Policy-Aware Language Service Composition

Trang Mai Xuan, Yohei Murakami and Toru Ishida

Abstract Many language resources are being shared as web services to process data
on the Internet. As dataset size keeps growing, language services are experiencing
more big data problems, such as the storage and processing overheads caused by the
huge amounts of multilingual texts. Parallel execution and cloud technologies are
the keys to making service invocation practical. In the Service-Oriented Architecture
approach, service providers typically employ policies to limit parallel execution of
the services based on arbitrary decisions. In order to attain optimal performance,
users need to adapt to the services policies. A composite service is a combination
of several atomic services provided by various providers. To use parallel execution
for greater composite service efficiency, the degree of parallelism (DOP) of the
composite services need to be optimized by considering the policies of all atomic
services. We propose a model that embeds service policies into formulae and permits
composite service performance to be calculated. From the calculation results, we can
predict the optimal DOP for the composite service that allows the best performance to
be attained. Extensive experiments are conducted on real-world translation services.
The analysis results show that our proposed model has good prediction accuracy in
identifying optimal DOPs for composite services.

Keywords Parallel execution policy * Performance prediction - Degree of
parallelism

T. Mai Xuan (X)) - T. Ishida

Department of Social Informatics, Kyoto University,
Kyoto 606-8501, Japan

e-mail: trangmx @ai.soc.i.kyoto-u.ac.jp

T. Ishida

e-mail: ishida@i.kyoto-u.ac.jp

Y. Murakami

Unit of Design, Kyoto University, 91 Chudoji Awata-cho,
Kyoto 600-8815, Japan

e-mail: yohei @i.kyoto-u.ac.jp

© Springer Nature Singapore Pte Ltd. 2018 57
Y. Murakami et al. (eds.), Services Computing for Language Resources,
Cognitive Technologies, https://doi.org/10.1007/978-981-10-7793-7_4

58 T. Mai Xuan et al.

1 Introduction

The Service-oriented architecture (SOA) is a widely accepted and engaged paradigm
for the realization of business processes that incorporate several distributed, loosely
coupled partners. It allows users to combine existing services to define compos-
ite services that meet users’ requirements. With the increasing volume of data on
the Internet, the services need to deal with extremely large-scale datasets and thus
the emergence of data-intensive services. As in natural language processing area,
many language resources (e.g. machine translator, morphological analysis, etc.) have
been provided as language services. Some problems in language processing such as
translation of a large document often require long processing times. This type of
data-intensive service requires parallel execution to improve performance.

Using the cloud environment to host web services offers numerous benefits. With
cloud-based infrastructures, service providers are able to provide scalability for their
services through parallel execution. However, there are several factors that potentially
limit the efficiency of parallel execution such as serial fractions in a task as pointed out
in Amdahl’s law [1], and parallel overhead [2]. These factors consider the limitation
of the program or computing resources from the viewpoint of service providers.
Providers can control the limitation to enhance parallel execution efficiency.

In SOA, however, from the perspective of service users, the service providers’
policies on parallel execution are an important factor that impacts the parallel execu-
tion efficiency. Service users cannot change the policies as they want when invoking
the services. Since service providers have different preferences, their policies may
also be different. For instance, only if a provider is rich in computing resources may
he readily allow large numbers of concurrent requests. Service providers may have
different policies that will trigger a degradation in service performance; e.g. the num-
ber of concurrent requests exceeds the limit set by the service provider. Therefore,
when invoking a service with parallel execution, users should consider the service
policy in order to attain the optimal performance improvement.

Composing and optimizing a composite service, or a workflow of atomic services,
has gained increasing attention in SOA. Technologies such as data-intensive and
many-task computing [3], and scientific workflows [4] have the potential to enable
rapid data analysis. Many studies have proposed parallel and pipelined execution
technique to speedup workflows [5], as well as adaptive parallel execution approach
for workflows in cloud environments regarding the availability of resources [6].
Most of the approaches proposed to date do not consider the policies of the atomic
services in optimizing the composite services. Different from current approaches,
this chapter focuses on optimizing the Degree of Parallelism (DOP) of a composite
service by considering the service policies of all participating providers. To tackle
this problem, this chapter proposes a model that embeds parallel execution policies
of atomic services into formulae to calculate composite service performance under
parallel execution. To this end, we set the following goals:

Policy-Aware Language Service Composition 59

e Farallel execution policy model: We propose a model to capture the policies of
atomic services observed when using parallel execution. The model makes it easy
to embed service policies into the calculation of composite service performance.

e Predict optimal parallel execution of composite services: We define formulae to
calculate performance of a composite service with different structures. From the
calculation, we predict the optimal DOP for the composite service.

e Validate the model: We validate our model by evaluating the accuracy of our model
when predicting the optimal DOP of composite services. Extensive experiments
are made on the real-world language services.

