
Cascading-Failure Tolerance for Language
Service Networks

Kemas M. Lhaksmana, Toru Ishida and Yohei Murakami

Abstract One of the main features of The Language Grid is its support for service
composition, i.e. creating new language services that meet user requirements by
combining the existing ones. Despite the potential of service composition, such
a service-oriented computing (SOC) application may experience cascading failure
when a disruption on one or more component services is propagated to the composite
services that combine them. As the number of language services grows, composite
language services will become more common, and thus understanding cascading
failure among language services becomes more important. This chapter investigates
how failure may propagate among language services and how to improve language
service tolerance to cascading failure. To this end, the dependency between language
services is modeled as service network on which cascading failure is simulated
and analyzed. We also generated service networks in scale-free, exponential, and
random topology to analyze how cascading failure occurs in different topology.
The simulation reveals that service networks with scale-free topology have better
cascading-failure tolerance compares to that of other topology.

Keywords Cascading failure · Service network · Scale-free network

K. M. Lhaksmana (B)
School of Computing, Telkom University, Jl. Telekomunikasi No. 1,
Bandung 40257, Indonesia
e-mail: kemasmuslim@telkomuniversity.ac.id

T. Ishida
Department of Social Informatics, Kyoto University,
Kyoto 606-8501, Japan
e-mail: ishida@i.kyoto-u.ac.jp

Y. Murakami
Unit of Design, Kyoto University, 91 Chudoji Awata-cho,
Kyoto 600-8815, Japan
e-mail: yohei@i.kyoto-u.ac.jp

© Springer Nature Singapore Pte Ltd. 2018
Y. Murakami et al. (eds.), Services Computing for Language Resources,
Cognitive Technologies, https://doi.org/10.1007/978-981-10-7793-7_6

91

92 K. M. Lhaksmana et al.

1 Introduction

The Language Grid was designed as service-oriented infrastructure for sharing
language resources as services and combining the language services to create new
services by using service composition [10]. Despite the advantages of service compo-
sition, bindings between composite services and their component services introduce
dependency that may cause cascading failure issue.

To address cascading failure in The Language Grid, Fig. 1 illustrates an example
of service composition. Suppose The Language Grid provides a composite service
type “Translation Combined with Bilingual Dictionary” that combines “Morpho-
logical Analyzer”, “Bilingual Dictionary”, and “Translation” service types. Each
service type can be realized by one or more service instances (hereafter “services”
for brevity). For example, Mecab and TreeTagger are services of “Morphological
Analyzer” service type. We call these two services as substitutable services since
each of them can perform generally the same functions, and thus can substitute each
other.

In the composite service “Translation Combined with Bilingual Dictionary”, cas-
cading failure may occur when one of the component services fails and no substi-
tutable service is available. Therefore, language service infrastructure, such as The
Language Grid, should maintain sufficient number of substitutable services such
that cascading failure can be minimized. Since The Language Grid currently has
sufficient substitutable services for each service type, i.e. roughly 11 substitutable
services for each component service in average, cascading failure is less likely to

Fig. 1 Service composition in The Language Grid is modeled into two abstraction level

Cascading-Failure Tolerance for Language Service Networks 93

occur. However, in the near future The Language Grid is expected to be populated
with more services and service types due to the Open Language Grid initiative that
was designed to allow user groups to establish their own Language Grid servers. In
addition, users may create composite services out of their own services or combin-
ing the services from other servers [11]. Therefore, investigating cascading failure
among language services is still of importance.

To investigate cascading failure among language services, the dependencybetween
the services is modeled as service network whose nodes represent services and links
represent the dependency between them. On these service networks, cascading fail-
ure is simulated by randomly selecting a node to experience failure which then may
trigger subsequent failures on the other dependent nodes. We observe the failure
propagation in service networks of different topology. The simulation reveals that
the number of failed nodes decay exponentially over the number of substitutable
services. This result suggests that the existence of several substitutable services sig-
nificantly improves the tolerance to cascading failure. As for the effect of network
topology to cascading-failure tolerance, the simulation result shows service networks
with scale-free topology have better tolerance compared to the other topologies. This
is contrast to cascading failure in power networks, where scale-free topology shows
poor tolerance [5].

