereby the training set is randomly partitioned into two subsets. One
is used to construct the classifier, and the another is withheld, and then used to test
the classifier performance. Note that the species of origin for all the grains is known.
The process of partitioning, training and testing is repeated multiple times to validate
the cross-fold error in classifying the withheld subset. As the process withholds part
of the training data each iteration, the classifiers constructed are (a) not identical to
that constructed with all the training data and (b) may mean that the cross-validation
error may be an overestimate. In general, this means that the accuracy of the cross-
validation classifiers is less than that obtained using re-substitution. Both measures
are, however, useful in indicating the classifier performance and can be used in
concert to determine the which of the suite of classifiers is of most utility for a given
problem.

In developing the methodology for starch grain identification, we further devel-
oped the idea of the cross-fold validation for this system. Given we are interested
in true-positive, confident predictions we consider a reverse cross-fold validation
error. Rather than the usual cross-validation, where a number of grains of a known
species are classified and the number of mis-classifications measured, here we look
at classification results from all the grains tested. For a given species classification,
we then determine how many were not actually that species. The classifier can per-
form differently for different species. We developed, [7], a measure to encode the
dependence of the true-positive rate on the classifier score for the different output
species called the positive prediction value, PPV . The PPV can then be used to
choose the classifier and determine the confidence of the results. If the prediction
score corresponds to, say, PPV = 0.9 for that species, then 90% of the predictions
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with scores above this level were correctly classified. Lesser scores, corresponding to
lower PPV values, mean that the unknown could possibly be the predicted species,
albeit with less confidence.

Once the different classifiers are constructed for the training set, using different
algorithms and combinations of predictor variables, and assessment can be made of
their performance, discarding those with low re-substitution success and high cross-
fold validation errors. Further analysis of the performance for the individual species
within the training set via the PPV and the individual species cross-validation errors
then allows us to choose the “best” classifier for the problem at hand.

As part of our studies, once the classifier was optimised and the unknown grains
classified, the unknowns were furthermore re-analysed by an expert microscopist,
skilled in starch analysis. The quantitative system outlined above does not take cat-
egorical or subjective attributes into account when performing the classifications.
Subjective features of starch grains include the presence of lamellae and pitting of
the grain surface. Taking the cross-fold validation confidence and PPV for the pre-
dicted species into account, each prediction was deemed to be validated, probable or
a false positive. We found a high correspondence with the predicted values, except
in some species of similar geometry where subjective features such as lamellae were
prominent in some species and not others.

4 Discussion

The methodology has been used to create starch grain classifiers for a number
of important archaeological and ethnographic studies. We have identified that the
inhabitants of North Queensland rainforests undertook complex processing of some
starchy nuts, which were otherwise toxic [7]. Trading patterns and plant use in the
highlands of Papua New Guinea have been identified from residue remains on grind-
ing tools. The foraging and consumption of seeds have been investigated fromground
stone artefacts from Woomera in South Australia [8].

Whilst the development of the collection of reference grains has been a time-
consuming venture, as we are maintaining user input into the collection of the indi-
vidual ROIs, this library then becomes accessible to multiple studies. If the plant
species is present or is an appropriate inclusion in the training set for a given study,
these can be deployed immediately. As an evolving collection, this represents a
valuable curated resource. It then remains to analyse the newly sources unknown
grains—once they have been found in the field!

The methodology is currently being employed to identify starch grains recovered
from a variety of archaeological contexts in Australia, Papua New Guinea, and the
USA. It is not, however, limited to archaeological samples, and could, for instance,
be used to study the provenance of produce such as honey if starch grains in the
sample can be identified.

The cultivation of wheat has been integral to human civilisation for millennia. In
modern times, different cultivars ofwheat produce ‘soft’ and ‘hard’ flours, suitable for
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different food preparations. It is planned to characterise the wheat grains producing
the different flour qualities and correlate the starch grain features with the kernel
strength and hardness profiles [9, 10].

The approach taken here could also be used beyond starch, at, for instance, larger
physical scales. Grain shape is a key factor affecting the mechanical properties of
granularmaterials. It has long been of interest in sedimentology (see for instance [11–
14]). An accurate classifier of grain shape could be used to quickly and accurately
provide information on the contents of seed samples such as wheat, oats, rye and
barley. This could be coupled with grain handling operations to recover and sort
mixed grains or grade samples. Some work has been done in this area [15] and could
be extended to use the approaches of the method developed for starch identification.
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New Mathematical Models of Antimalarial
Drug Action to Improve Drug Dosing
Regimens

James M. McCaw, Pengxing Cao, Sophie Zaloumis and Julie A. Simpson

Abstract Plasmodium falciparum malaria remains a major threat to global pub-
lic health. Artemisinin-based combination therapies—a critical component of cur-
rent control strategies—are at risk of failure due to the emergence of artemisinin
resistance. To extend the life of artemisinin-based therapies, it is crucial that we
develop a better understanding of how they act to reduce parasitemia in the host.
Recent laboratory-based experiments have demonstrated that parasites respond to the
cumulative, rather than instantaneous, drug concentration. This observation directly
challenges the standard paradigm of pharmacokinetic–pharmacodynamic (PK–PD)
modelling. Here, we introduce a generalisation to the PK–PDmodel which accounts
for cumulative exposure. Parasites accumulate ‘stress’, which translates into an effec-
tive killing rate which can vary with both drug concentration and exposure time. Our
model indicates how drug-resistant parasites may avoid killing. Through simulation,
we explore alternative drug dosing strategies that may overcome drug resistance.

Keywords Mathematics for Industry · Biological modelling · Malaria
Antimalarial drugs

1 Introduction

Artemisinin derivatives (ART) provide the first-line treatment for falciparummalaria,
a major parasitic disease affecting millions of people every year [1]. Their exten-
sive use over the past decade has dramatically reduced the burden of malaria on
human populations. However, over recent years, clinical signs of drug resistance

J. M. McCaw (B) · P. Cao
School of Mathematics and Statistics, The University of Melbourne,
Melbourne, VIC 3010, Australia
e-mail: jamesm@unimelb.edu.au

S. Zaloumis · J. A. Simpson
Melbourne School of Population and Global Health, The University of Melbourne,
Melbourne, VIC 3010, Australia

© Springer Nature Singapore Pte Ltd. 2018
R. S. Anderssen et al. (eds.), Agriculture as a Metaphor for Creativity
in All Human Endeavors, Mathematics for Industry 28,
https://doi.org/10.1007/978-981-10-7811-8_2

7
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have become established in South-East Asia and ART therapy is now at risk of
failure [2].

Pharmacokinetic–pharmacodynamic (PK–PD) models—which combine mod-
els of blood antimalarial drug concentrations with models of parasite replication
dynamics—have been used extensively to study the mechanisms of action of drugs,
interpret clinical trial data on alternative dosing regimens and guide the development
of drug dosing policy [3].

Laboratory experiments, conducted by collaborators at the Bio21 Institute (Mel-
bourne), have established that the dynamics of drug killing are complex [4, 5]. Not
only do parasites display stage-specific sensitivity to ART, the rate of parasite killing
appears to depend upon the cumulative exposure of parasites to drug, rather than the
instantaneous drug concentration. Furthermore, in experiments with ‘drug-resistant’
parasite strains, a clear loss of sensitivity to the drug was observed during the ring
stage of the parasite’s life cycle.

In this context, understanding the mechanisms and dynamics of drug-induced
parasite killing requires the development of new PK–PDmodels of drug activity and
parasite response [3]. The development of improved models may prove crucial in
optimising drug regimens to either overcome or delay the onset of drug resistance
and improve clinical outcomes.

Here, we introduce a model of parasite killing in the presence of a time-varying
drug concentration and extend the PK–PD modelling paradigm to account for drug
accumulation effects.

2 Model

During blood-stage Plasmodium falciparum infection, the parasites go through a 48-
h asexual reproductive life cycle. We consider the number of parasitised red blood
cells, N (a, t), of age a at time t to evolve according to

∂N (a, t)

∂t
+ ∂N (a, t)

∂a
= −kN (a, t) , (1)

where k is the (drug-induced) parasite killing rate, which in general will be a function
of the detailed history of drug exposure. The domain of a is the time from forma-
tion of an infected red blood cell to its time of rupture ar (usually 48h). We have a
boundary condition for asexual reproduction N (0, t) = r N (ar , t) (r ≈ 10), indicat-
ing that parasites released from a single ruptured red blood cell infect (on average)
10 susceptible red blood cells.

From this general formulation (which will be used to perform simulations of in
vivo parasite dynamics at the end of this paper), we simplify to consider a tightly age-
synchronised population of parasites of age ā as was used in the in vitro experiments
of Klonis [4] and Dogovski [5]. Drug responses are (empirically) observed to be well
described by Hill function kinetics:
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k(C) = kmaxCγ

K γ
c + Cγ

.

To capture the effects of cumulative drug exposure, we model the maximal killing
rate, kmax and half-maximal concentration Kc to be functions of an accumulated
parasite ‘stress’, S, which increases as follows whenever drug, C(t), is present at a
concentration higher than some (small) critical value, C∗:

dS

dt
= λ(1 − S) .

The stress, S, is immediately reset to zero when C(t) drops back below C∗.
With kmax = αS and Kc = β1(1 − S) + β2, with α, β1 and β2 positive constants,

and assuming the presence of drug at a concentrationC(t) > C∗ for the entire exper-
imental assay, we obtain

kmax = α
(
1 − e−λt

)

Kc = β1e
−λt + β2 ,

and so the number of parasites N̄ (t) (of initial age ā) surviving at time t is given by:

N̄ (t) = N̄0 exp

[
−

∫ t

0
k(C(τ ), S(τ )) dτ

]
.

The in vitro experiments [4, 5] exposed parasites to drug pulses of a particu-
lar duration (Td ) and particular (initial) concentration C0. The half-life of in vitro
drug decay was also measured. Rather than measure counts of parasites directly, the
experiments provide a relative measure of parasite survival based on the number that
survive until rupture, producing ‘offspring’ (with expansion factor r (see above)) in
the next generation. This measure is called the viability and is constrained to lie in
[0, 1]. After some manipulation (and with details of the experimental procedure [4]),
it can be shown that the viability is given by

V (C0, Td) = exp

[
−

∫ Td

0
k(C(τ ), S(τ )) dτ

]
. (2)

2.1 Results

We used model (2) to fit the available age/stage-specific in vitro data. For each of the
four parasite stages (early rings, mid-rings, early trophozoites and late trophozoites),
we obtained (stage-specific) estimates for λ, α, β1 and β2. With these estimates—
which show strong evidence for drug accumulation effects (i.e. λ is small, data not
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Fig. 1 a The killing rate surface as a function of drug concentration C and accumulated stress S
and a projection of the trajectory for the effective killing rate on that surface for three values of the
stress accumulation rate λ (details in text). b Simulation of the parasite load (from simulation of the
full model (1)) under a standard 24 hourly treatment regimen for two strains: drug-sensitive 3D7
(λ = 0.37) and a hypothetical drug-resistant strain (λ = 0.1)

shown)—we then simulated realistic in vivo PK–PD curves and explore the effects
of drug accumulation.

Figure1a shows how the overall killing rate k evolves for the mid-ring stage
of the parasite life cycle given a typical PK (drug concentration) time profile. The
trajectory in black is for λ = 0.37, as estimated from the in vitro data. Curves for
slower accumulation of ‘stress’ (λ = 0.1, red) andmore rapid accumulation (λ = 1.0,
blue) are also presented to highlight the potential biological importance of drug
accumulation. It has been suggested that drug resistancemaymanifest as an increased
tolerance to drug for the parasite [5]. We model this possibility as a reduction in
λ for the mid-ring stage of the life cycle. Figure1b illustrates the dramatic effect
on the parasite load over time resulting from this increased drug tolerance for a
realistic scenario of multiple drug doses (following the standard drug regimen as
recommended by the World Health Organisation).

Having established how an increased tolerance to stress manifests as a delay
in clearance, we now use the model to explore alternative drug dosing regimens.
Figure2 presents results for two widely suggested alternative regimens: increasing
dose concentration and increasing dose frequency. We apply these alternative dos-
ing regimens to a simulated 3D7 infection (i.e. λ = 0.37). For an initial parasite
distribution in the host that is primarily rings (a) or trophozoites (b), we observe a
clear benefit in twice daily dosing. In contrast, marginal benefit is obtained through
increased dose concentration (4mg/kg vs. 2mg/kg).

2.1.1 Conclusions

Based on detailed in vitro experiments and an extension to the traditional PK–PD
modelling framework, we have explored the potential role for drug accumulation
effects in antimalarial activity. Our findings provide new insight into the mechanisms
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Fig. 2 A comparison of alternative drug regimens. a Parasite counts over time for the baseline
(2mg/kg per 24h; red), increased dose concentration (4mg/kg; black) and increased dose frequency
(2mg/kg per 12h; green). Increasing the dose has a minimal effect on parasite count as the drug
concentration is sufficiently high in the baseline scenario. However, increasing the dosing frequency
to twice daily has a dramatic and positive impact, shortening the time to resolution of infection by
between 12 and 24h. bAs in (a) but for an older initial parasite distribution (primarily trophozoites).
The improvement obtained by twice daily dosing is even more dramatic

of drug-induced parasite killing and an enhanced predictive platform for evaluating
the likely efficacy of alternative ART dosing regimens.
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Biodiversity and the Ecology of Emerging
Infectious Diseases

M. G. Roberts and J. A. P. Heesterbeek

Abstract The question of how biodiversity influences the emergence of infectious
diseases is the subject of ongoing research. A set of nonlinear differential equations is
been used to explore the interactions between ecology and epidemiology. The model
allows for frequency-dependent transmission of infection within host species, and
density-dependent transmission between species, via the environment or a vector.
Three examples are discussed. It is shown that removing a pathogen may increase a
consumer population, decreasing its resource. It is then shown that the presence of a
pathogen could enable a predator and a prey species to coexist. Finally the dilution
effect, by which increasing biodiversity reduces the transmission of an infectious
disease, is investigated.

Keywords Biodiversity · Ecology · Epidemiology · Infectious diseases

1 Introduction

Emerging infection diseases present a major threat to world health. On average,
two new species of human virus are reported each year [1], most having an ani-
mal origin [2–5]. Recent examples are SARS [6], swine flu [7] and avian influenza
[8, 9]. In 2014, Ebola virus re-emerged from a bat reservoir [10, 11], causing a major
epidemic [12–15]. Climate change could lead to Aedes mosquitoes establishing in
New Zealand [16, 17], and with them dengue and Zika viruses [18].
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Large complex ecosystems interacting at random are almost certain to be unstable
[19]. Adding structure to the community matrix produces a different picture [20–23],
competitive interactions are stabilising, whereas mutualism is destabilising [20]. A
major component of an ecosystem is the food web: the network of feeding inter-
actions among species. Adding pathogens increases the web’s complexity [24–28],
and parasites have been described as the dominant or missing links [29, 30]. An
infection may make prey easier to catch, or unpalatable to a predator, or reduce a
predator’s hunting ability, but the overall influence of pathogens on an ecosystem
may be unexpected [31]. The influence of ecosystem dynamics on epidemiology can
also be unexpected [32] and may lead to a pathogen jumping host species causing a
pandemic.

We present a model that describes how an infectious disease can modify the
dynamics of host and non-host species, and how changes in ecosystem dynamics
can modify the epidemiology of a pathogen. We illustrate our model with three
examples. In the first, eliminating a pathogen led to an increase in biodiversity,
whereas in the second the presence of a pathogen is necessary to maintain a prey–
predator relationship. The third example directly addresses the dilution effect—how
a change in biodiversity may result in a change in the dynamics of an infectious
disease.

2 The Model

To model an infectious disease on a food web infected with a single pathogen of
interest, we define Ni to be the abundance of species i ∈ Ω , Ii/Ni to be the proportion
of species i infected, and Si = Ni − Ii the abundance of susceptible hosts of species i .
The equations for the population dynamics of the food web are

dNi

dt
= νi (Ni )Ni − μi (Ni )Ni − αi Ii −

∑

j∈N i

φi j
(
Si + ni j Ii

) (
S j + oi j I j

)

−
∑

k∈P i

ψik (Si + qik Ii ) (Sk + pik Ik) +
∑

�∈Q i

π�iψ�i (Si + p�i Ii ) (S� + q�i I�) ,

where species i is born at the rate νi and dies at the rate μi , both functions of Ni ,
with increased death rate due to infection αi . Species i competes for resources with
species j when j ∈ Ni , is eaten by species k when k ∈ Pi and eats species � when
� ∈ Qi . The variables φi j ,ψik and π�i account for competition for resources between
species i and j , consumption of species i by species k and the benefit to species � of
consuming species i , respectively. All of these interactions may be modified if one
or other of the species is infected with the pathogen.

The dynamics of the pathogen are expressed by
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dIi
dt

= βi
Si Ii
Ni

− μi (Ni )Ii − αi Ii − Ii
∑

j∈N i

φi j ni j
(
Sj + oi j I j

)

−Ii
∑

k∈P i

ψikqik (Sk + pik Ik) + Si
∑

�∈Q i

γ�i q�iψ�i I� + κi SiW

The model allows for three modes of transmission: frequency-dependent intra-
species transmission at rate βi , density-dependent transmission via the environment
or an infected vector

(
W = ∑

m∈Ω rm Im
)
and transmission from prey to predator

while feeding.
There are usually multiple steady states. The structure of the Jacobian matrix

at the infection-free steady state decouples criteria for ecological stability and
epidemiological stability [33].

J =
(
C D
0 H

)

The steady state is ecologically stable if the maximum real part of the eigenvalues of
the community matrix is negative, s(C) < 0. The steady state is epidemiologically
stable if s(H) < 0. ThematrixH determines the stability of an ecological equilibrium
to invasion by an infectious disease in chronological time. It can be decomposedH =
T + Σ where T is the transmission matrix for the pathogen and Σ is the transition
matrix. The next-generation matrix is K = −TΣ−1, and the basic reproduction
number R0 is the spectral radius of K [34, 35]. If R0 > 1, the pathogen can invade
the food web, and henceK determines epidemiological stability of the ecosystem in
generation time.

Example 1 A resource–consumer–pathogen system. For this simple example, we
assume that the pathogen only infects the consumer. The equations are

dN1

dt
= ν1(N1)N1 − μ1N1 − ψN1 (S2 + pI2)

dN2

dt
= ν2(N2)N2 + πψN1 (S2 + pI2) − μ2N2 − α I2

dI2
dt

= β
S2 I2
N2

− (μ2 + α) I2

The Jacobian matrix at any infection-free state (N1, N2, 0) simplifies to

J =
⎛

⎝
N1ν

′
1 (N1) −φN1 ψ(1 − p)N1

πψN2 N2ν
′
2 (N2) −πψ (1 − p) N1 − α

0 0 β − μ2 − α

⎞

⎠

The community matrix C is the leading 2 × 2 sub-matrix of J. It has negative trace
and positive determinant, and hence it is stable. The infection-free equilibrium is
unstable ifR0 = β

μ2+α
> 1. The steady states of the system are plotted as functions
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resource 
biomass 
decreases 

with consumer 

with consumer 
and pathogen 

no consumer 

consumer 
population 
increases 

with pathogen 

with primary resource 

without primary resource 

Fig. 1 Bifurcation diagram for the model presented in Example 1. Top: steady states for the
resource plotted against the basic reproduction number R0. K is the steady state in the absence of
the consumer, N̄1 in the presence of the consumer and N∗

1 in the presence of consumer and pathogen.

Bottom: steady states for the consumer plotted against R0. N̂2 is the steady state in the absence of
the primary resource, N̄2 in the presence of the resource and N∗

2 in the presence of resource and
pathogen. I ∗

2 is the abundance of the pathogen. The effect of removing the pathogen is indicated by
the arrows
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ofR0 in Fig. 1. Eliminating the pathogen from the consumer increases its abundance
from N ∗

2 to N̄2. As a consequence, the resource biomass decreases from N ∗
1 to N̄1.

This is consistent with observations in the Serengeti. Following the eradication of
rinderpest, wildebeest numbers increased and the grass biomass decreased. As a
consequence there were fewer fires, more trees, more giraffes and more predators
[36]. These are further interactions that could have been included in a larger model.

Example 2 A prey–predator–pathogen system. For this example, the pathogen
infects both prey (species 1) and predator (species 2),with transmission frompredator
to prey via environmental contamination. The model is

dN1

dt
= ν1(N1)N1 − μ1N1 − α1 I1 − ψ (S1 + q I1) (S2 + pI2)

dN2

dt
= ν2(N2)N2 + πψ (S1 + q I1) (S2 + pI2) − μ2N2 − α2 I2

dI1
dt

= β1
S1 I1
N1

− (μ1 + α1) I1 − ψq I1 (S2 + pI2) + κS1 (I1 + r I2)

dI2
dt

= γ qψ I1S2 + β2
S2 I2
N2

− (μ2 + α2) I2

The basic reproduction number is the spectral radius of the next-generation matrix,
R0 = ρ (K), where

K =
(

β1

μ1+α1+ψqN 2
+ κN 1

μ1+α1

κN 1
μ2+α2

γ qψN 2

μ1+α1+ψqN 2

β2

μ2+α2

)

In the absence of prey–predator interaction, ψ = 0. The basic reproduction number
in the prey is thenR0 = β1+κ N̂1

μ1+α1
, and in the predatorR0 = β2

μ2+α2
. The possible steady

states of the prey species are N̂1 without predators; N 1 with predators; N ∗
1 without

predators with pathogen; and N ∗∗
1 with predators and pathogen. These are plotted

as functions of the feeding rate ψ in Fig. 2. When the feeding rate of the predator
is greater than a critical value (ψ > ψcrit), the prey species is driven to extinction
unless the pathogen is present. Hence, the presence of the pathogen is necessary to
keep the prey population viable.

Example 3 The dilution effect. Resolving the situations under which the dilution
effect applies is an outstanding challenge in epidemiology [37]. The idea is that
reducing biodiversity removes species that are hosts of a particular pathogen, hence
increasing the risk of transmitting that pathogen to a new host, notably a human.
The alternative is that removing hosts from an ecosystem reduces the viability of the
pathogen, possibly driving it to extinction. A simple model with two prey species (1
and 2), two predator species (3 and 4) and one pathogen has been used to explore
the dilution effect. The host population dynamics are described by
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no predators 

with predators 

pathogen 

Fig. 2 Steady states of the prey population (species 1) in Example 2 plotted against the feeding rate
of the predator ψ . The states are N̂1 without predators; N 1 with predators; N∗

1 without predators
with pathogen; and N∗∗

1 with predators and pathogen. The abundance of infected prey is I ∗
1 or I ∗∗

1
with predators. The effect of introducing the pathogen is indicated by the arrows

dNi

dt

∣∣∣∣
i=1,2

= νi Ni − μi Ni − Ni

∑

j=1,2

φi j N j − Ni

∑

k=3,4

ψik Nk

dNi

dt

∣∣∣∣
i=3,4

= νi Ni − μi Ni − Ni

∑

j=3,4

φi j N j + Ni

∑

�=1,2

π�iψ�i N�

and the abundance of infected hosts by

dIi
dt

∣∣∣∣
i=1,2

= βi
Si Ii
Ni

− μi Ii − Ii
∑

j=1,2

φi j N j − Ii
∑

k=3,4

ψik Nk + κi SiW

dIi
dt

∣∣∣∣
i=3,4

= βi
Si Ii
Ni

− μi Ii − Ii
∑

j=3,4

φi j N j + Si
∑

�=1,2

γ�iψ�i I� + κi SiW

Preliminary results based on frequency-dependent transmission only show no
dilution effect in prey species and an effect in predator species if increasing the prey
population leads to an increased predator population. Adding transmission from prey
to predator while feeding means the effects of population increase must exceed the
effects of transmission to susceptibles through consuming prey. The results are more
complicated with density-dependent transmission. We found a dilution effect in prey
species in response to environmental dilution and a dilution effect in predator species
under some restricted conditions. Exploring these effects is the subject of ongoing
research.
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3 Conclusion

A model described by a set of nonlinear differential equations has been used to
explore the interactions between ecology and epidemiology. Three examples have
been discussed. In the first, it was shown that removing a pathogen increased a
consumer population and decreased the resource. The second example showed that
the presence of a pathogen could enable a predator and prey species to coexist.
Finally, the complex issue of the dilution effect was addressed. The question of how
biodiversity influences the emergence of infectious diseases is the subject of ongoing
research.
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Reaction–Diffusion Equations and Cellular
Automata

Mikio Murata

Abstract A systematic approach to the construction of cellular automata that are
analogs for the reaction–diffusion equations is presented.Byusing thismethod for the
Allen–Cahn equation and theGray–Scottmodel, cellular automatons are constructed.
The solutions of the cellular automatons obtained by this method are similar to the
solutions of the original reaction–diffusion equations.

Keywords Reaction–diffusion equation · Cellular automaton · Discretization
Ultradiscretization

1 Introduction

The reaction–diffusion systems are systems involving constituents locally trans-
formed into each other by chemical reactions and transported in space by diffusion.
They arise, quite naturally, in chemistry and chemical engineering but also serve
as a reference for the study of a wide range of phenomena encountered beyond
the strict realm of chemical science such as environmental and life sciences. For
example, the Allen–Cahn equation [1, 2] is a reaction–diffusion equation of math-
ematical physics which describes the process of phase separation in multicompo-
nent alloy systems, including order–disorder transitions. Reaction and diffusion of
chemical species can produce a variety of patterns, reminiscent of those often seen
in nature. The Gray–Scott equations [3] model such a reaction. In the Gray–Scott
model, various spatiotemporal patterns can be obtained with appropriate parame-
ters. The pattern includes stable standing pulse solutions, traveling pulse solutions,
self-replicating patterns, spatiotemporal chaos, and front-wave solutions. A cellular
automaton (CA) is a discrete mathematical model studied in computability theory,
mathematics, physics, complexity science, theoretical biology, and microstructure

M. Murata (B)
Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho,
Koganei-shi, Tokyo 184-8588, Japan
e-mail: mmurata@cc.tuat.ac.jp

© Springer Nature Singapore Pte Ltd. 2018
R. S. Anderssen et al. (eds.), Agriculture as a Metaphor for Creativity
in All Human Endeavors, Mathematics for Industry 28,
https://doi.org/10.1007/978-981-10-7811-8_4

21



22 M. Murata

modeling. A CA consists of a regular grid of cells, each in one of a finite number
of states. For each cell, a set of cells called its neighborhood is defined relative to
the specified cell. An initial state is selected by assigning a state for each cell. A
new generation is created, according to some fixed rule that determines the new state
of each cell in terms of the current state of the cell and the states of the cells in
its neighborhood. The rule for updating the state of cells is the same for each cell
and does not change over time, and is applied to the whole grid simultaneously. So
the reaction–diffusion equation and the cellular automaton are mathematical models
having the same role, although their shapes are different. Here, we want to construct
a cellular automaton that models the same phenomenon for the phenomena modeled
by reaction–diffusion equation. It is convenient if it is possible to construct a cellular
automaton from only the form of the reaction–diffusion equation.

Ultradiscretization is one of the methods of formally converting difference equa-
tions to piecewise linear equations [4]. Many cellular automata were constructed
by applying this method to discrete analogs of soliton equations. By applying this
method to solutions of this discrete analog, we have succeeded in constructing solu-
tions of cellular automata as well [5–12]. In addition to the soliton equations, the
ultradiscretization can be applied to the discrete analogs of the Painlevé equations.
Although it is difficult to clearly describe the solution of the Painlevé equations and
its discrete analogs, it is possible to clearly describe the solution of piecewise linear
equations obtained by the ultradiscretization [13].

However, in other systems such as reaction–diffusion systems, the ultradiscretiza-
tion could not be applied.Although cellular automata representing reaction–diffusion
phenomena have been proposed in [14], they have not been obtained by the ultradis-
cretization from the difference equation. The method of constructing the differential
equation directly from the cellular automaton is proposed by in [15, 16], but it is not
an established method.

We studied a method to construct cellular automata based on the reaction–
diffusion equations and succeeded in making difference equations that can be ultra-
discretized from the reaction–diffusion equations [17–19].We applied this method to
the Allen–Cahn equation and the Gray–Scott model to construct cellular automata.
In addition, it showed that the obtained cellular automata have solutions that behave
similarly to the solutions of the original reaction–diffusion equations. In this report,
we would like to summarize these results together with new results.

2 Allen–Cahn Cellular Automaton

In this section, a cellular automaton is proposed by employing the tropical dis-
cretization [19] for the Allen–Cahn equation. Traveling wave solutions of the one-
dimensional cellular automaton are reported.

We now turn to what we consider a systematic approach to discretize differential
equations. We call this procedure “the tropical discretization.” Let us consider a
d-dimensional reaction–diffusion equation
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∂u

∂t
= DΔu + f (u) − g(u), (1)

where u := u(t, x), t ≥ 0, x ∈ R
d and D is positive constant.Δ is the d-dimensional

Laplacian Δ = ∑d
k=1 ∂2/∂xk

2. We give a discrete analog of (1). By introducing a
function

[ujn] = 1

2d

d∑

k=1

(
uj+ek
n + uj−ek

n

)
, (2)

where u(n, j)(=: ujn) : N × Z
d → R and where ek ∈ Z

d is a unit vector whose kth
component is 1 and whose other components are 0. We construct a partial difference
equation

ujn+1 = [ujn]
ε−1[ujn] + f ([ujn])
ε−1[ujn] + g([ujn])

, (3)

where ε is a positive constant. This equation is a discretization of (1), because (3) is
equivalent to

ujn+1 − ujn
ε

= δ2

2dε

d∑

k=1

uj+ek
n + uj−ek

n − 2ujn
δ2

+
[ujn]

{
f ([ujn]) − g([ujn])

}

[ujn] + εg([ujn])
.

if there exists smooth functions u(t, x) (t ≥ 0, x ∈ R
d) that satisfy u(δn, εj) = ujn ,

the d-dimensional reaction–diffusion equation (1) are obtained with the limit ε → 0.
The Allen–Cahn equation [1] is the partial differential equation

∂u

∂t
= DΔu − (u − 1) (u − b) (u − a) , 1 < b < a, (4)

where zero points of reaction term are u = 1, b, a. Equation (4) appears in [2].
Equation (4) can be called the unbalanced Allen–Cahn equation, and it is also called
theNagumoequation.Weapply the tropical discretization to (4).Considering f (u) =
(1 + a + b) u2 + ab and g(u) = u3 + (a + b + ab) u in (1) and putting f (u) and
g(u) to (3), then we have a difference equation

ujn+1 = ε−1[ujn] + (1 + a + b) [ujn]2 + ab

ε−1 + [ujn]2 + a + b + ab
. (5)

Next, we construct a piecewise linear equation from (5) by using the ultradiscretiza-
tion procedure [4]. The procedure of ultradiscretization is equivalent to the construc-
tion of a piecewise linear equation using the following substitution rule.

Let

ε → E, a → A, b → B, ujn → U j
n
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Discrete equation Ultradiscrete equation
× (Multiplication) + (Addition)
÷ (Division) − (Subtraction)
+ (Addition) max (Maximum)
a, b, c, ... (Positive value variables) A, B, C , ... (Real value variables)
1, 1

2 ,
√
2, ... (Positive constants) 0 (Zero constant)

and applying this transformation rule to (2) and (5) yields the following function:

{U j
n} = max

k=1,...,d

(
U j+ek

n ,U j−ek
n

)
,

and an ultradiscrete analog of Allen–Cahn equation

U j
n+1 = max

{{U j
n} − E,max (0, A, B) + 2{U j

n}, A + B
}

− max
{−E, 2{U j

n}, A, B, A + B
}
. (6)

We deal with the case of 0 < B < A since 1 < b < a. From now on, we deal with
only the case of E > −A − B. Then, (6) becomes

U j
n+1 = max

{{U j
n} − A − E, 2{U j

n}, B
} − max

{
2{U j

n} − A, B
}
. (7)

When −A − B < E < −A − B
2 , (7) is equivalent to

U j
n+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ({U j
n} < A + B + E)

{U j
n} − A − B − E (A + B + E ≤ {U j

n} < B
2 )

2{U j
n} − B ( B

2 ≤ {U j
n} < A+B

2 )

A ( A+B
2 ≤ {U j

n}).

When E ≥ −A − B
2 , (7) is equivalent to

U j
n+1 =

⎧
⎪⎨

⎪⎩

0 ({U j
n} < B

2 )

2{U j
n} − B ( B

2 ≤ {U j
n} < A+B

2 )

A ( A+B
2 ≤ {U j

n}).