The remainder of the chapter is organized as follows. Section 2 presents a motivat-
ing example. Section 3 describes parallel execution model of atomic and composite
services. The prediction model is proposed in Sect.4. We evaluate our model in
Sect. 5. We show some related work in Sect. 6. Finally, Sect. 7 concludes the chapter.

2 Motivating Example

The Language Grid is a service oriented infrastructure for sharing and combining
language services [7, 8]. Service providers can share their tools (e.g. translator,
dictionary, etc.) as atomic web services on this platform. Different providers are
permitted to set different policies to maintain the QoS of their provided services. To
build complex applications, users can combine different exiting atomic services to
define new composite services that meet their requirements. For composite services
dealing with large-scale data, using parallel execution can reduce the execution time.
However, to raise the efficiency of parallel execution, we need to consider the different
policies, especially parallel execution policies, of different atomic services when
configuring the composite services.

To illustrate our approach, we show the parallel execution of a composite service
in Fig. 1. This simple workflow shows a two-hop translation service consisting of two
different translation services: the first service translates a document from Japanese to
English, and then the second service translates the result from English to Vietnamese.
The abstract atomic services in the composite service can be bound to different con-
crete translation services provided by different providers such as Google translation
service, Bing translator, J-Server, and Baidu translation service. To reduce execution
time, the client invokes the composite service with concurrent execution. The input
data is split into independent portions, and several portions are processed in parallel.
If the client sets the DOP of the composite service to n, each translation service in
the composite service is executed concurrently as n processes.

Now, let us consider a scenario where the first and second atomic services are
bound to J-Server translation service and Google translation service, respectively.
J-Server and Google set different parallel execution policies for their translation ser-
vices. Google limits the number of concurrent requests sent to its translation service
from a registered user to 8. If more than 8 concurrent requests are received, the

60 T. Mai Xuan et al.

J-Server Google
Translation Translation
e
Process #1 l—\,—ll—-[Process #1 \,
Process #2 |+ Process #2
- ! - X > Merge

Process #n]—:—:—-[Process #n 1
—| 1
- ' Translator (ja-en)

Client

Fig. 1 Parallel execution of a composite service

performance becomes worse. J-Server limits its translation service to 16 concurrent
requests per user, if more than 16 requests are sent to the service, the performance
does not improve. In this scenario, when configuring parallel execution of the com-
posite service we need to specify a suitable DOP of the composite service. This
configuration should match the policies of all atomic services in order to optimize
the composite service’s performance. Several questions to be asked here are (1) How
can we model parallel execution policies of web services? and (2) How the perfor-
mance of a composite service can be predicted from the atomic services’ policies?
These issues are addressed in the next sections.

3 Parallel Execution Policy Model

In this section we propose a model to capture parallel execution policies of services
based on our observation of executing different atomic services.

3.1 Parallel Execution of a Language Service

Language services are designed to process huge datasets. These services can benefit
from the use of parallel execution to improve performance. We use Data Parallelism
to set the parallel invocation of a language service as follows. Assume that a client
wants to process a large dataset. At the client-side, the input data is split in to M
partitions and n threads of the client are created to send n partitions to the service
in parallel as shown in Fig.2. At server-side the service needs to serve n requests
in parallel. Execution time required for processing the input data depends on the
number of concurrent requests, denoted by f(n).

Policy-Aware Language Service Composition 61

Input data

Split
Data Pool (Partition, || Partition,|---[Partition,,|... [Partitiony, 0
‘Assign
Partition,| [Partition,] ... [Partition,
Client-Side [Process #1] [Process #2] - [Process #n|

Csenerside | 2

| Language service s |

Fig. 2 Parallel execution of a language service

We use Speedup as a measure of the reduction in execution time taken to execute a
fixed workload when increasing number of concurrent threads. Speedup is calculated
by the following equation: S(n) = f(1)/f(n), where f(1) is the execution time
required to perform the work with a single thread and f(n) is the time required to
perform the same task with n concurrent threads.

Several models have been proposed to describe those speedup curves for parallel
algorithms and architectures [9]. The most cited model is Amdahl’s law [1], which
models the effect of the serial fraction of the task (F) to the speedup of the task.
F is the fraction of the task’s computation (algorithm) that is serial and cannot be
parallelized. F ranges from O to 1 depending on algorithm of the task.

