Language Service Composition Based
on Higher Order Functions

Takao Nakaguchi, Yohei Murakami, Donghui Lin and Toru Ishida

Abstract To support multi-language activities, various composite services are
created by a service composition that combines existing services or changes the
combination of services composed by existing composite services. Multi-language
activities have a wide variety of domains and their needs may change with the par-
ticipants or situations, so service composition must be able to freely create various
services to suit the languages of the participants and/or domains of the activity targets.
Since existing service composition technologies relies on the deployment process of
created composite services toward service infrastructure for users to find and execute
them, delay and costs are expensive. To solve this problem, we propose a method
that introduces the concept of higher order functions. In concrete, we regard services
as functions and pass the functions invoked from composite services as runtime
parameters of composite services to compose services without any deployment pro-
cesses, this yields service composition that can efficiently support multi-language
activities. We apply the proposals to Language Grid, designed to gather and provide
language services, and evaluate the results. They show that our proposals can create
various composite services at runtime with quite practical overheads.

T. Nakaguchi (&) - D. Lin - T. Ishida

Department of Social Informatics, Kyoto University,
Kyoto 606-8501, Japan

e-mail: ta_nakaguchi @kcg.edu

D. Lin

e-mail: lindh@i.kyoto-u.ac.jp
T. Ishida

e-mail: ishida@i.kyoto-u.ac.jp
T. Nakaguchi

Department of Web Business Technology,
The Kyoto College of Graduate Studies for Informatics, Kyoto, Japan

Y. Murakami

Unit of Design, Kyoto University,

91 Chudoji Awata-cho, Kyoto 600-8815, Japan
e-mail: yohei @i.kyoto-u.ac.jp

© Springer Nature Singapore Pte Ltd. 2018 41
Y. Murakami et al. (eds.), Services Computing for Language Resources,
Cognitive Technologies, https://doi.org/10.1007/978-981-10-7793-7_3

42 T. Nakaguchi et al.

Keywords Service composition + Higher order functions - Aspect oriented
programming

1 Introduction

As the internationalization of society advances, demands for multi-language support
have grown. Nowadays, composite service technology for the language processing
domain is being used to support international activities by easing language barri-
ers. Composite services can be created by combining existing services through the
use of inter-service dependencies among component services in SOA-based service
infrastructures [3]. Services that don’t offer such dependencies are called atomic
services.

A service infrastructure itself is a generic system but when used in a specific
domain it becomes specialized for that domain. Taverna [15], one such service infras-
tructure, has a unique workflow editor that allows web services or functions to be
executed on a local machine in various combinations that are controlled by work-
flows. HELIO [1] is a specialized version of Taverna for the solar physics domain
while BioVeL Project [2] provides services specific to the biodiversity domain. Natu-
ral Language Processing is another of the targets that tends to specialization. Service
Grid Server Software [13] is a service infrastructure that provides web services and
adopts WS-BPEL! as its workflow description language and ActiveBPEL? as its
workflow execution system. Specialized versions of this software for the language-
processing domain include LAPPS Grid [5] and Language Grid [6].

The language-processing domain can be the one of the most effective specializa-
tions of service infrastructures. While there are many data or processing programs
in this domain, that don’t have well-standardized interfaces and are used most often
in isolation. Murakami et al. proposed a domain model and service architecture to
introduce SOA to this domain, which yield the Language Grid [12]. For the Lan-
guage Grid, 27 key interfaces were standardized and they offer access to 227 atomic
services. To date, 22 composite services have been established. Since services that
are accessed through the same invocation interface can be switched, the number of
composite services that can be based on those services is potentially extremely large.
Unfortunately, complexity explodes if constituent services are nested in a circular
manner. The difficulty of registering and managing all possible composite service
variations statically makes it essential to create a mechanism that can identify the
possible variations dynamically at runtime. Our solution is a description method that
introduces higher-order functions into service composition and so can describe hier-
archical service structures; we evaluate it by implementing and applying it to the Lan-
guage Grid. The remainder of this chapter is organized as follows. Section 2 describes
the problem of composite service variations. In Sect.3, we propose a hierarchical