Let A, B, E ∈ Z and initial data of (7) U j
n ∈ {0, 1, . . . , A}. The solution of (7)

becomes a cellular automaton with A + 1-states. For example, the rule table for
A = 4, B = 2 is

{U j
n} 4 3 2 1 0

U j
n+1 4 4 2 0 0
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Now, let spatial dimension d = 1. For the one-dimensional cellular automaton
(7), several traveling solutions exist. By using the step function

H(x) =
{
1 (x ≥ 0)

0 (x < 0),
(8)

U j
n = A H(n − j) (9)

is a front traveling solution for wave speed 1 that satisfies lim j→−∞ U j
n = A and

lim j→∞ U j
n = 0.

U j
n = B H(n − j) (10)

is a front traveling solution for wave speed 1 that satisfies lim j→−∞ U j
n = B and

lim j→∞ U j
n = 0. The superposition of (9) and (10)

U j
n = max{A H(n − j), B H(n + n0 − j)} (11)

is a front traveling solution for wave speed 1 that satisfies lim j→−∞ U j
n = A and

lim j→∞ U j
n = 0.

U j
n = max{A H(n − j), B} (12)

is also a front traveling solution for wave speed 1 that satisfies lim j→−∞ U j
n = A and

lim j→∞ U j
n = B. IfU j

n is a solution of (7), thenU− j
n is a solution of (7). Therefore,

front traveling solutions for every wave speed −1 also exist. For the real-valued
equation of (7), many traveling solutions for every wave speed exist [19]. If a wave
traveling to the right collides with a wave traveling to the left, then the two traveling
waves disappear, see also Fig. 1.

Let spatial dimension d = 2. Let us consider the 2D Allen–Cahn CAwith A = 4,
B = 2 as a mathematical model of forest fires. We can assign a numerical value to
each cell following this convention:

• The state where it can be ignited has a value of 0,
• A smoldering cell has a value of 1,

Fig. 1 A collision and a
disappearance of two
traveling waves in
Allen–Cahn cellular
automaton with A = 4,
B = 2. Values of U j

n are
represented as follows: 0
(white), 2 (gray), and 4
(black). Time progresses
vertically from top to bottom
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== = =

Fig. 2 2D Allen–Cahn CA with A = 4, B = 2. Values ofU j
n are represented as follows: 0 (white),

2 (gray), and 4 (black)

• A burning cell has a value of 2,
• A being extinguished cell has a value of 3, and
• A burnt cell has a value of 4.

The pattern when starting from an appropriate initial value is shown in Fig. 2. We
can see how the fire burns and then the fire is extinguished. Of course, this cellular
automaton is a simple model. In order to apply it to real problems, we think that it is
better to improve based on this model.

3 Gray–Scott Cellular Automaton

Gray–Scott model [3] is a variant of the autocatalytic model. Basically, it considers
the reactions

U + 2V → 3V,

V → P,

in an open flow reactor where U is continuously supplied, and the product P removed.
A mathematical model of the reactions above is the following system of partial

differential equations:

∂u

∂t
= DuΔu − uv2 + a(1 − u), (13a)

∂v

∂t
= DvΔv + uv2 − bv, (13b)

where u := u(t, x), v := v(t, x), t ≥ 0, x ∈ R
d , and Du , Dv, a, and b are positive

constants. Δ is the d-dimensional Laplacian. The solutions of this system represent
spatial patterns. Changing not only an initial condition but also parameters, various
patterns are observed [20–22].
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In this section, we discretize and ultradiscretize (13) and investigate solutions.
Since it is more convenient to consider the ultradiscretization, we take the scaling
w := v + 1 which changes (13) to

∂u

∂t
= DuΔu − u(w − 1)2 + a(1 − u), (14a)

∂w

∂t
= DvΔw + u(w − 1)2 − b(w − 1). (14b)

Let us consider two-component d-dimensional reaction–diffusion equations

∂u

∂t
= DuΔu + fu(u,w) − gu(u,w), (15a)

∂w

∂t
= DwΔw + fw(u,w) − gw(u,w). (15b)

We construct partial difference equations

ujn+1 = [ujn]p
ε−1[ujn]p + fu([ujn]p,wj

n+1)

ε−1[ujn]p + gu([ujn]p,wj
n+1)

, (16a)

wj
n+1 = [wj

n]q
ε−1[wj

n]q + fw([ujn]p, [wj
n]q)

ε−1[wj
n]q + gw([ujn]p, [wj

n]q)
, (16b)

where n ∈ Z≥0, j ∈ Z
d and

[ujn]p :=
d∑

k=1

uj+pek
n + uj−pek

n

2d
(p ∈ N),

[wj
n]q :=

d∑

k=1

wj+qek
n + wj−qek

n

2d
(q ∈ N).

This equation is a discretization of (15). Considering fu(u,w) = 2uw + a, gu(u,w)

= uw2 + (a + 1)u, fw(u,w) = u(w2 + 1) + b and gw(u,w) = (2u + b)w in (15)
and putting them to (16), then we have a system of partial difference equations

ujn+1 = ε−1[ujn]p + 2[ujn]pwj
n+1 + a

ε−1 + (wj
n+1)

2 + a + 1
, (17a)

wj
n+1 = ε−1[wj

n]q + [ujn]p{([wj
n]q)2 + 1} + b

ε−1 + 2[ujn]p + b
. (17b)

We ultradiscretize (17) and investigate the solutions. Let
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ε → E, a → A, b → B, ujn → U j
n, wj

n → W j
n

and applying the substitution rule for the ultradiscretization, then we have

U j
n+1 = max({U j

n}p − E, {U j
n}p + W j

n+1, A) − max(−E, 2W j
n+1, A, 0), (18a)

W j
n+1 = max({W j

n}q − E, {U j
n}p + 2{W j

n}q , {U j
n}p, B) − max(−E, {U j

n}p, B), (18b)

where

{U j
n}p := max

k=1,...,d
(U j+pek

n ,U j−pek
n ),

{W j
n}q := max

k=1,...,d
(W j+qek

n ,W j−qek
n ).

Taking a limit E → ∞ and assuming W j
n ≥ 0 in (18), then we get

U j
n+1 = max({U j

n}p + W j
n+1, A) − max(2W j

n+1, A), (19a)

W j
n+1 = max({U j

n}p + 2{W j
n}q , B) − max({U j

n}p, B). (19b)

Let spatial dimension d = 1 and initial data of (19)U j
0 ∈ {0,−1},W j

0 ∈ {0, 1}. Tak-
ing some conditions to parameters A and B, the solution of (19) becomes to a cellular
automaton. There are five types of conditions for A and B as follows:

Type I Type II Type III Type IV Type V
A ≤ −1 0 ≤ A ≤ 1 A ≥ 2 A ≤ −1 A ≥ 0
B = 1 B = 1 B = 1 B ≥ 2 B ≥ 2

If we take the scaling X j
n = U j

n + 1, then X j
n ∈ {0, 1} and W j

n ∈ {0, 1}.
Type I: The rule for A ≤ −1, B = 1:

{X j
n}p, {W j

n }q 1, 1 1, 0 0, 1 0, 0

X j
n+1 0 1 0 0

W j
n+1 1 0 0 0

In this case, we can observe the patterns in Fig. 3. Values of W j
n are represented

as follows: 0 (white) and 1 (black). Different patterns arise due to differences in
diffusion parameters p and q. A surviving standing wave is observed in the case of
(p, q) = (1, 0). When time passes for a while, the state becomes uniform in the case
of (p, q) = (0, 1). Collision and extinction of traveling waves are observed in the
case of (p, q) = (1, 1) and (p, q) = (2, 1).
Type II: The rule for 0 ≤ A ≤ 1, B = 1:
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( , ) = ( , ) ( , ) = ( , )

( , ) = ( , ) ( , ) = ( , )

Fig. 3 Spatiotemporal patterns of Type I

( , ) = ( , ) ( , ) = ( , )

( , ) = ( , ) ( , ) = ( , )

Fig. 4 Spatiotemporal patterns of Type II

{X j
n}p, {W j

n }q 1, 1 1, 0 0, 1 0, 0

X j
n+1 0 1 1 1

W j
n+1 1 0 0 0

We can observe the spatiotemporal patterns of Type II in Fig. 4. Since this relation
X j
n+1 = 1 − W j

n+1 is held,W
j
n satisfies a single equation. Moreover, taking (p, q) =

(1, 1), the equation is same as Elementary cellular automaton (ECA) rule 90, which
is well known for fractal design:

W j−1
n W j

n W j+1
n 111 110 101 100 011 010 001 000

W j
n+1 0 1 0 1 1 0 1 0

taking (p, q) = (1, 0), the equation is same as ECA rule 76:
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W j−1
n W j

n W j+1
n 111 110 101 100 011 010 001 000

W j
n+1 0 1 0 0 1 1 0 0

and taking (p, q) = (0, 1), the equation is same as ECA rule 50:

W j−1
n W j

n W j+1
n 111 110 101 100 011 010 001 000

W j
n+1 0 0 1 1 0 0 1 0

Pattern changes dramatically with changes in diffusion parameters p and q. There
are several standing waves in the case of (p, q) = (1, 0). Vibration patterns are
observed in the case of (p, q) = (0, 1). Its time–space diagram formsmany triangular
“windows” of different sizes in the case of (p, q) = (1, 1). Self-replication occurs
in the case of (p, q) = (2, 1).
Type III: The rule for A ≥ 2, B = 1:

{X j
n}p, {W j

n }q 1, 1 1, 0 0, 1 0, 0

X j
n+1 1 1 1 1

W j
n+1 1 0 0 0

In this case, X j
n+1 = 1 so that W j

n satisfies W j
n+1 = {W j

n }q .
Type IV: The rule of A ≤ −1, B ≥ 2:

{X j
n}p, {W j

n }q 1, 1 1, 0 0, 1 0, 0

X j
n+1 1 1 0 0

W j
n+1 0 0 0 0

In this case, W j
n+1 = 0 so that X j

n satisfies X
j
n+1 = {X j

n}p.
Type V: The rule of A ≥ 0, B ≥ 2:

{X j
n}p, {W j

n }q 1, 1 1, 0 0, 1 0, 0

X j
n+1 1 1 1 1

W j
n+1 0 0 0 0

In this case, X j
n+1 = 1 and W j

n+1 = 0 so that X and W do not change in future.

If one take B ≥ L , U j
n ∈ {0,−1, . . . ,−L} and W j

n ∈ {0, 1, . . . , L}, the solution
of (19) becomes to a cellular automaton whose dependent variable can have L + 1
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values. The more L is large, the more the number of rule for evolution. In this case,
the spatial pattern is also classified five types as follows:

Type I Type II Type III Type IV Type V
A ≤ −1 0 ≤ A ≤ 2L − 1 A ≥ 2L A ≤ −1 A ≥ 0
B = L B = L B = L B ≥ L + 1 B ≥ L + 1

Now, let spatial dimension d = 2. We also take similar condition to the initial
condition of (19) in the case of d = 1: U j

0 ∈ {0,−1}, W j
0 ∈ {0, 1}. We can separate

spatial patterns to five types as similar to the case of d = 1. If A ≤ −1, B = 1, then
the rule of the evolution is as follows:

{X j
n}p, {W j

n}q 1, 1 1, 0 0, 1 0, 0

X j
n+1 0 1 0 0

W j
n+1 1 0 0 0

In this case, the pattern in Fig. 5 is observed. Values ofW j
n are represented as follows:

0 (white) and 1 (black). In Fig. 5, the solution of (19) with A = −1, B = 1 gives a
ring pattern. The ring grows over time.

If 0 ≤ A ≤ 1, B = 1, the rule of evolution is as follows:

= = = =

= = = =

Fig. 5 Ring pattern. W j
n with (p, q) = (1, 1)
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= = = =

= = = =

= = = =

Fig. 6 Self-replicating pattern. W j
n with (p, q) = (2, 1)

{X j
n}p, {W j

n}q 1, 1 1, 0 0, 1 0, 0

X j
n+1 0 1 1 1

W j
n+1 1 0 0 0

In Fig. 6, the solution of (19) with A = 0, B = 1 gives a self-replicating pattern.
2 × 2-size blocks increase with time. The self-replicating pattern of Fig. 6 is similar
to that of (13) reported in [23].

We can also construct cellular automaton based on hexagonal cells. When X does
not diffuse, only W diffuses, the rule of the cellular automaton is as follows:

X j,k
n , {W j,k

n } 1, 1 1, 0 0, 1 0, 0

X j,k
n+1 0 1 1 1

W j,k
n+1 1 0 0 0
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= = = =

= = = =

Fig. 7 Target pattern of the cellular automaton based on hexagonal cells

where {W j,k
n } = max(W j+1,k

n ,W j−1,k
n ,W j,k+1

n ,W j,k−1
n ,W j+1,k+1

n ,W j−1,k−1
n ). Tar-

get pattern that resembles those in the Belousov–Zhabotinsky reaction which is a
spatiotemporal chemical oscillator is observed in Fig. 7.

As shown in Fig. 8, a self-replicating pattern appears even in the following cellular
automaton on hexagonal cells:

{X j,k
n }2, {W j,k

n }1 1, 1 1, 0 0, 1 0, 0

X j,k
n+1 0 1 1 1

W j,k
n+1 1 0 0 0

where

{X j,k
n }2 = max(X j+2,k

n , X j−2,k
n , X j,k+2

n , X j,k−2
n , X j+2,k+2

n , X j−2,k−2
n ),

{W j,k
n }1 = max(W j+1,k

n ,W j−1,k
n ,W j,k+1

n ,W j,k−1
n ,W j+1,k+1

n ,W j−1,k−1
n ).

Gray–Scott model is a model based on a chemical reaction, but a reaction–
diffusion system can construct a mathematical model of various phenomena by a
difference in reaction term. So, this cellular automaton is also considered to be a
mathematical model of various phenomena by changing the function expressing the
reaction.
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= = = =

= = = =

= = = =

Fig. 8 Self-replicating pattern of the cellular automaton based on hexagonal cells

4 Concluding Remarks

In this article, we proposed and investigated the cellular automata that are analogs
for Allen–Cahn equation and Gray–Scott model, which are the reaction–diffusion
systems. The solutions of the cellular automata have patterns similar to the solution
of the differential equations. The author expects that characteristics of solutions for
cellular automata will provide guidance for clarifying characteristics of solutions
for differential equations. In 1985, Wolfram listed up 20 important problems in the
research of CAs [24]. The ninth problem asks “What is the correspondence between
cellular automata and continuous systems?” He pointed out the similarity between
time evolution patterns of CAs and behavior of continuous systems described by
differential equations and stated that discretization of time and spatial valuables
would correspond to an approximation in numerical calculation, but that themeaning
of a discretization of physical quantities is not clear. Concerning this problem, a
systematic method to construct CAs from reaction–diffusion systems (nonintegrable
systems) has been proposed in this paper.
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Geometry of Timelike Minimal Surfaces
and Null Curves

Shintaro Akamine

Abstract In this chapter, we investigate the behavior of the Gaussian curvature
of timelike minimal surfaces with or without singular points in the 3-dimensional
Lorentz–Minkowski space. For timelike minimal surfaces without singular points,
we prove that the sign of the Gaussian curvature, which corresponds to diagonal-
izability of the shape operator, of any timelike minimal surface is determined by
the degeneracy and the orientations of the two null curves that generate the surface.
Moreover, we also determine the behavior of the Gaussian curvature near cuspidal
edges, swallowtails, and cuspidal cross caps on timelike minimal surfaces. We show
that there are no umbilic points near cuspidal edges on a timelike minimal surface.
Near swallowtails, we show that the sign of the Gaussian curvature is negative, that
is, we can take always real principal curvatures near swallowtails. Near cuspidal
cross caps, we also show that the sign of the Gaussian curvature is positive, that is,
we can take only complex principal curvatures near cuspidal cross caps.

Keywords Lorentz–Minkowski space · Timelike minimal surface · Gaussian
curvature · Singularity

1 Introduction

The shape of an equilibrium liquid crystal is obtained by minimizing an anisotropic
energy. As pointed out by Chandrasekhar [3], when the anisotropy is large, the equi-
librium shape will be like a tactoid (see Fig. 2b in [3]) and it is known that such
shapes were observed in plant virus preparations in Biology. On the other hand,
Honda, Koiso, and Tanaka [7] recently proved that surfaces with zero mean curva-
ture in the 3-dimensional Lorentz-Minkowski space R3

1 arise as stationary surfaces
for an anisotropic energy, and some timelike surfaces also have shapes of tactoids
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(see Fig. 3 in [7]). These timelike minimal surfaces are not energy minimizers for
the anisotropic energy introduced in [7]. However, since these surfaces are closed
and convex, there exist anisotropic energy functionals for which they are energy
minimizers among closed surfaces enclosing the same volume (cf. [17]). Hence, the
anisotropic energy for which a tactoid is a stationary surface is not unique. Therefore,
we can determine neither the anisotropic energy by looking at shapes of tactoids (or
plant virus preparations) nor all shapes of stationary surfaces for these e nergies. In
this chapter, we study the behavior of the Gaussian curvature of timelike minimal
surfaces, which represents geometric shapes of stationary surfaces for an anisotropic
energy used in [7].

A timelike (resp. spacelike) surface inR3
1 is a surfacewhose first fundamental form

is a Lorentzian (resp. Riemannian) metric. One of the most important differences
between spacelike surfaces in R

3
1 (or surfaces in 3-dimensional Euclidean space

E
3) and timelike surfaces in R

3
1 is the diagonalizability of the shape operator, that

is, the shape operator of a timelike surface is not always diagonalizable over real
number field R. The characteristic equation of the shape operator of any surface in
E
3, spacelike or timelike surface in R3

1 can be written as λ2 − 2Hλ + K = 0, where
H and K are the mean curvature and Gaussian curvature of the surface. Hence,
its discriminant can be written H 2 − K . In this chapter, we discuss surfaces whose
mean curvature H vanishes identically. A surface whose mean curvature vanishes
identically is called a zero mean curvature surface (ZMC surface for short).

A ZMC surface in E
3 is called a minimal surface, which is a critical point of the

area functional on the space of all surfaces having the same boundary. A minimal
surface inE3 is amathematicalmodel of a soap film.A spacelike ZMC surface, which
is called a maximal surface is not only a critical point but also a local maximizer of
the area functional. Since shape operators of these surfaces are diagonalizable over
R, their Gaussian curvatures are always non-positive.

On the other hand, a timelike ZMC surface, which is called a timelike minimal sur-
face neither maximize nor minimize the area functional. Timelike minimal surfaces
have been also studied from the viewpoint of the string theory, see, for example, [2,
8, 11] and their references. As mentioned above, in contrast to minimal surfaces in
E
3 and maximal surfaces in R

3
1, the shape operator of a timelike minimal surface is

not always diagonalizable. The diagonalizability of the shape operator S of a time-
like minimal surface is determined by the sign of the Gaussian curvature. The shape
operator S is diagonalizable over R on points with negative Gaussian curvature, S
is diagonalizable over the complex number field C on points with positive Gaus-
sian curvature, and flat points consist of umbilic points and quasi-umbilic points. In
this paper we investigate how to determine the sign of the Gaussian curvature of a
timelike minimal surface and determine the behavior of the Gaussian curvature near
singular points of a timelike minimal surface.
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2 Preliminaries

In this section, we give some notions and known results about timelike minimal
surfaces and null curves. We refer [12, 19] for a detailed description of timelike sur-
faces. The 3-dimensional Lorentz–Minkowski space R3

1 is the 3-dimensional vector
space R3 with the Lorentzian metric

〈 , 〉 = −(dx0)2 + (dx1)2 + (dx2)2

where (x0, x1, x2) are the canonical coordinates of R3.
Let Σ be a 2-dimensional manifold. An immersion f : Σ −→ R

3
1 is called time-

like (resp. spacelike) if its first fundamental form I = f ∗〈 , 〉 is a Lorentzian (resp.
Riemannian) metric on Σ . For a timelike immersion f and its unit normal vector
field ν, the shape operator S and the second fundamental form II are defined as
follows:

d f (S(X)) = −∇Xν, II(X,Y ) = 〈∇d f (X)d f (Y ) − d f (∇XY ), ν〉,

where X and Y are vector fields on Σ , ∇, and ∇ are the Levi–Civita connections on
Σ and R

3
1, respectively. The mean curvature H and the Gaussian curvature K are

defined as H = tr II/2 and K = det S, respectively. The eigenvalues of S are called
the principal curvatures of f . For any surface in E

3 or spacelike surface in R
3
1, the

shape operator S is always diagonalizable over R and we can take real principal
curvatures κ1 and κ2 of such surface. Therefore, the discriminant of S satisfies

H 2 − K =
(

κ1 + κ2

2

)2

− κ1κ2 =
(

κ1 − κ2

2

)2

≥ 0.

In particular, for minimal surfaces in E
3 and maximal surfaces in R

3
1, the Gaussian

curvature satisfies K ≤ 0. We remark that this Gaussian curvature for a spacelike
surface is extrinsic, and the intrinsic Gaussian curvature is always nonnegative (see
[12]). A point p is called a umbilic point if the second fundamental form II is a
multiple of the first fundamental form I at p. Flat points of a minimal surface in E

3

or amaximal surface inR3
1 consist of umbilic points. On the other hand, for a timelike

minimal surface, the discriminant of the shape operator H 2 − K can be taken any
real value, that is,

(i) S is diagonalizable over R, in this case H 2 − K ≥ 0 and the equality holds on
umbilic points,

(ii) S is diagonalizable over C\R, in this case H 2 − K < 0,
(iii) S is non-diagonalizable over C, in this case H 2 − K = 0. A point satisfying

this condition is called quasi-umbilic point ([4]).

In particular, flat points of a timelike minimal surface consist of umbilic points and
quasi-umbilic points.
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It is known that at each point of a timelike surface f : Σ −→ R
3
1, there exists a

local coordinate system (u, v) on which the first fundamental form I can be written
as I = 2Fdudv with a nonzero function F . This local coordinate system is called
a null coordinate system. A regular curve γ : I ⊂ R −→ R

3
1 satisfying 〈γ ′, γ ′〉 = 0

is called a null curve. A null coordinate system is a coordinate system on which the
images of coordinate curves are null curves.

On a null coordinate system (u, v), the mean curvature H of a timelike surface
f and its unit normal vector field ν satisfy Hν = 2

F
∂2 f
∂u∂v . Therefore, we obtain the

well-known representation formula by McNertney [13]:

Fact 1 ([13]) Let ϕ(u) and ψ(v) be null curves in R3
1 such that ϕ

′(u) and ψ ′(v) are
linearly independent for all u and v. Then

f (u, v) = ϕ(u) + ψ(v)

2
(1)

is a timelikeminimal surface. Conversely any timelikeminimal surface can bewritten
as (1) for some two null curves.

In this chapter, we investigate the behavior of the Gaussian curvature of a timelike
minimal surface by looking at two null curves which generate the surface.

Example 1 Let us take the null curve γ (t) = (t, cos t, sin t) and ϕ(u) = γ (u),
ψ(v) = γ (v). The timelike minimal surfaces

f±(u, v) = ϕ(u) ± ψ(v)

2

are called the timelike elliptic helicoid and timelike elliptic catenoid, respectively
(see, for example, [9]). These surfaces have singular points, that is, points on which
the maps f± are not immersed (see Fig. 1). The elliptic helicoid f+ is an inner part
of the usual helicoid in E

3.

In this chapter, we consider the following class of timelike minimal surfaces
with singular points of rank one, which are called minfaces introduced in [16] (see
also [1]):

Fig. 1 The elliptic helicoid
and catenoid
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Definition 1 A smooth map f : Σ −→ R
3
1 is called a minface if at each point of Σ

there exists a local coordinate system (u, v) in a domain U , functions g1 = g1(u),
g2 = g2(v), and 1-forms ω1 = ω̂1(u)du, ω2 = ω̂2(v)dv with g1(u)g2(v) �= 1 on an
open dense set of U and ω̂1 �= 0, ω̂2 �= 0 at each point on U such that f can be
decomposed into two null curves

f (u, v) = 1

2

∫ u

u0

(−1 − (g1)
2, 1 − (g1)

2, 2g1
)
ω1

+ 1

2

∫ v

v0

(
1 + (g2)

2, 1 − (g2)
2,−2g2

)
ω2 + f (u0, v0). (2)

We denote the above two null curves as ϕ = ϕ(u) and ψ = ψ(v). The quadruple
(g1, g2, ω1, ω2) is called the real Weierstrass data of f .

A singular point of a minface f is a point of Σ on which f is not immersed, and
the set of singular points on U of a minface f corresponds to the set {(u, v) ∈ U |
g1(u)g2(v) = 1}.
Remark 1 In [16], Takahashi originally gave the notion of minfaces by using the
notion of para-Riemann surfaces. To study the local behavior of the Gaussian curva-
ture near singular points of timelike minimal surfaces, we adopt the above definition.
For a more detailed exposition on minfaces, see Appendix A in [1].

We investigate the behavior of the Gaussian curvature of timelike minimal surfaces
and minfaces from a viewpoint of null curves. In the end of this section, we give
notions of non-degeneracy and orientations of null curves.

Definition 2 (cf. [5, 15]) A null curve γ : I → R
3
1 is called non-degenerate (resp.

degenerate) at t ∈ I if γ ′ and γ ′′ are linearly independent (resp. dependent) at t ∈ I .
A null curve γ : I → R

3
1 is called a non-degenerate null curve if γ is non-degenerate

at every point.

As pointed out in [15], a null curve is non-degenerate at t ∈ I if and only if
det[γ ′(t) γ ′′(t) γ ′′′(t)] �= 0. Hence, we can define the notion of the orientation for
non-degenerate null curves as follows:

Definition 3 For a non-degenerate null curve γ , we define the orientation of γ by
the sign of the det[γ ′ γ ′′ γ ′′′].
A non-degenerate null curve γ has positive (resp. negative) orientation if γ ′ moves
anticlockwise (resp. clockwise) on the lightcone

Q
2 := {

v = (v0, v1, v2) ∈ R
3
1 | 〈v, v〉 = 0, v0 �= 0

}

as the time coordinate x0 increases.
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3 The Behavior of the Gaussian Curvature Near Regular
Points

In Sect. 2 we saw that flat points of a timelike minimal surface consist of umbilic
points and quasi-umbilic points. First, we give a characterization of these flat points
on the regular part of a minface.

Proposition 1 Let p ∈ Σ be a regular point of a minface f and ϕ and ψ be two
generating null curves of f . Then the following statements hold.

(1) p is an umbilic point if and only if both ϕ and ψ are degenerate at p.
(2) p is a quasi-umbilic point if and only if only one of ϕ or ψ is degenerate at p.

Therefore, we conclude that flat points can be characterized by the degeneracy of
two generating null curves.

Next, we investigate how to determine the sign of the Gaussian curvature of the
regular part of a minface f in the Eq. (2). By Proposition 1, we conclude that the
two generating null curves ϕ and ψ in the Eq. (2) are non-degenerate near non-flat
points, and hence we can take a null coordinate system (u, v) such that a minface f
can be written as

f (u, v) = 1

2

∫ u

u0

(−1 − (g1)
2, 1 − (g1)

2, 2g1
) −εϕ

2g′
1

du

+ 1

2

∫ v

v0

(
1 + (g2)

2, 1 − (g2)
2,−2g2

) −εψ

2g′
2

dv + f (u0, v0), (3)

where εϕ = ±1 and εψ = ±1, which represent the orientations of ϕ and ψ , respec-
tively. Let us consider the local coordinate system (x, y) = ( u−v

2 , u+v
2 ) associated

to the null coordinate system (u, v). Then the first fundamental form I, the second
fundamental form II, and the Gaussian curvature K on (x, y) can be computed as

I = (1 − g1g2)2

4g′
1g

′
2

(−dx2 + dy2), II = 1

2
(ε1 − ε2) + (ε1 + ε2)dxdy, K = ε1ε2

E2
.

Therefore we have the following characterization of the sign of the Gaussian curva-
ture of a minface:

Theorem 1 Away from flat points of each minface f : Σ → R
3
1, the sign of the

Gaussian curvature K is positive (resp. negative) if and only if the two generating
non-degenerate null curves ϕ and ψ have the same orientation (resp. different ori-
entations). In this case, the local coordinate system (x, y) = ( u−v

2 , u+v
2 ) associated

to the null coordinate system (u, v) in (3) is a conformal asymptotic (resp. conformal
curvature line) coordinate system.

Remark 2 Milnor [14] gave a similar formulawhich controls the sign of theGaussian
curvature by using Euclidean arclength parameters of null curves. In addition to
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another proof of Milnor’s result, we also give a construction method of conformal
asymptotic and conformal curvature line coordinate systems in Theorem 1.

Example 2 The generating null curves of the elliptic helicoid f+ in Example 1 have
the same orientation. By Theorem 1, the sign of the Gaussian curvature of the surface
is positive and hence we can take only complex principal curvatures on this surface.
On the other hand, the generating null curves of the elliptic catenoid f− have different
orientations. Therefore, the sign of the Gaussian curvature is negative and hence we
can take real principal curvatures on this surface.

4 The Behavior of the Gaussian Curvature Near Singular
Points

In this section, we investigate the behavior of the Gaussian curvature near singular
points on minfaces.

Let Ui be domains of R2, pi ∈ Ui (i = 1, 2). Two smooth maps f1 : U1 −→ R
3

and f2 : U2 −→ R
3 areA -equivalent at the points p1 ∈ U1 and p2 ∈ U2 if there exist

local diffeomorphisms Φ of R2 with Φ(p1) = p2 and Ψ of R3 with Ψ ( f1(p1)) =
f2(p2) such that f2 = Ψ ◦ f1 ◦ Φ−1. A singular point of a smooth map f : U −→
R

3 is a point on which f is not immersed, and a singular point is called a cuspidal
edge, swallowtail, or cuspidal cross cap if f isA -equivalent to the following maps
fC , fS , or fCCR at the origin, respectively (see Fig. 2):

fC (u, v) = (u2, u3, v), fS(u, v) = (3u4 + u2v, 4u3 + 2uv, v), fCCR(u, v) = (u, v2, uv3).

For the spacelike case, Umehara and Yamada [18] introduced the notion of max-
faces as a class of maximal surfaces with singular points of rank one, and Fuji-
mori, Saji, Umehara, and Yamada proved in [6] that the singular points of maxfaces
in R

3
1 generically consist of cuspidal edges, swallowtails, and cuspidal cross caps.

Similarly, these singular points frequently appear on minfaces, and Takahashi [16]
gave useful criteria for these singular points by using the real Weierstrass data in
Definition 1 as follows:

Fig. 2 A cuspidal edge, swallowtail, cuspidal cross cap (where red curves represents the image of
singular points)



44 S. Akamine

Fact 2 ([16]) Let f : Σ −→ R
3
1 be a minface with the real Weierstrass data

(g1, g2, ω1 = ω̂1du, ω2 = ω̂2dv) and p ∈ Σ a singular point of f . Then

(i) p is a cuspidal edge if and only if

g′
1

g21ω̂1
− g′

2

g22ω̂2
�= 0 and

g′
1

g21ω̂1
+ g′

2

g22ω̂2
�= 0 at p,

(ii) p is a swallowtail if and only if

g′
1

g21 ω̂1
− g′

2

g22 ω̂2
�= 0,

g′
1

g21 ω̂1
+ g′

2

g22 ω̂2
= 0, and

(
g′
1

g21 ω̂1

)′
g′
2
g2

−
(

g′
2

g22 ω̂2

)′
g′
1
g1

�= 0 at p,

(iii) p is a cuspidal cross cap if and only if

g′
1

g21 ω̂1
− g′

2

g22 ω̂2
= 0,

g′
1

g21 ω̂1
+ g′

2

g22 ω̂2
�= 0, and

(
g′
1

g21 ω̂1

)′
g′
2
g2

+
(

g′
2

g22 ω̂2

)′
g′
1
g1

�= 0 at p.

By Proposition 1, Theorem 1, and Fact 2, we can prove the following theorem:

Theorem 2 Let f : Σ −→ R
3
1 be a minface and p ∈ Σ a singular point of f . If p

is a

(i) cuspidal edge, then there are no umbilic points near p,
(ii) swallowtail, then there are umbilic and quasi-umbilic points near p. Moreover,

the sign of the Gaussian curvature K is negative near p and lim
q→p

K (q) = −∞,

(iii) cuspidal cross cap, then there are no umbilic and quasi-umbilic points near
p. Moreover, the sign of the Gaussian curvature K is positive near p and
lim
q→p

K (q) = ∞.

By Theorem 2, we can always take real (resp. complex) principal curvatures
near swallowtails (resp. cuspidal cross caps) on a minface. Near cuspidal edges, we
cannot determine the sign of the Gaussian curvature in general. For example, we
can construct minfaces with positive or negative Gaussian curvature along cuspidal
edges.