Amdahl’s Law, however, does not include parameters that account for the impact
of a service’s policy on the execution speed. SOA allows service providers to make
arbitrary decisions in setting policies to control parallel execution of their services.
These policies limit the performance speedup achievable with their services. In some
cases, if number of concurrent processes exceeds a certain number, service perfor-
mance may actually be throttled. Figure 3 shows speed enhancements possible with
an atomic service with the parallel execution under different conditions. The dashed
line shows an ideal case of the service performance speedup (F = 0). The dotted and

Fig. 3 Parallel execution 50 - . >
speedup of a task -~ Ideal Parallel Task (F = 0) s
a0l Task with F = 0.050 -7
Task with F = 0.100 P
— Google translation service [
a 30} -
2 o
o -
-] -
a 2
wn 20+ P
10 GO i
0 f"} e]
0 10 20 30 40 50

Number of concurrent processes

62 T. Mai Xuan et al.

dash-dot lines show the performance speedup of the service follow the Amdahl’s law
with serial faction (F') values of 0.05 and 0.1, respectively. The solid line shows a real
case of Google translation service. With this policy, when the number of concurrent
processes exceeds 8, service user experiences a drop in the service performance.

3.2 Parallel Execution Policies

Our assumption is, for each service there exists a certain number of concurrent pro-
cesses specified by the service provider, beyond which the performance improvement
trend is changed. We defined our policy model [10] as following:

Definition (Parallel Execution Policy) The parallel execution policy of a web service
is defined by the change of the performance improvement trend of the service under
parallel execution. This performance improvement trend is determined by the tuple
of parameters («, a*, @, P), each parameter is defined as follows:

e Suppose that the service processes M data partitions using parallel execution.
Execution time of the service depends on number of concurrent processes (n) of
the service, denoted by f(n).

e « is execution time of the service when the M partitions are serially executed, i.e.,

n=1f1) =a.

P is the upper bound of concurrent processes specified by the service provider,

beyond which the performance improvement trend changes.

e o™ is time taken by the service to process M partitions with P concurrent processes:
f(P)=a".

e o is time taken by the service to process M partitions with N (P < N < M)
concurrent processes: f(N) = o'.

Parallel execution policies of language services normally are not explicitly de-
scribed by the service providers. We tested and observed parallel execution effect of
many services registered on the Language Grid [8], and many other external services
such as Google translation service, Baidu translation service, Amazon S3 service,
etc. We found there were three main patterns in the performance improvement. We
described these patterns by using the above parameters and define three types of par-
allel execution policy as follows: Slow-down policy, restriction policy, and penalty
policy.

Slow-down Policy. This policy reduces the performance improvement when the
number of concurrent processes exceeds specified number (P;). This means that
execution time of the service decreases as the number concurrent processes in-
creases. When number of concurrent processes exceeds P the execution time
decreases but at a lower rate. This policy may due to the parallel execution lim-
itation of the services’ implementation. The performance pattern, given by this
policy, is depicted in Fig.4a. The execution time of the service to process M
partitions can be calculated by the following equation:

Policy-Aware Language Service Composition 63

S
a2
S

a2

*

5]

%

]

Execution time (ms) =
)]
Execution time (ms) =
)

Execution time (ms) =

1 P N n 1 P. N n 1 B, N n
Number of concurrent processes Number of concurrent processes Number of concurrent processes

(a) Slow-down Policy (b) Restriction Policy (c) Penalty Policy

Fig. 4 Performance patterns of parallel execution policies

a—%Cm-1), ifl<n<P

ot - -P), ifK<n<N

fn) =

o—o o —d

with: @ > a* > o/, and >
P,—1 N-P

Restriction Policy. With this policy, service providers limit the maximum number
of concurrent requests to their service. Service performance shows no improve-
ment when the number of concurrent processes exceeds specified number (P,).
This may due to limitation of the service providers’ computing resources. This
policy creates the service performance pattern shown in Fig. 4b. Execution time
of the service to process M partitions can be calculated by the following equation:

a—";,_f‘l(n—l), ifl<n<P,
n) = "
f(n) o

* __

=, if P, <n<N

with: «* < o, and &’ = o*

Penalty Policy. In some cases, due to some commercial strategies or security
concerns, the service provider may penalize concurrent requests if the number
of them exceeds specified number (P,), service performance is actually reduced.
The performance pattern of this policy is shown in Fig.4c. The execution time of
the service is calculated by the following equation:

o — a—gﬂm—n, ifl<n<P,
e+ e=@m-pP,), iftP,<n<N
S

with: @ > ¢*, and ¢/ > o*

For simplicity, this work assumes each service provider uses a static value of P.
Since, the value of P is normally not explicit stated, in order to choose P we invoke
the service with different parallel execution configuration using a test data set. We
analyze execution time, and determine P.

64 T. Mai Xuan et al.

4 Prediction of Composite Service Performance

In this section we propose a model that can predict composite service performance
when using parallel execution. The prediction changes with the workflow structures
of the composite services.