Uhttps://www.oasis-open.org/committees/wsbpel/.
Zhttps://sourceforge.net/projects/activebpel 502/.

https://www.oasis-open.org/committees/wsbpel/
https://sourceforge.net/projects/activebpel502/

Language Service Composition Based on Higher Order Functions 43

service composition description, and in Sect.4, we apply it to an existing service
execution system. In Sect. 5, we evaluate the efficiency of our proposed method. In
Sects. 6 and 7, we mention works related to this chapter to position this study. Finally,
we conclude the chapter in Sect. 8.

2 Composite Services and Their Variations

Service composition is a technology that creates composite services by combining
existing services. A service wraps data or programs and runs independently [3]. To
increase the interoperability of services or to make application development eas-
ier, invocation interfaces must be unified. In the Language Grid, Juman® service
and TreeTagger* service are provided through the MorphologicalAnalysis interface.
LifeScienceDict’ service and KyotoTourismDict service are accessed through the
BilingualDictionary interface. JServer® service and GoogleTranslate’ are accessed
through the Translation interface. Each service runs independently and can be
accessed by multiple clients simultaneously.

We turn our attention to composite services. BackupTrans can combine several
translation services and allows making another service to be invoked as a backup
service when a main service fails. DictTrans combines a translation service with a
bilingual dictionary service. DictCrossSearch combines several bilingual dictionaries
and provides unified search across all of them.

These services can be constructed as shown in Fig. 1. Double-line rectangle
denotes composite services and single-lined denotes atomic services. In the figure,
BackupTrans service combines DictTrans and GoogleTrans service. DictTrans com-
bines the morphological analysis service Juman, a bilingual dictionary service
DictCrossSearch and a translation service JServer, and increases translation qual-
ity by using the bilingual dictionary to supply the special words that the translation
service is unaware of. Unfortunately, depending on several services constitutes a
greater risk than invoking a single service because a service may fail to execute
depending on the situation such as high CPU loads or network problems. That is
why BackupTrans combines a composite translation service and a single Google-
Translate service. DictCrossSearch service invokes LifeScienceDict service and
KyotoTourismDict service through the BilingualDictionary interface and is accessed
through the same interface. This is but one example of the services construction
possible. Another user may need to invoke DictTrans directly, to use single bilin-
gual dictionary service instead of DictCrossSearch or to combine other translation
service with JServer. Because user needs may change depending on the situation,

3http://nlp.ist.i.kyoto-u.ac.jp/?2JUMAN.
“http://www.cis.uni-muenchen.de/~schmid/tools/ TreeTagger/.
Shttp://1sd-project.jp/ja/index.html.
Shttp://www.kodensha.jp/platform/.
"https://cloud.google.com/translate/.

http://nlp.ist.i.kyoto-u.ac.jp/?JUMAN
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://lsd-project.jp/ja/index.html
http://www.kodensha.jp/platform/
https://cloud.google.com/translate/

44 T. Nakaguchi et al.

.—” BackupTrans ‘ H’ DictTrans ‘

Translation Translation MorphologicalAnalysis
GoogleTrans .—H DictCrossSearch‘ .—l LifeScienceDict |
Translation BilingualDictionary BilingualDictionary
.—| JServer | .—| KyotoTourismDict |
Translation BilingualDictionary

Fig. 1 Example construction of composite services

Fig. 2 Service invocation
graph

such like the languages used by the participants or the domains targeted by the user,
a technology to create composite services must have a wide flexibility and a rapidity
to create various combinations of services.