Example 3 (Enneper surfaces) The minface constructed from the following real
Weierstrass data is called the timelike Enneper surface (of isothermic type) or an
analogue of Enneper’s surface [8, 10, 16]:

g1(u) = u, g2(v) = −v, ω1(u) = 1

2
du, andω2(v) = 1

2
dv.

The generating null curves ϕ and ψ are

ϕ(u) = 1

2
(−u − u3

3
, u − u3

3
, u2), ψ(v) = 1

2
(v + v3

3
, v − v3

3
, v2).
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Fig. 3 The Enneper’s
minimal surface in E3,
maximal Enneper surface in
�R

3
1 and timelike Enneper

surface

Moreover, these two null curves ϕ and ψ are non-degenerate and have negative and
positive orientations, respectively. By Theorem 1, the sign of the Gaussian curva-
ture is negative. Unlike the Enneper’s minimal surface in E

3, maximal and timelike
Enneper surfaces in R

3
1 have singular points. It is known that the maximal Enneper

surface in R
3
1 has cuspidal edges, swallowtails, and cuspidal cross caps ([6, 18]).

On the other hand, the timelike Enneper surface in R
3
1 has cuspidal edges and two

swallowtails (see Fig. 3). Since the sign of the Gaussian curvature is negative, the
surface cannot have cuspidal cross caps by Theorem 2.

Remark 3 In Theorem2,we investigated the behavior of theGaussian curvature near
cuspidal edges, swallowtails, and cuspidal cross caps. Recently in [1], the author has
generalized Theorem 2 for any non-degenerate singular point on minfaces.
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Accounting for Modelling Errors
in Parameter Estimation Problems:
The Bayesian Approximation Error
Approach

Ruanui Nicholson, Anton Gulley, Jari Kaipio and Jennifer Eccles

Abstract Many parameter estimation problems are highly sensitive to errors. The
Bayesian framework provides a methodology for incorporating these errors into our
inversion. However, how to characterise the errors in a way that can be efficiently
utilised remains a problem inmany inversions. Recently the Bayesian approximation
error method has been utilised as a systematic way of characterising errors that
arise from inaccuracies in the model. We describe the Bayesian approximation error
method and demonstrate its use in a homogenisation example. In this example, it is
shown that the coarse scale homogenised parameter can be estimated by accounting
for the significant modelling error using the Bayesian approximation error method.
This modelling error arises from inverting using a model that does not account for
the fine scale and has a coarse finite element discretisation.

Keywords Bayesian inversion · Modelling errors · Homogenisation

1 Introduction

Modelling errors arise in nearly all parameter estimation problems. This is because
ourmodels are unable to capture the exact real-world physics, or we have deliberately
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used surrogate and downscaled models for computational efficiency. The Bayesian
approximation error (BAE) method is a technique that has been used within the
Bayesian framework to account for various modelling errors. Some recent examples
of modelling errors accounted for with the BAE method include: model reduction in
full wave ultrasound tomography [2], uncertain boundaries in electrical impedance
tomography [3], and approximating the poroelastic wave equation with the elastic
wave equation in aquifer parameter estimation [4].

We present the theory of the BAEmethod and explain how it can be implemented
using an example from homogenisation of the Poisson equation.

2 Theory

Let x be some parameter(s) we wish to estimate and let y be measurements which
depend on x . The measurements y also include errors, e. We also have the inexact
but computationally feasible model A(x) that we wish to use to obtain our estimates
such that we can naively write

y ≈ A(x) + e(x), (1)

where we have assumed an additive error model. We also assume that x comes from
a prior probability density πx (x) and e also has a probability density πe(e|x) where
‘|x’ implies that this may depend on x . A standard Bayesian approach for inverse
problems involves using Bayes · theorem and integrating over all e [1]. This then
leaves us with the posterior probability density which is the probability density of x
given the data y,

π(x |y) ∝ πe(y − A(x)|x)πx (x). (2)

The derivation of Eq. (2) does not take into account the approximate nature of
Eq. (1). In many cases the posterior probability density of Eq. (2) will suggest that
the true values of x are improbable which is not a good result. This can usually be
attributed to the fact that such problems are often ill-posed (in the sense ofHadamard).
This means that the estimates of x are highly sensitive to errors, such as the small
inaccuracy in Eq. (1), which may have resulted from the inaccuracy of the model
A(x).

To improve on these results using theBayesian approximation errormethod define
an accurate model, A∗. The model A∗ may also depend on nuisance parameters, x∗.
We can now more accurately rewrite Eq. (1) as follows:
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y = A∗(x |x∗) + e(x),

= A∗(x |x∗) + e(x) + A(x) − A(x),

= A(x) + e(x) + [A∗(x |x∗) − A(x)],
= A(x) + e(x) + ε(x), (3)

where ε(x) = [A∗(x |x∗) − A(x)] is the BAE additive error term. In order for this
to be useful, we need to precompute an estimate of a probability density for ε. In
most cases, it is unfeasible to have an exact model A∗(x |x∗). However, in practice,
good results can be achieved by using a third model, Â(x |x∗). The model Â(x |x∗)
does not need to be a perfect model, it just needs to be sufficiently more accurate
than A such that the statistics of ε are approximately correct [2]. While Â(x |x∗) is
more accurate than A(x), A(x) is still the model that we want to use in the inversion.
This may be because Â(x |x∗) is too computationally intensive or there is no suitable
way of using it in a minimisation problem. The model Â(x |x∗) is only used for
offline forward simulations to pre-compute the statistics of ε(x). These statistics are
normally estimated by:

1. Randomly generating an ensemble of {x (i), x∗(i)} from the prior distribution.
2. Computing an ensemble of ε(i) = [ Â(x (i), x∗(i)) − A(x (i))].
3. Using the statistics of ε(i), x (i) a probability density πε,x (typically approximated

as Gaussian) can be formed.
4. Combining πε,x with πe to form an estimate of πe+ε(e + ε|x).
The posterior probability distribution Eq. (2) can then be rewritten as follows:

π(x |y) ∝ πe+ε(y − A(x)|x)πx (x). (4)

The BAE method, therefore, provides a way of performing inversions with an
inaccurate model A(x). This method has been shown to significantly improve the
feasibility of the inversion estimates in many situations [2–4]. The additional compu-
tational costs of the method are due to offline precomputations of A∗(x |x∗) − A(x)
in order to estimate πe+ε , however this increase in computational cost is likely to be
very small compared to using the more accurate model A∗ in the inversions.

3 Homogenisation Example

TheBAEhas successfully beenused in homogenisation [5]. This can be demonstrated
by considering the 1D Poisson equation

d

ds

(
κ
du

ds

)
= −1, with u(0) = u(1) = 0, (5)
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Fig. 1 Posterior probability densities of κh . The posterior probability densities are approximated
to be multivariate normal distributions. The ‘Estimate of κh’ is the approximate posterior mean and
the ‘Credibility intervals’ show the ±1 and ±2 standard deviation regions

where κ = κh + κm . The first component, κh , is a slowly varying, non-constant,
stochastic quantity while κm is a rapidly oscillating quantity made up of a spectrum
of frequencies. For this homogenisation example, we used the following:

• Synthetic data is generated using u = A∗(κh + κm) + e, where 5,000 linear finite
elements are used to compute A∗. We select 500 evenly spaced measurement
points. Randomly generated uncorrelated Gaussian noise, e, is added to the mea-
surements with standard deviation of 0.5% of the root mean square of the signal.

• The approximate model A(κh) is computed using 500 linear finite elements.
• The more accurate model Â(κh + κm) is computed using 2,000 linear finite ele-
ments.

• Correlated Gaussian smoothness priors are used to ensure κh and κm are restricted
to the appropriate bandwidth.

Estimates for the posterior probability densities of kh are computed with the BAE
(Eq.4) and without the BAE (Eq.2). These are shown in Fig. 1. It can be seen from
Fig. 1 that, in this case, using the BAE does two things: first, it moves the estimates
for kh closer to the true values, and second it significantly increases the (approximate)
credibility intervals so that the true kh is within the ±2 standard deviation credibility
intervals.
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Reducing Sludge Formation in the Activated
Sludge Process

M. I. Nelson

Abstract The activated sludge process was discovered by Ardern and Lockett in
the years 1913– 1914. In the slightly more than 100 years since its discovery, it has
become the most widely used process for the biological treatment of both domestic
and industrial wastewaters in developed and developing countries. At its most basic,
the process consists of an aerated reactor basin connected to a settling unit. The efflu-
ent stream leaving the reactor enters the settling unit where particulate matter settles
under the action of gravity to the bottom of the unit. From here, it can be recycled
into the reactor unit. The recycling of particulate matter is the key to improving the
efficiency of the process, as enmeshed within it are micro-organisms. This particu-
late matter is known as sludge and consequently sludge is good. However, too much
sludge is bad; disposal of excess sludge can account for between 50 and 60% of
the typical operating costs of the activated sludge process.This chapter provides a
historical overview of the activated sludge process and two methods for reducing the
amount of sludge: disintegration through the use of a sludge disintegration unit and
a biological approach based upon the use of predators that graze upon the sludge.

Keywords Activated sludge process · Predation · Sludge reduction

1 The History of the Activated Sludge Process

In the first half of the nineteenth century, sewage systems emerged as the primary
mechanism for the removal of sewage in cities. These replaced older processes which
at one extreme simply involved the emptying of chamber pots into the street. How-
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ever, sewage systems do not treat wastewater; they merely move the waste from
one location to another. By the mid-1880s, the role played by untreated wastew-
ater in spreading waterborne diseases had become clear. The need to produce a
clean, healthy, water supply was exacerbated by both the large-scale production of
wastewaters and increasing population densities, both by-products of the burgeon-
ing industrial world. These problems were particularly acute in England, leading to a
Royal Commission on River Pollution being established in 1865 and re-established
in 1874. The latter lead to the Rivers Pollution Prevention Act (1876).

Some progress treating wastewaters containing pollutants in the form of waste
organic matter was made in the second half of the nineteenth century using physic-
ochemical processes and anaerobic methods. Starting in the 1880s, attempts were
made at cleaning wastewater using the biological oxidation of the pollutants. This
involves bringing together a wastewater containing pollutants with aerobic microor-
ganisms and oxygen. Biological oxidation has the potential to reduce the organic
pollutants to a mixture of carbon dioxide, nitrogen, water, and other compounds.
These methods had little success because biological oxidation turned out to be a
very slow process.

In the years 1913 and 1914, Edward Ardern and William T. Lockett, working at
the Davyhulme wastewater treatment plant (Manchester, UK), carried out a series of
lab-scale experiments. During these years, they discovered the key step to making
aerobic oxidation work. It was already known that aerobic oxidation produced a
suspension, or “sludge”. In earlier work, this sediment had been removed from the
reactor vessel. Ardern and Lockett discovered that if the sediment was retained then
the process became significantly more efficient. By retaining the sediment over a
series of experiments, they were able to reduce the time for the “full oxidation” of
sewage from a period of weeks to one of less than 24 h. Arden and Lockett named the
sediment “activated sludge”, as it evidently contained an active agent that improved
the process, and coined the phrase the “activated sludge process".

At its heart, the activated sludge process essentially entails the use of two units:
an aerated biological reactor and a settling unit (or clarifier). In the former, the
pollutants are degraded by microorganisms (the active agent that puts the “activated”
into “activated sludge”). However, the key to the success of the activated sludge
process is the use of a settling unit.

Although not directly realized at the time, aerobic microorganisms flocculate to
form settleable solids. These solids are removed from the effluent stream by sedi-
mentation and then returned to the aeration process in a more concentrated culture. It
is this recycling of a concentrated activated sludge from the bottom of the clarifier to
the biological reactor that drives down the time for “full oxidation” of the wastewater.

Ardern and Lockett presented their findings at a meeting of the Society of Chem-
ical Industry held on the 3rd of April 1914. Following dissemination of their method
[1–3] the activated sludge process was rapidly adopted by the wastewater treat-
ment industry. By 1916, during the chaos of the First World War, the first full-scale
continuous-flow activated sludge process plant was being used to treat wastewater
at Worcester. (Australia’s first activated sludge plant, the Glenelg Wastewater Treat-
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ment Plant, was fully operational by December 1932 [10]. It was extended in 1941
to include a winery waste treatment stream).

Just over 100 years after their landmark experiments, the activated sludge process
is now the most widely used process for the biological treatment of both domestic
and industrial wastewaters [26]. For example, of the 375 wastewater treatment plants
running in the Netherlands in 2007, 366 (97.6%) were activated sludge systems [22].
Wastewater treatment plants based on the activated sludge process are in widespread
use in both developed and developing countries. One of the strengths of this process
is its versatility, being used to treat wastewaters from both the domestic (sewage)
and industrial sectors. In addition to providing a clean and safe water resource as a
consequence of its high efficiency in removing organic pollutants, the process has
the attraction of being relatively low in operational costs.

2 Too Much of Anything Is Bad

The degradation of organic pollutants by microorganisms produces new sludge.
This fact is central to the success of the activated sludge process—sludge is a self-
sustaining resource. Sludge that is produced over the requirements to run the process
is known as “excess” sludge. Unfortunately, the activated sludge process is too suc-
cessful at producing new sludge. The costs associated with the disposal of “excess”
sludge can run to 50–60% of the total operating costs of a wastewater treatment plant
[4, 5, 16]. Disposal of excess sludge imposes a significant burden on operators as it
can be more costly than the wastewater treatment process itself.

In addition to containing beneficial biomass, sludge is a complex mixture of bac-
teria, heavy metals, inorganic matter (such as phosphorus and nitrogen compounds),
organic pollutants, pathogens, and water [21]. The removal of heavy metals from
the influent stream into the sludge is often regarded as a side benefit of the activated
sludge process [11]. However, as a result of the concentration of heavy metals, and
other toxic materials, the disposal of sludge has become increasingly governed by
environmental regulations.

The first step in conventional methods for the disposal of excess sludge is dewa-
tering, this converts a water disposal problem to a solid waste disposal problem. In
the past, excess dried sludge was commonly disposed of by methods such as inciner-
ation, landfilling, dumping at sea, and use as a fertilizer in agriculture. However, any
toxic elements in the influent stream of the wastewater treatment plant may become
concentrated in the dried sludge. Due to increasing environmental concerns, related
to the presence of these toxic elements, older disposal methods are being increasingly
regulated. More demanding environmental monitoring inevitably leads to increased
operating costs. A second factor impacting operating costs is the decreasing avail-
ability of land in urban areas, often associated with increasing population densities.
The economic costs of landfilling have, therefore, increased due to a combination of
these and other factors [26].



56 M. I. Nelson

Incineration reduces the volume of solid sludge by upto 95%. Thus this process
reduces, but does not eliminate, the demand for landfill sites. Unfortunately, the solid
residual from incineration, an ash, contains an increased concentration of noncom-
bustible materials, such as heavy metals and many other toxic compounds. Although
the reuse of sludge in the agriculture sector is appealing, because it adds an economic
premium to a waste product, the transport costs associated with moving the sludge
to the end users is often appreciable.

The combination of the increasing restrictions placed upon the discharge of excess
sludge and the associated rising treatment costs has created an impetus to develop
methods that reduce the volume and mass of excess sludge. It should be noted that in
addition to reducing operating costs sludge reduction has other benefits. For example,
sludge reduction can prevent filter beds from being clogged with suspended solids.
This maintains their treatment efficiency, consequently this provides a secondary
mechanism to reduce operating costs.

In Sects. 2.1 and 2.2, twomechanisms for sludge reduction are discussed. The first
of these, Sect. 2.1, is to increase sludge biodegradability by disintegrating it. These
techniques, particularly chemical treatments and ozonation, have met with some
success. However, the costs associated with running these processes have prevented
their wide-spread use. The second of these, Sect. 2.2, is to use predators which grow
through consumption of the sludge. This is potentially very attractive, since once the
predators have been released into the reactor there are no “running” costs.

2.1 Sludge Reduction Through Sludge Disintegration

The ideal solution to eliminate the problems of the posttreatment disposal of excess
sludge is to prevent the excess sludge from being formed in the first place. As suffi-
cient sludgemust be produced tomaintain the viability of the activated sludge process
itself, the aim is to minimize the “excess” sludge. Sludge production can be reduced
by a variety of proven techniques including biological, chemical, mechanical, and
thermal processes [26]. In general, these methods work by breaking open the cell
walls of the bacteria, converting the sludge into a mixture of soluble substrate and
particulates.

Amongst a wide variety of techniques, chemical treatments and the use of ozone
have become themost widely used in commercial activated sludge plants [17]. Ozone
treatments involve moving sludge from the main bioreactor into a separate unit,
known as the “sludge disintegrator”, where ozone ruptures the cell walls. The treated
mixture is then returned to the main bioreactor. Ozonation has been established as
a technique that reduces the amount of excess sludge. However, the initial high
capital costs and associated ongoing operational costs has restricted its use to niche
commercial applications.
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2.2 Sludge Reduction Through Predation

A promising alternative to chemical, mechanical, and thermal treatments is sludge
reduction through predation by higher organisms, such as protozoa, metazoan, or
fungi, upon sludgebacteria [7, 26]. This approach is attractive because it requires little
energy and is therefore lowcost. Furthermore, unlike chemical treatments thismethod
does not introduce secondary pollutants into the wastewater treatment system [21].

Why does predation reduce sludge? The activated sludge process can be consid-
ered to be a food-chain, in which the biomass extracts mass and energy from the sub-
strate. The introduction of a predator introduces a new layer into the food chain: mass
and energy are now transferred from themicroorganisms to the predator. At each step
in the food chain not all of the available energy andmaterial are transferred to the next
level: some energy, a significant proportion of the energy, is used for maintenance
processes, respiration, and reproduction. Thus predation on microorganisms may
lead to a lower total biomass, i.e., sludge reduction.

Somewastewater treatment plantsmaynaturally contain suitable predators. Preda-
tors such as metazoan organisms, chiefly Annelida but also including Nematoda and
Rotifera, have been found to be present in wastewater treatment plants. It has been
suggested that they can enter wastewater treatment plants from surrounding water
bodies, or that they can be transported into aeration tanks by birds [15]. Be this as it
may, research has focussed on the introduction of ‘foreign’ predators as a mechanism
to control sludge production.

Predation has been shown to be an effective technique in lab-scale experiments [7,
9, 12, 13, 18, 24, 26, 28, 29] andpilot-scale systems [23, 30]. Themain thrust in these
papers is to quantify the effect that predators have upon process characteristics, in
particular to determine the sludge reduction capacity of predators. Although a variety
of predators could be used, much attention has focused on the use of worms. Worm
growth is clearly a prerequisite for sludge reduction through predation. Relatively
little is known about the growth and development of worms during sludge predation.
However, it has been shown that the wrong choice of aeration rate, temperature, and
predator (worm) density can adversely effect worm growth and consequently sludge
reduction [29].

A variety of continuous flow reactor configurations have been used in these inves-
tigations. These include: a hydrolyzation food chain reactor [30], a single reactor
[12], a single reactor connected to a recycle sludge reactor [9], a membrane biore-
actor without biomass discharge [8], a two-stage reactor [7], and a six-stage reactor
consisting of alternating aerobic and anaerobic compartments [18].

Despite promising results obtained at lab scale, the role that predictors play in
full-scalewastewater treatment plants has rarely been investigated—perhaps because
such experiments typically require long-term study carried out over a period of years.
The feasibility of using worms to reduce sludge reduction in wastewater treatment
plants has been reviewed by Ratsak and Verkuijlen [20]. Experimental investigations
at the treatment plant level include [6, 14].
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There are two main barriers to the adoption of predation as a cost-effective mech-
anism to reduce sludge formation. The first of these is the uncontrollable growth of
predators [6]. Predator density in full-scale plants can often reach very high den-
sities. Associated with this is a well-known phenomenon in wastewater treatment
plants, the so-called “worm blooms”, in which predator population densities display
peaks followed by a sudden disappearance of the population [19]. The development
of methods to control worm proliferation is a challenging problem that needs to be
overcome [25]. The second problem is that the use of predators increases the amount
of phosphorus, nitrogen, and soluble chemical oxygen demand in both the effluent
and waste streams from a treatment plant [26]. This can cause undesirable con-
sequences in receiving waters downstream of treatment plants, i.e., eutrophication
and deoxygenation. The release of nutrients and phosphorus into effluent streams
is exasperated by predator blooms. Consequently, the release of nutrients and phos-
phorus due to predation has been investigated [24, 27]. It is essential to know the
operating conditions that maintain stable predator populations and which reduce
nutrient release.

3 Conclusions

Over the past century, the activated sludge process has emerged to become the most
widely used method for the biological treatment of contaminated wastewaters under
aerobic conditions. The success of this technique can be ascribed to the use of a
settling unit which “captures” particulate matter, allowing it to be recycled into the
reactor. This vastly improves the efficiency of the process, since the particulatematter
contains entrapped micro-organisms. Consequently, recycling sludge increases the
concentration of biomass inside the reactor.

Alas! Too much of a good thing is a bad thing—the disposal of excess sludge
imposes a significant overhead on the running of a wastewater treatment plant. Two
mechanisms for reducing the amount of sludge produced by the process have been
discussed. The first of these is to disintegrate the sludge in situ, converting it into a
supply of nutrients. Although this method has been shown to give excellent results
on a lab scale, its use in practice are restricted to niche applications. The reason for
this is that there are significant costs associated with the use of chemicals and the
building and operating of sludge disintegration units. The decrease in costs due to
sludge reduction must be balanced by the increase in costs due to the operation of
the sludge disintegration unit.

A promising alternative is to introduce predators into the activated sludge plant.
The predators grow through consumption of the active biomass,which in turn reduces
sludge production. There are conflicting reports in the literature as to whether pre-
dation can be successfully implemented as a sludge reduction strategy. If conditions
can be found which can guarantee successful operation, then it promises a low-cost
route to sludge reduction.
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Incorporating Prior Knowledge
in the Calibration of Hydrological Models
for Water Resources Forecasting

Julien Lerat

Abstract The management of water resources in Australia faces increasing chal-
lenges due the rise of conflicting demands and a highly variable climate. In this con-
text, the Bureau of Meteorology developed a dynamic seasonal forecasting service
providing probabilistic forecasts of river flowat selected locations acrossAustralia by
coupling rainfall forecasts from a Global Circulation Model with a rainfall–runoff
model. The chapter presents a method to improve the Bayesian inference of the
rainfall–runoff model parameters by using an informative prior derived from the cal-
ibration of the model on a large sample of catchments. This prior is compared with a
uniform prior that is currently used in the system. The results indicate that the choice
of the prior can have a significant impact on forecast performance for both daily and
monthly time steps. The use of an informative prior generally improved the perfor-
mance, especially for one test catchment at daily time step where prediction intervals
were narrowed without compromising forecast reliability. For other catchments and
time steps, the improvement was more limited.

Keywords Seasonal streamflow forecasts · Rainfall–runoff modelling
Bayesian inference · Prior distribution · Importance sampling

1 Introduction

The management of water resources in Australia faces increasing challenges due the
rise of conflicting demands and a highly variable climate oscillating between extreme
droughts and floods. In this context, the prediction of inflows into major reservoirs
over the coming months constitutes a critical decision variable for reservoir oper-
ations and water allocations. To address this issue, the Bureau of Meteorology, in
collaboration with the Commonweath Scientific and Industrial Research Organisa-
tion (CSIRO) [18], developed a seasonal forecasting service providing probabilistic
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forecasts of accumulated river flow for the coming 3-month period at selected loca-
tions across Australia [3]. Following the initial release of the service in 2010, stake-
holders requested two important upgrades: (1) improved synchronisation between
seasonal streamflow forecasts and the seasonal climate outlook produced by the
Bureau [2], and (2) forecasts issued at monthly time steps. Following these requests,
the Bureau initiated the development of a new forecasting system, referred to as the
dynamic system [17]. This system couples rainfall forecasts from the Bureau climate
outlook model (Predictive Ocean and Atmosphere Model of Australia, or POAMA)
with the GR4J rainfall–runoff model [13]. This chapter presents a method to improve
the inference of the rainfall–runoff model parameters by using an informative prior.

Figure1presents a schematic of the dynamic system including the extractionof cli-
mate forecasts from the POAMAclimatemodel, the calibration of the rainfall–runoff
model, the generation of runoff forecasts from the rainfall–runoff model and the
post-processing of these forecasts to remove residual biases. These components vary
greatly in nature, time and space resolution. Nonetheless, it is possible to describe
the forecasting process using the following common Bayesian framework [9]:

qC ∼ f
(

•
∣∣∣q̂(θ, IC ), ν

)
(1)

(θ, ν) ∼ g(•) (2)

where qC is a set of observations (e.g., observed runoff data) during the calibration
period C , q̂ is the output of the GR4J rainfall–runoff model driven by climate inputs
IC over the calibration period, θ are the four GR4J model parameters [13], f is a
probability density with parameter vector ν, and g is the prior probability density
for θ and ν. To speed-up the inference process, the original GR4J parameters are
transformed as follows:

θ = {log(X1), asinh(X2), log(X3), log(X4 − 0.49)}, (3)

where {Xk}k=1,..,4 are the original parameters of the GR4J model. In the rest of the
paper, the parameters θ are simply referred to as “rainfall–runoff parameters”. Using
this framework, the distribution of θ and ν is first inferred from a set of observed
streamflow data {qC(i)}i=1,..,n . The joint posterior distribution of θ and ν is given by

P(θ, ν|qC ) ∝ f
(
qC

∣∣∣q̂(θ, IC ), ν
)
g(θ, ν). (4)

Subsequently, this model is applied in forecast mode to generate a forecast prediction
intervals by sampling from the following distribution:

P(q∗
F |qC) =

∫

θ,ν,I ∗
F

f
(
q∗
F

∣∣∣q̂(θ, I ∗
F ), ν

)
P(θ, ν|qC ) P(I ∗

F ) dθ dν d I ∗
F , (5)
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Fig. 1 Overview of the dynamic forecasting system

where I ∗
F are the climate inputs during the forecast period (e.g., rainfall forecast)

with associated probability P(I ∗
F ), and q∗

F is the runoff forecast.
Due to the complexity of the dynamic system and the legacy from preexisting

components, the framework described in Eqs. 1 to 5 is currently applied to the cal-
ibration of the rainfall–runoff model only (red box in Fig. 1). The integration of all
components in a Bayesian framework is the topic of several research projects sup-
ported by the Bureau and lead by the University of Adelaide and CSIRO within the
Water Information Research and Development Alliance (WIRADA).When focusing
on the calibration of the rainfall–runoff component, rainfall forecasts are replaced by
historical observations. Consequently, the probability model for the climate inputs
IF used in Eq.5 can be simplified as follows:

P(I ∗
F ) =

∏
i

δIF (i)

(
I ∗
F (i)

)
(6)

where IF (i) and I ∗
F (i) are observed and forecast rainfall on day i and δ denote the

Dirac delta. As a result, the forecast generation process detailed in Eq.5 becomes as
follows:

P(q∗
F |qC) =

∫

θ,ν

f
(
q∗
F

∣∣∣q̂(θ, IF ), ν
)
P(θ, ν|qC ) dθ dν (7)

As can be seen in Eqs. 4 and 7, the likelihood f and the prior g are two central
components of a Bayesian forecasting system. So far, most of the published work has
focused on the definition of a likelihood function that can accurately reproduce the
joint distribution of observed and simulated runoff [14, 16]. Few studies have tried to
introduce an informative prior on rainfall–runoff parameters. In these attempts, the
prior took a simple analytical form like a uniform [6], Beta orWeibull distribution [1].
It will be shown in Sect. 2.2 that these assumptions can be difficult to implementwhen
dealing with a large number of catchments across a wide range of hydroclimatic
conditions.
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Further complication arises when the observed runoff data qC is not available at
a daily time step. This is the case for certain forecast sites included in the Bureau
seasonal forecasting service, where runoff data are not directly measured from a
river station but provided by the stakeholders at a monthly time step. These sites are
usually associated with the inflow to large dams, and are of primary importance for
the forecasting service. Consequently, the objectives of this chapter are twofold:
(1) to illustrate the value of an informative priors in a Bayesian calibration of
rainfall–runoff models, and (2) investigate more specifically the case where the
observed runoff data qC is available at monthly time step only.

2 Method

In the rest of the chapter, the runoff data qC and climate inputs IC over the calibration
period C are simply referred to as q and I , respectively.

2.1 Likelihood Function

The definition of the likelihood function follows the approach suggested by [12]
in which the observed and simulated runoff data are transformed using a Box–Cox
transform. This leads to

yi = q(i)λ − 1

λ
(8)

ŷi = q̂(I, θ)(i)λ − 1

λ
, (9)

where q(i) and q̂(I, θ)(i) are the observed and simulated runoff data for time step
i and λ is the Box–Cox exponent. After data transformation, it is assumed that the
model residual follows a centred normal distribution with

f (ŷi − yi ) = N (ŷi − yi
∣∣σ), (10)

where yi − ŷi is the residual for day i andN (· |σ) is the normal probability density
function with scale parameter σ . Combining Eqs. 8 to 10 leads to the following
expression of the likelihood function:

f (q|q̂, ν) =
∏
i

N (ŷi − yi
∣∣σ)

∏
i

∂yi
∂qi

, (11)
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where ν = {λ, σ } are the residual error parameters. The second term in the right-hand
side of Eq.11 is the Jacobian of the data transform. Following [12], the parameter
σ is re-parameterised as

σ = σ0 q̄
λ (12)

where q̄ is the average flow during the calibration period. This re-parameterisation
facilitates the comparison of parameter values between different sites. Eventually,
the error model parameters vector becomes {λ, σ0}.

In the case where the observed runoff data q is monthly, the rainfall–runoff model
is run at a daily timestep first, then the simulated runoff is aggregated to monthly and
the likelihood is computed from monthly observed and simulated data using Eq.11.

This configuration creates a difficulty for the inference of the parameters describ-
ing the daily dynamic of the rainfall–runoff relationship.More specifically, the fourth
parameter of GR4J (θ4) controls a convolution kernel applied to daily rainfall in order
to smooth and delay the simulated runoff. As a result, the likelihood function alone
does not constrain this parameter tightly and the role of the prior becomes important
as indicated in the following section.

2.2 Priors and Sampling Strategy

To simplify its expression, the prior distribution g of rainfall–runoff and error model
parameters mentioned in Eq.4 is written as follows:

g(θ, ν) = h1(θ)h2(σ0)h3(λ), (13)

where the hk are the prior distributions for the different parameters. In all the con-
figurations tested in this chapter, h2 and h3 are uniform density function defined
as

h2(σ0) = 1

3
χ[0,3](σ0) (14)

h3(λ) = χ[0,1](λ). (15)

wherer χU is the indicator function for the interval U .
The main focus of this paper is to compare two alternatives for the prior of the

rainfall–runoff model parameters θ . The first prior is a simple uniform distribution
over an acceptable parameter space defined as follows:

hUN I F
1 (θ) = χ[0,9.2](θ1) χ[−4.6,4.6](θ2) χ[0,8.5](θ3) χ[−4.6,3.7](θ4). (16)

With this prior, the parameters are considered to be uncorrelated and uniformly
distributed across the feasible intervals. This type of prior is currently used in the
dynamic seasonal forecasting system [11].
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Fig. 2 Distribution of the fourGR4J parameter θ1, θ2, θ3, and θ4 across 419 catchments inAustralia.
A 2D Kernel Density Estimator is used to draw the density contours of the bi-variate distributions

The second prior is built from a large calibration exercise conducted by the Bureau
of Meteorology over 419 catchments across Australia. In this exercise, the GR4J
model was calibrated by maximising the posterior expressed in Eq.4 and using the
uniform priors described in Eqs. 14 to 16. The resulting distribution of the 419 param-
eter sets is presented in Fig. 2.We can see that the joint parameter distribution is com-
plex due to multi-modality (e.g., in Fig. 2j), clustering along the parameter bounds
(e.g., in Fig. 2h), long tails (e.g., in Fig. 2e) and strong departure from normality in
bi-variate distributions (e.g., in Fig. 2f).

Gaussian mixtures were initially trialled, but could not accurately represent the
key features visible in Fig. 2 with a parsimonious model. Consequently, such a prior
cannot be directly used in a Markov Chain Monte Carlo sampler, which requires a
parametric representation of the prior to implement the sampling rule. To overcome
this problem, the parameterswere inferred using an importance samplingmethod [15]
as follows:
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1. 100 error model parameters ν = {σ0, λ} were drawn from the uniform prior of
Eqs. 14 and 15,

2. the posterior expressed in Eq.4 is computed for each parameter ν and each one
of the 419 parameter sets θ from the informative prior,

3. for each rainfall–runoff parameter set θi (with i ∈ [1, .., 419]) and error model
parameter set ν j (with j ∈ [1, .., 100]), the importance weight is computed as

ωi, j = P(θi , ν j |q)∑
i, j P(θi , ν j |q)

, (17)

where P is the posterior distribution of Eq.4.
4. Finally, the maximum weight ω∗ is identified and a set of N parameter sets is

retained with weights higher than 10−5 × ω∗.