4.1 Parallel Execution of Composite Language Service

To build an advanced language application, developers combine several atomic lan-
guage services in a workflow. A service described by a workflow is called composite
service. In order to improve the composite service performance when processing huge
amounts of data, a promising approach is to use parallel execution. In this work, we
focus on two parallelism techniques described as following: data parallelism and
workflow pipeline execution.

Data parallelism. Similar to Data Parallelism in atomic service, when a composite
service processes huge amount of data sets, the data sets are split into independent
portions, and several computing tasks of the composite service are instantiated to
process several portions in parallel.

Workflow pipeline execution. When a single workflow is operated in parallel
on many data partitions, Workflow pipeline execution denotes that the processing of
several independent partitions by several instances of an atomic service are inde-
pendent. This parallelism enables pipeline processing of a workflow. That is, when
n concurrent requests are sent to a composite service, multiple instances of each
atomic service are created and processed in parallel. A pooling technique is used
such that when processing M data sets, n out of M data sets are streamed to the
composite service in parallel without waiting for responses. The execution of the
composite service is done in pipeline manner. Consider an example of a sequential
composition of two services. This example yields the pipeline processing time-line
shown in Fig. 5, where L = [M/n] is number of time-steps needed to send M data
sets. At the beginning of time period, n data set are sent in parallel. tl.”j is the time
that n concurrent processes of service s; take to finish processing n data sets at time

step j.

Fig. 5 Pipeline processing t{‘l t{lz 1;{13 tﬁ

time-line of a composite Sy 1C i]]

service ty typ U3 t3y
S N - .

‘ t

Policy-Aware Language Service Composition 65

GSp T k
O—(5D = —(ED)® o ’ o

(a) Sequential (b) Parallel (¢) Conditional (d) Loop

Fig. 6 Four types of composite structures [11]

4.2 Prediction Model

A composite service can be seen as a set of atomic services that cooperate to execute
a process that defines the interaction workflow. There are four basic composite struc-
ture: Sequential, Parallel, Conditional and Loop, see Fig. 6, where circles represent
atomic services and arrows represent the transfer of data between services. QoS of a
composite service is aggregate QoS of all atomic services. Existing QoS calculation
methods can be classified into two categories: Reduction method with single QoS
for service composition [11], and direct aggregation method with multiple QoSs for
the service composition [12]. We adapt the formulae proposed in [11] to calculate
execution time of composite services in different structures under parallel execution.

4.2.1 Prediction of Sequential Structure

Consider a Sequential combination of two services s; and s,. These two services
have different parallel execution policies as specified in Sect.3. fj(n) and f>(n)
are predicted execution time of s; and s, when processing M partitions, respectively.
Assumethat f1(n) > f>(n),processing time-line of the composite service is depicted
in Fig. 7a. From this time-line, we can easily see that execution time of the composite
service (f.(n)) is calculated as follows:

fe() = fi(n) + 13, (D

13, is the time taken by service s, to finish processing last n partitions in parallel.
Given that the execution time of s, to process each partition is approximate equal:

by, = fo(n)/[M/n] 2

From Egs. (1) and (2) we have:

fe(n) = fi(n) + fo(n)/TM/n] 3)

66

T. Mai Xuan et al.

th ot th th th t, th th
11 tiz U3 1L 11 Ui U3 1L
R e | s | s JPP s Syl It] N S
n n n n
t31 typ ths t31 i1 a2 tr3 tor
S2 N pEE pEm . BN S -
I I :
(a) Sequential Structure (b) Parallel Structure
N .rn .rn mn
tin bz bs iy th th ts 1
S J— - s . 3
trzn trzn trzn trzn
21 22 ‘23 2L s
P —"7 3 ... gl 1 | e | | —
| P t

(¢) Conditional Structure

(d) Loop Structure

Fig. 7 Processing time-line of different structures

In general, execution time of a composite service that is a sequential combination
of k services (s1, 52, . . ., S;) can be predicted as follows:

k
folny = miax fi(n) + () fi(n) —miax fi(w)/TM/n])

i=1

where fi(n), fo(n), ..., fr(n) are execution time of each services using parallel
execution with with n concurrent instances.

4.2.2 Prediction of Parallel Structure

Consider a composite service with service s; and s; in the parallel structure. In this
case the two services process data in parallel. The original dataset is separated into
M partitions, n of which are sent to the composite service concurrently. Suppose
fi(n) and f,(n) are execution time of s; and s, predicted using the policy model.
The processing time-line of the composite service is illustrated in Fig.7b. From
this processing time-line, we can easily predict the execution time of the composite
service (f.(n)) is the maximum value of f|(n) and f>(n):

Je(n) = max(fi(n), f2(n)) (&)

To generalize, consider a parallel combination of k services (sy, 52, ..., S¢). Using
policy model, f;(n) is predicted execution time of service s; with n concurrent pro-
cesses. The execution time of the composite service is predicted with the following
generalized equation:

feln) = miax £ (n) (®)

Policy-Aware Language Service Composition 67
4.2.3 Prediction of Conditional Structure

Consider a Conditional combination of two service s; and s». The Conditional struc-
ture states that a portion of n partitions will be sent to service s, the remainder is
sent to service s,. Suppose that the ratios are ry and r, (r; + r, = 1). This means that
r1n partitions are processed by s; in parallel, while the remaining r,n partitions are
processed by s, concurrently. In total, 7| M partitions are processed by s, and r, M
partitions are processed by s,. Using the policy model we can calculate execution
time of 51 and s, are f(rin) and f,(r,n) respectively.