Figure 2 graphs the relationship between composite services and services that can
be invoked from these composite services on Language Grid. Diamond nodes denote
composite services and circle nodes denote atomic services. Edges denote a relation
between services and services that share the same interface. The graph does not show
atomic services that are not invoked from composite services. The number of nodes
is 138 and the number of edges is 451. As the graph shows, the service-relationships
form a complex graph structure. Since variations exist in each combination of edges
yielding an explosion in variation number, it is not realistic to register and manage
all of them. In this chapter, we focus on the hierarchical structuring of services
and propose a method to describe service composition by introducing higher-order
functions. In addition, we implement a function that realizes a hierarchical service
composition, which is described by the method, as an extension of an existing service
composition execution engine.

Language Service Composition Based on Higher Order Functions 45

3 Description Language for Hierarchical Service
Composition

A higher-order function receives functions as its parameters or returns functions
as its result. Huges showed their importance and examples of usage in detail [4].
By introducing higher-order functions, we can modularize processes and express
an entire process as a combination of functions. In this chapter, we regard services
as functions and express hierarchical service composition by using higher-order
functions.

To invoke services, we must send information about method names and its argu-
ments. Executing a composite service invokes other services. We assume services,
which described by proposed method, are atomic services or a variation of composite
service consisting of ids of a composite service and services invoked from it. For the
latter, we introduce the higher-order function bind. bind can create a variation of a
composite service which can be invoked by another composite service, so bind can
create hierarchical graph structures. Figure 3 shows the grammar of the description.

description is a root element and expresses hierarchical service composition and
its invocation. service is service_id or composition created by bind function. com-
position consists of the identifier of a composite service and the list of invocation.
invocation consists of invocation_id, which identifies all invocations in composite
service, conds, which identifies conditions that must be satisfied to invoke the ser-
vice. 7, + and * denote the occurrence zero or one, one or more and zero or more of
preceding element. LETTER denotes normal characters other than white spaces.

Figure 4 shows an example description of the composition shown in Fig. 1. bind
is used to specify the variation of DictCrossSearch and BackupTrans that DictTrans
will invoke, and also DictTrans itself. As shown in Fig.4, we can express the call
graph structure of hierarchical service composition by introducing higher-order func-
tions and invoke it. TH/KSFIX, HHIZH B FBETT (KIYOMIZUDERA-HA,
KYOTO-NI-ARU-JIIN-DESU) is a Japanese sentence meaning ‘Kiyomizudera is
a temple in Kyoto’ in English.

description :== service "." method " (" args? ")"
service :== service_id | composition

method :== symbol

args :== ("/" symbol "/" ("," "M symbol "Ik)
composition :== "bind(" service_id invocation+ ")"
invocation :== "," invocation_id ":" ("[" conds "]")? service
conds :== (cond ("," cond)x*

cond :== name ("==" | "<" | "<=" | ">=" | "I=") vyalue
service_id :== symbol

invocation_id :== symbol

name :== symbol

value :== symbol

symbol :== LETTER+

Fig. 3 Grammar of hierarchical service composition description

46 T. Nakaguchi et al.

bind (DictTrans,
MorphologicalAnalysis: [’language’=’3ja’] Mecab,
MorphologicalAnalysis: [’language’='en’] TreeTagger,
BilingualDictionary: bind(DictCrossSearch,
BilingualDictionaryl: LifeScienceDict,
BilingualDictionary2: KyotoTourismDict),
Translation: bind(BackupTrans,
MainTranslation: JServer, BackupTranslation: GoogleTrans)
) .translate(’ja’,’en’, "{HEAKF X, ZHIWTHBFKRTIT., ') ;

Fig. 4 Example of hierarchical service composition description

4 Implementation

The target of the implementation of the method proposed in this chapter is Language
Grid. As we mentioned before, Language Grid adopts WS-BPEL as its description
language of composite services and adopts ActiveBPEL as its composite service exe-
cution engine. To implement the proposed method, the following steps are needed: (1)
Generate SOAP requests to invoke composite services from the description intro-
duced in the preceding section and (2) to implement functions for determining ser-
vices that the composite service actually invokes and generating the SOAP requests
the composite service will send based on the hierarchical composite service descrip-
tion by extending the source code of ActiveBPEL.