2 Cascading Failure

Cascading failure possibly occurs in interdependent systems where failure of one
system component disrupts the other dependent components. One of the well-known
cascading failure in the Internet industry is Amazon EC2 outage that caused disorder
to somemajor Internet companieswhich used their services [1]. In the study of critical
infrastructure, cascading failure is defined as a disruption in one infrastructure that
causes disruption in another [19]. Cascading failure has gained more interest since
major cascading failure events [16] and power grid failures affecting large areas
occurred in the past, such as those in Italy [20], North America [13], Australia, and
New Zealand [2]. Major cascading failure events have also occurred in the past, such
as fires in the aftermath of earthquake in San Francisco (1906) and Kobe (1995), and
the disruption on some public services after a communication satellite orbital shift
(May 1998) [16].

Even though much cascading failure research has been done in power network
and critical infrastructure domains, it has not been much analyzed in SOC. In service
networks, cascading failure happens when there is a failure in a node (link) and it is
spreading into one or more than one nodes (links). Cascading failure is classified into
two types: vertical and horizontal cascading failure [14]. The former happens when
the failure follows a path along the links to either direction or to both direction, which
is determined by the dependency among the neighboring cascades. As for the latter,
the failure spreads to the other nodes (links) which are not necessary adjacent, such
as that of in power network where the failure cascades due to load redistribution [5].

94 K. M. Lhaksmana et al.

3 Language Service Network Model

We present the model of language service network (hereafter “service network” for
brevity) as a directed network where a node represents a language service and a link
represents dependency of one language service on the other. Next, we address the
properties of a service network that are relevant to its tolerance against cascading
failure. Finally, we address The Language Grid service network to support our analy-
sis on cascading failure propagation and tolerance. The formal definition of a service
network is given as follows:

• A service network is defined as N = (S, E).
• S = A ∪ C is a set of services that consists of atomic services A and composite
services C .

• E = L ∪ R is a set of links.
• L is the set of dependency links in the service network. Li is the set of dependency
links of a composite service si .

• R is the set of alternate links in the service network. Ri, j is the set of alternate
links of a dependency link li, j ∈ Li (see Fig. 2).

In addition to the definition above, to quantify the degree of interdependency
between the services, the following measures are provided:

• Let service degree of dependency depi = |Li | be the number of services that may
be executed at runtime by a composite service si .

• Let dependency link degree of alternative alti, j = |Ri, j | − 1 be the number of
substitutable services that can substitute a failed service that associated to the
same dependency link li, j .

An example of a service network is illustrated in Fig. 2, where a service is repre-
sented as a circle, and the dependency of a composite service on a component service

Fig. 2 The service network representation of the composite service “Translation Combined with
Bilingual Dictionary” (Fig. 1). Each service is represented as a circle, while the dependency between
two services is illustrated by an arrow. An arc connecting two or more links indicates that the service
depends on all of the services pointed by the links, whereas a small circle indicates that the service
requires either service connected by the links

Cascading-Failure Tolerance for Language Service Networks 95

is represented as an outgoing link originated from the composite service. The figure
represents the dependency of the composite service “Translation Combined with
Bilingual Dictionary” on its component services. In the service network, the com-
posite service “Translation Combined with Bilingual Dictionary” is represented by
the node s7. The set of dependency links of s7 is L7 = {l7,1, l7,2, l7,3}. Therefore, the
degree of dependency of s7 is dep7 = |L7| = 3.

The existence of a substitutable service is illustrated by splitting a dependency
link into two or more alternate links. For example, the set of alternate links on
l7,1 is R7,1 = {r17,1, r27,1}. The degree of alternative of l7,1 is alt7,1 = |R7,1| − 1 = 1.
Likewise, l7,2 and l7,3 degree of alternative is also 1. The existence of substitutable
services, as well as alternate links, is useful to prevent cascading failure. Suppose
service s3 (Life Science Dictionary) is unexecutable, then the composite service s7
is still able to perform its functions because there is another service, which is s4
(Agriculture Dictionary), that can be invoked to perform the same functions.