Whenn = 1, partitions are sent to the composite service one at a time, one partition
is processed by s; or s, at a time. The execution time the composite service to process
M partitions is execution time of s; to process r; M partitions adds execution time of
sy to process rp M partitions. When n > 1, since there are r;n concurrent processes
of s; and r,n concurrent processes of s,, the execution of the conditional structure is
similar with parallel structure where s; processes r M partitions and s, processes 1, M
partitions concurrently. In this case, processing time-line of the conditional structure
is as illustrated in Fig. 7c; the number of time-steps, L = [M/n]. The execution time
of the conditional structure f.(n) is predicted as follows:

A+ f2(1), ifn=1
fe(n) = . (N
max(fi(rin), f2(rn)), ifn>1
To generalize, consider a Conditional structure of k services (sy, s2, ..., S¢). Sup-
pose that ry, ry, ..., ry are the ratios of requests sent to each service. We have:

k

] Z ri = 1

) lr,ll\/l partitions are processed by s;

e With n partitions sent to the composite service in parallel, r;n instances of service
s; will be initiated and processed concurrently.

e Execution time of service s; when processing r; M partitions with r;n concurrent
instances can be calculated with f;(r;n), where the parallel execution policy of s;
is (a;, of, o, P;).

The execution time of the composite service (f.(n)) is predicted by the following
equation:

Xk:fi(l), ifn=1
fem) =41 (3

maf(ﬁ(r,-n), ifn > 1

4.2.4 Prediction of Loop Structure

Consider aloop of service s; with the iteration number of 2. This loop can be converted
to a Sequential structure of two services s;. Execution time of service s; is fj (n) can

68 T. Mai Xuan et al.

be predicted by using the policy model. The processing time-line of the composite
service is illustrated in Fig. 7d; the number of time-steps is L = [M/n]. At the first
time step, n requests are sent to s in parallel, #{| is the time taken by n instances of s,
to process the first n partitions. From the second time step to ([M/n] — 1) time step,
2n requests are sent to service s; concurrently, so the time to process n partitions is
maximum value of fj(n) and f;(2n). Let AT is duration from second time step to
([M/n] — 1) time step, AT is calculated as follows:

max(f1(n), f1(2n))
[M/n]

AT = ([M/n]—1)

At the last time step, n last partitions are processed in parallel by n concurrent
instances of s;. The execution time of the composite service (f,(n)) is predicted by
the equation below:

fe(n) = 2M + AT
[M/n] o)
Sfi(n) max(fi(n), f1(2n))
2 M -1
[M/n1+(r /nl—=1) M /n]

In general case where a service s is looped k time. The execution time of the
composite service can be calculated by following general equation:

k=1
2 3 mix £ in) méx £ (in)

~ J=1 . i=1
fc(n):WJr(fM/lﬂ k+1)—(M/n] (10)

In the case a composite service that contains different control structures. To cal-
culate execution time of this type of composite service, we first reduce the complex
workflow to a simple one which contains only sequential structure. We use the reduc-
tion methodology proposed in [11] for converting the complex service to a sequential
combination of components, each component is a composite service with a control
structure. Using equation for each structure defined above we calculate execution
time of each component. Finally, applying equation of sequential structure we can
calculate execution of the whole complex composite service.

5 Evaluation

In this section we describe the results of testing the performance impact of paral-
lel execution of web services offered by different providers. We also evaluate the
accuracy of our prediction model by comparing its output to actual results.

Policy-Aware Language Service Composition 69

5.1 Evaluation of the Parallel Execution Policy Model

We focus on analysing real world translation services. We use the integration en-
gine of the Language Grid and UIMA [13] to configure and invoke services with
parallel execution. In our experiments, a document with 500 paragraphs is translated
from Japanese to English. The document is separated into one paragraph partitions,
and several partitions are translated in parallel. The results demonstrate there are
two group of parallel execution policies: Combination of Slow-down Policy and Re-
striction Policy, and combination of Slow-down Policy and Penalty Policy as shown
in Fig. 8. For example, Mecab morphological analysis service employs slow-down
and restriction policies with Pgyecqp = 4 and Pyypecar = 14, whereas the Tree Tagger
service employs slow-down and penalty policies with Py, = 4 and Py = 8.