The previous algorithm describes the sampling process using an informative prior.
With the uniform prior, the procedure is identical, except that the 419 parameter sets
are replaced with a set of 2000 parameters sampled from the uniform distribution
presented in Eq.16.

For both priors, the predictive distribution expressed in Eq.7 is generated as a
set of M =10,000 time series referred to as “ensembles”. The ensemble generation
process operates as follows. Rainfall–runoff and error model parameters are selected
randomly with weighting ω∗, and for each selected parameter set {θi , ν j }:
1. the rainfall–runoff model is run first, producing a simulated flow time series

q̂(θi ),
2. a set of M × ω samples are subsequently drawn from the error model using

Eqs. 8 to 10 and parameters ν j .

2.3 Validation Strategy

The inference process is conducted using data from 1975 to 1995. The simulations
are subsequently generated from 1995 to 2010. During this last period, referred to
as “validation period”, the three following performance metrics are computed:

• the bias skill score is computed as

B = 1 −
∣∣∣∣
∑

i Median(q̂(i))∑
i q(i)

∣∣∣∣ , (18)

where Median(q̂(i)) is the median of the 10,000 simulated ensembles on day i .
• the Nash–Sutcliffe efficiency is given by

NSE = 1 −
∑

i (Median(q̂(i)) − q(i))2∑
i (q̄ − q(i))2

(19)
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• the Continuous Rank Probability Skill Score [5] is computed as

CRPSS = 1 − CRPS(q, q̂)

CRPS(q, q)
, (20)

where the score CRPS is given by

CRPS(q, q̂) =
∑
i

∫ +∞

0
[Fq̂(i)(x) − Hq(i)(x)]2dx, (21)

where Fq̂(i) is the cumulative density function of the simulated flow on day i and
H is the Heaveside function. In Eq.20, the expression CRPS(q, q) corresponds
to the CRPS value obtained with a climatological forecast.

The three scores vary between−∞ and 1, with a value of 1 corresponding to a perfect
forecast. The value of 0 corresponds to a forecast having a similar performance than
a climatological benchmark. The bias and NSE scores focus on the performance of
the median forecast, whereas the CRPS measures the performance for the whole
forecast ensemble.

A fourth measure of performance is used to check if the prediction intervals cor-
rectly bracket the corresponding observations. This aspect of forecast performance is
referred to as “forecast reliability” [10] and is quantified with the Probability Integral
Transform (PIT). The PIT is defined for each point in the time series as

P IT (i) = Fq̂(i)(q(i)). (22)

If the forecast is reliable, the PIT should be uniformly distributed between 0 and 1.
This is checked by plotting the sorted PIT values and comparing the resulting curve
with the 1:1 line.

2.4 Test Catchments

The calibration procedure outlined in the previous paragraph was tested on three
catchments presented in Fig. 3. The catchments cover a wide range of climatic and
hydrologic conditions. The rainfall data were extracted from the Australian Water
Availability Project (AWAP) data maintained by the Bureau of Meteorology. The
potential evapotranspiration data were computed with the Penman method from
AWAP data. Runoff data were extracted from the Water Data Online archive main-
tained by the Bureau of Meteorology in collaboration with States jurisdictions.
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Fig. 3 Location and
characteristics of the three
test catchments

120002C

410047
614006

siteid name area[km2]

120002C Burdekin River at Sellheim 36260.0

410047 Tarcutta Creek above Old Borambola 1660.0

614006 Murray River at Baden Powell Spout 6772.9

3 Results

Figure4 shows the values of the three performance metrics computed over the vali-
dation period for the three test catchments and two inference schemes with uniform
(UNIF) and informative (INF) priors. Figures4a–f present the performance com-
puted from daily and monthly times series, respectively. Among all results displayed
in Fig. 4, the use of an informative prior always improve the performance compared
to a uniform prior, except for the bias in Tarcutta Creek at daily time step (see
Fig. 4a) and the CRPS in Burdekin River at monthly time step (see Fig. 4e). The
improvement in performance is significant for the Murray River at daily time step

Fig. 4 Performance metrics computed from the validation period for the three test catchments at a
daily time step (figures a, b, and c) and monthly time step (figures d, e, and f)
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and Tarcutta Creek at monthly time step where all metrics increase by more than
0.1. This improvement is particularly large for the Murray River at daily time step
where bias, crps, and nse skill improve from 0.34 to 0.71, 0.11 to 0.44, and −0.22 to
0.54, respectively. These results suggest that the prior plays an important role in the
inference scheme and that significant performance gains can be obtained by using
an informative prior.

The performance metrics presented in Fig. 4 are an aggregated measure of per-
formance over the validation period and can hide detailed features of the simulation.
Figure5 explores the results obtained in the Murray River further by showing two
predictive distributions at daily time step during the largest flood that occurred in
the validation period. The distributions are generated with a uniform and informative
prior in Fig. 5a top and bottom, respectively. The two distributions differ significantly
during the first two flood peaks in July andAugust 1996,where the distribution gener-
ated from the uniform prior is much wider than the one obtained with an informative
prior. The opposite occurs during the second flood peak in October 1996, but to a
lesser extent. Overall, the use of an informative prior leads to narrower prediction
intervals and reduces the prediction bias during the first two peaks. This analysis con-
firms the significant performance gain obtained with an informative prior highlighted
in Fig. 4a–c for this catchment.

Fig. 5 Posterior predictive distribution (figure a) and their probability integral transform (figure b)
for daily simulations in the Murray River (Western Australia, site id 614006) using uniform prior
(top) and informative prior (bottom). The observed runoff is shown in red and the simulations in
blue in figure a
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Figure5b top and bottom investigate another aspect of the predictive distribution
by displaying the distribution of the Probability Integral Transform (PIT) values
over the validation period. The two plots suggest that the predictive intervals lack
reliability with important deviations from the 1:1 line. More specifically, a large
number of low PIT values is present in both predictive distributions, which indicates
a tendency to overestimate the observed flow. However, in spite of these limitations,
it can be observed that the PIT values corresponding to the informative prior (Fig. 5b
bottom) are closer to the 1:1 line compared to the ones produced with the uniform
prior (Fig. 5b top). This improvement in reliability combinedwith the reduction of the
prediction interval width described in the previous paragraph constitutes a significant
improvement of overall forecast performance.

4 Discussion and Conclusion

This chapter presented a method to improve the calibration of rainfall-runoff model
as part of the dynamic seasonal streamflow forecasting system developed by the
Bureau of Meteorology. The chapter focused on the choice of the prior distribution
and compared a uniform prior with an informative prior derived from the calibration
of the model on a large sample of catchments.

The results presented in the previous section indicate that the choice of the prior
can have a significant impact on forecast performance for both daily and monthly
time steps. The use of an informative prior generally improved the performance,
especially for the Murray River at the daily time step where prediction intervals
were narrowed without compromising forecast reliability. For other catchments and
time steps, the improvement was more limited.

These results are promising, but several points related to the inference scheme
will require further developments. First, it was noted that, although the performance
in the Murray River improved when comparing a uniform and informative prior,
both forecasts lacked reliability. This can be attributed to the limitations of the error
model which cannot describe the joint probability of observed and simulated runoff
accurately. More specifically, the error model used in this paper did not account
for auto-correlation in the residuals. Initial attempts to incorporate this element (not
shown) lead to inferior performance, confirming the difficulties encountered by [4]
using a similar inference scheme.

Second, the sampling scheme was limited to an importance re-sampling approach
where the parameter samples are exclusively determined by the prior distribution.
Other approaches developed recently, such as the sequential Monte Carlo sampling
described by [7], could be used to perturb the prior samples and avoid a reduction of
the sample diversity.

Finally, the study presented in this chapter will be extended to a larger set of test
catchments to assess the significance of the trends presented here.



72 J. Lerat

References

1. B.C. Bates, E.P. Campbell, AMarkov chain Monte Carlo scheme for parameter estimation and
inference in conceptual rainfall-runoff modeling. Water Resour. Res. 37(4), 937–947 (2001)

2. Bureau of Meteorology, Seasonal Climate Outlook (2016a), http://bom.gov.au/climate/
outlook. Accessed 20 Sep 2016

3. Bureau of Meteorology, Seasonal Streamflow Forecasts (2016b), http://bom.gov.au/water/ssf.
Accessed 20 Sep 2016

4. G. Evin, D. Kavetski, M. Thyer, G. Kuczera, Pitfalls and improvements in the joint inference of
heteroscedasticity and autocorrelation in hydrological model calibration. Water Resour. Res.
49(7), 4518–4524 (2013)

5. H.Hersbach,Decompositionof the continuous rankedprobability score for ensemble prediction
systems. Weather Forecast. 15(5), 559–570 (2000)

6. D. Huard, A. Mailhot, Calibration of hydrological model GR2M using Bayesian uncertainty
analysis. Water Resour. Res. 44(2) (2008)

7. E. Jeremiah, S.A. Sisson, A. Sharma, L. Marshall, Efficient hydrological model parameter
optimization with Sequential Monte Carlo sampling. Environ. Model. Softw. 38, 283–295
(2012)

8. D. Kavetski, G. Kuczera, S.W. Franks, Bayesian analysis of input uncertainty in hydrological
modeling: 2. application. Water Resour. Res. 42(3) (2006)

9. G. Kuczera, D. Kavetski, S. Franks, M. Thyer, Towards a bayesian total error analysis of con-
ceptual rainfall-runoff models: characterising model error using storm-dependent parameters.
J. Hydrol. 331(1), 161–177 (2006)

10. F. Laio, S. Tamea, Verification tools for probabilistic forecasts of continuous hydrological
variables. Hydrol. Earth Syst. Sci. 11(4), 1267–1277 (2007)

11. J. Lerat, C. Pickett-Heaps, D. Shin, S. Zhou, P. Feikema, U. Khan, R. Laugesen, N. Tuteja, G.
Kuczera, M. Thyer, D. Kavetski, Dynamic streamflow forecasts within an uncertainty frame-
work for 100 catchments in Australia, in 36th Hydrology and Water Resources Symposium:
The Art and Science of Water, Engineers Australia (2015), p. 1396

12. D. McInerney, M. Thyer, D. Kavetski, G. Kuczera, J. Lerat, Evaluation of approaches for
modelling heteroscedasticity in the residual errors of hydrological predictions. Water Resour.
Res. accepted (2017)

13. C. Perrin, C. Michel, V. Andréassian, Improvement of a parsimonious model for streamflow
simulation. J. Hydrol. 279(1), 275–289 (2003)

14. G. Schoups, J.A. Vrugt, A formal likelihood function for parameter and predictive inference
of hydrologic models with correlated, heteroscedastic, and non-gaussian errors. Water Resour.
Res. 46(10) (2010)

15. A.F. Smith, A.E. Gelfand, Bayesian statistics without tears: a sampling-resampling perspective.
Am. Stat. 46(2), 84–88 (1992)

16. T. Smith, A. Sharma, L. Marshall, R. Mehrotra, S. Sisson, Development of a formal likelihood
function for improved bayesian inference of ephemeral catchments. Water Resour. Res. 46(12)
(2010)

17. N. Tuteja, D. Shin, R. Laugesen, U. Khan, Q. Shao, E. Wang, M. Li, H. Zheng, G. Kuczera,
D. Kavetski, G. Evin, Experimental evaluation of the dynamic seasonal streamflow forecasting
approach. Technical Report (Australian Bureau of Meteorology, 2012)

18. Q. Wang, D.L. Shrestha, D. Robertson, P. Pokhrel, A log-sinh transformation for data normal-
ization and variance stabilization. Water Resour. Res. 48(5) (2012)

http://bom.gov.au/climate/outlook
http://bom.gov.au/climate/outlook
http://bom.gov.au/water/ssf


Maintaining Reliable Agriculture
Productivity and Goyder’s Line of Reliable
Rainfall

Julia Piantadosi and Robert S. Anderssen

Abstract Our aim in this study is to generate rainfall totals using multidimensional
copulas designed to simulate realistic rainfall statistics that inform analysis of current
rainfall patterns and enables better projections for a comprehensive range of future
scenarios which can be used as input to ecological models including yield crop
simulations for management and risk assessment. To demonstrate the mathematical
models, we consider a Case Study of Goyder’s line of reliable rainfall and the goal
of maintaining reliable agriculture productivity in South Australia. We will present
the results from the rainfall models using copulas of maximum entropy and discuss
how they can be used to assist with management of land use in South Australia.

Keywords Copulas · Rainfall · Reliable agriculture productivity

1 Introduction

Australia is blessed with great soils at various locations around the country such as
in the southern region of South Australia. However, maintaining reliable agriculture
productivity agriculture requires water. The three possibilities are above surface
irrigation, aquifer irrigation and rainfall. In the southern region of South Australia,
rainfall is the main source using stored and desalinated water. Generated rainfall totals
at various timescales are commonly used as input for simulation of hydrological and
ecological systems to model a wide range of scenarios to assist decision-making and
risk assessment. In rainfall modelling, much has been made of recent fluctuations in
annual rainfall. Previous work on rainfall simulation has already shown that variation
in annual rainfall over a period of 150 years could be much larger than previously
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Fig. 1 Annual rainfall map of Australia based on the standard 30 years period 1961 to 1990

thought and indeed much larger than the observed variation [2, 11]. Do farmers in
dry countries such as Australia need to be more cautious in their reliance on rainfall
records even if they ignore the uncertainties of climate change? Are prolonged periods
of low or high rainfall more common than our limited records would suggest? The
proposed work will help us answer these difficult questions and give us a greater
understanding of the likely impact of fluctuations in rainfall [2, 11–13]. This leads
naturally to the need to identify the regions in Australia for which reliable agriculture
productivity is a possibility. Historically, an early attempt to do that is Goyder’s line
of reliable rainfall in South Australia.

2 Rainfall

Water is a critical resource, and concern about climate change has generated recent
interest in rainfall modelling to enable improved water management practices. This
is of critical importance to Australia. The annual rainfall map of Australia shows
that extensive areas in central Australia are generally very dry (Fig. 1), with average
annual rainfall below 600 millimetres (mm) over 80% of the continent and below
300 mm over 50% [3].
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Fig. 2 Goyder’s line of reliable rainfall [5]

2.1 Goyder’s Line of Reliable Rainfall

In South Australia, a line drawn by the Surveyor General George Goyder in 1865,
believed to indicate the edge of the area suitable for agriculture, is still regarded as
important in the discussion of land-use planning in South Australia over 150 years
later. Figure 2 shows a map of Goyder’s line including cropping areas (for 2008
which is relatively consistent year to year). This is known as the South Australian
agricultural cropping belt. From the figure, we can see that cropping has extended
north of the Goyder’s line and in other areas cropping south of the line (only during
exceptionally good seasons) [4, 5, 7, 10].

Recent research on climate change projections for the dry-land agricultural zones
of South Australia suggests that annual average temperatures may increase by 0.4 to
1.8 ◦C and we may see decreases by as much as 15% in average annual rainfall
by 2030 [14]. The projected declines, especially in spring, will have a significant
impact on current agriculture practices. Researchers are interested in investigating
the potential impact of projected climate change on the position of Goyder’s line,
thereby potentially reducing the areas where reliable agriculture productivity can
be maintained in South Australia [7]. Our main aim is to consider how simulated
rainfall generated by models using multidimensional copulas can assist water man-
agement in the South Australian agricultural cropping belt and give farmers greater
understanding of the likely impact of variations in spring rainfall.
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3 Modelling Accumulated Rainfall

For future management of agriculture and assessing risk associated with a changing
climate, we require rainfall totals at various timescales as input to ecological models.
Generated synthetic rainfall totals with realistic monthly and seasonal statistics are
essential to assess the impact of rainfall variability on these systems and for risk
assessment. To drive these simulations, it is necessary to develop stochastic rainfall
simulations that accurately reflect observed rainfall patterns [11]. To demonstrate the
proposed models, we use rainfall totals between 1882 and 2006 from the Australian
Bureau of Meteorology for seasonal rainfall in spring for rainfall stations around
Goyder’s line—at stations 019017 Hawker above the line, 019005 Orroroo (Black
Rock) on Goyder’s line and 021010 Clare (Brinkworth–Bungaree) below the line.
Figure 3 shows that Clare has the highest annual rainfall, which decreases steadily
as we move north toward Hawker [7].

3.1 The Gamma Distribution

The Gamma distribution has been widely used to model both short-term and long-
term rainfall accumulations at a specific location. For each fixed timescale, there

Fig. 3 South Australia rainfall map [7]
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Fig. 4 Observed spring rainfall and Gamma fit for Hawker (top left), Orroroo (top right) and Clare
(bottom)

is general agreement that a mixed gamma distribution with cumulative distribution
Fp0,α,β(x) = P[0 ≤ X < x] for x ≥ 0 given by

Fp0,α,β(x) = p0 + (1 − p0)

∫ x

0
fα,β(x)dx

where α > 0 and β > 0 are parameters determined by maximum likelihood estima-
tion and the probability density function is defined for x > 0 by the formula

fα,β(x) = xα−1e−x/β

βαΓ (α)
.

Figure 4 shows histograms for observed spring rainfall at Hawker (top left), Orro-
roo (top right) and Clare (bottom) with fitted Gamma distributions. A Kolmogorov–
Smirnov test shows that the Gamma distributions provide a good fit to the observed
seasonal total.

There is no natural joint distribution with correlated marginal gamma distributions
for rainfall on each separate month and an appropriate gamma distribution for the
total season rainfall. Consequently, more sophisticated models have been proposed



78 J. Piantadosi and R. S. Anderssen

Fig. 5 A joint probability distribution with prescribed marginal densities [6]

[2, 11–13]. Copulas of maximum entropy defined by multi-stochastic matrices were
first proposed in [11] to preserve marginal monthly distributions and match observed
non-zero correlations. In simple terms, Copulas are functions that join (or couple)
multivariate distribution functions to their marginal distributions (Fig. 5).

The essence of the copulas is that one measures marginal distributions of mul-
tivariate distributions, which must be determined in order to make predictions.
To model the joint probability distribution for a vector-valued random variable
X = (X1, X2, . . . , Xm) ∈ (0,∞)m with known marginals ui = Fi (xi ) we simply
construct uniformly distributed random variables Ui = Fi (Xi ) ∈ (0, 1) for each
i = 1, 2, . . . ,m and use the m-dimensional copula

C(u) = C(F(x)) = C(F1(x1), F2(x2), . . . , Fm(xm)).

By an elementary transformation on each marginal distribution, the copula can
be used to find a corresponding joint probability distribution for seasonal rainfall
with prescribed marginal Gamma distributions (Fi (xi )) for each of the monthly rain-
falls and specified correlation coefficients. The techniques include representation of
multivariate distributions for correlated monthly and seasonal rainfall using mul-
tidimensional copulas with maximum entropy. A comprehensive discussion of the
choice of appropriate copulas for rainfall modelling and simulation can be found in
[1, 2, 11–13].

3.2 Results

We observe that generated monthly rainfall totals modelled as mutually independent
gamma random variates when accumulated generate seasonal totals with significantly
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a) Time:125years(255,5939) b) Time:125 years (254,7710)

Independence Maximum Entropy

c) Time:12500years(252,6139) d) Time:12500 years (253,7534)

Fig. 6 Simulations: growing season rainfall at Orroroo. Observed statistics: µ = 253, σ 2 = 7675
(μ, σ 2)

lower variances than observed in the historical records. This is clearly illustrated in
Fig. 6a, c for seasonal rainfall at Orroroo.

Similarly for Hawker and Clare, we note that, according to simulations in which
the monthly rainfall totals are modelled as independent gamma distributions, the
accumulated seasonal variance is too low. Refer to Fig. 7 a, c for season rainfall at
Hawker and Fig. 8a, c for season rainfall at Clare. The variance of the synthetic totals
increases if the model incorporates correlation between individual months totals.
Refer to Fig. 6b, d for season rainfall at Orroroo, Fig. 7b, d for season rainfall at
Hawker and Fig. 8b, d for season rainfall at Clare.

For the large samples of seasonal totals generated by the multidimensional copula
of maximum entropy, the standard deviation is quite close to the observed standard
deviation. It is important to note that although we have chosen to use marginal Gamma
distributions in this study, the multidimensional copula of maximum entropy can be
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a) Time:125 years (243,8083) b) Time:125 years (256,11509)

Independence Maximum Entropy

c) Time:12500 years (248,8599) d) Time:12500 years (246,10802)

Fig. 7 Simulations: growing season rainfall at Hawker. Observed statistics: µ = 247, σ 2 = 10620
(μ, σ 2)

used with any appropriate marginal distributions. To highlight the inherent variability
in samples of this size, we used the multidimensional copula to simulate seasonal
rainfall over a period of N = 125 years (the same number of years of the observed
records). We note that each sample is generated by the same underlying distribution
and yet the sample statistics show a high degree of variation. Repeated simulations
confirm that the Kolmogorov–Smirnov test statistics for the distributions generated
by the multidimensional copula of maximum entropy and the observed distribution
lie within the acceptable limits defined by the 5% significance level.

Our main aim is to consider how simulated rainfalls generated by models using
multidimensional copulas might change if the key parameters change. By changing
these parameters, we can assess the potential impact of projected climate change and
the negative implications for agriculture in South Australia. For the purpose of this
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a) Time:125 years (505,13129) b) Time:125 years (508,16257)

Independence Maximum Entropy

c) Time:12500 years (508,13203) d) Time:12500 years (508,17893)

Fig. 8 Simulations: growing season rainfall at Clare. Observed statistics: µ = 508, σ 2 = 18160
(μ, σ 2)

investigation, we focus on wheat grain yields as wheat is traditionally the primary
crop in South Australia’s agricultural belt. In Fig. 9, we compare the average grain
yield in tonnes per hectare (t/ha) for various climate scenarios, namely, historical
climate, 5, 10 and 20% reduction in rainfall [8]. For the purpose of this study, the
climate change scenarios we focus on decreases in rainfall. Future studies could also
include elevated temperature and CO2 levels.

Within an already dry South Australian climate, a further reduction in seasonal
totals will certainly impact on current wheat production. Marginal areas such as Orro-
roo (located on Goyder’s Line) will be significantly impacted and current practices
can no longer be maintained.
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Fig. 9 The average grain yield (tonne per hectare) for various climate scenarios

4 Conclusions

In this study, we present a model using a multidimensional copula of maximum
entropy to generate synthetic seasonal totals for three locations in South Australia
around Goyder’s line of reliable rainfall. The simulated rainfall totals can be used
as input to ecological models including yield crop simulations for management and
risk assessment by changing key model parameters. Farmers and land managers
need to consider alternative practices and reliable agriculture land management in
an uncertain and highly variable climate.
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Vertex Representation of Convex Hulls
for Fast Evaluation of Boundary Constraints
in Model-Based Calibration for Automotive
Engines
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Abstract In the field of automotive engines calibration, generating a boundary
model of an admissible operation domain, for instance, a convex hull, is a step
often requiredwhen solving constrained optimization problems addressed byModel-
Based Calibration (MBC) software suites, such asModel-Based Calibration Toolbox
from MathWorks. However, depending on the amount of data modeled, generating
a convex hull might become a computationally intensive process. This is due to the
fact that the half-space representation of the convex hull is used. We discuss here an
alternative representation of the convex hull, the vertex representation, which proves
capable to reduce the computational cost for specific conditions. Numerical com-
parisons in this article are executed in MATLAB using MBC Toolbox commands
and show that for a representative optimization problem, the vertex representation
outperforms the half-space representation.
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1 Introduction

Model-Based Calibration (abbr. MBC) is a systematic approach that allows cost-
effective and accelerated development of automotive engines. At the same time,
MBC enables engineers to design fuel-efficient and eco-friendly engines.

To allow the engine to perform at optimized operating conditions, regression-
based response models of various engine characteristics—such as torque, fuel con-
sumption, or exhaust emissions—are created in MBC as functions of controllable
engine inputs such as airflow or fuel flow, and, next, optimization techniques are
applied to the fitted models to obtain best values for the controllable inputs [5].
In this way, optimal parameters needed by the control algorithms used in the elec-
tronic engine control unit can be efficiently calculated using a model-based design
approach.

Boundary modeling is used in MBC to represent or approximate a region where
the automotive engine works normally. We call this region the admissible operation
domain (abbr. AOD). In general, as it is assumed that internal combustion engines
are highly nonlinear systems, it is impossible to exactly represent the AOD from
a finite number of acquired data. Instead, one approximates the AOD. One of the
approximations of AOD is the convex hull of a finite set of points, implemented in
typical MBC software such as [5]. One reason for choosing the convex hull is that
optimization routines usually deal better with convex regions than with nonconvex
ones. After approximating the AOD, this is used as a constraint in constrained opti-
mization problems, to estimate better control parameters for automotive engines.
This is why a proper handling of AODs is very important in engine optimization
problems.

The contribution of this article is to introduce the approach presented in [6] and
apply it to a different problem than theone solved in [6], to further validate themethod.
In particular, we discuss the performance of the convex hull approximation of the
AOD in the response surfacemethodology for a diesel engine data set. Themotivation
stems from the limitations of the convex hull methodology implemented in MBC
software, such as [5]. These can become severe for particular problems—for instance,
diesel engine data consisting of a large number of variables andmeasurements—since
a convex hull cannot even be generated due to large memory requirements or because
it takes an unreasonably long time to generate it.

It must be noted that two representations for the convex hull of a set of points are
possible, the half-space representation (abbr. H-repr) and the vertex representation
(abbr. V-repr). These representations are discussed in [2, 4]. The main reason for
the numerical difficulties encountered when generating convex hulls was discussed
in [6] and is related to the fact that the H-repr for the convex hull of a set of points
is typically used, instead of the V-repr. The findings reported in [6] show that, for
specific conditions, the V-repr outperforms the H-repr in the numerical experiments
performed. In the present article, we validate the approach proposed in [6] by con-
sidering a different objective for the optimization problem and performing additional
numerical studies.
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In the next section, we provide the numerical comparison of the V-repr of the
convex hull of the AOD with the H-repr. Throughout this article, we assume that the
measured engine data was acquired by keeping the engine under test at steady con-
dition by controlling its inputs on an engine bench. We provided a brief introduction
of the boundary modeling in model-based calibration in [6]. In addition, see [2, 4,
6] for the detail of the convex hull of a set of points.

2 Application of the Convex Hull: An Optimization
Problem in the MBC Response Surface Methodology

2.1 Convex Hull and Optimization Problems in MBC

For a finite set V of data vi ∈ R
n (i = 1, . . . ,m) obtained from some of the processes

in MBC, the convex hull can be formulated as follows:

conv(V ) :=
{
v ∈ R

n : v =
m∑
i=1

αivi ,
m∑
i=1

αi = 1, αi ≥ 0 (i = 1, . . . ,m)

}
.

This is called the vertex representation (hereafter abbr. V-repr) of V . Minkowski-
Weyl’s theorem ensures that there exist ai ∈ R

n and bi ∈ R for i = 1, . . . , p such
that

conv(V ) = {
v ∈ R

n : aTi v ≤ bi (i = 1, . . . , p)
}
.

This is called the half-space representation (hereafter abbr. H-repr) of V .
The convex hull approximation conv(V ) of the AOD is used for optimization in

MBC, using for example the response surface methodology. In particular, we need to
solve an optimization problem of an objective function over the approximated AOD
or a subset of the AOD, thus the AOD acting as a constraint for the optimization
problem. This is mathematically formulated as

min
v∈Rn

{
f (v) : g j (v) ≥ 0 ( j = 1, . . . , k), v ∈ conv(V )

}
, (1)

where f (v) is the objective function and g j (v) ≥ 0 is an engine operating constraint.
We have the two reformulations of (1). The first one is by the H-repr of the convex
hull conv(V ), and (1) is formulated by

min
v∈Rn

{
f (v) : g j (v) ≥ 0 ( j = 1, . . . , k), aTi v ≤ bi (i = 1, . . . , q)

}
, (2)

where is q is the number of the generated half-spaces. The second one by the V-repr
of the convex hull conv(V ) has the V-repr, and (1) is formulated by
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min
α1,...,αm∈R

⎧⎪⎨
⎪⎩ f̃ (α1, . . . , αm) :

g̃ j (α1, . . . , αm) ≥ 0 ( j = 1, . . . , k),
m∑
i=1

αi = 1, αi ≥ 0 (i = 1, . . . ,m)

⎫⎪⎬
⎪⎭ , (3)

where f̃ (α1, . . . , αm) = f

(
m∑
i=1

αivi

)
and g̃ j is defined in a similar manner to f̃ .

Before discussing a numerical comparison of V-repr with H-repr, we mention
some advantages and disadvantages of the V-repr formulation:

(I) We can skip the process of construction of ai and bi of conv(V ). As we have
already seen in [6, Table1], this is computationally intensive, and thus one can
greatly reduce the computational cost.

(II) The number of inequality constraints in V-repr is much less than H-repr. In gen-
eral, theH-repr has exponentially increasing number ofmany linear inequalities
of type aTi v ≤ bi . An example is provided below in Sect. 2.2.

(III) On the other hand, the number of the variables in V-repr increases. In fact, it is
m (the number of points in V ), while for H-repr is n (number of dimensions).
This is the disadvantage of the V-repr formulation.

2.2 Numerical Experiment for a Diesel Engine Data Set

To compare the H and V representations, we use a diesel engine data set being
collected using a space-filling Design of Experiment (DOE) based on a Sobol pseu-
dorandom sequence. This data set is denoted by V and consists of 875 observations,
where at each measured observation the following engine signals were measured:

MAINSOI : start of main fuel injection event [degCA],
FUELPRESS : common rail fuel pressure [MPa],
VGT : variable-geometry turbo charger,
VGTPOS : vane position [mm],
EGR : exhaust gas recirculation,
EGRPOS : valve opening position [ratio],
MAINFUEL : amount of injected fuel mass during main injection event

[mg/stroke],
EGRMF : mass flow ratio of recirculated exhaust gas [ratio],
AFR : air–fuel ratio [ratio],
VGTSPEED : VGT rotational speed [rpm],
PEAKPRESS : in-cylinder peak pressure [MPa], and
BSNOX : brake-specific NOx [g/kWh].

Moreover, the measurements were performed by keeping the engine under test at
seven specific engine operating points, expressed as (Engine Speed SPEED [rpm],
Brake Torque BTQ [Nm]) pairs. In this way, for each operating point defined by a
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SPEED—BTQpair, the rest of the signalsweremeasured.Around 120measurements
were performed for each operating point. Next, for each of these engine operating
points, response surface models were generated using as model inputs some subsets
of the measured signals listed above. In such a way, seven different models were
generated, one for each operating point. The necessity to generate multiple models
comes from the fact thatmodern diesel engines are highly nonlinear complex systems
and fitting a single response model for all operating conditions has become increas-
ingly difficult in recent years, leading to the necessity to break down the problem in
order to solve it.

The response model considered as the objective for the optimization problem in
this investigation is BSNOX, a measure of NOx, which is one of the most dangerous
engine’s exhaust emissions. NOx is a generic term for the nitrogen oxides that are
most relevant for air pollution, namely nitric oxide (NO) and nitrogen dioxide (NO2).
We have chosen BSNOX due to the high interest in engine exhaust emissions esti-
mation and control. This interest is related to the increasingly severe environmental
regulations all over the world.

To investigate the V-repr and H-repr of convex hulls, three sets of models were
generated, by using the following three sets of inputs:

(A type) BSNOXp(MAINSOI, FUELPRESS, VGTPOS, EGRPOS),
(B type) BSNOXp(MAINSOI, FUELPRESS, VGTPOS, EGRPOS,MAINFUEL,

EGRMF, AFR), and
(C type) BSNOXp(MAINSOI, FUELPRESS, VGTPOS, EGRPOS,MAINFUEL,

EGRMF, AFR, VGTSPEED, PEAKPRESS),

where p = 1, . . . , 7 represents the seven engine operating conditions considered in
this study.

The dimension n of these data sets used in the three models is 4, 7, and 9, respec-
tively. We considered different n in order to investigate the scalability of V-repr and
to compare the computational cost with H-repr. It should be noted that for modern
diesel engines a number of 10 or even more controllable inputs are becoming com-
mon and this is the main cause of the previously mentioned numerical problems
related to the generation of convex hulls.