3.1 Network Topology

We present some relevant properties that contribute to cascading-failure tolerance,
which are network topology, the degree of interdependency between services, the
depth of composite services, and the proportion of composite services in the network.

Some related work has proved that network topology influences tolerance to cas-
cading failure [5]. For complex and large-scale networks, their topology is classified
to their degree distribution [6]. Directed networks have in-degree distribution and
out-degree distribution, which can be acquired by calculating the distribution of
incoming and outgoing links. In service network, the out-degree of a service rep-
resents the number of component services that the service depends to, while the
in-degree is the number of composite services that require this service as one of its
components.

In this work, cascading failure is observed in service networks of three kinds
of network topology: scale-free, exponential, and random network topology. The
first two are the topology of growing networks, i.e. the type of networks on which
the number of nodes and links increases over time. Scale-free network gains inter-
ests from researchers because of its high tolerance against random failure [3]. This
network grows due to preferential attachment. Every time a node is added to the
network, new connections are made from the newly added node to the existing ones.
However, existing nodes with higher in-degree is always preferable to be chosen than
thosewith lower in-degree. Scale-free networks are indicatedwith degree distribution
that follows power-law as follows

P(k) ∼ k−γ (1)

In Eq.1, P(k) is the probability to find a node having k connections, while γ

is a constant within 2 < γ < 3. Unlike scale-free networks on which the nodes are

96 K. M. Lhaksmana et al.

Fig. 3 In-degree distribution
of scale-free, exponential,
and random service network
topology. The in-degree
distribution of these
topologies follow power-law,
exponential, and Poisson
distribution,
respectively [15]

connected by preferential attachment, new nodes in exponential networks randomly
choose existing nodes to connect. Due to this random connections, the network will
exhibit exponential degree distribution [3].

Another network topology that has been long studied is random network. The
number of nodes in a randomnetwork is considered to be fixed, while the connections
aremade in randommanner between these existing nodes [7]. In thisway, the network
will exhibit Poisson degree distribution.

Scale-free and exponential networks are discussed since most real networks are
growing networks where the number of nodes increases over time. Random network
is also observed in this chapter since this type of network has beenwidely studied and
represents the kind of service networks with fixed number of nodes. The in-degree
distribution of scale-free, exponential, and random service network is illustrated in
Fig. 3.

3.2 Degree of Interdependency Between Services

To measure the level of service interdependency in a service network, we provide
several metrics. First, the network degree of dependency 〈dep〉 measures the number
of required services for all composite services in the network. This is a global variable,
whereas the composite service degree of dependency depi , which has been addressed
earlier, applies only to a particular service si ∈ C . The formal definition of this
measure is as follows [14].

Cascading-Failure Tolerance for Language Service Networks 97

〈dep〉 = 1

|C |
∑

i
depi (2)

Second, we also define the network degree of alternative 〈alt〉 to quantify the num-
ber of substitutable services in the network. Likewise, 〈alt〉 is also a global variable,
whereas alti, j represents the degree of alternative for the particular dependency link
li, j . This measure is defined as [14]

〈alt〉 = 1

|L|
∑

i, j
alti, j (3)

In addition to the aforementioned measures, another metric is also considered
since it affects a service network tolerance to cascading failure [15]. The measure is
the depth of service composition, which is considered because service composition
can be nested. The deeper the composition, the more possible a composite service to
experience cascading failure after random failure of one of its component services.
The depth of a service si is defined as [14]

depthi =

⎧
⎪⎨

⎪⎩

1
|Si |

|Si |−1∑
j=0

[depth j + 1], si is a composite service

0, otherwise

(4)

while the depth of service composition for the whole network is defined as [15]

〈depth〉 = 1

|C |
∑

i
depthi (5)

In this chapter, we only consider the first two measures: 〈dep〉 and 〈alt〉. Even
though the other measure also affects service network tolerance to cascading failure,
it can be ignored in the current service network of The Language Grid. We found
that The Language Grid service composition is shallow at 〈depth〉 = 1.29 [15]. This
shows that most composite services in The Language Grid are not nested.

4 The Language Grid Service Network

The Language Grid is a typical example of a service network, where users can add
new services and combine existing services by means of service composition [10].
In The Language Grid, service types classify services based on their functionalities.
Services belong to the same service type if they share the same functionalities A
composite service type is a combination of different service types. An example of a
composite service type has been illustrated in Fig. 1.