We evaluate our parallel execution policy model by using regression analy-
sis. Our model is compared with two regression models: a linear fitting mod-
el and a curve fitting model with a quartic regression (curve fitting function:
y = ax* + bx? + cx? + dx + e). Figure9 shows comparison of our policy model
and regression models of two different services: J-Server translation service and
Google translation service.

We use standard error (S), and R-squared (R?) to compare the models. S gives
some idea of how much the model’s prediction differs from the actual results. R>
provides an index of the closeness of the actual results to the prediction. We also
calculate P-value for evaluating statistical significance of our policy model. Table 1
shows comparison of the policy model with other two regression models. The results
show that in all cases, the policy model has the lower standard error and higher R-
Squared than either the linear regression model or the quartic regression model. The
P-value of the policy model is significantly low (much less than 0.05). This indicates
that our policy model is highly statistically significant and can faithfully estimate the
parallel execution effects of web services.

40000 18000
35000 | | <= J-Server translation service 16000 = Tree Tagger service P
= =8 Mecab morphological analysis — B8 Life science dictionary service
2 300001 | . 2 140007 : :
E | |®—e Google URL shorten service E | |®—® Google translation service
@ 25000 | @ 12000
£ . £
‘; 20000 ‘;:' 10000
2 \ K=l \
£ 15000[| S 8000
g ' g
8 10000RNC ; o %%
5000 4000
0 %v0csesee ¢ * 4 2000
1] 10 20 30 40 50 0 10 20 30 40 50
Number of concurrent requests Number of concurrent requests
(a) Slow-down and restriction policies (b) Slow-down and restriction policies

Fig. 8 Parallel execution policies of atomic services

70 T. Mai Xuan et al.

16000 16000
14000 I'. ® ¢ Experiment results 14000/e | ® ® Experiment results
= | | == Linear regression model = == Linear regression model
E 12000 1 Curve fitting regression model E 12000 \l - Curve fitting regression model
E 10000 q.;_ — Parallel execution policy model g 10000} | — Parallel execution policy r'm:ﬂ:(el(4
< so00f_| = 8000 '} =
§ “%% o s ' - e
S 6000f % Tl £ 6000f. L ommmmm gt T =TT
€ 4o00] CeSEerer ~Srec ey ¢ 4000 I g }
2000 e 2000
% 10 20 30 40 50 % 10 20 30 40 50
Number of concurrent requests Number of concurrent requests
(a) Mecab morphological service (b) Tree Tagger service
Fig. 9 Regression analysis
Table 1 Comparison of the proposed model with regression models
S (milliseconds) R-Squared (%) P-value
Linear Quartic Policy Linear Quartic Policy Policy
model model Model model model model model
J-Server |3287.94 | 1583.47 1049.75 |21.3 86.3 92.0 1.23e-09
Tran.
Mecab 3310.78 163490 |764.73 19.9 85.3 95.7 3.71e-11
Google 2080.93 1014.05 | 698.97 23.2 86.3 91.3 4.06e-09
URL
Tree 3078.94 129793 |659.91 1.2 86.8 95.5 5.82e-11
Tagger
LSD 2521.01 1267.16 | 885.72 4.5 89.5 93.2 1.56e-09
Google 3415.02 | 1680.13 1075.34 |49 82.73 90.6 2.55e-09
Tran.

5.2 Evaluation of the Prediction Model

We analyse a realistic composite service which is a two-hop translation combining t-
wo translation service as shown in Fig. 10a. This composite service is combination of
three translation services with two structures, i.e. Sequential structure and Condition-
al structure. We use this composite service to translate a mixed document containing
information about rice and fertilizer. First, the document is translated into English
using J-Server translation service. Then, that part of translated document, containing
information about rice, is translated into Vietnamese by Google translation service.
The other part, containing information about fertilizers, is translated into French by
Bing translation service. J-server, Bing translation service, and Google translation
service have different parallel execution policies as specified in previous section.
Figure 10b shows a performance prediction when the composite service translates a

Policy-Aware Language Service Composition 71

‘Workflow input ports : 140000
; Workflow input ports " e—e Prediction
. [JapaneseAgricultureDocument | A ' 130000 1 & -a Actual execution time
,,,,,,,, I ! W
\
SentenceSpliter ‘E s i
E 80000 '~.._
[JServerTranslationService_Ja_En] = W
S 60000f i\
3
- _ i € 40000 ‘a. Optimal case (real result)
[GoogleTranslationService_En_Vi] [BingTranslationService_En_Fr| i —o, N _
,,,,,,,,,,,,,,,,,,,,,,, 20000 Bt T T e
Output ports / : Optimal case (prediction)
[TranslatedDocument_Vi] [TranslatedDocument_En| ¥ ! “0 16 20 30 20 50
Number of concurrent processes
(a) Two-hop translation service (b) Evaluation result

Fig. 10 Evaluating a composite service

document of 500 paragraphs. We can see that, in this case our model correctly predict
the best DOP (28) where the composite service attains the best performance.