For each data set, we have solved the following seven optimization problems, one
for each operating point set:

min
v∈Rn

{
f p(v) : v ∈ conv(V )

}
(p = 1, . . . , 7),

where V consists of a subset of the initial 875 n-dimensional vectors, since the
approach we adopted is a point-by-point one. The measured points in each subset are
unique. As an indication, each local model consisted of 125 of such measurements,
and for each local model a corresponding convex hull was generated.
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Various candidate response models were investigated in this study:

1 Second- and third-order polynomials,
2 Quadratic RBF models, that consisted of a Radial Basis Function (RBF) network
having a multiquadric kernel, plus a quadratic term, and

3 Gaussian process models, that used an automatic relevance determination (ARD)
squared exponential kernel and a constant basis.

For each local BSNOXp (p = 1, . . . , 7) model, above-listed candidate models
were generated and the one having the smallest leave-one-out root-mean-squared
error was selected as the best candidate. For this particular problem, the quadratic
RBF andGaussian processmodels proved to be the best ones. The polynomialmodels
were unable to capture the highly nonlinear behavior of the BSNOX response.

Next, an optimization problem was considered. For this problem, we generate
seven objective functions f p (using BSNOXp as the objective to be minimized)
and we add l ≤ v ≤ u as constraints g j (v) ≥ 0. Here, l and u are obtained from the
measurement data. In particular, the objective functions f p are smoothbut nonconvex,
and thus the problem becomes a nonlinear nonconvex optimization problem.

A point-by-point minimization problem for BSNOX was performed and Table1
displays a numerical comparison between the two methods. In this numerical exper-
iment,1 we use MathWorks Model-based Calibration Toolbox [5] to obtain the
BSNOX models, and MathWorks Optimization Toolbox and Global Optimization
Toolbox products for the optimization task. We compare computation time for the
two methods. The third column in Table1 is the total computation time for the opti-
mization. The forth column in Table1 stands for the number of constraints in the
optimization. Note that these numbers for (2) are the number of linear constraints
defining the convex hull’s polyhedron inRn . For V-repr, no convex hull is constructed
so we use “–” in Table1.

Table 1 Computation time[s] comparison of V-repr with H-repr

Construction of H-repr Optimization # of constraints

(2) (A type) 0.12 49.59 1,834 linear ineq.

(B type) 10.35 60.84 211,299 linear
ineq.

(C type) 363.52 547.48 3,198,561 linear
ineq.

(3) (A type) – 434.46 8 linear ineq. and
1 linear eq.

(B type) – 420.65 14 linear ineq.
and 1 linear eq.

(C type) – 466.08 19 linear ineq.
and 1 linear eq.

1The specification on the used computer is as follows:OS isWindows 7, theCPU is Intel®Core™i7-
5600U with 2.60GHz, and the memory is 12GB and version of MATLAB is R2016b.
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To solve the optimization problem, we considered a two-step approach. In the
first step, we used the pattern search method [1], which is a derivative-free method,
to find an initial solution, and next we used this solution as the starting point for
the interior-point method, in order to refine the solution. This strategy proved to be
efficient since, even if pattern search was found to give solutions that satisfied the
constraints tolerance, applying interior-point method was found to further increase
the accuracy of the solution. By using this strategy, similar results were obtained
for both H-repr and V-repr (to be more specific, numerical difference between the
two solutions being less than 10−3 [g/kWh]), thus validating the V-repr method with
respect to the “traditional” H-repr. The optimization settings that were used to obtain
the solution are listed in Tables2 and 3. For the settings not listed in Tables2 and 3,
the default settings were used. We observe the following from Table1.

(i) Since the complexity of optimization methods depends on the length of the
input size (which is related to the number of variables and nonzero coefficients
in the constraints), in (A type) and (B type), i.e., for n = 4 and 7, H-repr is
faster than V-repr, whereas for (C type) optimization of V-repr is already faster
than H-repr, even if we do not consider the additional time needed to create the
H-repr. In fact, as it can be seen from Table1, the number of linear inequalities
in H-repr increases considerably with the number of dimensions. Consequently,

Table 2 Representative options used by patternsearch. Default values were used for the rest
of the options not listed here

Pattern GPS Positive basis 2N

Maximum number of function evaluations 200× (the number of variables)

Mesh tolerance 10−8

Step tolerance for free variables 10−6

Constraint violation tolerance 10−8

Objective function tolerance 10−8

Table 3 Optimization options used by the interior-point method. Default values were used for the
rest of the options not listed here

Maximum number of function evaluations 5000 for (2).
20000 for (3)

Maximum number of iterations 500

Maximum change in variables for
finite-difference gradients

0.1

Minimum change in variables for
finite-difference gradients

10−8

Step tolerance for free variables 10−6

Constraint violation tolerance 10−8

Objective function tolerance 10−6
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the evaluation of computed solutions at each iteration becomes computationally
intensive. In contrast, the number of variables in (2) is n, while it is m in (3).
Thus, solving optimization problems by H-repr is much faster than by V-repr
for (A type) and (B type).

(ii) The computation time of constructing conv(V ) into the form of the H-repr
considerably increases as n increases. This is related to the number of faces
of the polyhedron used in the H-repr, which increases exponentially with the
number of dimensions, as can be seen in Table1. As (3) can skip this conversion,
we can expect that, for the present problem, (3) is more efficient than (2) for
n ≥ 9.

3 Conclusion

In order to further validate the approach proposed in [6], we have applied the same
methodology to a different problem. Similar to [6], for the examples investigated we
observe that, when the dimension n of space in which a set V of points lies is more
than seven, the computational cost can be reduced when using the V-repr of a set
of points instead of the H-repr. An additional benefit is that in the V-repr there is
no need to construct a convex hull. This benefit becomes crucial for data consisting
of a large number of variables and measurements—in such cases, a convex hull
cannot even be generated due to large memory requirements or because it can take
an unreasonably long time to generate it—so the V-repr becomes maybe the only
method that can be used to define constraints related to AOD. The problem addressed
in the present contribution is more challenging numerically, due to the non-smooth
behavior of the objective function used in the optimization problem. To solve it,
we had to use a two-step optimization strategy, where the solution obtained using a
derivative-free method (pattern search, a particular form of direct search) was further
refined using an interior-point method. In spite of the increased numerical difficulty,
results validate the proposed approach, confirming that V-repr can be used to define
an AOD faster than the traditional H-repr, for problems with an increased number
of dimensions. This enables solving in an accurate yet fast way the increasingly
complex optimization problems related to modern internal combustion engines.
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Mathematical Modeling of Rock Pore
Geometry and Mineralization: Applications
of Persistent Homology and RandomWalk

Takeshi Tsuji, Fei Jiang, Anna Suzuki and Tomoyuki Shirai

Abstract Mathematical methods used to model heterogeneous pore geometry of
natural rocks and their temporal evolution (mineralization processes) are explored.
Recent development of X-ray microcomputed tomography enables high-resolution
(micrometers) pore geometry of rock to be obtained. Nevertheless, exploring the
complex spatial distribution of pore bodies, and relating this information to hydraulic
and elastic properties, remains a challenge. In this study, persistent homology is first
applied to describe heterogeneous rock pores, which captures the appearance and
disappearance of topological features. The persistence diagram derived from this
analysis shows the characteristic features of rock pore. Next, random walk is used
to model rock mineralization processes. The results show that rock pore evolution
is successfully modeled using random walk by defining the probability of mineral
precipitation and dispersion degree in each grid cell of a modeled rock body. The
mineralization parameter can be flexibly changed and a short computation time used
when using random walk; this approach may thus be practical when simulating rock
evolution processes such as long-term chemical reactions in a reservoir.
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1 Introduction

In oil or gas production, CO2 geological storage, and geothermal power, it is impor-
tant to quantify the hydraulic and elastic properties of the natural rocks being
exploited. The porosity, defined as the fraction of pore volume per total volume,
of a typical reservoir is about 20%, suggesting that there is significant space in the
subsurface geology. Fluid flow within the pore spaces has a strong influence on the
production of hydrocarbons (oil and gas) or efficiency ofCO2 injection into any given
reservoir. Permeability (K ) is the ability of a porous material to allow fluids to pass
through it and can be used to predict fluid migration in a reservoir [5]. Permeability
can be defined as follows:

K = μ
ν

ΔP/Δx
, (1)

where μ is the viscosity of the fluid, ν is the fluid flow velocity, and ΔP/Δx is
the pressure gradient within the medium. The elastic properties of the rock, such as
elastic moduli, are used in calculation of seismic velocities, such as P- and S-wave
velocities. The elastic properties are key parameters in geophysical exploration of
geological structures, such as oil reservoirs [22].

Both permeability and elastic properties are governed by volumetric and geomet-
ric considerations, whereas porosity is a volumetric description. Thus, both hydraulic
and elastic properties are dependent on the geometry of microscopic-scale pore rock
(Fig. 1). For example, hydraulic properties such as permeability have been described
by the tortuosity of pore spaces and porosity using theKozeny–Carman equation [13].
Furthermore, pore size distribution and pore connectivity are conventional param-
eters that control hydrologic properties. Elastic properties of rock have often been
formulated by crack-based models [11, 17, 20] or cemented grain models [3] given
that grain connectivity is an important parameter with which to estimate elastic
properties.

Recent developments inX-raymicrocomputed tomography enable the pore geom-
etry to be obtained in geological materials at micrometer resolution in 3D (Fig. 1). In
our previous studies, we have used such images and applied numerical simulations
to the digital rock models to directly estimate the hydraulic and elastic properties
(Fig. 2a) [9, 21, 22]. The lattice Boltzmann method (LBM) was used to calculate the
hydraulic properties of the digital rock model [7, 9, 14, 21]. LBM is advantageous
with respect to dealingwith complex boundaries and incorporatingmicroscopic inter-
actions in multi-physics. Using this numerical method, we calculated the behavior of
CO2 in water-saturated rock for CO2 geological storage under various conditions,
and the amount of CO2 stored in the natural rock pores was investigated (Fig. 3a;
[21]). The background color in right panel of Fig. 3a indicates CO2 saturation under
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a(b)(a)

0.5 mm

0.5 mm

Fig. 1 Heterogeneous pore geometry of natural rock obtained by 3D computerized tomography
(CT). a 3D rock model of Berea sandstone, reconstructed from a micro-CT scan [9]. White colors
indicate higher CT values which indicate high-density mineral, while black colors indicate lower
densities, such as pore spaces. b Binary model of pore geometry of Berea sandstone [21]. Persistent
homology was applied to the digitized pore space geometry obtained from these scans

(a)

0.5 mm

noitagaporP

(b)Hydrologic simulation to predict permeability Elastic simulation to predict elastic moduli

Fig. 2 Numerical approach to estimating hydrologic and elastic properties of the digital rock
shown in Fig. 1. a Example of CO2 behavior in water-saturated digital rock model derived from the
lattice Boltzmann simulation [21]. In this figure, the solid rock and water are transparent. b Wave
propagation derived from dynamic wave propagation simulation [22] from which seismic velocity
was calculated. Red and blue indicate the strain of the rock

several reservoir conditions (Lenormand diagram between capillary number and the
viscosity ratio of two-phase flow [12]). It is found that saturation of CO2 can be
estimated with two dimensionless parameters, namely capillary number (Ca) and
viscosity ratio (M) [21]. Ca is represented by surface tension and viscous forces.
Thus, these two dimensionless parameters are significant parameters with which
to identify conditions of efficient CO2 storage. However, when the same approach
is applied to different rock types, such as a homogeneous pore model, it is found



98 T. Tsuji et al.

Viscous fingering (Log Ca = -0.91 , Log M = -1)

Capillary fingering (Log Ca = -3.71 , Log M =0)

Stable displacement (Log Ca = -2.04 , Log M = 1)

Solid

Wetting phase

Nonwetting phase

Lo
g 10

C
a

-1

-2

-3

-4

-5

-6

Log10 M
0 1-1

Viscous fingering Stable displacement

Capillary fingering

0.8

0.6

0.4

0.2

Snw

Capillary fingering

Crossover 

Viscous fingering

Capillary fingering
close to stable displacement

0.5-0.5

1.0

Lo
g 10

C
a

-1

-2

-3

-4

-5

-6

Log10 M
0 1-1

Viscous fingering Stable displacement

Capillary fingering

0.8

0.6

0.4

0.2

Snw

Crossover 
Stable displacement

0.5-0.5

1.0

Capillary fingering
Viscous fingering

(a)

(b)

Viscous fingering
(Log Ca = -1.1 , Log M = -1)

0.5 mm

Capillary fingering
(Log Ca = -3.8 , Log M = 0)

0.5 mm

0.5 mm

3D natural sandstone

2D homogeneous model

Fig. 3 a Left panel shows the 3D pore geometry (digital rock model) of a natural sandstone and
simulated behavior for the nonwetting phase (CO2) in the 3D natural sandstone [21]. The right
panel shows plots of CO2 saturation (background color) under various conditions of flow capillary
number (Ca) and viscosity ratios (M). The CO2 infiltration behavior can be classified as primarily
capillary fingering (red dots) or viscous fingering (blue dots), with little stable displacement. The
gray dots indicate a crossover state that cannot be classified as one of the three typical displacement
patterns. b Left panel shows nonwetting phase behavior in a 2D homogeneous pore model under
various flow conditions, while the right panels show plots of the nonwetting phase (CO2) saturation
for the 2D homogeneous model
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that CO2 behavior and CO2 saturation are largely different (background color in
Fig. 3b). This suggests that the rock pore geometry strongly influences fluid behav-
ior and is important when modeling rock pore geometry to predict fluid behavior
in geo-engineering. However, there is no established way to systematically describe
heterogeneous rock pore space. The heterogeneity in geological formations is typ-
ically very different from artificial materials. Thus, exploring the complex spatial
distribution of pore to characterize heterogeneity, and to relate this information to
hydrological and elastic properties, is a demanding task.

By considering fluid behavior within pore space (Fig. 2a), we further numerically
modeledmineralization process (i.e., rock evolution process; Fig. 4) [8]. Precipitation
of minerals in geological materials is a fundamental process in the evolution of
rocks, and rock strengthening associated with mineralization is also related to the
deformation features of geologic sequences [10, 19]. However, the computational
time of numerically simulating mineralization by considering porous flow is usually

(a)

(b)

Fig. 4 Images of the rock evolution process generated using a numerical approach [8]. a Mineral
precipitation calculated from CO2 flow within the rock. Red represents precipitated calcite and
white represents pore spaces. b Plot showing time variation of fluid flow rate (or permeability)
which shows that flow rate decreases because of mineral precipitation and related decrease in
permeability. The numerical results (solid line) are quite consistent with the laboratory-derived data
(square dots) [23]



100 T. Tsuji et al.

long, and the model size relatively restricted (mm to cm range). As a result, the
model presented in Fig. 4a was run for a month to evaluate the evolution of mineral
precipitation by considering porous flow [8] and we sought a practical approach
to model in large-scale using a mathematical approach which allows for shorter
computation time.

In present study, we applied a persistent homology for describing heterogeneous
rock pore. By linking the diagram derived from persistent homology to the hydraulic
and elastic properties, we attempt to develop amethod for estimating these properties
directly from the diagram. The rock evolution processes are further modeled using
random-walk approach. By defining the probability and degree of mineral precip-
itation and diffusion in gridded cells, it is possible to model the time-variant pore
geometry caused by mineralization.

2 Persistent Homology for Rock Pore Modeling

2.1 Methods

The recent approach in mathematics known as persistent homology can be used
to characterize heterogeneous rock porosity. Homology theory dates back to the
work of Poincaré around 1900, and it describes the topological features (such as
connected components and holes) of an object. This method therefore has obvious
application in revealing key structures in rock that influence its hydraulic and elastic
properties. Persistent homology captures not only the topological features but also
their appearance and disappearance along with parameters in the so-called filtration,
which is used to convert the given data set into an increasing family of global objects.
In the context of topological data analysis, persistent homology has been applied to,
amongst others, data analysis, protein analysis, material sciences, and image data
analysis. However, its application to natural rocks has not been previously reported.

A data set is often provided (or can be considered) as a point cloud dataX ⊂ R
d

in the Euclidean space. The first step of computing persistent homology is to create
a filtration of simplicial complexes from X in a certain way. Here, we explain
the Vietoris–Rips complex of X as an example. A subset {v0, v1, . . . , vk} ⊂ X is
a k-simplex in the Vietoris–Rips complex VR(X , r) if Br (vp) ∩ Br (vq) �= ∅ for
any 0 ≤ p < q ≤ k, where Br (x) is the closed ball centered at x with radius r . In
applications, we usually take an increasing sequence of real numbers r0 < r1 < r2 <

· · · and consider the filtration VR(X ) = {VR(X , rs)}s∈Z≥0 , where Z≥0 = N ∪ {0}.
LetK = {Ks}s∈Z≥0 be a filtration of simplicial complexes, i.e., Ks ⊂ Kt for s ≤ t .

We suppose that there exists s0 ∈ Z≥0 such that Ks = Ks0 for all s ≥ s0. The usual
definition of the q-th homology of a simplicial complex K with coefficient field F

provides a vector space Hq(K ). For s ≤ t , we denote the linear map on homologies
induced from the inclusion Ks ↪→ Kt by ιst : Hq(Ks) → Hq(Kt ). The q-th persistent
homology Hq(K ) = (Hq(Ks), ι

s
t ) of K is defined by the family of homologies
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{Hq(Ks)}s∈Z≥0 and the induced linear maps ιst for all s ≤ t . Here, we assume that
dim Hq(Ks) < ∞ for every s ∈ Z≥0. In this setting, a persistent homology Hq(K )

has a nice decomposition property.

Theorem 1 ([24]) There uniquely exist M ∈ Z≥0 and bm, dm ∈ Z≥0 = Z≥0 � {∞}
with bm < dm,m = 1, 2, . . . , M such that the following isomorphism holds:

Hq(K ) ∼=
M⊕

m=1

I (bm, dm). (2)

Here, I (bm, dm) = (Vs, f st ) consists of a family of F-vector spaces

Vs =
{
F, bm ≤ s < dm,

0, otherwise,

and the identity map f st = idF for bm ≤ s ≤ t < dm.

Each summand I (bm, dm) in (2) is called a generator of the persistent homology
and (bm, dm) is called its birth–death pair, which represents the appearance and disap-
pearance of the i-th topological feature. From the uniqueness of the decomposition,

the multiset of birth–death pairs Dq(K ) = {(bm, dm) ∈ Z
2
≥0 : m = 1, . . . , M} can

be viewed as the characteristics of a given filtration in persistent homology and is
called the q-th persistence diagram. In applications, we usually take an increasing
sequence of parameters {rs}s∈Z≥0 and identify s ∈ Z≥0 with rs ∈ R≥0 to obtain

Dq(K ) = {(rbm , rdm ) ∈ R
2
≥0 : m = 1, . . . , M}.

It can be visualized in a compact form as displayed in Figs. 5 and 6.
The calculationof a persistencediagram for complexpore geometry canbedivided

into three parts. First, the images of rock samples are obtained by a multislice X-
ray microtomography scanner (Fig. 1a). A segmentation process is then performed
to delineate pores and minerals in the images to reconstruct the binary 3D model
(Fig. 1b). Then, a cloud of spheres which represent the spatial distribution of pore
bodies is obtained by a maximal ball algorithm [2]. In this approach, the maximal
ball algorithm constructs the largest spheres centered at each void voxel (a volume
of 3D space) that just fits in the pore space. A maximal ball is one such sphere that is
not completely enclosed by another. Finally, the analysis of persistent homology is
carried out from the extracted sphere cloud data (Figs. 5 and 6). Therefore, the persis-
tence diagram we estimated in this study (Figs. 5 and 6) reflects geometry of central
position of pore body and pore size. In this study, the open-source code “Perseus” [1]
was used to calculate theVietoris–Rips complex topology of a set of points and conse-
quently determine the persistence diagram [15]. Perseus software is based on discrete
Morse theory [6], and therefore does not rely on the idiosyncrasies of a particular
type of complex structure or dimension for its efficiency. The persistent homology
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Fig. 5 Persistence diagrams of two natural sandstones. a Berea sandstone and b Bentheimer sand-
stone. The color of the dots in the BD plots indicates the different dimensions, i.e., H0, H1, and H2,
in which H0 (blue dots) are aligned parallel to the vertical axis

(a) (b) (c)

Fig. 6 Persistence diagrams of different rock types. The rock model in panel (a) is the same as that
in Fig. 5a. The upper three panels show CT slice images of different rock types with their respective
persistence diagrams shown in the lower panels. In the CT slices, the pore spaces are white in color.
The persistence diagrams displayed are from H1, in which the color indicates the density of the BD
plots. The color bar indicates the contour level of the probability density function for each point in
persistence diagram, which is estimated by the nonparametric Gaussian kernel density estimation
(KDE). Single BD points are highlighted by dots
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was then calculated for Vietoris complexes generated around three different types of
data: uniform birth points, nonuniform birth points, and distance matrices. The most
common type of Vietoris–Rips complexes are uniform birth points. The input data
consist of a list of vertices (points) embedded in a Euclidean space. For each vertex,
an initial radius r is obtained from the data of sphere size distributions. The radius
for each vertex is incrementally applied N times by a universal step size to give an
increasing sequence of radii for each point. In this study, the incremented time N was
set to 1000, with an increment step size of 0.1µm. Changing parameters, including
initial conditions of the sphere in the analysis, would result in production of different
diagrams.

2.2 Results and Discussions

Figure5 shows examples of persistence diagrams for H0, H1, and H2 derived from
this analysis. It is evident that the similarity in pore geometries of the two sandstones
displayed in Fig. 5 results in the two model diagrams having similar characteristics.
The birth–death (BD) points of H0 are located on the vertical axis. The BD points
of H1 and H2 are different: the BD points of H1 are far from the diagonal line, and
the birth time of H1 is earlier than that of H2. In the following discussions, the H1

diagram is characterized.
Persistent homology was then applied to three rock types with different character-

istics (Fig. 6), from which it is evident that the features of the persistence diagrams
are largely different for different rock types. These differences originate because
of differences in pore geometry (e.g., relative location of pore body) and may also
reflect the hydraulic and elastic properties. Several BD points of the homogeneous
sandstone (homogeneously distributed pore body; blue dots in Fig. 6a) are far from
the diagonal line in the persistence diagram. The longer BD cycle evident from the
distance of the points from the diagonal line indicates that pore network has large
circle structure. It is observed that local concentration of separated pore bodies leads
to a short life cycle because the topological rings disappear soon after their formation.
The wide range of birth time of the rock model in Fig. 6b indicates heterogeneous
characteristics of the rock because many kinds of H1 cycles are generated in the
filtration.

Asdiscussed, the persistencediagrams reflect the topological features of rockpore.
Thus, the persistence diagrams could be used to estimate the hydraulic properties
of rock because they are influenced by pore connectivity. Additionally, if persistent
homology is applied to the grains (solid particles), it is possible to characterize the
elastic properties which are largely influenced by grain connectivity.
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3 RandomWalk in Rock Mineralization Modeling

3.1 Methods

We applied a random-walk particle method (stochastic method) to simulate CO2
transport and CO2 mineralization in porous rocks. A random walk is a trajectory
comprised of a series of random steps. In general, random-walk method requires
little computer storage and does not suffer from numerical dispersion in problems
dominated by advection. Therefore, the method is often used for simulating transport
in large and heterogeneous flow systems [18].

Particles move on a regular lattice to neighboring lattice nodes through a path
between the two nodes according to some probability distribution. In our simula-
tion, the probability distribution is determined by magnitudes of fluxes due to each
transport process, such as advection and diffusion. We gave the values of the flow
velocity (v) for advection and the diffusivity (D) for diffusion on each path of the
lattice grids. By using spatial distribution of the flow velocity or the diffusivity, this
random-walk simulation can take spatial distribution of the transport processes into
account. Nevertheless, for simplicity, this work shows that the flow area is homoge-
neous and isotropic and that the grain and the pore space are not distinguished in the
initial condition. Thus, we set constant values of v and D to 1.0 and 0.01, respec-
tively, on each path on the regular lattice grids for the initial condition. Although we
used certain values for these parameters in this study, reasonable values should be
obtained from laboratory experiments or field observations. The migration times for
molecules passing through the paths on the lattice were determined by using v and
D for advective and diffusive processes. The migration times of each process were
converted to the flux in each direction, respectively. Each probability of the transport
processes in each direction is determined by the ratio of the magnitude of the flux to
the total flux.

We used two-dimensional domain. A group of CO2molecules were injected from
the start points (left side in Fig. 7) and traveled until arriving at goals (right side in
Fig. 7) at each time step. We used a hundred CO2 molecules in a group at each time
step. When a hundred molecules arrived at the goal, the next group was injected
at the next time step. One-dimensional advective flow is given from the left to the
right in the calculation domain. The diffusion occurs into all directions. Note that
the upper and lower boundaries were periodic condition.

The mineralization process was also considered. It is assumed that the more CO2
particles passed, the easier it is to mineralize CO2 at the location. When mineraliza-
tion occurs at a lattice path, the path is closed, and molecules are no longer able to
move through the closed path. We counted the number of times that particles passed
through each path (k). The probability of mineralization pM was defined as

pM =
k∑

i=1

(1 − q)i−1q, (3)
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02 :noitaretIledom laitinI

Iteration: 40 Iteration: 60

Fig. 7 Visual representation of how random walk is used to model rock evolution, in this case
mineral precipitation. Black arrows indicate the fluid inlet (left) into the model. Black lines are
open bonds and white lines are closed bonds caused by mineralization. These processes have
similar meaning with Fig. 4a. The mineralization parameter q is 0.01 in this modeling

where q is the mineralization parameter. The larger number of times that particles
passed, the higher probability of mineralization pM is. The parameter q may be able
to be determined based on laboratory experiments or field observations.

3.2 Results and Discussions

Temporal-spatial variation of mineralization on the lattice grid simulated by the
random-walk model is shown in Fig. 7. Number of grid cells in this modeling is
100 × 100. All paths opened for the initial condition. The black lines describe the
open paths.Whenmineralization occurs, the path is closed, which is described by the
white lines in Fig. 7. The results shown in Fig. 7 are similar with the mineralization
by reactive transport modeling, as shown in Fig. 4a. In this example, we used the
mineralization parameter of 0.01, which is for emphasizing mineralization process.
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Fig. 8 Mineralization process derived from random-walk modeling. Here, we used three mineral-
ization parameters (q = 0.0001, 0.00005, and 0.00001). These figures are similar to Fig. 7, but the
speed of mineralization is slow (natural)

The effect of mineralization parameters q is shown in Fig. 8. We varied the values
of q and evaluated the influence upon their mineral precipitation processes by com-
paring with experimental result [8] (Fig. 4). We used the mineralization parameter
q = 0.0001, 0.00005, and 0.00001 in Fig. 8. Note that the elapsed time in Fig. 8 was
given by

Elapsed time =
N∑

i=1

Ti , (4)

where N is the number of iteration and Ti is the average travel time of injected
particles in the i-th time step. As shown in Fig. 8, the mineralization features, such
as mineralization speed, depends on the value of q.

We evaluated the influence of the precipitation on hydraulic properties, such as
permeability and porosity. Permeability is proportional to the flow rate Eq. (1), that
is, the reciprocal of travel time from the inlet to the outlet. The travel time for each
molecule was calculated by accumulating the migration times of passing through the
lattice paths. Figure9a presents the time variations of permeability with a different
precipitation parameter q. The permeability was normalized by the travel time that
molecule moves due to advection between the inlet and the outlet linearly. The white
circles in Fig. 9a are the permeability decline derived from the laboratory experiment
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Fig. 9 Time variation of hydrological properties derived from random walk model-
ing. Here, we display the results obtained at 3 different mineralization parameters (q =
0.0001, 0.00005, and 0.00001). a Permeability reduction caused by mineral precipitation accord-
ing to the random-walkmodel. In this panel,wedisplay the results of laboratory experiments (circles)
[23]. b Variation in porosity caused by mineralization according to the random-walk model

[23] shown in Fig. 4b. As shown in Fig. 9a, the simulation results of permeability
decreased with time, which is consistent with the experimental result. The simulation
result with q = 0.00001 was closer to the experimental results.

Porosity is also expected to decrease because of mineral precipitation. The poros-
ity (Φ) is given by the following equation:

Φ(t) = 1 − Bc(t)

Btotal
, (5)

where t is the elapsed time, Bc is the number of closed paths, and Btotal is the total
paths. Figure9b depicts the variation of porosity. In the simulation, the porosity with
q = 0.00001 decreased to 70% of the initial porosity at 3.8 × 106 s (after 3660 time
steps). The result indicates that the random-walk model would provide a simulation
of temporal-spatial variation of hydraulic properties (e.g., permeability and porosity)
due to the mineral precipitation.

We will validate the random-walk simulations for CO2 mineralization. Further
research will use the image of rock grains obtained from multi-slice X-ray microto-
mography (Fig. 4) as an initial rock condition. The images of rock grains can provide
information that each path is opened or closed with the same shapes as porous rocks.
In this study,we introduced theprecipitationparametersq.As shown inFig. 9, the pre-
cipitation parameter affects the variation of hydraulic properties. Spatial validation of
the precipitation parameter may be effective to conduct more detailed simulation for
mineralization in pore space. For instance, because the probability of mineralization
could be higher at interface between grain and pore, the mineralization probability
can be increased at the interface. The simulation parameters such as velocity (v),
diffusivity (D), and mineralization parameter (q) should be validated by features
of natural rock or laboratory experiment. Nevertheless, this random-walk approach
can provide relatively short simulation time and flexible treatment of mineralization
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parameters, which is attractive to obtain temporal-spatial variation in macroscopic
hydraulic properties (modeling for large-scale model). Thus, the modeling of CO2
mineralization based on the random-walk approach can be a practical tool to evaluate
the influence of CO2 injection and to understand mineralization processes in porous
rocks.

4 Conclusions

The hydraulic and elastic properties of natural rocks are largely controlled by their
pore geometry, butmodelingof heterogeneous rockpore has not beenwell established
in the literature. In this study, pore geometry of natural rocks was modeled using
persistent homology. The characteristics of persistence diagrams derived from this
analysis are different for each rock type, and thus appear to reflect differences in
rock pore geometry. By linking the persistence diagrams of natural rocks with their
hydraulic and elastic properties, we attempt to develop a method for estimating these
properties directly from the persistence diagrams.

Rock evolution processes, such as mineral precipitation, were also modeled using
random-walk simulation. The mineral precipitation modeling based on pore fluid
flow is time-consuming, and thus long-term mineralization modeling in pore space
(∼100years) is not realistic within the present computational environment. The
calculation time using random walk is much shorter and, based on the results of
random-walk modeling of precipitated mineral distribution, the temporal variation
in permeability and porosity can be predicted, as well as providing useful hydraulic
properties. This approach is flexible and can essentially model any mineralization
processes. Parameters used in the random-walkmodeling can be determined by com-
parison with the temporal variation in hydraulic properties derived from laboratory
experiments or by comparison with mineral distribution in natural rocks.
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Abstract The availability of biomedical big data provides an opportunity to develop
data-driven approaches in agriculture and human healthcare research. In this study,
we investigate statistical machine learning approaches to metabolic pathway recon-
struction and the prediction of drug–target interactions, using heterogeneous biomed-
ical big data. We present an L1-regularized pairwise support vector machine to pre-
dict unknown enzymatic reactions among metabolome-scale compounds, based on
chemical transformation patterns of compounds.We also present supervised bipartite
graph inference with kernel methods to predict unknown interactions between drugs
and target proteins, based on the chemical structures of drugs and the amino acid
sequences of proteins. We experimentally demonstrated that these methods could be
applied to rational compound synthesis and efficient drug discovery for a range of
human diseases. Such methods are expected to increase the productivity of research
in food and pharmaceutical industries.
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1 Introduction

Recent advances in biomedical science have made a wide range of omics data (e.g.,
genome, transcriptome, proteome, and metabolome) available, providing a resource
for data-driven approaches in agriculture and human health care. Omics-based anal-
ysis of metabolic pathways is important in a range of applications [1]. Knowledge of
the plant metabolism (e.g., metabolites, reactions, and enzymes) can be used to sup-
port rational cultivation in agriculture. Enzymes can be therapeutic targets of many
human diseases, and metabolites (natural products) have long been used as drugs
or drug leads in the pharmaceutical sector. Approximately, 50% of all anticancer
drugs are derived from compounds produced by microbes, fungi, or plants [2], and
some human metabolites are now providing effective biomarkers for the diagnosis
of certain diseases [3].

It is estimated that more than one million compounds exist in the plant king-
dom [4], but the reaction steps and the associated enzymes for most compounds in
the metabolic pathways have not yet been identified [5]. Experimental identifica-
tion of novel enzymatic reactions is extremely challenging, and there is a need to
develop computational methods for reconstructing metabolic pathways that are not
yet understood [6]. Some such computationalmethods predict potential reaction steps
by hypothesizing the intermediate compounds between the source and target [7–12].
Other methods predict the enzymatic reactions among compounds from chemical
interconversion [13–18].