98 K. M. Lhaksmana et al.

Fig. 4 In-degree distribution
of The Language Grid
service networks

The Language Grid operation centers have been established in several coun-
tries, including Japan (Kyoto), Thailand (Bangkok), Indonesia (Jakarta), and China
(Urumqi), which in total provide 188 services as of October 2014 when the experi-
ment was conducted. The architecture of The Language Grid allows one to combine
services across different operation centers [17]. Here, we limit our analysis on 117
atomic services and 21 composite services provided by Kyoto Language Grid oper-
ation center. Even though the proportion of composite services in The Language
Grid (15%) is much less than the proportion of atomic service, they are frequently
invoked, which is 47% of all invocations. This indicates that the composite services
are vital for The Language Grid users. These composite services mostly consist of
2–3 atomic services at 〈dep〉 = 2.81. The Language Grid has many substitutable ser-
vices at 〈alt〉 = 10.92 [14]. The high 〈alt〉 gives The Language Grid high tolerance
to cascading failure, as it will be explained in Sect. 5.2.1.

Even though the number of services in The Language Grid is expected to grow,
the current size of the network is rather small. Therefore, the network topology of
The Language Grid still cannot be classified by its in-degree distribution as it shows
neither power-law nor exponential distribution (Fig. 4). However, larger service net-
works generally exhibit scale-free topology [8, 9, 12, 18]. As the other scale-free
networks on which the connections are made in preferential manner [3], composite
services in the LanguageGrid also tend to combinewidely used and popular services,
and thus would become scale-free [15].

Cascading-Failure Tolerance for Language Service Networks 99

5 Cascading Failure Simulation

To perform cascading failure simulation, some service networks are generated with
different topology and different degree of interdependency. The first part provides
the algorithms to generate these networks, while the second part addresses the way
to simulate cascading failure and the analysis of the simulation result.

5.1 Generating Service Networks

In this Section, we generate artificial service networks, i.e. the networks that are
computationally created from scratch instead of generated from existing service net-
works. We generate some service networks with different degree of interdependency
and different topologies, which are scale-free, exponential, and random networks.
Analyzing these three topologies help us to understandwhich one has better tolerance
towards cascading failure.

5.1.1 Scale-Free, Exponential, and Random Service Network

Both scale-free network and exponential network are a part of growing network,
which is why the same algorithm is used to generate them. What make these two
are different is the way they choose existing nodes for making connections. Scale-
free networks use preferential attachment to choose the service to connect to, while
exponential networks choose randomly.

Our algorithm uses the preferential attachment probability function as follows [4]

�(kini , α) = kini + α

� j (kinj + α)
(6)

where kini is the service si in-degree, j is the index for all services, and α is the
initial attractiveness parameter. According to this function, the higher the in-degree
of a service, the more possible it is to be chosen. The initial attractiveness α gives
value to the services with zero in-degree, such as those which are newly added to the
network.

The algorithm to generate scale-free and exponential service networks uses the
following parameters [15]:

• n0 is the number of isolated services at the beginning of the simulation t0
• Δt ≥ 0 is the duration of the network generation
• c ∈ [0, 1] is the expected proportion of composite services in the network
• δ is the expected degree of dependency 〈dep〉 such that δ ≈ 〈dep〉
• λ is the expected degree of alternative 〈alt〉 such that λ ≈ 〈alt〉
• α is the initial attractiveness parameter

100 K. M. Lhaksmana et al.

The algorithm begins at t0 when n0 service nodes are added to the networkwithout
making connections between them. The next steps are to add some more nodes and
to make connections from the newly added nodes to the existing ones. The following
stepswill be performed iteratively at each timestep from t = t1 until t = t0 + Δt [15]:

1. Create a service si .
2. Under probability c, generate depi , a random number within [1, δ × 2 − 1].
3. If depi is generated in step (2)

a. Create the set of dependency links Li = {li,0, ..., li,depi−1}.
b. For each dependency link li, j ∈ Li , generate a random number alti, j within

[0, λ × 2].
c. If alti, j = 0

i. Choose a service sp ∈ S | sp 	= si .
ii. Connect the dependency link li, j from si to sp.

d. Else
i. Choose alti, j + 1 services.
ii. Split the dependency link li, j into alti, j + 1 alternate links.
iii. Connect these alternate links to the chosen services.