In order to evaluate the accuracy of the proposed model we invoked the above com-
posite service with 15 different agriculture documents with different sizes ranging
from 100 paragraphs to 1500 paragraphs. We use several measures as follows: Mean
Prediction Error (MPE) to evaluate prediction bias, Mean Absolute Error (MAD) to
show absolute size of prediction errors, and Tracking Signal (7S) to check whether
there is some bias or not.

Table 2 shows evaluation of the model in two aspects:

e Predicting the optimal number of concurrent processes: MPE = 0 and MAD =
1.07 mean that the model yields good predictions; the average absolute error is
1.07 units.

e Prediction of the optimal execution time: 7S = 15 indicates that the model is not
so accurate in predicting the optimal execution time.

The proposed prediction model is not so accurate and always under-predict the
optimal execution time. One reason for this is that our current model omits some
parallel overhead such as time for creating and terminating threads. The accuracy
of the model would be improved by adding the parallel overhead time to calculate
execution time of an atomic service under parallel execution. We will consider this
issue in our future works.

6 Related Work

Scientific workflows have emerged as an useful instrument to comprehensively de-
sign and share the best practices and create reproducible scientific experiments. Many
Scientific Workflow Management Systems (SWMSs) have been developed, such as
Taverna [14], or Kepler [15] to enable graphical design, execution and monitoring
of local or distributed scientific workflows. In the era of big data, workflow opti-
mization has become an important issue. One of the common optimization targets

72 T. Mai Xuan et al.

Table 2 Evaluation result

Input data Optimal degree of parallelism (DOP) Optimal execution time (millisecond)
Prediction | Actual Prediction | Actual
result result
100 28 24 MPE =0 2596 3531 MPE =
paragraphs MAD = 1204.33
1.07 MAD =
TS=0 1204.33
TS =15
200 24 24 5373 6550
paragraphs
300 24 24 8390 9360
paragraphs
400 24 24 11386 12670
paragraphs
500 24 28 13984 15287
paragraphs
600 28 28 17580 18574
paragraphs
700 24 24 23177 24696
paragraphs
800 24 24 25273 26344
paragraphs
900 24 28 30170 31146
paragraphs
1000 28 28 35567 36627
paragraphs
1100 24 24 42164 43238
paragraphs
1200 28 28 43960 45789
paragraphs
1300 24 24 46757 48043
paragraphs
1400 28 24 54229 55631
paragraphs
1500 28 28 57951 59136
paragraphs

is to improve the scientific workflow runtime performance. As the typical scientific
workflow is executed in e-Science infrastructures, several different approaches ex-
ist to intelligently schedule workflows or tasks on the Grid and Cloud [16]. There
also some recent works on scheduling workflows based on resource/task allocation
[17]. These solutions are usually implemented for a specific SWMS and aim at the
acceleration of workflow through scheduling.

Policy-Aware Language Service Composition 73

There are also some existing studies proposing different factors to compute QoS
in order to optimize service composition. In [18], to deal with context-aware QoS,
where the QoS of a service may vary in different context, authors proposed a dynamic
service selection approach based on context-aware QoS. A method that involved
human to analyze QoS for service composition was also proposed in [19].

To the best of our knowledge, there is no existing works that consider service
providers’ decision on parallel execution of atomic services in service composition.
In this regard, we conclude that our contribution is novel.

7 Conclusion

This chapter proposed a prediction model that considers the policies of atomic ser-
vice providers in predicting the performance of a composite service under parallel
execution. To the best of our knowledge, this is the first attempt to incorporate service
providers’ policies on parallel computing into service composition. We found that
the parallel execution policies of atomic services fell into three different categories:
Slow-down policy, Restriction policy, and Penalty policy. Based on these policies, our
prediction model can calculate the execution times of composite services when using
parallel execution and estimate the optimal degree of parallelism for the composite
services. Our model is helpful in building a mechanism that can control the parallel
execution of workflows; a Workflow Management System that uses this mechanism
can execute a workflow with optimal DOP.

We conducted experiments on real-world translation services to evaluate the ac-
curacy of our model. The analysis results show that our model offers good prediction
accuracy with regard to identifying the optimal degree of parallelism for composite
services. Our model is, however, not so accurate in predicting the execution time.
Our future work includes improving the model to increase prediction accuracy and
extending the model for other QoS metrics such as cost and reputation.