Knowledge of the metabolic pathways can also support the discovery of new
drugs [19]. Most drug molecules interact with target proteins (including enzymes)
andmodulate the associated biological pathways (including themetabolic pathways).
The identification of drug–target interactions, interactions between drugs (or candi-
date compounds) and target candidate proteins, is, therefore, a crucial stage of drug
development. Many machine learning approaches have been developed for the pre-
diction of drug–target interactions, based on chemical data of drugs and genomic
data of target proteins [20]. Existing methods can be categorized into those using
binary classification [21–25] and those using dimension reduction [26–29].

In this study, we introduce statistical machine learning methods that allow recon-
struction of metabolic pathways and prediction of drug–target interactions, using
heterogeneous biomedical big data. We present an L1-regularized pairwise support
vector machine to predict unknown enzymatic reactions among metabolome-scale
compounds, based on chemical transformation patterns of compounds [16]. We also
present supervised bipartite graph inference with kernel methods to predict unknown
interactions between drugs and target proteins, based on chemical structures of drugs
and amino acid sequences of proteins [26, 27]. Our experiments demonstrated the
usefulness of these methods for rationalizing compound synthesis and improving
drug discovery. This paper discusses the characteristics of each method and suggests
directions for future research.
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2 Methods for Metabolic Pathway Reconstruction

2.1 Formalism

Metabolic pathways comprise a series of enzymatic reactions among metabolites
(chemical compounds), and reconstruction can therefore be treated as the problem of
estimating the enzymatic-reaction likeness of any given compound–compound pair,
and predicting whether each compound in the pair can be converted to the other by an
enzymatic reaction [16]. Figure1 sets out an illustration of the problem, with circles
indicating compounds and rectangles indicating enzymatic reactions. Our approach
to the estimation of the enzymatic-reaction likeness of each compound–compound
pair was conducted within a supervised classification framework.

Suppose that we have a set of compounds {xi }ni=1, where n is the number
of compounds. Given a set of n(n − 1) compound–compound pairs (xi , x j )(i =
1, ..., n, j = 1, ..., n, i �= j), we estimate a function f (x, x′) that predicts whether
or not compound x is converted to x′ in an enzymatic reaction. The key biochemical
features of the enzymatic reactions should also be identified. In practical applications,
compound–compound pairs in known enzymatic reactions (substrate–product pairs)
are used as positive examples. Other compound–compound pairs are used as nega-
tive examples, because it is not possible to obtain true negative data for enzymatic
reactions.

2.2 Predictive Model

We consider the use of linear models for predicting the enzymatic-reaction likeness,
as these are used in many statistical tasks involving high-dimensional data, such as
classification and regression. The models also have good interpretability.

Let x and x′ be two chemical compounds. Compounds x and x′ are represented
by their d-dimensional fingerprints (binary vectors) as Φ(x) = (x1, x2, ..., xd)T

Fig. 1 The process of metabolic pathway reconstruction
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and Φ(x′) = (x ′
1, x

′
2, ..., x

′
d)

T , respectively, where xk, x ′
k ∈ {0, 1}, k = 1, ..., d. To

make use of existing machine learning techniques, we represent each compound–
compound pair by a feature vector Φ(x, x′) and estimate a function f (x, x′) =
wTΦ(x, x′). The design of feature vectors is fundamental to both predictive power of
the model and its interpretability. We construct a high-dimensional feature vector for
each compound–compound pair, based on structural changes in the two compounds
[16]. We define two fingerprinting operations as follows:

(Φ(x) ∧ Φ(x′)) = (I (x1 = x ′
1 = 1), ..., I (xd = x ′

d = 1)),

and
(Φ(x) � Φ(x′)) = (I (x1 = 1, x ′

1 = 0), ..., I (xd = 1, x ′
d = 0)),

where I (·) is an indicator function that returns a value of one if the event is true.
The first operation is expected to capture any common features in Φ(x) and Φ(x′),
and the second operation is expected to capture any features that are present in Φ(x)
but absent fromΦ(x′). This yields the following high-dimensional feature vector for
each compound–compound pair:

Φ(x, x′) = (Φ(x) ∧ Φ(x′),Φ(x) � Φ(x′),Φ(x′) � Φ(x))T .

Note that the feature vector is asymmetrical: Φ(x, x′) �= Φ(x′, x).

2.3 L1-Regularized Pairwise Support Vector Machine
(L1SVM)

We use linear support vector machine (SVM) as the binary classifier. Regularization
is necessary to produce the generalization properties, especiallywhen the feature vec-
tors are high-dimensional. L2-regularization is a commonly used approach, but this
keeps most elements at nonzero values, making it difficult to interpret the model. An
alternative approach is L1-regularization, which forces most elements in the weight
vector to take zero values. The resulting sparsity makes the model straightforward
to interpret. For this reason, we used L1-regularization in the linear SVM.

Given a set of compound–compound pairs and their labels (Φ(xi , x j ), yi j ) where
yi j ∈ {+1,−1} (i = 1, ..., n, j = 1, ..., n, i �= j), we consider the following mini-
mization problem with L1-regularization:

min
w

n∑

i=1

⎧
⎨

⎩

i−1∑

j=1

max{1 − yi jwTΦ(xi , x j ), 0} +
n∑

j=i+1

max{1 − yi jwTΦ(xi , x j ), 0}
⎫
⎬

⎭ + λ||w||1,

(1)
where || · ||1 is the L1 norm (the sum of absolute values in the vector), and λ is a
hyper-parameter [30]. L1-regularized pairwise SVM is referred to as L1SVM, while
L2-regularized pairwise SVM is referred to as L2SVM.
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The learning on a huge number of compound–compound pairs (the product of
all compounds) using a conventional optimization algorithm is a nontrivial problem.
As, in this context, Φ(x, x′) is a sparse binary vector, it is possible to estimate
weight vectors using efficient optimization algorithms [31] and min-wise hashing
algorithms [32].

3 Methods for Drug–Target Interaction Prediction

3.1 Formalism

The drug–target interactions can be treated as a graph in which drugs (or candidate
compounds) and target proteins (or candidates) are two different types of nodes and
their interactions are edges [26, 27]. Mathematically, the drug–target interaction net-
work is represented as the bipartite graphG = (U + V, E),whereU = (x1, . . . , xnx )
is the set of drug nodes, V = (z1, . . . , znz ) is the set of target protein nodes, and
E ⊂ (U × V ) is the set of drug–target interaction edges.

We formulate the prediction of drug–target interactions as a problem of super-
vised bipartite graph inference with the goal of predicting potential edges between
two different types of nodes. Figure2 shows an illustration of the problem, where
solid lines indicate known interactions and dot lines indicate previously unknown
interactions (potentially true interactions to be predicted). The task is to predict
interactions between any query drug x′ and any query target protein z′.

Fig. 2 The drug–target interaction prediction process
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3.2 Euclidean Embedding

Here we introduce a machine learning method based on Euclidean embedding and
distance learning [26, 27]. It involves two steps:

• Learn two functions f and g to embed the drugs and target proteins into a unified
Euclidean space representing the bipartite graph structure in which interacting
pairs of drugs and target proteins are closely co-located.

• Apply function f to drugs whose interaction partners are unknown and function
g to target proteins whose interaction partners are unknown, and predict the inter-
actions that will take place when the drugs and proteins are closely co-located.

The first step can be optimized by supervised learning of f and g, using the observed
data and the partially known graph structure. f and g are expected to map adjacent
nodes in the known bipartite graph onto nearby positions in a unified Euclidean space
Rd , ensuring that the nearest neighbor approach can recover the knownbipartite graph
structure.

We consider two functions f : U → R and g : V → R that map drugs and target
proteins in a unified feature space, where the interacting drugs and target proteins
are close to each other. To assess whether interacting drug–target pairs are mapped
onto points that are close in R, we apply the following minimization:

min
f,g

∑
(xi ,z j )∈E ( f (xi ) − g(z j ))2 − ∑

(xi ,z j )/∈E ( f (xi ) − g(z j ))2
∑

(xi ,z j )∈U×V ( f (xi ) − g(z j ))2
, (2)

where E is a set of known interaction edges on the bipartite graph. If the value of
the objective function is small, this means that the interacting drug–target pairs are
closer than the other drug–target pairs, in terms of the quadratic error.

3.3 Kernel Distance Learning (KDL)

We assume that f and g belong to the reproducing kernel Hilbert space, and thatHx

and Hz are defined by the kernels kx for drugs and kz for target proteins. To avoid
the overfitting problem, we apply regularization by a smoothness functional on f
and g, based on a classical approach used in statistical learning [33, 34]. We define
the norms of f and g inHx andHz as || f || and ||g||, and use these as regularization
operators.

Next, we consider minimizing a regularized criterion defined as follows:

R( f, g) =
∑

(xi ,z j )∈E ( f (xi ) − g(z j ))2 − ∑
(xi ,z j )/∈E ( f (xi ) − g(z j ))2 + λ1|| f ||2 + λ2||g||2

∑
(xi ,z j )∈U×V ( f (xi ) − g(z j ))2

,

(3)
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where λ1 and λ2 are regularization parameters that control the trade-off between
minimization of the original objective function and smoothing of the functions.

To construct a multidimensional unified feature space of drugs and target pro-
teins, we add orthogonality constraints and extract the m-th features fm and gm as
( fm, gm) = argmin R( f, g) recursively for m = 1, . . . , d under the orthogonality
constraints: f ⊥ f1, . . . , fm−1, and g⊥g1, . . . , gm−1.

Applying the representer theorem in kernelmethods [35], fm and gm can bewritten
as linear combinations of kernel functions as follows: fm(x) = ∑nx

i=1 αm,i kx (xi , x)
and gm(z) = ∑nz

j=1 βm, j kz(z j , z) for some coefficients αm = (αm,1, . . . , αm,nx )
T ∈

Rnx and βm = (βm,1, . . . , βm,nz )
T ∈ Rnz . The optimization problem is then reduced

to the generalized eigenvalue problemwith respect toαm andβm , allowing fm and gm
to be recovered.More details of this algorithm can be found in the original paper [27].

Finally, we evaluate the closeness between drugs and target proteins by calculating
the inner product of their feature vectors in the unified feature space. Drug–protein
pairs with high feature similarities are predicted to be candidates for interaction pairs.
The method is referred to as kernel distance learning (KDL).

4 Results

4.1 Performance Evaluation of Metabolic Pathway
Reconstruction

4.1.1 Data

A total of 13,564 enzymatic reactions were retrieved from the KEGG LIGAND
database [36]. The compound–compound pairs in enzymatic reactions (substrate–
product pairs) comprised the gold standard dataset.

The number of compounds for which structure information is available in KEGG
LIGAND is 15,698, so that the number of possible compound–compound pairs is
246,411,506. The chemical structures of compounds were encoded using chemical
fingerprints (binary vectors) whose elements represent the chemical substructures
and physicochemical properties. Using the Chemistry Development Kit (CDK) [37],
we derived five fingerprints: CDK, E-state, Klekota-Roth, MACCS, and PubChem.
These had dimensions of 1024, 71, 4860, 164, and 881, respectively.

4.1.2 Experiments

We tested the ability of L1SVM to predict the enzymatic-reaction likeness and com-
pared its performance with that of L2SVM. The following fivefold cross-validation
was conducted. The compound–compound pairs in the gold standard data were split
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into five subsets of roughly equal size. Known reactant pairs were used as positive
examples, and all other compound–compound pairs were used as negative examples.
Each subset was used as the test set and the remaining four subsets were used as the
training set. The predictive model was trained based only on the training set, and
the prediction scores on the test set were calculated. The prediction accuracy was
evaluated over the five tests.

The accuracy of the prediction was evaluated using the receiver operating char-
acteristic (ROC) curve, which plots true positives as a function of false positives at
various thresholds. If the area under the ROC curve (AUC) score returned 1, perfect
inference was assumed, while 0.5 indicated random inference. The parameters were
optimized using the AUC score as the objective function.

Table1 shows the resulting AUC scores and their standard deviations. As a base-
line (BASELINE), we used a standard similarity-based method, as the substrate–
product pairs in known enzymatic reactions tend to have similar chemical structures
[14]. L1SVM and L2SVM outperformed BASELINE on all fingerprints, suggesting
that similarity in chemical structure does not necessarily imply enzymatic-reaction
likeness. The PubChem fingerprint was found to be the most reliable. Although the
L1SVM AUC scores were comparable to or slightly worse than those of L2SVM,
L1SVM had a strong advantage over L2SVM in model interpretability. The total ele-
ments in the feature vectors when using the PubChem fingerprint numbered 2,643,
and the numbers of features extracted (with nonzeroweights) byL1SVMandL2SVM
were around 650 and 1,700, respectively.

We examined highly weighted features corresponding to co-occurring (one
formed and one eliminated) substructures. For example, in a highly weighted sub-
structure labeled “C(˜H) (˜O)(˜O)”, a carbon atom attached with a hydrogen atom
and two oxygen atoms, including a (hemi)acetal group, a (hemi)ketal group, a car-
boxyl group, an O-formyl group, etc., and was associated with the substructures
labeled “C(˜C)(˜O)”, including a hydroxy group, an aldehyde group, etc. The asso-
ciation between the two substructures is logical biochemically, as “aldehyde <=>

hemiacetal”, etc., transformations are common.

Table 1 AUCscores onfivefold cross-validation experiments formetabolic pathway reconstruction

Fingerprint L1SVM L2SVM BASELINE RANDOM

CDK 0.957 ± 0.001 0.942 ± 0.002 0.873 ± 0.004 0.500 ± 0.000

E-state 0.817 ± 0.005 0.777 ± 0.006 0.719 ± 0.008 0.500 ± 0.000

Klekota-Roth 0.951 ± 0.003 0.935 ± 0.004 0.854 ± 0.008 0.500 ± 0.000

MACCS 0.909 ± 0.002 0.902 ± 0.002 0.799 ± 0.007 0.500 ± 0.000

PubChem 0.952 ± 0.002 0.947 ± 0.003 0.871 ± 0.003 0.500 ± 0.000



Statistical Machine Learning for Agriculture and Human Health Care Based … 119

4.2 Performance Evaluation of Drug–Target Interaction
Prediction

4.2.1 Data

Drug–target interactions were obtained from the KEGG DRUG [38], SuperTarget
[39], and DrugBank databases [40]. In this study, we focused on drug–target inter-
actions in which the target proteins were enzymes. The number of drug–target inter-
actions was 5,449, the number of target proteins was 1,062, and the number of drugs
was 1,123. These data were used as the gold standard set.

We computed the kernel similarity value between the chemical structures of the
drugs using the SIMCOMP algorithm [41], and the kernel similarity values of amino
acid sequences between target proteins using the Smith–Waterman algorithms [42].
If a similarity score was not positive definite, an appropriate identity matrix was
added to ensure that the corresponding kernel Gram matrix was positive definite,
following a previous study [43].

4.2.2 Experiments

We tested the ability of KDL to predict drug–target interactions. As a baseline,
we used the nearest neighbor method (NN), as this has been used in traditional
approaches to molecular screening [44]. To compare the methods, we used kernel
correspondence analysis (KCA), the kernelized version of correspondence analysis
(CA) that is commonly used as an embedding method for heterogeneous objects in
statistics [45].

We performed a fivefold cross-validation experiment, in which drugs and target
proteins in the gold standard set were split into five subsets of roughly equal size.
Each drug subset and target protein subset were used as test sets, and the remaining
sets as training sets. The predictivemodel was trained only on the training sets, before
being applied to the test sets. The performance was analyzed using the AUC score,
calculated for different prediction classes depending on whether the drugs and/or the
target proteins were present in the training set or not. Those in the training set were
defined as “training drugs” and “training proteins”, and those in the test sets as “test
drugs” and “test proteins”. Three prediction classes were used: (i) test drug versus
training protein, (ii) training drug versus test protein, and (iii) test drug versus test
proteins.

Table2 shows the AUC scores and their standard deviations from the fivefold
cross-validation experiments. KDL significantly outperformed KCA and NN. The
inferior performance of NN suggests that similarities in raw drug structure and in
protein sequence do not always reflect interactions. These results suggest that the
feature space learned by KDL is able to capture the bipartite graph structure of
the drug–target interaction network, more efficiently than that of KCA. Among the
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Table 2 AUC scores on fivefold cross-validation experiments for drug–target interaction prediction

Drug target Method AUC

(i) test drugs
versus training
proteins

(ii) training drugs
versus test
proteins

(iii) test drugs
versus test
proteins

Enzyme Random 0.500 ± 0.000 0.500 ± 0.000 0.500 ± 0.000

NN 0.655 ± 0.011 0.758 ± 0.008 0.500 ± 0.000

KCA 0.741 ± 0.011 0.839 ± 0.009 0.692 ± 0.008

KDL 0.843 ± 0.006 0.878 ± 0.003 0.782 ± 0.013

prediction classes, the accuracy of the “test drug versus test protein” was weakest,
because of the scarcity of knowledge on known interaction partners.

Finally, a comprehensive prediction was conducted of interactions between
all drugs, including drug-like compounds, and all enzymes coded in the human
genome. Many interesting cases emerged in drug–protein pairs with high predic-
tion scores. For example, COX enzymes are a common target for anti-inflammatory
drugs due to the role they play in the synthesis of prostanoids and the subsequent
inflammation response [46]. 4-Hydroxyhydratropate and 2,2-Bis(4-hydroxyphenyl)-
propanoic acid were predicted to interact with COX, neither of which, to our knowl-
edge, have previously been identified as potential COX inhibitors. Another high pre-
diction score was found for Imatinib mesylate, a tyrosine kinase inhibitor used in the
treatment of chronic myelogenous leukemia and gastrointestinal tumors. Imatinib
mesylate was predicted to interact with related tyrosine kinases including protein
tyrosine kinase 6 (PTK6) and B-lymphoid tyrosine kinase, both of which are either
confirmed or candidate oncogenes.

5 Discussion and Conclusions

In this study, we investigated recent advances in statistical machine learningmethods
for metabolic pathway reconstruction and drug–target interaction prediction, using
heterogeneous biomedical big data. Recent omics studies have suggested the use of
data-driven approaches for exploring previously unknown biosynthetic mechanisms
in the metabolic pathways and molecular mechanisms of human disease. Statisti-
cal machine learning methods are expected to play an increasing role in rational
compound synthesis and efficient drug discovery, and to increase the success rate of
research in the food and pharmaceutical industries.

For metabolic pathway reconstruction, we introduced an L1-regularized pairwise
support vectormachine to predict unknown enzymatic reactions amongmetabolome-
scale compounds based on their compound structures, and demonstrated the useful-
ness of the method in terms of prediction accuracy and interpretability. The method
will contribute to our understanding of the roles of metabolites and enzymes in the
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biosynthetic machinery. Computational prediction of unknown metabolic pathways
is also expected to support experimental characterization in agricultural applications.

For prediction of drug–target interactions, we introduced supervised bipartite
graph inference with kernel methods. These allowed previously unknown interac-
tions between drugs and target proteins to be predicted, based on chemical and
genomic data. The prediction accuracy and large-scale applicability of the method
were confirmed.A comprehensive drug–target interaction network can identifymany
potential drug–target interactions. Fast computational screening of drug candidate
compounds against therapeutic target proteins can dramatically reduce the experi-
mental load and speed up the drug development process. The prediction of additional
therapeutic target proteins for existing drugs will lead to the repositioning of existing
drugs, marketing them applicable to a wide range of diseases [47].
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Compactly Supported Solutions
of Reaction–Diffusion Models of Biological
Spread

Maureen P. Edwards, Bronwyn H. Bradshaw-Hajek,
María Jesús Munoz-Lopez, Peter M. Waterhouse and Robert S. Anderssen

Abstract Lie group analysis is one of the most useful techniques for analyzing the
analytic structure of the solutions of differential equations. Here, reaction–diffusion
(RD) modelling of biological invasion is used to illustrate this fact in terms of iden-
tifying the conditions that the diffusion and reaction terms must satisfy for their
solutions to have compact support. Biological invasion, such as the spread of viruses
on the leaves of plants and the invasive spread of animals and weeds into new envi-
ronments, has a well-defined progressing compactly supported spatial R2 structure.
There are two distinct ways inwhich such progressing compact structure can bemod-
elled mathematically; namely, cellular automata modelling and reaction–diffusion
(RD) equation modelling. The goal in this paper is to review the extensive litera-
ture on RD equations to investigate the extent to which RD equations are known to
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have compactly supported solutions. Though the existence of compactly supported
solutions of nonlinear diffusion equations, without reaction, is well documented, the
conditions that the reaction terms should satisfy in conjunction with such nonlinear
diffusion equations, for the compact support to be retained, has not been examined
in specific detail. A possible partial connection relates to the results of Arrigo, Hill,
Goard and Broadbridge, who examined, under various symmetry analysis assump-
tions, situations where the diffusion and reaction terms are connected by explicit
relationships. However, it was not investigated whether the reaction terms gener-
ated by these relationships are such that the compact support of the solutions is
maintained. Here, results from a computational analysis for the addition of different
reaction terms to power law diffusion are presented and discussed. It appears that
whether or not the reaction term is zero, as a function of its argument at zero, is
an important consideration. In addition, it is confirmed algebraically and graphically
that the shapes of compactly supported solutions are strongly controlled by the choice
of the reaction term.

Keywords Biological invasion · Plant viruses · Gene silencing ·
Reaction–diffusion · Compactly supported solutions · Symmetry analysis

1 Introduction

In a biological invasion, the invader starts from the (finite) spatial location of the
initial invasion/infection and progresses outwards with a finite velocity. It follows
that the solution of any model formulated to simulate the invasion must be com-
pactly supported, in that it is positive and finite on some compact spatial region, the
boundary of which progresses outwards with a finite velocity, and is zero outside
the boundary of this progressing spatial region. Here, the possibility is explored of
using progressing compactly supported spatial solutions of reaction–diffusion (RD)
equations

ut = [k(u)ux ]x + q(u), (1)

where k(u) and q(u) denote the diffusion and reaction terms, respectively. The
requirement that, for practical applications and to ensure realistic invasion mod-
els, the required solutions of (1) must be compactly supported has essentially been
overlooked apart from a short acknowledgment in 2005 by Sander and Braddock
[27] and more recently in Edwards et al. [10].

Specific early mention that nonlinear diffusion (only) equations (Eq. (1) with
q(u) = 0) can have compactly supported solutions appears to date from King [18] in
1989, though, in 1959, Pattle [24], without any motivation, background or comment,
published a general analytic solution for power law diffusion k(u) = uσ , σ > 0, that
contained compactly supported solutions as well as others.
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The Pattle result established that some nonlinear diffusion equations can have
compactly supported solutions, with King’s paper [18] introducing new forms for
k(u).

For solutions used to model biological invasion, a crucial feature is that they
must be spatially bounded. This type of solution is in contrast with a travelling wave
solution, such as that for Fishers equation, since travellingwave solutions are positive
except at infinity. This requirement can be satisfied by a set of solutions that is larger
than the set that possesses compact support. For example, a solution that is positive
in one portion of a region of interest, u(x, t) > 0 for 0 ≤ x ≤ x∗(t) and negative
outside of this region, u(x, t) < 0 for x > x∗(t) does not possess compact support.
However, for practical application, onemight ‘stitch together’ a solution by choosing
u(x, t) for 0 ≤ x ≤ x∗(t), and setting u(x, t) = 0 for x > x∗(t). This procedure was
implied but not discussed in [7]. A solution of this nature requires that u(x, t) = 0 is
a solution of the corresponding RD equation, that, in turn, implies the requirement
that q(0) = 0.

Consequently, q(0) = 0 is a necessary condition to guarantee compact support
or compact support extensions. Computational simulations, for power law diffusion,
indicated that q(0) = 0 is not always a sufficient condition and that, on occasions,
some additional condition of the form q(u) ≥ k(u), in the neighbourhood of the
origin, is required. In addition, for all the simulations tested when q(0) �= 0, the
compact support was not retained.

Here, the goal is the identification of conditions underwhich the addition of a reac-
tion term q(u) to such nonlinear diffusion (only) equations, such as those presented
in Pattle [24] and King [18], retains compact support. Such information is important
biologically, as the structure of the diffusion and the reaction terms encapsulate the
interaction occurring between the spreading organism and the environment limiting
the spatial spread. For example, for the spread of a virus on the leaf of a plant, the
interaction is between the replicating virus and the immune gene silencing response
of the plant predominantly at the boundary of the spread.

In part, the focus is a review of the earlier symmetry analysis literature about RD
equations in terms of the choice of diffusion and reaction terms for which compactly
supported solutions are known to exist.

We note here that an alternative to reaction diffusion equations for modelling
biological invasions is the use of cellular automata. For example, cellular automata
methods have been used by Mallet and Pillis [22] in the study of tumour-immune
interactions, by Li and Yeh [21] in the modelling of changing land use and by Basse
and Plank [4] in themodelling ofweed invasion as a level set process. In these types of
models, the compact support of the invasion is explicitly defined on a grid of cellswith
rules for how the invasion spreads from cell to cell. The challenge is the formulation
of the rules that reflect the biology of the cellular spread. Though other choices have
been used, the biologically appropriate choice of the grid is hexagonal as cells talk
to their neighbours through boundaries. Topologically equivalent hexagonal patterns
include brick walls.

The paper has been organized in the following manner. Background about bio-
logical invasion is given in Sect. 2 that includes an illustrative discussion of the
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spread of a virus on the leaf of a plant. The construction, using symmetry analysis,
of compactly supported solutions of nonlinear diffusion equations is discussed in
Sect. 3 with emphasis on power law diffusion. The corresponding situation for RD
equations is the topic of Sect. 4 when the diffusion is power law. The existence of
compactly supported solutions for general diffusion and reaction, in terms of the
published symmetry analysis literature focusing on the publications of Broadbridge
and colleagues [7, 13] and Arrigo and Hill [3], is examined in Sect. 5.

For some of the choices of k(u) and q(u), the structure of the compactly supported
solutions is plotted graphically, in order to illustrate the considerable variability in
the possible shapes that they can have. From a biological modelling perspective, it
illustrates that the shapes that compactly supported solutions can have are strongly
controlled by the choice of q(u), highlighting the importance of the role being played
by the reaction term in RD equations with nonlinear diffusion.

2 Biological Invasion and Spread

Because of its ecological, environmental and economic importance and conse-
quences, biological invasion and spread are intensively researched topics [2, 11,
28]. Invasion occurs across all scales of biological activities from the spread of
insects, such as the emerald ash borer [15], of weeds [4], of land use [21] and of
plant viruses [10, 14]. In all these activities, the spread is compactly supported. Con-
sequently, identifying conditions that guarantee that compactly supported solutions
exist imposes quite strong limitations on how the modelling can be performed. In
the sequel this is illustrated graphically in that, depending on the choices of k(u) and
q(u), the structure of the compactly supported solutions can vary considerably.

The two key possibilities for modelling such situations are cellular automata
(discussed briefly in the Introduction) and RD equation modelling (the topic of this
paper).

2.1 Viral Spread on the Leaf of a Plant

A major goal in plant breeding is the production of new disease-resistant varieties.
To this end, it is helpful to understand and model the dynamics of host–pathogen
interactions and identify the genes involved.

Because of the impact plant viruses have on the productivity of food crops, they
have been intensively studied [26]. An example of the spread of a virus on the leaf of
a plant is given in Fig. 1a, that highlights the intensity of the activity occurring at the
boundary of the viral spread. A similar spread on the surface of tomatoes is given in
Fig. 1b.

Although the underlying mechanism of the plant’s antiviral response to infection
is reasonably well understood [1], the competition between the virus and the host’s
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Fig. 1 The spread of a fluorescence-tagged virus (Potato virus X), from the central inoculation spot,
as an expanding circular-like front. When the front reaches major veins, the virus travels through
them to exit the leaf

response at the boundary has not been modelled. We assume that the speed of a virus
spreading from cell to cell is dictated by the balance between the replication rate of
the virus and the plant’s RNA interference mechanism inhibiting this replication.

3 Compactly Supported Solutions of Nonlinear Diffusion
Equations

For the 1D nonlinear diffusion equation

ut = [k(u)ux ]x (2)

compactly supported solutions have been derived for k(u) = uσ when σ > 1 [17,
18, 24, 29].

The symmetry analysis of Eq. (2) with K (u) = uσ (σ �= 4/3) [17] shows that Eq.
(2) admits symmetries characterized by the generators

Γ1 = ∂

∂t
, Γ2 = ∂

∂x
, Γ3 = 2t

∂

∂t
+ x

∂

∂x
, Γ4 = σ

2
x

∂

∂x
+ u

∂

∂u
.

A wider class of solutions can be derived by combining the two symmetries Γ3

and Γ4 to give

Γ = 2t
∂

∂t
+ x

∂

∂x
+ 2A

(
σ

2
x

∂

∂x
+ u

∂

∂u

)
, A ∈ R.

This yields the invariants

u = t AF(η), η = x

t (Aσ+1)/2
.
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For the choice A = −1
σ+2 , the reduced second-order differential equation can be inte-

grated for all values of σ except σ = −2. Assuming that the arbitrary constant of
integration is zero results in a separable first-order differential equation that may be
solved to give (as detailed in [10])

Fσ = Aσ

2
η2 + K , K ∈ R.

Hence, the explicit solution, in terms of the original variables, is given by

u(x, t) = t AF(η) = t
−1

(σ+2)

[
K − σ

2(σ + 2)

x2

t2/(σ+2)

]1/σ

. (3)

We note that u(x∗, t) = 0 when

x∗ = t1/(σ+2)

√
2K (σ + 2)

σ
. (4)

Hence, as t increases, the value of x∗ increases, ensuring the compactly supported
region expands.

The solution (3) is illustrated in Fig. 2 with K = 5, and (a) σ = 1 for varying
t , and (b) t = 0.5 for varying σ . The solution illustrated in Fig. 2a does not have
compact support, as we have chosen σ = 1 in plot (a) of Fig. 2. Consequently, there
is no restriction that

K − σ

2(σ + 2)

x2

t2/(σ+2)

(a) (b)

Fig. 2 a Illustration of Pattle solution (3) for σ = 1 and varying t . b Illustration of Pattle solution
(3) for t = 0.5
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(i.e. the quantity in the square brackets in Eq. (3)) cannot be negative, as shown in
Fig. 2a. The compact solution generated, when we choose solution (3) for x ≤ x∗(t)
and u(x, t) = 0 for x > x∗(t), may still be biologically relevant.

Choosingσ �= 2n + 1, (n ∈ N)will ensure that solution (3) is real and positive for
x ≤ x∗, guaranteeing a compactly supported structure. From Fig. 2b, it is clear that
the solution approaches an asymptote as σ increases. Indirect confirmation includes
the fact that

lim
σ→∞ u(0, t) = 1,

and, from (4), that lim
σ→∞ x∗ = √

2K .

Solution (3) is equivalent to the Pattle solution [24], and has also been examined
by authors such as Hill [16] and Ibragimov [17]. Philip and Knight [25] generated
the Pattle solution using a similarity solution argument.

4 Compactly Supported Solutions of Nonlinear
Reaction–Diffusion Equations

The nonlinear diffusion equation (2) is now extended to include either a linear or a
nonlinear reaction term q(u) to give Eq. (1); namely,

ut = [k(u)ux ]x + q(u).

Given we know that compactly supported solutions of (2) with k(u) = uσ exist, what
is the consequence of adding a nonlinear reaction term?

We already know that q(0) = 0 is a necessary condition for compactly supported
solutions to exist, and it appears to be a sufficient condition in some circumstances.
Here, classical symmetry analysis is used to explore the consequences of adding
various reaction terms. Results for general diffusion and reaction are discussed in
Sect. 5.

The Lie symmetry group method [20] is used to obtain the Lie point symmetry
generators of differential equations. A one-parameter group of transformations

x∗ = x + εX (x, t, u) + O(ε2)

t∗ = t + εT (x, t, u) + O(ε2) (5)

u∗ = u + εU (x, t, u) + O(ε2)

that leaves the 1+1 dimensional partial differential equation (1) invariant is sought.
The second prolongation of the group (5) is

Γ (2) = X
∂

∂x
+ T

∂

∂t
+U

∂

∂u
+U[x]

∂

∂ux
+U[t]

∂

∂ut
+U[xx]

∂

∂uxx
+ +U[xt]

∂

∂uxt
+ +U[t t]

∂

∂utt
(6)
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Table 1 Forms of k(u) and q(u) that admit additional symmetries, |α| = |δ| = 1

k(u) q(u)

eu ±eβu , ±eu + δ

uσ , σ �= 0,−4/3 ±un , ±uσ+1 + δu

u−4/3 ±un(n �= −1/3), αu−1/3 + δu (5 symmetries), αu−1/3 (5 symmetries)

1 ±eu, ±un, δu ln u (4 symmetries)

where, for example, U[x] = Dx (U ) − Dx (X)ux − Dx (T )ut , with Dx the total
derivative

Dx = ∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ uxxx

∂

∂uxx
+ . . . . .