The connections will only be made between services that are currently not con-
nected and will not be connected to themselves, i.e. the network restricts multiple
links and self links. In the algorithm, the first step is to initialize a service network
with some number of atomic services, and then add one service at a time. The num-
ber of composite services is determined by the probability c (step 2). A newly added
service becomes an atomic service if no dependency link created for the service,
but it will become composite service if one or more dependency links are added to
the service. In making connections (step 3.c and 3.d) the way to choose the existing
nodes depends on the network topology to be created. If the network is expected to
be scale-free, then preferential attachment (Eq. 6) is applied. Otherwise, the nodes
are chosen randomly such that the network will grow as exponential network.

The same algorithm to generate exponential service network is usedwhenwewant
to generate random service network, but it does not need node addition. Thus, random
service network algorithm uses all the parameters except the number of duration of
the network generation Δt and the number of nodes is fixed so that n0 = |S|. The
algorithm to generate random service network is as follows [15]:

1. Populate the network with n0, which is also the expected size of the network.
2. For each si ∈ S, do the steps 2 and 3 in the algorithm as generating exponential

service networks.

5.1.2 The Language Grid Service Network

Apart from generating service networks with different topology, we also generate
The Language Grid service network to observe cascading failure in a real lan-
guage service network. As illustrated in Fig. 1, The Language Grid services are

Cascading-Failure Tolerance for Language Service Networks 101

classified into service types according to the functionalities they provide. The Lan-
guage Grid service network is generated by representing service instances as atomic
service nodes, and service types as composite service nodes. The links from compos-
ite service nodes to their component service nodes are created based on the service
types they combined. If a combined service type is realized by only one service
instance, a dependency link is created connecting the composite service node to
the atomic service node. If there are more than one service instance that can pro-
vide the functionality for the service type, alternate links are created to connect
the composite service node to these atomic service nodes. Nested composition is
created when a composite service types combines one or more composite service
types. The service network representation of a composite service in The Language
Grid, including its component services, has been illustrated in Fig. 2.

5.2 Simulation Result and Analysis

In this simulation, we use different types of topology to create service networks, each
of which has different 〈dep〉 and 〈alt〉, using the algorithm explained in Sect. 5.1.
Therefore, according to their topology, the simulation generate three typical types
of service network (scale-free, exponential, and random) and The Language Grid
service network that is simulated from real world service network.

Scale-free and exponential service networks are createdwith a few initial services,
i.e. n0 = 10. Then, for the duration of Δt = 10,000, adding one service at a time
to make the network grows until it reaches the size of 10,010 nodes. The scale-
free networks are generated with the initial attractiveness parameter α is set at 1. For
random service networks, it is initialized with fixed number of services n0 = 10,010.
For all these three kinds of topology, the composite service proportion parameter is
c = 0.4 so that 40% of the nodes are composite services, whereas 60% are atomic
services. Different 〈dep〉 and 〈alt〉 are also implemented to these networks by setting
different values for δ and γ parameters. As for The Language Grid service network,
as we have explained in Sect. 5.1.2, it is generated based on its existing composite
services.

Briefly, the simulationworks as follow. First, a service network is generated for the
expected network topology, 〈dep〉, and 〈alt〉 according to the algorithm in Sect. 5.1.
After the service network is created, the following algorithm is executed.

While there is an active service in the network, do the following:

1. An active service is chosen randomly to be deactivated to simulate random failure.
This service is called random failed service.

2. If the random failed service is a component service, i.e. it participates in one or
more service compositions, deactivate the composite services when there is no
substitutable service. The deactivation is performed recursively all the way to the
outermost composite services.

102 K. M. Lhaksmana et al.

To analyze how cascading failure occurs in service networks, we observe the
number of cascade failed services nc over the number of random failed services nr .
The value nc is acquired by counting the failed composite services in step 2. For
each iteration above, one active service is chosen randomly to experience random
failure (step 1). Therefore, nr is actually the number of iteration. The last iteration is
performed when the network is collapse, which is when nr + nc = |S|. The analysis
of the simulation results are addressed next.