In designing the proposed model, we assumed that parallel execution policy of
one service is static. That is, the limit set by the service provider on the number of
concurrent process does not change regardless of input data size. However, in cloud
environment, it seems highly likely that service providers will dynamically change
their policy for requests of different sizes. In our future work, we will enhance our
model to consider dynamic service policies.

Acknowledgements This research was partly supported by a Grant-in-Aid for Scientific Research
(S) (24220002, 2012-2016) and a Grant-in-Aid for Young Scientists (A) (17H04706, 2017-2020)
from Japan Society for the Promotion of Science (JSPS).

74

T. Mai Xuan et al.

References

14.

15.

16.

17.

18.

19.

. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing

capabilities. In: Proceedings of the April 18-20, 1967, Spring Joint Computer Conference,
AFIPS *67 (Spring), pp. 483-485. ACM, New York, NY, USA (1967)

Tallent, N.R., Mellor-Crummey, J.M.: Effective performance measurement and analysis of
multithreaded applications. SIGPLAN Not. 44(4), 229-240 (2009)

Raicu, I, Foster, 1., Zhao, Y., Szalay, A., Little, P., Moretti, C.M., Chaudhary, A., Thain,
D.: Towards data intensive many-task computing. In: Data Intensive Distributed Computing:
Challenges and Solutions for Largescale Information Management, vol. 13, no. 3, pp. 28-73
(2012)

Taylor, IJ., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: scientific work-
flows for grids. Springer Publishing Company, Incorporated (2014)

Pautasso, C., Alonso, G.: Parallel computing patterns for grid workflows. In: 2006 Workshop
on Workflows in Support of Large-Scale Science, pp. 1-10 (2006)

de Oliveira, D., Ogasawara, E., Ocaa, K., Baio, F., Mattoso, M.: An adaptive parallel execution
strategy for cloud-based scientific workflows. Concurrency Comput. Pract. Experience 24(13),
1531-1550 (2012)

Ishida, T. (ed.): The Language Grid: Service-Oriented Collective Intelligence for Language
Resource Interoperability. Springer Science & Business Media (2011)

Murakami, Y., Lin, D., Ishida, T.: Service-Oriented Architecture for Interoperability of Multi-
language Services, pp. 313-328. Springer, Berlin (2014)

Sun, X.H., Chen, Y.: Reevaluating Amdahl’ s law in the multicore era. J. Parallel Distrib.
Comput. 70(2), 183-188 (2010)

Trang, M., Murakami, Y., Ishida, T.: Policy-aware optimization of parallel execution of com-
posite services. IEEE Trans. Serv. Comput. PP(99), 109-113 (2017)

. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for workflows and

web service processes. Web Semant. Sci. Serv. Agents World Wide Web 1(3), 281-308 (2004)

. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimization. ACM

Trans. Web 2(1), 6:1-6:35 (2008)

. Xuan, T.M., Murakami, Y., Lin, D., Ishida, T.: Integration of workflow and pipeline for language

service composition. In: Chair, N.C.C., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B.,
Mariani, J., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14), pp. 3829-3836. European
Language Resources Association (ELRA), Reykjavik, Iceland (2014)

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover,
K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of
bioinformatics workflows. Bioinformatics 20(17), 3045-3054 (2004)

Ludscher, B., Altintas, 1., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J.,
Zhao, Y.: Scientific workflow management and the kepler system. Concurrency Computat.
Pract. Experience 18(10), 1039-1065 (2006)

Yu, J., Buyya, R., Ramamohanarao, K.: Workflow Scheduling Algorithms for Grid Computing,
pp. 173-214. Springer, Berlin (2008)

Szabo, C., Sheng, Q.Z., Kroeger, T., Zhang, Y., Yu, J.: Science in the cloud: Allocation and
execution of data-intensive scientific workflows. J. Grid Comput. 12(2), 245-264 (2014)

Lin, D., Shi, C., Ishida, T.: Dynamic service selection based on context-aware QoS. In: 2012
IEEE Ninth International Conference on Services Computing, pp. 641-648 (2012)

Lin, D., Ishida, T., Murakami, Y., Tanaka, M.: Qos analysis for service composition by human
and web services. IEICE Trans. Inf. Syst. 97(4), 762-769 (2014)

	Policy-Aware Language Service Composition
	1 Introduction
	2 Motivating Example
	3 Parallel Execution Policy Model
	3.1 Parallel Execution of a Language Service
	3.2 Parallel Execution Policies

	4 Prediction of Composite Service Performance
	4.1 Parallel Execution of Composite Language Service
	4.2 Prediction Model

	5 Evaluation
	5.1 Evaluation of the Parallel Execution Policy Model
	5.2 Evaluation of the Prediction Model

	6 Related Work
	7 Conclusion
	References