The references [5, 23] are recommended for a more complete description of Lie
symmetry techniques. Applying the second prolongation of the symmetry generator
(6) to the reaction diffusion equation (1), and then using the governing equation (1)
to eliminate the derivative uxx leads to a set of overdetermined partial differential
equations (the determining equations) for the infinitesimals X (x, t, u), T (x, t, u)

and U (x, t, u). The classical symmetry classification of (1) is listed in Ibragimov
[17]. Only translations in x and t are admitted for arbitrary forms of k(u) and q(u).
Additional symmetries are admitted only when k(u) = uσ or k(u) = eu .

Table1 lists the various forms of k(u) and associated q(u) that admit additional
symmetries. Each of the cases tabulated has a total of three symmetries unless oth-
erwise indicated. Some forms of the RD equations which can be transformed into
simplifiedRDequations have been omitted fromTable1.More information regarding
the specific cases can be found in Ibragimov [17].

In the previous section, the symmetry properties of the diffusion equation (2) were
exploited to generate compactly supported solutions. The technique involved taking
a linear combination of symmetries to find invariants, generating the functional form
and reducing the governing equation to an ordinary differential equation. Solving this
reduced equation led to the explicit solution (3). A compactly supported solution is
possible using the classical symmetry properties of theRD equationwhen k(u) = uσ

and q(u) = uσ+1, with σ > 0 [17]. In this solution, the position of the front is inde-
pendent of t , and so does not have an expanding boundary.

5 General Diffusion and Reaction

Similar results to those discussed above hold for the existence and shapes of compact
solutions generated by a nonclassical symmetry analysis of the types of RD equations
examined here. For nonclassical symmetries, we look for a group of transformations,
such as those described above, that leave Eq. (1) invariant, and that also satisfy the
invariant surface condition [6],
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ut T + ux X = U.

The earlier work of Arrigo and Hill [3] can be used to assist with the identification
of conditions on the diffusion and reaction terms that guarantee the existence of
compactly supported solutions.

Here, we consider themore general RD situation as, within this framework, partial
answers can be identified to how the compactly supported solutions of nonlinear
diffusion equations, such as the power law, are affected on the addition of reaction
terms.

Arrigo and Hill [3] and Goard and Broadbridge [13] list a nonclassical symmetry
property of (1) with the reaction term q(u) related to a general diffusion term k(u).
The Arrigo and Hill analysis shows that, on assuming that

T (x, t, u) = 1, X (x, t, u) = 0, U (x, t, u) = U (u),

the following nonclassical symmetry is obtained

Γ = ∂

∂t
+ c1

∫
k(u) du + c2
k(u)

∂

∂u

with the constraint

q(u) = (1 + c3k(u))

[
c1

∫
k(u) du + c2
k(u)

]
. (7)

The corresponding characteristic equations are

dt

1
= dx

0
= k(u) du

c1
∫
k(u) du + c2

that lead to the invariants

η = x, F(u) =
∫

k(u) du =
{
f (η)ec1t − c2

c1
, c1 �= 0,

f (η) + c2t, c1 = 0.

The reaction–diffusion (1) equation reduces to

f ′′ + c1c3 f = 0 (c1 �= 0) or f ′′ + c2c3 = 0 (c1 = 0).

Exact solutions for arbitrary k(u) are [3]

u(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F−1 (A sin(ω(x − x0)) exp(c1t) − c2/c1) , c1 �= 0, ω2 = c1c3 > 0,

F−1 (A(x − x0) exp(c1t) − c2/c1) , c1 �= 0, ω2 = c1c3 = 0,

F−1 (A sinh(ω̄(x − x0)) exp(c1t) − c2/c1) , c1 �= 0, ω̄2 = −c1c3 > 0,

F−1
(− 1

2 c2c3x
2 + A(x − x0) − c2t

)
, c1 = 0.

(8)
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Choosing k(u) = eu or k(u) = um and using (7) to find the corresponding form of
q(u) will recover the cases already presented by Arrigo and Hill [3]. Other choices
of k(u) with the appropriate form of q(u) will lead to other solutions to (1). For
example, Arrigo and Hill [3] generate solutions for diffusion k(u) = (1 − u2)−1,
with corresponding reaction term q(u) = (c3 + 1 − u2)

(
c1 tanh−1(u) + c2

)
.

There are two approaches to exploiting the constraint (7) to identify potentially
compactly supported solutions of the RD equation (1). We could choose the form
of diffusion k(u) and use (7) to find the corresponding reaction term q(u) and then
test to see if the condition q(0) = 0 is satisfied. Alternatively, we could choose the
reaction term q(u) such that q(0) = 0, and use (7) to find the corresponding diffusion
term. We investigate the second option. Let

F(u) =
∫

k(u) du

(
that is,

dF

du
= k(u)

)
,

and rearrange (7) to give the first-order differential equation

dF

du
= c1F(u) + c2

q(u) − c3(c1F(u) + c2)
. (9)

For a given reaction term q(u), solving (9) will give the appropriate form of k(u).
If c3 = 0, the differential equation (9) is separable (linear homogenous) and can be
solved to give

F(u) = 1

c1

[
a1 exp

(∫
c1

q(u)
du

)
− c2

]
, c1 �= 0,

with

k(u) = dF

du
= a1

q(u)
exp

(∫
c1

q(u)
du

)
.

From [3], we have

F(u) = −c2
c1

+ f (x) exp(c1t)

with f ′′ = 0 (since c3 = 0), and so f (x) = Ax + b = A(x − x0). In general, when
c3 = 0, ∫

c1
q(u)

du = ln

[
A

a1
(x − x0)e

c1t

]
, c1, a1 �= 0.
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Example A: q(u) = u(1 − u)

In this case,

F(u) = a1
c1

(
u

u − 1

)c1

− c2
c1

, k(u) = −a1
uc1−1

(u − 1)c1+1

and

u(x, t) =
(
c1A
a1

(x − x0)
)1/c1

et

(
c1A
a1

(x − x0)
)1/c1

et − 1
, c1, a1 �= 0. (10)

For such a u(x, t) to be compactly supported, conditions are required on c1, A and
a1 such that u(x, t) > 0 for 0 < x < x0 and u(x, t) = 0 when x ≥ x0. When c1 = 1,

u(x, t) =
A
a1

(x − x0)et

A
a1

(x − x0)et − 1
, a1 �= 0,

and the solution will always have a fixed stationary boundary (i.e. u = 0 at x = x0).
Since x − x0 < 0 in the region of interest, choosing a1A > 0 will give u(x, t) > 0
for x < x0. The progressive dynamics of this type of solution is illustrated in Fig. 3a.

When c1 > 1, we need
c1A

a1
(x − x0) > 0.

Since x − x0 < 0, we need a1A < 0. However, because of the form of the denomina-
tor in equation (10), u(x, t) will always have a singularity xs such that 0 < xs < x0.

When 0 < c1 < 1, choosing A
a1

> 0 will give a solution when, for example,

c1 = 1
2n+1 , since the denominator in (10) will always be negative. When c1 = 1

2n ,
the denominator will, depending on the value of A

a1
> 0, change sign indicating that

the solution will have a singularity in the range 0 < x < x0. If 1/c1 is not an integer,
then the solution is complex for 0 < x < x0.

An example of the progressive nature of this solution is illustrated in Fig. 3b with
c1 = 1

3 . When x > x0, such solutions become negative before reaching a singularity
(not shown in figure).

Finally, when c1 < 0, there is no x such that u(x, t) = 0, so no compactly sup-
ported solution exists in this case. The solutions shown in Fig. 3 are not compactly
supported, since they are defined for x > x0. However, their compact forms may be
of biological relevance since they have well-defined boundaries.

The considerable variability in the structure of such solutions again yields vali-
dation of the important role played by the reaction term in RD equations.
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(a) (b)

Fig. 3 Illustration of solution (10) with x0 = 2, A = a1 = 1 and a c1 = 1, b c1 = 1
3

(a) (b)

Fig. 4 Illustration of solution (11) with x0 = 2, A = −1, a1 = 1 and a c1 = α = 1, b c1 = 1 and
α = 5

Example B: q(u) = 1 − e−αu, α > 0
In this case,

u(x, t) = 1

α
ln

[(
A

a1
(x − x0)

)α/c1

eαt + 1

]
(11)

and
k(u) = a1e

αu
(
eαu − 1

)(c1−1)/α
.

Wecan satisfy u(x, t) = 0when x = x0 and c1 > 0 (asα > 0), and u(x, t) > 0 in the
region x < x0 when a1A < 0. The solution is illustrated for different combinations
of α, c1, A and a1 in Fig. 4.
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6 Final Remarks

Here, reaction–diffusion (RD) modelling of biological invasion has been used to
illustrate the usefulness of Lie group analysis in the recovery of information about
the analytic structure of the solutions of differential equations. Here, the focus was
an exploration of the RD equation literature to review and identify conditions under
which RD equations have compactly supported solutions, since only such solutions
are appropriate models of biological invasions.

The importance and relevance of having q(0) = 0, a necessary condition for
the existence of solutions with compact support, is discussed from a number of
perspectives including the results from computational simulations.

It was confirmed algebraically and graphically that the shapes of compactly sup-
ported RD solutions are strongly controlled by the choice of the reaction term with
a considerable variability in structure with some having very definite precipitate
boundaries while others have slowly smoothly decaying boundaries.

The possibility for future research is highlighted in Sect. 5, with particularmention
of the relationship (7), in order to derive conditions on q(u) such that compactly
supported solutions of nonlinear diffusion equations are retained when the diffusion
equation is transformed to be a reaction diffusion equation through the addition of
the q(u).
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Two Challenging Difficulties of Protein
Complex Prediction

Osamu Maruyama

Abstract A protein complex is a group of proteins which carries out particular
functions in the cell. The component proteins of a protein complex are connected via
weak physical contacts, called protein–protein interactions (PPIs). Proteome-wide
PPIs are determined by high-throughput assays. Thus, it is interesting to computa-
tionally predict protein complexes from such PPIs. In this paper, we describe two
challenging difficulties of the problem. The first difficulty is that the smallest protein
complexes are of size two. It is quite difficult to predict themdue to their simple inher-
ent structure. The second difficulty is that some known complexes are overlapped
with each other, because it is not trivial how to model such overlaps mathematically.
For these issues, we have proposed our own approaches. In both methods, we design
a scoring function and algorithms based on Markov chain Monte Carlo to optimize
the scoring function. In this article, we briefly show our key regularization terms
included in the whole scoring function.

Keywords Protein complex · Protein–protein interaction · Markov chain Monte
Carlo

1 Protein Complex Prediction

Every protein is described to have its own biological function. However, the function
of a protein is executed when it forms an appropriate protein complex with other
proteins. Thus, protein complexes are the mandatory entities in the cell to describe
various biological process and cellular mechanisms. However, it is tedious and time-
consuming to determine all protein complexes of an organism by biological assays.
Unfortunately, at this moment, we have no reliable high-throughput assays to detect
protein complexes.
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Thus, it is interesting to computationally predict protein complexes from protein–
protein interactions (PPIs). PPIs are weak physical contacts between proteins, by
which a protein complex is formed.With the advent of accumulated PPIs, determined
by high-throughput assays, especially the yeast two-hybrid (Y2H) assay, we can
predict protein complexes from those PPIs.

However, PPIs are noisy as most of them are determined by high-throughput
assays. This makes protein complex prediction more difficult. In addition to the
difficulty, we have two more difficulties. One is that the smallest protein complex
is of size two. Trivially, it is relatively difficult to detect them due to their simple
inherent structure. The other is that some known protein complexes are overlapped
with each other, i.e., share the same one or more proteins. A mathematical model for
overlapping complexes can bring us more precise detection of them.

In this article, we describe our twomethods, which deal with the above two issues.
Our method, PPSampler2 [1], deals with the first difficulty by using a regularization
term to control the distribution of sizes of predicted complexes. For the second
difficulty, we have proposed a new method, RocSampler [2], which allows predicted
complexes to overlap with each other. This article explains those difficulties and
briefly show our key idea for them.

2 Preliminaries

APPI network is represented by an edge-weighted undirected graph,G = (V, E,w),
where V is a set of proteins, E is a set of interactions between proteins, andw : V 2 →
R≥0 is a mapping from a pair of proteins to a nonnegative real, representing a weight
of a PPI. For a pair of proteins, {u, v}, not included in E , w(u, v) is set to be 0. In our
work, a PPI database of yeast,WI-PHI [3], is used, inwhich theweights of thePPIs are
called “reliability.” Those data are derived from various heterogeneous data sources,
including results of tandem affinity purification coupled to mass spectrometry (TAP-
MS), large-scale yeast two-hybrid studies, and small-scale experiments stored in
dedicated databases.

For a predicted complex, x , we denote by w(x) the sum of the weights of all
internal PPIs within x , i.e., w(x) = ∑

u,v∈x w(u, v). A partition of all proteins of G
is a set of subsets, x1, x2, . . . , xm , of V such that xi ∩ x j = ∅ for any i and j , and
∪m
i=1xi = V .

3 Small Protein Complexes

The latest and most popular database of protein complexes of yeast is CYC2008 [4].
This database includes 408 protein complexes, among which 172 (42%) complexes
are of size two and 87 (21%) complexes are of size three. Thus, these small complexes
are more than half of all the complexes.
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Fig. 1 A dot represents the frequency of a particular size of protein complexes. The curve is a
power-law regression curve

Trivially, it is much harder to predict those small complexes than larger ones due
to their simpler internal PPI structure. However, we have the helpful prior knowledge
that the sizes of the known complexes of the database are distributed according to
a power-law. The sizes of the complexes of CYC2008 is ranged from 2 to 81. The
power-law regression curve for the data set, shown in Fig. 1, is proportional to s−2.02

with s ∈ [2, 100], with root-mean-square error 1.75. Thus, the scaling exponent is
2.02. Note that scaling exponents of power-law distributions in nature are typically
in the range from two to three [5].

Our idea is to design a prior distribution of sizes of predicted complexes based
on this observation. We have formulated a regularization term to fit the distribution
of sizes of predicted complexes to a power-law distribution. Our prediction method,
PPSampler2 [1], generates a partition, X , of V . All elements of size two or more
of X are considered to be predicted complexes. The probability function for cluster
size, s, of the two-sided truncated power-law distribution with a scaling exponent,
γ , over the range [2, Smax] is

ψγ (s) = s−γ

∑Smax
t=2 t

−γ
,

where Smax is the upper bound on the size of predicted complexes, and s =
2, 3, . . . , Smax. The default value of Smax is simply 100. We denote by ψX (s) the
fraction of predicted clusters of size s in X , i.e.,

ψX (s) = |{x ∈ X ||x | = s}|
|{x ∈ X ||x | ≥ 2}| .
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Then, we define the term, hcs,s(X), as the square error between ψX (s) and ψγ (s),
i.e.,

hcs,s(X) = (ψX (s) − ψγ (s))2.

Our method, PPSampler2 [1], uses this regularization term as part of the whole
scoring function, f (X), which is formulated as

f (X) = b(X) + hd(X) + ccs ·
Smax∑

s=2

hcs,s(X, γ ) + cpn · h pn(X).

Note that the partition that minimizes f (X) is the optimal solution. We here explain
other terms of this function.

The first term, b(X), is a Boolean function on X , formulated as

b(X) =
∑

x∈X
b(x),

where

b(x) =
⎧
⎨

⎩

0 if |x | ≤ Smax

and the vertex-induced subgraph of G by x is connected,
∞ otherwise.

The second term, hd(X), evaluates the density of each predicted cluster in the
following way:

hd(X) = −
∑

x∈X
density(x),

where

density(x) = w(x)√|x | .

The last term, h pn(X), controls the number of proteins within the clusters of size
two or more in X , which is denoted by s(X),

h pn(X) = (s(X) − λ)2 ,

where

s(X) =
∣
∣
∣
∣
∣
∣

⋃

x∈X s.t. |x |≥2

x

∣
∣
∣
∣
∣
∣

and λ is a user-specified target value of s(X).
The whole scoring function, f (X), of PPSampler2 is optimized by a Markov

chain Monte Carlo algorithm. Details of the method are found in [1]. In performance
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comparison with the WI-PHI PPI data set [3], PPSampler2 is reported to outperform
other methods, MCL [6], MCODE [7], DPClus [8], CMC [9], RRW [10], NWE [11],
and PPSampler1 [1].

4 Overlapping Complexes

Overlapping complexes means different complexes which share the same at least
one protein. Table1 shows the number of pairs of overlapping complexes with the
same number of shared proteins. We can see that the most frequent pattern is the case
where one protein is shared by two protein complexes.

Any overlapping complexes cannot be found by a single execution of PPSampler2
because the structure of an output of PPSampler2 is a partition of proteins. However,
the outputs of executions of PPSampler2 are not guaranteed to be the same because
PPSampler2 is a sampling-based approach. Thus, a naïve approach for predicting
overlapping complexes is to repeatedly execute PPSampler2 and merge all predicted
complexes. Based on this idea, ourmethod, ReSAPP (Repeated SimulatedAnnealing
of Partitions of Proteins) [12] is devised. Briefly speaking, predictability of ReSAPP
is reported to be slightly better than that of PPSampler2.

To the best of our knowledge, no direct modeling of overlapping complexes used
in the main search process exists. Our next attempt to predict complexes including
overlapping ones is to design a penalization term to find distinctive overlapping
predicted complexes, which is formulated based on the Jaccard index as follows.
For convenience, we denote by mx,x ′ the minimum size of x, x ′ ⊆ V , i.e., mx,x ′ =
min{|x |, |x ′|}. We define the dissimilarity score between x and x ′ as

hds(x, x
′) =

⎧
⎨

⎩

J (x, x ′) if mx,x ′ ≤ 3 and |x ∩ x ′| ≤ 1,
or mx,x ′ ≥ 4 and |x∩x ′|

mx,x ′
≤ β,

∞ otherwise.

Namely, the criteria for the small clusters of size two and three and the larger ones
are different. In the former case, x and x ′ are allowed to share only one protein.
This constraint is reasonable due to their smallness. The latter case is formulated as

Table 1 The frequency of overlap sizes of protein complexes in CYC2008. The row of “#shared
protein” shows the number of shared proteins by two complexes. The row of “Frequency” gives the
number of pairs of overlapping complexes

#shared
protein

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Frequency 151 22 9 13 4 1 10 1 0 1 1 1 0 0 0 1 1
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follows. If the ratio of the number of shared proteins to the minimum size among x
and x ′ is less than or equal to β, the penalty is the Jaccard index, J (x, x ′), and ∞
otherwise. Then, term hds(X) is defined as follows:

hds(X) =
∑

x,x ′∈X
hds(x, x

′).

We added this term to the scoring function of PPSampler2. In addition to it, we
made some modification of other terms of the scoring function. The format of an
output in this new approach is changed to a set of subsets of V (no longer a partition
of V ). We also devise a new Markov chain Monte Carlo update procedure to pro-
pose overlapping predicted complexes. The resulting method is called RocSampler.
Details of RocSampler will be found in the full version of [2].

We evaluated predicted clusters of proteins by a stringent matching criterion [13],
which can be explained as follows. At first, x is said to match k with matching
threshold η if J (x, k) ≥ η. Let X be a set of all clusters predicted by a method, and
K be a set of all known complexes. For subsets, X ′ ⊆ X and K ′ ⊆ K , we formulate
the two notations,

Npc(X
′, K ′, η) = {x |x ∈ X ′, ∃k ∈ K ′, J (x, k) ≥ η},

Nkc(X
′, K ′, η) = {k|k ∈ K ′, ∃x ∈ X ′, J (x, k) ≥ η}.

Namely, X ′ is evaluated with K ′ and vice versa. For an integer i (≥ 2), we denote
by X |i the subset of X whose elements are of size i , and by X |≥i the subset of X
whose elements are of size i or more. Similarly, K |i and K |≥i for K are defined. The
precision and recall are defined as follows:

precision(X, K )

= |Npc(X |2, K |2, 1)| + |Npc(X |3, K |3, 1)| + |Npc(X |≥4, K |≥4, 0.5)|
|X | ,

recall(X, K )

= |Nkc(X |2, K |2, 1)| + |Nkc(X |3, K |3, 1)| + |Nkc(X |≥4, K |≥4, 0.5)|
|K | .

Namely, predicted clusters and known complexes of size two and three are evaluated
with the exact match criterion, and the remaining larger ones are evaluated with
η = 0.5. The F-measure of X to K is the harmonic mean of the corresponding
precision and recall, i.e.,

F(X, K ) = 2 · precision(X, K ) · recall(X, K )

precision(X, K ) + recall(X, K )
.
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The F-measure score of RocSampler is 0.44, followed by 0.37 (PPSampler2 [1]),
0.34 (ClusterONE [14]), and 0.31 (SPICi [15]). Thus, we can say that RocSampler
outperforms the others.
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An Overview of Methods to Identify and
Manage Uncertainty for Modelling Problems
in the Water–Environment–Agriculture
Cross-Sector

A. J. Jakeman and J. D. Jakeman

Abstract Uncertainty pervades the representation of systems in the water–
environment–agriculture cross-sector. Successful methods to address uncertainties
have largely focused on standardmathematical formulations of biophysical processes
in a single sector, such as partial or ordinary differential equations. More attention
to integrated models of such systems is warranted. Model components representing
the different sectors of an integrated model can have less standard, and different, for-
mulations to one another, as well as different levels of epistemic knowledge and data
informativeness. Thus, uncertainty is not only pervasive but also crosses boundaries
and propagates between system components. Uncertainty assessment (UA) cries out
for more eclectic treatment in these circumstances, some of it being more quali-
tative and empirical. Here, we discuss the various sources of uncertainty in such
a cross-sectoral setting and ways to assess and manage them. We have outlined a
fast-growing set of methodologies, particularly in the computational mathematics lit-
erature on uncertainty quantification (UQ), that seem highly pertinent for uncertainty
assessment. There appears to be considerable scope for advancing UA by integrating
relevant UQ techniques into cross-sectoral problem applications. Of course this will
entail considerable collaboration between domain specialists who often take first
ownership of the problem and computational methods experts.

Keywords Mathematics-for-Industry · Water resources
Uncertainty assessment · Uncertainty quantification

A. J. Jakeman
Australian National University, Canberra, ACT, Australia
e-mail: tony.jakeman@anu.edu.au

J. D. Jakeman (B)
Sandia National Laboratories, Albuquerque, NM, USA
e-mail: jdjakem@sandia.gov

© Springer Nature Singapore Pte Ltd. 2018
R. S. Anderssen et al. (eds.), Agriculture as a Metaphor for Creativity
in All Human Endeavors, Mathematics for Industry 28,
https://doi.org/10.1007/978-981-10-7811-8_15

147



148 A. J. Jakeman and J. D. Jakeman

1 Introduction

The discipline of hydrology in particular continues to be very successful at dealing
with single-issue water resource management problems and developing a wide array
of techniques that can be applied by consultants to infrastructure building, protection,
operational and planning issues. Australian Rainfall and Runoff [6], for example, is
the latest compendium in a series that presents such techniques in the Australian
context for assessing infrastructure such as roads, rail, airports, bridges, dams,
stormwater and sewer systems, town planning, mining, flood management planning
for urban and rural communities, flood warnings and flood emergency management,
operation of regulated river systems and prediction of extreme flood levels.

In the water–environment–agriculture sector, there remain, however, more com-
plex, multifaceted problems requiring a more sophisticated approach where surface
and subsurface hydrologic modelling is now contributing. Water is in many parts
of the world a resource that is heavily contested for irrigated agriculture, environ-
mental/ecological and human demands including livelihoods. And it is a resource
that may be subject to deteriorating quality that has exacerbating long-term effects,
beyond those of limited supply, for drinking water, agricultural and aquatic ecologi-
cal systems. Perhaps, the most serious long-term water resource issue in this respect
is that of the declining quantity and quality of groundwater, which is especially
severe in India, Pakistan, China and the USA (see [50]). In Australia, for example,
the Murray–Darling Basin Plan of 2012 [mdba.gov.au] has generated much debate
about Sustainable Diversion Limits that have been set, being largely for irrigation
uses versus the share of water that is being devoted to the environment. Decisions
have, however, been contested, not just because of uncertainty in the hydrological
modelling but also lack of knowledge in ecosystem response, and inadequate atten-
tion to socioeconomic consequences for farmers and wider communities dependent
on agriculture. For any suchmultifaceted water resource issue, there is also the inher-
ent subjectiveness in how to weight multiple objectives, and the need to anticipate
future changes in so-called nexus conditions such as climate and conflicts with other
resource issues like energy development projects and food production. But with such
complexity also comes opportunity where innovations in water storage, supply and
delivery can be explored to improve water management outcomes. Such opportuni-
ties will, however, need to be explored taking due account of uncertainties.

Consequently, in many situations, water resource decision-making is a wicked
problem because there is no optimal solution, uncertainty is pervasive and stakes
are contested. A related concept with increasing currency is that of deep uncertainty
defined by there being ‘Fundamental disagreement about the driving forces that
will shape the future, the probability distributions used to represent uncertainty and
key variables, and how to value alternative outcomes’ [60]. Uncertainty Assessment
(UA), and as far as possible Uncertainty Quantification (UQ), is essential in many
situations for making credible predictions and defensible decisions. The importance
of UQ has been repeatedly established in many US Department of Energy white
papers, such as those resulting from the ASCR scientific grand challenge workshop
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series between 2008 and 2010. On the other hand for some purposes, a qualitative
grasp of uncertainties may suffice or be more appropriate, such as when stakeholders
are learning together about a resource issue so that in the longer term decisions can be
made on a more informed and less contested basis. In supporting decision-making,
however, UAwill require quantitative and qualitative components, and perhaps some
empiricism in methods when assumptions do not possess nice properties.

Here,we present an overviewofmethods and concepts to address the identification
and management of uncertainty for supporting mutual learning by stakeholders, for
making more useful predictions and/or for informing decisions, with a focus in the
water–environment–agriculture resource management cross-sector. But the methods
apply more widely. The motivation for this paper has been stimulated by the fact that
there has been a lot of development of models of environmental processes, much less
(but growing) generation of information about uncertainty and sensitivity in those
models, very little frank reporting of uncertainties and very little trust in, or explicit
use of, uncertainty information by users of models [49]. This is especially the case
for issues in the water–environment–agriculture cross-sector. We use groundwater
models and their links to other sectors to exemplify many of the points raised in the
paper. Resulting cross-sectoral models are often called integrated (environmental)
models.

2 Groundwater Models

There are many models used to simulate groundwater flow through an aquifer. Here,
we choose to focus on the change in the hydraulic head h in a (1D–3D) spatial domain
Ω over some time T using the following partial differential equation (PDE):

Ss
∂h(x, t, z)

∂t
= −∇ · (−K (x, z)∇h(x, t, z)) − G(x, t, z), (1)

x ∈ Ω, t ∈ [0, T ], z ∈ Iz,

subject to some boundary conditions on ∂Ω . Here, K is the hydraulic conductivity,
Ss is the specific storage or storativity, G represents any source terms, such as pumps
and wells and recharge, and z = (z1, . . . , zd)T ∈ Iz are variable model parameters.

3 Sources of Uncertainty

We begin with a concise list of places where uncertainty arises in the modelling and
decision support process. The list is fairly generic in that it should apply to problems
characterised by deep uncertainty, not just those in the water resource and related
sectors. Sources of uncertainty that need to be considered and managed derive from:
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3.1 Data

Data are imprecise, often sparse in space and/or time, with systematic and or random
errors and/or inadequate coverage of conditions. These errors affect calibration of the
model while data input errors also affect outputs when using themodel in a predictive
or simulation mode.

Take our example of a 2D or 3D partial differential equation model to predict
groundwater levels in an aquifer (1). The major parameters in such a model are
the spatially varying conductivity (K ) and storativities Ss . One must estimate such
parameters largely fromwater level data obtainedwhere bores are installed andwater
levels measured. This inverse problem is ill-posed in part due to limited amounts of
data and measurement errors. Of course in practice such data have large errors partly
because they are measured at coarse time intervals and at a relatively modest number
of locations.

3.2 Future Forcing Conditions

There are many unknown variables or states of the model such as climate, demog-
raphy, prices and sectoral and cross-sectoral policy changes that affect an integrated
model of water and land management. Some of these unknowns can be modelled
through the source term G in (1). Some apply to other sectoral component models.

In an aquifer context, future climate will affect the amount of recharge of precipi-
tation to the groundwater, making predictions uncertain. Cross-sectoral issues creat-
ing future uncertainties may relate to the interactions of proposed energy extraction
projects with existing groundwater uses for agriculture, or a government policy to
issue more groundwater access to increase food production.

One way to manage such uncertainty is through exploratory scenario modelling
where one hypothesises such uncertain futures and investigates the associated model
outputs of interest (e.g. [59] so as to explore a range of outcomes, perhaps assessing
how robust outputs are to future changes or even shocks [61]).

3.3 Parameters and/or Initial/Boundary Conditions

Estimated parameters will always have uncertainty but so will parameters that are
considered known or can be measured. For example, in the latter case aquifer proper-
ties vary across very small scales yet a parameter value for K obtained from a pump
test at a specific location may be used to represent them at some specified larger
scale.

The chosen model parameterisation can have significant effect on whether
a model can reproduce experimental observations. This is particularly true for
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parameterisation of spatially or temporally varying fields such as conductivity. The
complexity of the parameterisation of conductivity can range from a single param-
eter for a homogeneous aquifer, to multiple parameters for a regional conductivity,
to O(105 − 106) parameters for a fully spatially distributed conductivity. A single
parameter may be easily estimated from data, and however may result in poor fitting
to data, whereas a highly distributed conductivity may lead to over-fitting and only
a subset of parameters being informed by data.

3.4 Prior Knowledge

Prior knowledge may be used to constrain parameters in the formulated model struc-
ture. Inappropriate constraints may underestimate or overestimate uncertainty such
as the way priors are selected for estimating aquifer parameters for conductivity
and storativity. For example, an underestimation of the variance in model priors
will lead to a misleading underestimation in the uncertainty of outputs of a ground-
water model. Similarly, an over-estimation of prior uncertainty can lead to overly
conservative estimates of uncertainty in predictions.

3.5 Model Formulation

All models are only approximations of reality. Uncertainties are introduced by the
mathematical expressions chosen to describe the relationships between system vari-
ables and components. The same processes can be modelled using vastly different
modelling methodologies, such as empirical, statistical, physical or hybrids of these
approaches. Once a model structure has been chosen, it must then be implemented.
For example, a finite element method may be used to solve a system of partial dif-
ferential equations. The numerical method used to implement a given model and the
type and level of discretisation are additional sources of model structure uncertainty.

Some aspects of model uncertainty may be known but non-identifiable in that
there are multiple sets of parameter values that explain the model output. This
non-uniqueness may apply to the model itself, even with exact/ideal data (a pri-
ori non-identifiability) or due to data being insufficiently informative (a posteriori
non-identifiability).

3.6 Model Purpose and/or Objectives

It is crucial that these address the real issues, a problem often being that there has
not been a thorough investigative and engagement process to identify the issues at
stake and the form of advice needed, due for instance to resource limitations, lack
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of experts and perspectives, oversimplification of the issues or lopsided scientist
push. But sometimes it can be just that the modeller does not relate the aims of the
modelling to either the objective functions used to optimise model parameters or
relevant performance measures [9].

As an example, one may wish to accurately predict the level of the aquifer at a set
of specific locations. In this case, a very fine-scale spatial model will be important
for capturing the desired quantities. However, a lumped model, which may be good
at predicting total water volume in the aquifer, would not be capable of predicting
local quantities accurately.

3.7 Verification/Validation Process

If this step is inadequate, there may be an overconfidence in the model’s capacity and
limitations. In any case, the less comprehensive this step, the less certain the model
results. A common glaring deficiency is the omission of a cross-correlation analysis
between model residuals (predictions minus corresponding observations) and model
inputs to assess if there seems to be something missing in the models explanation of
outputs. Verification and validation (V&V) must not be carried out deterministically
but rather executed to account for themodel uncertainty, e.g. variation in convergence
rates of mesh refinement studies, due to parameter uncertainties.

3.8 Communication Process

There is often a disconnect between decision-makers and the people undertaking
modelling and simulation. The metrics presented to decision-makers can be too
complex and the amount of data overwhelming. The communication process needs
to be iterative with themodellers providing information onwhat is most scientifically
relevant and the decision-makers communicating what is important to them [48].