5.2.1 Network Topology and Cascading-Failure Tolerance

To analyze the effect of network topology on the cascading failure, we observe the
number of cascade failed services over the number of random failed services (Fig. 5).
The value 〈dep〉 is set at its lowest possible value 1, while the value 〈alt〉 varies at
0, 0.5, and 1 on Fig. 5a, b, c, respectively. From the figures, networks with scale-
free topology have a better tolerance compared to exponential networks because

(a) (b)

(c)

Fig. 5 The number of cascade failed services over the number of random failed services on different
topology and different degree of interdependency

Cascading-Failure Tolerance for Language Service Networks 103

the fraction of high in-degree nodes in scale-free network is much less than that in
an exponential network. This is similar to when we compare exponential network
to random network, in that exponential network has better tolerance than random
network because the fraction of high-degree nodes in exponential network is much
less than the ones in random network. In addition, the graphs also show that the effect
of network topology on the tolerance to cascading failure getting less significant as
〈alt〉 increases, because the more substitutable services in the network, the higher
tolerance to cascading failure. The existence of substitutable services also explains
the high tolerance of The Language Grid on cascading failure. With 〈alt〉 = 10.92,
the number of cascade failed services in The Language Grid is very low.

5.2.2 Degree of Dependency and Cascading-Failure Tolerance

To analyze the effect of 〈dep〉 on cascading failure, Fig. 6a provides the number of
cascade failed services over 〈dep〉 for service networks at 〈alt〉 = 0 and nr = 0.2.
Cascade failed services are frequent in service networks with higher 〈dep〉. This is
because the interdependency between the services is stronger.

The graph also shows linear relationship between the number of cascade failed
services and 〈dep〉. The shallow depth of service composition in the network is the
one which is responsible for this linear relationship. So from the result above, we can
decrease the number of required component services from each composite service in
order to increase the cascading-failure tolerance. Unfortunately, 〈dep〉 cannot always
be predefined since the number of component services in service composition is
usually determined by the problem domain. Therefore, it is important to consider
improving 〈alt〉 to achieve an expected degree of tolerance instead of restricting the
number component services.

(a) (b)

Fig. 6 The number of cascade failed services over the degree of dependency (a) and the degree of
alternative (b) [15]

104 K. M. Lhaksmana et al.

5.2.3 Degree of Alternative and Cascading-Failure Tolerance

To observe the effect of 〈alt〉 to service network tolerance on cascading failure,
Fig. 6b illustrates the graphs of the number of cascade failed services over 〈alt〉.
In these service networks, 〈dep〉 is set to 1, which is the lowest possible value to
vary 〈alt〉. From the result, we can increase the network tolerance towards cascading
failure by increasing 〈alt〉. However, the improvement of the tolerance to cascading
failure will be significant only when the 〈alt〉 is currently low at 〈alt〉 < 2. On higher
〈alt〉, the improvement of the tolerance becomes less significant. When having many
substitutable services is considered costly, the simulation result suggests that having
several substitutable services (e.g. 2 or 3)would be sufficient to have a good tolerance.

6 Conclusion

The purpose of this study is to analyze the effect of interdependency between services
and network topology to cascading failure tolerance in language service networks.
To this end, we executed a random failure simulation on scale-free, exponential,
and random service networks with different degree of interdependency to observe
cascading failure tolerance. In addition, the simulation was also performed on The
Language Grid service networks.

We conclude some important findings in this chapter as follows [15]:

1. The effect of network topology on tolerance is more significant on lower degree
of alternative, i.e. where the average number of substitutable services for each
required component service is low.

2. The number of cascade failed services, i.e. the nodes experiencing cascading
failure, is inversely proportional to the degree of alternative.

3. The number of cascade failed services is somewhat linear to the degree of depen-
dency, i.e. the average number of component services.

4. Scale-free topology has better tolerance to cascading failure, followed by expo-
nential and random topology. This statement is in contradiction with the load-
based cascading failure tolerance in power networks which stated that random
topology has better tolerance than scale-free [5].

Acknowledgements This research was supported by the Grant-in-Aid for Scientific Research (S)
(24220002, 2012–2016) from Japan Society for the Promotion of Science (JSPS).

References

1. Armbrust, M., Fox, O., Griffith, R., Joseph, A.D., Katz, Y., Konwinski, A., Lee, G., Patter-
son, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report, University of California at Berkeley (2009)

Cascading-Failure Tolerance for Language Service Networks 105

2. Ash, J., Newth, D.: Optimizing complex networks for resilience against cascading failure. Phys.
A Stat. Mech. Appl. 380, 673–683 (2007)

3. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys.
A Stat. Mech. Appl. 272(1), 173–187 (1999)

4. Chen, Q., Shi, D.: The modeling of scale-free networks. Phys. A Stat. Mech. Appl. 335(1),
240–248 (2004)

5. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys.
Rev. E 69(4), 045104 (2004)

6. Dorogovtsev, S.N., Mendes, J.F.: Evolution of networks. Adv. Phys. 51(4), 1079–1187 (2002)
7. Erdős, P., Rényi, A.: On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int.

Közl 5, 17–61 (1960)
8. Feng, Z., Lan, B., Zhang, Z., Chen, S.: A study of semantic web services network. Comput. J.

58, 1293–1305 (2014)
9. Huang, K., Fan, Y., Tan, W.: An empirical study of programmable web: a network analysis

on a service-mashup system. In: 2012 IEEE 19th International Conference on Web Services
(ICWS), pp. 552–559 (2012)

10. Ishida, T. (ed.): The Language Grid: Service-Oriented Collective Intelligence for Language
Resource Interoperability. Springer Science & Business Media (2011)

11. Ishida, T., Murakami, Y., Lin, D., Nakaguchi, T., Otani, M.: Open Language Grid: towards a
global language service infrastructure. In: The Third ASE International Conference on Social
Informatics (SocialInformatics 2014), Cambridge, Massachusetts, USA (2014)

12. Kil, H., Oh, S.C., Elmacioglu, E., Nam, W., Lee, D.: Graph theoretic topological analysis of
web service networks. World Wide Web 12(3), 321–343 (2009)

13. Kinney, R., Crucitti, P., Albert, R., Latora, V.: Modeling cascading failures in the North Amer-
ican power grid. Eur. Phys. J. B Condens. Matter Complex Syst. 46(1), 101–107 (2005)

14. Lhaksmana, K.M., Murakami, Y., Ishida, T.: Cascading failure tolerance in large-scale service
networks. In: 2015 IEEE International Conference on Services Computing (SCC), pp. 1–8
(2015)

15. Lhaksmana, K.M., Murakami, Y., Ishida, T.: Analysis of large-scale service network tolerance
to cascading failure. IEEE Internet Things J. 3(6), 1159–1170 (2016)

16. Little, R.G.: Controlling cascading failure: understanding the vulnerabilities of interconnected
infrastructures. J. Urban Technol. 9(1), 109–123 (2002)

17. Murakami, Y., Tanaka,M., Lin, D., Ishida, T.: Service grid federation architecture for heteroge-
neous domains. In: 2012 IEEE Ninth International Conference on Services Computing (SCC),
pp. 539–546 (2012)

18. Oh, S.C., Lee, D., Kumara, S.R.: Effective web service composition in diverse and large-scale
service networks. IEEE Trans. Serv. Comput. 1(1), 15–32 (2008)

19. Rinaldi, S., Peerenboom, J., Kelly, T.: Identifying, understanding, and analyzing critical infras-
tructure interdependencies. IEEE Control Syst. 21(6), 11–25 (2001)

20. Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., Setola, R.: Modelling
interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct.
4(1), 63–79 (2008)

	Cascading-Failure Tolerance for Language Service Networks
	1 Introduction
	2 Cascading Failure
	3 Language Service Network Model
	3.1 Network Topology
	3.2 Degree of Interdependency Between Services

	4 The Language Grid Service Network
	5 Cascading Failure Simulation
	5.1 Generating Service Networks
	5.2 Simulation Result and Analysis

	6 Conclusion
	References