3.9 Socio-Environmental and Hydro-Ecological Systems

These system types present especially difficult challenges for uncertainty assessment
and management. Model components of such systems are uncertain for most, if
not all, of the reasons above. Uncertainties propagate between components, and
propagation is not nicely dealt with in an analytic framework due to a mix of model
types, results being contested andmultiple outputs needing to beweighted in different
ways to try and satisfy stakeholders possessing different values. In the latter case,
the Murray–Darling Basin Plan process is illustrative. Thus, irrigators tend to have
interests in having sufficientwater for their needs in asmany seasons as possiblewhile
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city dwellers may feel that attending to the ecological needs of the river system and
its groundwaters should involve a precautionary approach.

4 Methods and Concepts to Address Uncertainty

Despite the numerous challenges faced when attempting to understand the effects of
model uncertainties, there are numerous existing methods and concepts that can be
invoked in the quest for enhancing mutual learning among groups about a problem,
better-informing predictions and/or supporting decisions under uncertainty. In this
section, we provide a list of useful methods for exploring model uncertainty.

For many if not all the methods below, uncertainty analysis can be enhanced by
simplifying the problem for a useful outcome by narrowing or exacting the purpose. It
is always a judicious first step to be specific about objectives/modelling purpose [49].

At the highest level, one can ask is the objective strictly among the following:
increasing understanding; prediction; discriminating qualitatively among decision
options and their outcomes (such as predicting the direction of changes between
two management options); forecasting a few time steps ahead or social learning.
Social learning for instance does not demand as much knowledge about uncertainty,
as say prediction, because it may be a way of using modelling to share knowledge
and perceptions about a problem to generate trust or even consensus. Forecasting
may also not require as accurate a model as prediction because one can use recent
observations to update amodel forecast. Discriminating among decision optionsmay
merely require one to be confident that one option is more likely to be better than
another under certain circumstances. Prediction, however, may require more preci-
sion but one should be aware of the precision needed as it will inform the method and
knowledge needed to achieve it. [62] for example considers a range of paradigms to
undertake integrated modelling of socio-environmental systems including Bayesian
networks, systemdynamics, agent-basedmodels and knowledge-basedmodels. They
give guidance on the appropriate paradigm according to modelling purpose, breadth
of issues being considered, level of spatio-temporal detail required, nature of the data
(quantitative only or also qualitative) and ease of representing uncertainty.

Consideration of the form and scale of model output is particularly relevant in the
face of deep uncertainty. It may be for example that one does not need a time series for
each of the various outputs but perhaps a probability distribution or some low-order
moments. Consider that the output required is information about the interactions
between surface (river) and groundwater (aquifer) at some spatial scale. A daily time
series may be needed if one is interested in ecological impacts on a species but for
other purposes such as water accounting it may be that just a flux is required over
some longer term period, say seasonally.

In the following, we will assume that a set of nq outputs q = (q1, . . . , qnq )
T of the

model have been identified as relevant to the modelling objectives. For groundwater
modelling using (1), these quantities of interest (QoI), qi (z), i = 1, . . . , nq , are linear
or nonlinear functionals of the PDE solution. Examples of QoI include the temporal
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and spatial average of hydraulic head within the aquifer or the minimum hydraulic
head at a point x� ∈ Ω over the life of the simulation,

q(z) =
∫ T

0

∫
Ω

h(x, t, z) dx dt and q(z) = min
t∈[0,T ] h(x�, t, z),

respectively.
In addition to exacting the purpose of the deterministic model, one must also

consider the purpose of the uncertainty analysis. For example, does one want to
identify important parameters, predict mean behaviour or quantify risk. Quadrature
methods are ideal for computing expectation of model outputs but cannot be used
for estimating probability distributions.

Quantifying risk, that is, providing quantitative measures of risk associated with
an event, is often a desired outcome of uncertainty analysis. Various measures can be
employed to quantify risk and can be selected based upon a modeller’s or decision-
maker’s aversion to or acceptance of risk. Themost common riskmeasure is standard
deviation, but other measures often used in the financial industry are value at risk and
conditional value at risk. Quantifying risk can be used to understand the probability
of rare events that may have catastrophic consequences.

It may also pay to consider concepts of vulnerability, risk and/or robustness when
attempting to get a more definitive handle on uncertainties. These terms can apply
to the formulation of the objectives/outputs of interest or they can apply to scenario
analysis where one identifies uncertainties in inputs and parameters which lead to
vulnerable, risky or robust outcomes.

4.1 Quadrature

Quadrature is often used in uncertainty analysis to compute moments of QoI, for
example, variance used to quantify risk. A quadrature rule consists of a set of points
z(m) and a corresponding set ofweightswm ,m = 1, . . . , M , which are used to numer-
ically approximate integrals via

∫
Iz

f (z) dμ(z) ≈
M∑

m=1

wm f
(
z(m)

)
. (2)

for somemeasure μ. The quadrature is usually constructed so that it is exact for some
function space. The most common choice is the space of total-degree polynomials
of a given degree.

There are numerous approaches for computing polynomial-based quadrature
rules. For univariate functions, Gaussian quadrature is the most commonly used
approach [27]. Gaussian quadrature rules are derived from the roots of the poly-
nomials orthogonal to the measure μ. The resulting quadrature weights are always
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positive, and the rules are optimal in the sense that, for a Gaussian quadrature rule of
degree of exactness p, no rule with less points can be used to integrate any p-degree
polynomial.

When integrating multivariate functions with respect to tensor product measures
on a hypercube, accurate and efficient quadrature rules can be found by taking tensor
products of one-dimensional Gaussian quadrature rules. These rules will be optimal,
in the aforementioned sense, for functions that can be represented exactly by tensor
product polynomial spaces of degree p. However, the use of such quadrature rules is
limited to a small number of dimensions, say 3–4, because the number of the points
in the rule grows exponentially with dimension.

Sparse grid quadrature methods [29, 84] have been successfully used as an alter-
native to tensor product quadrature for multivariate functions. The number of points
in sparse grid rules only grows logarithmicallywith dimension.Unlike tensor product
rules, however, the quadrature weights will not all be positive. Sparse grid quadrature
delays the curse of dimensionality, by focusing on integrating polynomial spaces that
have high-degree univariate terms and multivariate terms for which the degree of the
term decreases quickly with the interaction order of the term, i.e. the number of
non-constant univariate polynomials that make up that term. The exact rate of decay
of the importance of an interaction depends on the exact type of sparse grid method
being used.

High-dimensional cubature rules can often bemore effective than sparse grid rules
when integrating functions that are well represented by total-degree polynomials.
These rules have positive weights and typically consist of a very small number
of points. However, such highly effective cubature rules are difficult to construct
and have only been derived for a specific set of measures, integration domains and
polynomial degree of exactness [89, 100].

When a function is well approximated by polynomials, the aforementioned poly-
nomial quadrature methods will provide an accurate approximation of the integrals
in (2). Specifically, the error in the estimate will decay exponentially with the num-
ber of points M . The exact rate of convergence depends on the type of method
employed. The convergence rate of tensor product and total-degree rules with M
points is O(N−r/n) for a function with continuous r -th partial derivatives.

When the number of variables x is sufficiently high, all the aforementioned
quadrature methods will produce quadrature rules with an intractably high number
of points. In this setting, Monte Carlo (MC) and Quasi-Monte Carlo (QMC)methods
provide a more tractable means of integrating high-dimensional functions. Unlike
the polynomial-based quadrature rules which consist of varying quadrature weights
in (2), MC and QMCmethods assign equal weights 1/M to each point. MCmethods
select the quadrature weights randomly from the probability measure μ. The conver-
gence rate of MC methods is O(Varz[q(z)]M−1/2). In contrast, QMC methods [40,
86] have a convergence rate of O(M−1 log(M)d)) and select quadrature points that
minimise the discrepancy of the quadrature points. Conceptually, discrepancy can be
thought of as a measure of the distance between sets of points. Unlike MC methods,
which can be used with any probability measure, QMCmethods are designed for the
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Lebesgue measure and transformations must be applied to the points to make QMC
methods applicable to other probability measures.

4.2 Importance Sampling

One often wants to compute the probability of a rare event, for example, groundwater
level dropping below a certain level δ. The probability of the rare event can be
computed using Monte Carlo sampling

Pf = Prob[q((z)) < δ] ≈ 1

M

M∑
m=1

I{q(z)<δ}(z(m)), IA(z) =
{
1, z ∈ A

0, z /∈ A
(3)

where z(m) are a set of samples drawn from the probability distribution of the ran-
dom variables z. Due to its poor convergence rate (see Sect. 4.1), Monte Carlo
sampling quickly becomes infeasible as the probability of failure Pf decreases. If
Pf = O(10−4), MC sampling will require O(108) samples.

An effective alternativemethod to compute the probability of rare events is impor-
tance sampling (IS) [13, 88]. Instead of sampling from the probability distribution
π(z) of z, IS introduces a biasing distribution π̂(z) and rewrites (3) as

Pf ≈ 1

M

M∑
m=1

π(z)
π̂(z)

I{q(z)<δ}(z(m)),

where z(m) are now drawn from the biasing distribution π̂(z). The efficiency of IS is
dictated by choice of the biasing distribution, which directly controls the amount of
samples that fall within the desired rare event domain. The construction of a good
biasing distribution is a difficult task and is the main difference between IS methods.

It is worth remarking that a number of other non-sampling-based methods have
been developed for computing the probability of rare events. Some of the most
popular methods include the first- and second-order reliability methods (FORM and
SORM) [43, 58]. These methods are typically much less expensive than sampling-
based methods but have reduced and limited accuracy.

4.3 Density Estimation

Density estimation (DE) [83, 94] is sometimes used to gainmore detailed insight into
the uncertainty associated with a prediction than can be obtained from simply esti-
mating moments or probability or rare events [87]. DE is also sometimes necessary
when an uncertain prediction of one model is an input to another model [92].
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Given a set z(i) of samples drawn from an unknown distribution with unknown
probability density function f , DE constructs an estimated density function f̂ based
upon the data. Density estimation can be classified into two broad classes, parametric
and non-parametric. Parametric methods assume the form of the distribution and use
data to estimate the parameters (e.g. the mean and variance of a normal distribution)
of the assumed functional form, whereas non-parametric methods do not assume a
parametric form but rather some less restrictive assumptions on density smoothness.

The non-parametric method of kernel density estimation (KDE) has become one
of the most popular DE techniques. Gaussian KDE approximates the true density
as a linear combination of squared-exponential kernels centred at each of the data
points

f̂ (z) = 1

nh

n∑
i=1

K
( z − z(i)

h

)
.

The accuracy of Gaussian KDE is dependent on the selection of the kernel bandwidth
h. The most simple methods for choosing the bandwidth are based upon asymp-
totic arguments. Such kernel density estimation schemes are known to converge
O(M−4/(4+d)) in the mean-squared error [93] andO(M−2/(4+d)) in the L1-error [25].
More computationally expensive methods, such as ones based upon cross-validation,
can also be used to achieve increased accuracy for the same number of samples M .
See [56] for a survey of bandwidth selection algorithms. Adaptively selecting band-
widths for each kernel can result in further improvement in accuracy [39, 65]. Other
non-parametric density estimation techniquesworthmentioning include spline-based
density estimation [42] and methods that include so-called soft information, such as
shape, support, continuity, smoothness, slope, moments, etc. to improve the accuracy
of the density estimate [79].

4.4 Sensitivity Analysis

Sensitivity analysis (SA) is used to identify the sources of uncertainty and their
relative influence [81]. Specifically, SA can be used to determine which input fac-
tors contribute most to the output variability; the presence and types of interactions
between input factors; and the presence of nonlinearities within the model. Identify-
ing important inputs allows future research to focus on increasing knowledge of the
behaviour of the inputs in order to constrain the input variability and hence reduce the
output uncertainty. Identifying insignificant inputs can also help refine model struc-
ture through the removal of parameters that have negligible effect on the behaviour of
the model. Some commonly used SA techniques include local sensitivity methods,
variance-based techniques and regional sensitivity analysis.

Local SA methods, such as automatic differentiation [97] and the Morris method
[67], characterise sensitivity by partial derivatives or gradients at the local point.
These methods are generally very simple and easy to implement and work well for
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linear models. However, when the model is nonlinear, the results obtained at a nom-
inal point are in general not representative of the entire space. Variance-based tech-
niques, such as the Fourier Amplitude Sensitivity Test (FAST) [23, 80] and the Sobol
method [85], involve decomposing the output variance into parts attributed to indi-
vidual variables and interactions between variables. Regional Sensitivity Analysis
(RSA) [45] partitions model realisations into behavioural sets and non-behavioural
sets, that is, the set of input factors that satisfy the problem constraints and those that
do not.

Recently, a new technique known as active subspaces has become popular for
identifying lower dimensional structure. Unlike the aforementioned methods, active
subspaces can identify directions in parameter space which may not be aligned with
the parameter axes that significantly influence a QoI. These directions are the eigen-
vectors of a matrix derived from the gradient of the parameter-QoI map [55].

Related to sensitivity analysis is break-even analysis. Break-even analysis identi-
fies model variables at tipping points where one is considering management options
two at a time and conditions, and uncertainties can be generated to define at which
points one option is as good as another [37].

4.5 Deterministic Calibration and Bayesian Inference

When observational data are available, these should be used to inform prior assump-
tions of model uncertainties. This so-called inverse problem that seeks to estimate
uncertain parameters from measurements or observations is usually ill-posed. Many
different realisations of parameter values may be consistent with the data. The lack
of a unique solution can be due to the non-convexity of the parameter-to-QoI map,
lack of data, and model structure and measurement errors.

Deterministic model calibration is an inverse problem that seeks to find a single-
parameter set that minimises the misfit between the measurements and model pre-
dictions. A unique solution is found by simultaneously minimising the misfit and a
regularisation term which penalises certain characteristics of the model parameters.

In the presence of uncertainty, we typically do not want a single optimal solution,
but rather a probabilistic description of the extent to which different realisations of
parameters are consistent with the observations. Bayesian inference [57] can be used
to define a posterior density for the model parameters z given observational data
y = (y1, . . . , yny ):

πpost(z) = π( y|z)π(z)∫
Iz

π( y|z)π(z)d z
, (4)

where any prior knowledge on the model parameters is captured through the prior
density π(z). The discrepancy between the observations and the simulation model is
encoded in the likelihoodπ( y|z) and should reflect the true nature of this discrepancy.
The true form of the error is often unknown, and it is often assumed that the deviation
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between the model prediction and the model errors is given by additive Gaussian
errors with mean zero and covariance Σnoise, that is

y = q(z) + ε, ε ∼ N (0,Σnoise).

Typically, a functional representation of the posterior distribution πpost is not con-
structed, but rather samples from the posterior are obtained using Markov chain
Monte Carlo (MCMC) sampling methods [33]. Although MCMC sampling is the
most popular and efficient means of sampling from a posterior density, the conver-
gence rate of MCMC sampling degrades with parameter dimension. The decreased
rate of convergence is due to increased mixing time, which produces higher variance
in posterior estimates [66, 78].However, the performance ofMCMCcan be improved
significantly in higher dimension through dimension reduction and leveraging gra-
dient and Hessian information of the parameter-to-QoI map [14, 22]. These methods
achieve greater efficiency by identifying lower dimensional subspaces that charac-
terise the difference between the posterior distributions, induced by the observational
data, relative to the prior and have been used to reduce the effective dimension of the
input variables from O(105) − O(106) to O(101) − O(102).

There is a strong relationship between Bayesian inference and nonlinear least
squares parameter estimation [90]. When the prior and error models are Gaussian
with mean zero and covariance Σpr and Σnoise, respectively, finding the maximum
value of the posterior density (4) or rather the minimum of its negative logarithm
(neglecting constants), i.e.

min
z∈Iz

(
y − q(z)

)T
Σnoise

(
y − q(z)

) + zTΣprz,

is equivalent to solving a regularised least squares problem where the regularisation
term is the value of the negative logarithm of the prior density.

In situations where the proper Bayesian likelihood in (4) is not known or is pro-
hibitively expensive to evaluate, one can use an alternative or misfit function that
measures the discrepancy between a chosen set of statistics of model outputs and
the corresponding estimates from the data. These methods are often referred to as
likelihood-free methods and include techniques such as approximate Bayesian com-
putation (ABC) [8] and generalised likelihood uncertainty estimation (GLUE) [10].

4.6 Response Surface and Emulation Methods

Many simulation models are extremely computationally expensive such that ade-
quately understanding their behaviour and quantifying uncertainty can be compu-
tationally intractable for any of the aforementioned techniques. Various methods
have been developed to produce surrogates of the model response to uncertain
parameters. The most efficient are goal-oriented in nature and target very specific
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uncertainty measures. Generally speaking, surrogates are built using a “small” num-
ber ofmodel simulations and are then substituted in place of the expensive simulation
models in future analysis. Some of the most popular surrogate types include poly-
nomial chaos expansions (PCE) [31, 99], Gaussian processes (GP) [76] and sparse
grids (SG) [15].

For PCE, GP and SG, a number of unique methods can be used to build each
surrogate. The most popular methods to construct PCE include pseudo-spectral pro-
jection [20], least squares [18] and compressive sensing [26, 53]. Maximum like-
lihood estimation and Bayesian inference are the two most popular approaches for
building GP [76] and sparse grids can be built isotropically (treating all variables
equally) [71], with dimension adaptivity [30] or local adaptivity [52, 74]. The choice
of the best surrogate method is problem dependent [34].

Some major benefits of each method include analytic computation of mean and
variance and Sobol sensitivity indices from a PCE; estimates of error in the surrogate
when using GP; and the computational efficiency of constructing a sparse grid (not
to be confused with efficiency in the number of samples required). Moreover, there
are numerous approaches for building PCE, GP and SG.

Many existing studies that utilise surrogates do not consider the distribution of z
when building the surrogate. Probabilistic information is then only included when
sampling the surrogate to compute moments for example. If this approach is adopted
for unbounded variables, such as Gaussian variables, the domain on which the sur-
rogate is constructed must encapsulate the regions of high non-zero probability [51].
Not taking into account the probability of the random variables when building a
surrogate often results in a loss of accuracy when compared to methods that lever-
age such information. Probability-unaware methods lose efficiency because to build
a stable approximation one must often sample in regions of very low probability.
Recently, there have been some attempts to design efficient sampling schemes for
building GP and PCE for different random variable distributions. For example, see
[41, 69] when building PCE using least squares and compressive sensing and [34]
when building a GP.

Surrogates have been used successfully to reduce the number of model simu-
lations to perform moment estimation of the parameter-QoI map [98], sensitivity
analysis [91], importance sampling [63] and Bayesian inference [75]. However, the
number of samples needed to build a surrogate increases with dimension, in many
cases exponentially, which limits the use of surrogates tomoderate dimensional prob-
lems or computationally inexpensive models. To address this challenge, surrogates
are often built on a reduced set of important variables, which have been identified
via sensitivity analysis [19].

4.7 Multi-fidelity Methods

Multi-fidelity methods attempt to reduce the computational burden of uncertainty
analysis, by enriching a small number of high-fidelity simulations with a larger
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number of lower fidelity simulations. In groundwater models, the lower fidelity mod-
els may just represent coarser mesh discretisations, or a 2D and/or 1D approximation
of a 3D model, an empirical model or even a surrogate (see Sect. 4.6). Multi-fidelity
approaches enablemore rapid convergence to high-fidelity statistics when such lower
fidelity models provide predictive utility. In particular, multi-fidelity UQ can con-
verge more rapidly than single-fidelity UQ in cases when there is a high correlation
between predictions of the models of varying fidelity.

Many multi-fidelity methods, such as Multi-level Monte Carlo (MLMC) [32],
Control Variate Monte Carlo (CVMC) [32] and surrogate-based methods [70], target
the discrepancy between two levels of fidelity. Multi-level and control variate Monte
Carlo sampling can efficiently estimate statistics of the QoI, such as E[q], by lever-
aging models with strong correlation. The RMSE of a Monte Carlo estimate of some
function g(z) is ε = M−1Var[g] and if we can reduce the variance of g then we can
achieve a desired level of accuracy in the estimator Var[g] using less samples. As
an example consider Control Variate Monte Carlo and again let q be the solution to
the groundwater model in (1), and let f be another model (called a control variate)
which is correlated with q, then we can compute an unbiased estimator for the mean
of q using

ECV[q] = 1

M

M∑
m=1

(
q(z(m)) − λ

(
f (z(m)) − E[ f ])) , λ = ρ

√
Var[q]
Var[ f ] ,

where ρ is the correlation between q and f . Using the optimal value of λ given above,
the variance of the control variate estimator ECV[q] is a factor of 1 − ρ2 smaller than
the variance of the single-model estimator E[q]. By reducing the variance of the
estimator, we are able to reduce the error in the Monte Carlo estimate of the mean
of q. Multi-level Monte Carlo works in a similar way by estimating the expectation
of q by computing expectations of the discrepancy of pairs of models of increasing
fidelity. For example, consider a two-level MLMC estimate of the expectation of q
with a low-fidelity model q0

EML[q] = E[q0] + (E[q] − E[q0]) = 1

M0

M0∑
m=1

q0(z(m)) + 1

M1

M1∑
m=1

(
q(z(m)) − q0(z(m))

)
,

where, if the correlation between q0 and q is high, then M1 � M0. MLMC and
CVMCwere developed independently but have now been successfully used together
[28]. It is interesting to note that itwas shown in [73] that surrogatemodels that inform
different aspects of the high-fidelity model are better than surrogate models that are
accurate but lack a rich diversity. Focusing on the discrepancy between models has
also been used with methods that build surrogates of the discrepancy and exploit
structure, such as sparsity or reduced spectral content of the discrepancy, which may
not be present in the single-fidelity models.

Finally,wemention a vastly different approach formulti-fidelity uncertainty quan-
tification [68] which uses a low-fidelity model of a PDE to choose a set of samples
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z that correspond to a linearly independent set of low-fidelity PDE solutions h0, and
then evaluates the high-fidelity PDE at these samples and computes a multi-fidelity
approximation of the solution

ĥ(x, t, z) =
m∑
i=1

〈h0(x, t, z), h(x, t, z(m))〉h(x, t, z(m)). (5)

To evaluate the coefficients of the high-fidelity basis, one must evaluate the lower
fidelity model and then project the resulting solution onto the high-fidelity basis. If
the low- and high-fidelity models are well correlated, then this will be a reasonable
approximation of the coefficients of the high-fidelity basis. Although the low-fidelity
model has a constant error, the bi-fidelity construction (5) provably achieves expo-
nential error convergence as the number of high-fidelity simulations is increased.
The number of high-fidelity solutions required to achieve a given accuracy will be
dependent on the rank of the span solution space of the high-fidelity model, that is,
the number of linearly independent solutions.

We note here that unlike MLMC and CVMV, the low-rank solution approach and
the surrogate-based discrepancy approach can be used to not only compute moments
but, like the surrogates discussed in Sect. 4.6, also be used to for computing PDFs
and rare events and even Bayesian inference.

4.8 Scenario Modelling with and Without Formal
Probabilities

In its broadest sense, this involves exploringmultiple, plausible scenarios about future
conditions, model structure and parameter values. It can be used for many purposes,
such as to promote discussion and sharing of knowledge and perspectives and/or
to search for those scenarios that lead to good, intermediate and poor outcomes.
At its core are simulation of model drivers and parameter samples, and analysis
of the model QoI. It can potentially utilise many of the methods above to achieve
computational efficiencies required for models with slow runtimes, as often occurs
with integrated models and groundwater models.

4.9 Crash Testing/Torturing the Model

This can be similar to scenario modelling in that attempts are made to see what
model parameter sets, observation periods and other conditions establish limitations
or invalidate the model. This can involve examining the performance of the model
through time and/or space to assess inadequate performance.

Multiple models are also a useful way to explore uncertainties in model formu-
lations. Different model candidates or perspectives can be used with the other tools
mentioned above and below to understand sources of uncertainty. Various techniques
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such as Bayesian model selection can then be used to assess the strengths and weak-
nesses of each, and under which conditions each model is more suitable.

4.10 Qualitative Information About Uncertainty

Aqualitative approachmay be sufficient or at least a useful adjunct in some cases. The
emphasis in this case may be on how the prediction was produced, and the limitations
involved in doing so [36]. As covered in [36], one way of approaching this is through
quality assurance of the modelling process [77] and its constituent assumptions,
whilst another is to include qualitative judgements about the information and how it
is produced [95].

4.11 Understanding Your Data and Its Relationship to the
Model

Simple textbook analysis of data to reveal their uncertainties before modelling is
under-practised or at least under-reported. There is a wealth of tools available to
detect outliers, trends, implausible correlations, timing errors in model response and
generally extract information from data. The value of simple plotting and visualisa-
tion should not be ignored.

Often collection of experimental data is expensive and only a limited amount
of experimental data can be obtained. Not all experiments, however, provide the
same amount of information about the processes they are helping inform. Conse-
quently, it is important to design experiments in an optimal way, i.e. to choose some
limited number of experimental data tomaximise the value of each experiment. Opti-
mal experimental design (OED), that is, using physical models to guide experiment
selection, has been shown to drastically improve the cost-effectiveness of experi-
mental designs for a variety of models based on ordinary differential equations [11],
partial differential equations [44] and differential algebraic equations [7]. OED has
been developed in both Bayesian and non-Bayesian settings [5, 16, 96].Whenmodel
observables are linear with respect to the model parameters, alphabetic optimality
criteria are often used [38].

4.12 Multidisciplinary Analysis

Often modelling environmental systems involves the integration of numerous com-
ponents from multiple disciplines. Uncertainty analysis of such integrated system
models is often challenging when applied to the integrated system. Simulation of
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the integrated system may be computationally expensive limiting the exploration of
model uncertainties and often individual model components are managed by differ-
ent groups, with varying computational software and hardware, which can hinder
unified and automated modelling.

Recently, a number of methods have been developed that decompose system
uncertainty analysis into uncertainty analysis of individual components, which can
then be combined efficiently to assess system-level uncertainties [1, 82]. This
approach allows the vast majority of computational effort, that is, UA of individual
components, to be carried out in parallel. The assembly of the system-level analysis
can be carried out using the component-level analysis with much less computational
effort.

An example of a multicomponent system is shown in Fig. 1. In this example,
two models, for example, neighbouring groundwater models that share a boundary,
are used to provide input to a higher level model, which may be a model of a bird
ecosystem. In this example, the coupling variables b1 and b2 represent boundary
conditions along the shared interface between the two groundwater models. The
system consists of three models with random variables ξ,η and θ. These variables
may be unique to each model or some or all variables may be shared between models
so that the variables of the coupled system are z = ξ ∪ η ∪ θ. Often only a small
number of random variables are shared betweenmodels, thus performingUAon each
individual component can be performed in a much lower dimensional setting. This
facilitates the use of efficient lower dimensional methods such as surrogates, which
may not be tractable when applied to the integrated system [17]. Furthermore, often
only a lower dimensional subspace of the coupling variables significantly affects the
outputs of F1 and F2, and consequently dimension reduction techniques can be used
to further increase the tractability of decoupled analysis [3, 64].

A number of different approaches exist for decoupling the system components.
The first approach uses Monte Carlo sampling combined with fixed-point iteration
that, for a given realisation of the random variables, iteratively finds the values of the
coupling variables that produce consistent solutions f 1 and f 2. The iteration starts
with arbitrary value of b1 being passed as input to F2, f 2 and b2 are then computed,
and b2 is passed as input to F1 and this procedure is repeated until convergence.
Surrogate approaches have also been used to decouple multisystem analysis. For
example, [4, 17, 21] introduce variables y that represent the dependencies b1 and
b2 on the random variables z. Surrogates are then built over the random variables z
and b in the component-level analyses. An appropriate coupling algorithm can then
be applied to the surrogates to find the values of the coupling variables. In [82], a
likelihood-based approach was proposed to decouple feedback loops, reducing the
problem to a system of only one way coupling, resulting in a so-called feedforward
problem, thereby removing the need for fixed-point iteration.

When the multicomponent system consists of only forward couplings, measure
transformations can be used to increase the efficiency of the system analysis [1].
Each single component analysis can be performed using a proposal distribution for
each of the unknown model inputs which are dependent on the outputs of other
models. The proposal distribution (light blue in Fig. 1) must encapsulate the regions
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ξ

f1 = F1(ξ, b2)
b1 = B1(f1, b2, ξ)

η

f2 = F2(η, b1)
b2 = B2(f2, b1,η)

b1

b2

f1 f2

f3 = F3(θ,f1,f2)

f3
θ

Fig. 1 An example of a multicomponent system model. The efficiency of uncertainty analysis of
such systems can be increased by decoupling the individual model components, applying UA on
each component and then reassembling the results to assess the coupled system. The distributions
of the random variables z are shown in grey. Proposal distributions for the coupling variables ( f 1,
f 2) used in the decoupled analysis are shown in light blue. The true distributions of the coupling
variables recovered during the assembly phase are shown in dark blue

of non-zero probability of the unknown distributions (dark blue). Samples of each
model output can then be drawn from these proposal distributions for each model
independently and in parallel.1 For the lowest level models, there is no need for an
approximation of the inputs as they are the known random variables. Starting with
the output, f 1, f 2 of the lowest level models, importance sampling (at no extra sim-
ulation cost) is used to reweight the input to the next set of downstream components
f 3 to obtain effective samples from the true distribution of f 3 (dark blue). The
weights are simply the ratio of the true and known density of f 3 and the proposal
density. These steps are repeated for each level of the system model hierarchy. The
computation of these weights requires density estimation which can be expensive in
higher dimensions (see Sect. 4.3). Consequently, optimisation approaches have been
developed for reweighting samples without the need to estimate densities of model
inputs and outputs [2].

In addition to algorithms that enable decoupled analysis of integrated systems,
various software frameworks have been, and continue to be, developed to address
(or in an attempt to address) the technical complexity and issues encountered when
integrating separatemodels [24, 35, 72]. The approaches construct a (software) inter-
face for each component model to allow interaction through a single formalised and
unified framework. There have also been attempts to leverage software development
technologies to provide an archive of a model used for a particular purpose or to

1In this example, we will assume that the coupling between F1 and F2 has been broken.
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produce a particular result, and a common runtime platform to ensure differences in
hardware do not cause issues (see [46, 47, 54] for further discussion).

4.13 Visualisation and Data Analysis

Effective visualisation tools are needed to provide intuitive descriptions of complex
and large simulation data. The importance of this task has been recognised, including
the USDepartment of Energy (DOE) which has funded the SciDAC Institute of Scal-
able Data Management, Analysis and Visualization (SDAV). Effective visualisation
tools can facilitate better understanding of the processes that produce the data and
identify interesting characteristics of data sets. Visualisation can be used to extract
information from large-scale data; however, the best visualisation technique is prob-
lem dependent. The most appropriate visualisation method for a task is dependent
on the data type and the intended goals of the data analysis. See [12] for a review of
visualisation methods for uncertainty visualisation.

5 Conclusions

Hydrological models, of the surface and subsurface type, underpin modelling in
the water resources sector. But many models in the environment sector, especially
hydrological ones, are non-identifiable. Thus, analysis tools are essential to expose
critical parameters so that either improved, identifiable (and likely simpler) model
formulations can be obtained or the limitations of non-identifiability can be taken
into account in uncertainty assessments.

In the paper, we have outlined a fast-growing set of methodologies, particularly in
the computational mathematics literature, that are pertinent for uncertainty assess-
ment. There seems considerable scope for advancing UA by integrating relevant
ones into cross-sectoral applications. Of course, this will entail considerable collab-
oration between domain specialists who often take ownership of the problem and
computational methods experts.

While it may seem obvious, the most basic step in UA is to ensure that the model
addresses the questions being asked. Indeed, it must follow that one allows for the
expense of essential analysis of model uncertainty and ascertains what uncertainties
are crucial and concentrate on them. In this connection, attention to problem framing
and stakeholder engagement is now generally regarded as crucial when the problem
has deepuncertainty in order tomanage it.Managing uncertainty has several elements
including initially identifying and ranking the importance of its sources so that it can
be reduced where possible and generally appreciated.

There continues to be too little crash testing of models to expose their limitations
and too little reporting of those limitations and assumptions. A positive development
has been the increasing use of sensitivity analysis to investigate major inputs and
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parametric contributors to the predictions from using a particular model structure
and data set.

It is obvious that mutual learning about a problem can proceed in the face of
uncertainty and the benefits of this process are not to be underestimated but it is
also possible that good decision-making can also proceed in the face of uncertainty.
Broadly, mathematical methods of modelling and analysis as well as clever, inclusive
problem framing have much to offer to advance outcomes (understanding, social
learning and decision support) for treating wicked problems in the water resource
and related sectors.
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