4.1 Building SOAP Request

ActiveBPEL adopts SOAP® over HTTPY as its service invocation protocol.
ActiveBPEL sends SOAP compliant requests to the services that will be executed.
A SOAP request consists of Header and Body. Header can have any information
while Body carries a method name and parameters. Thus, to implement the proposed
method, we must generate the URL of services invoked and call graph information
inserted into Head from the direct child element of the root element specified by
the description. Moreover, we must generate information about the method and its
parameters from the description that will be inserted into Body. Figure 5 shows the
SOAP message generated from the description shown in Fig. 4. We omit namespaces
and tag attributes for simplification.

Call graph information that will be used when the service is actually executed is
generated in JSON'? format, and added to the Header part of the SOAP messages,
so that the service execution engine does not need to implement a description parser.
Body carries a method name and parameters generated from the description. Though

8http://www.w3.org/TR/soap!/.
https://www.ietf.org/rfc/rfc2616.txt.
Ohttp://json.org/.

http://www.w3.org/TR/soap/
https://www.ietf.org/rfc/rfc2616.txt
http://json.org/

Language Service Composition Based on Higher Order Functions 47

<?xml version="1.0" encoding="UTF-8"?>

<Envelope>

<Header>

<binding>[
{"invocationId":"MorphologicalAnalysis",
"conditions":[{"name":"language", "op":"==","value":"ja"}1],

"serviceId":"Mecab"},

{"invocationId":"MorphologicalAnalysis",
"conditions":[{"name":"language", "op":"==","value":"en"}],
"serviceId":"TreeTagger"},

{"invocationId":"BilingualDictionary",
"serviceId":"DictCrossSearch", "children": [

{"invocationId":"BilingualDictionaryl", "serviceId":"LifeScienceDict"},
{"invocationId":"BilingualDictionary2", "serviceId":"KyotoTourismDict"}

1},

{"invocationId":"Translation",

"serviceId":"BackupTrans", "children":[
{"invocationId":"MainTranslation", "serviceId":"JServer"},
{"invocationId":"BackupTranslation", "serviceId":"GoogleTrans"}

1}</binding>

</Header>
<Body>
<translate>

<sourcelLang>ja</sourceLang>

<targetLang>en</targetLang>

<source>{H KFI1Z. HAIZ H % Fhi CT., </source>

</translate>
</Body>
</Envelope>

Fig. 5 Example of SOAP message

parameter names and the URL of service are not shown in Fig. 4, they can be extracted
from the information of service definition information (WSDL!!) of the service.
Invoking the search API of Language Grid, returns the WSDL of services.

4.2 Intercepting and Replacing Service Invocation

Next, we consider extending the service invocation process in the composite service
execution engine. To realize the proposed method, the extension of composite service
execution engine must extract information from the call graph, shown in the Head
partin Fig. 5, sent by the client and use said information to trigger the service invoked.
If the client ascribes a sub call graph to the invoked service, we have to insert a sub
call graph into the request sent to the service. For example, in executing the Dict-
Trans composite service based on the description shown in Fig. 4, the engine must
switch the service to DictCrossSearch service and insert a sub call graph that spec-
ifies BilingualDictionaryl and BilingualDictionary2 into the SOAP request when
the invocation identified by BilingualDictionary is executed. The service identifiers

https://www.w3.org/TR/wsdl.html.

https://www.w3.org/TR/wsdl.html

48 T. Nakaguchi et al.

inside a composite service correspond to a partner link name inside the corresponding
BPEL description.

To implement the proposed method, we could extend ActiveBPEL to reduce the
cost. Direct modification of the source code of ActiveBPEL directly complicates
subsequent source code revisions. Worse, when the source code is modified by version
up, we must confirm the consistency of modification before fixing the change. For
that reason, we use Aspect Oriented Programming (AOP) [8] to extend ActiveBPEL.
By using AOP, we can isolate the extension codes from the original software. In
implementing our proposed method, we used AspectJ [7] to apply AOP and inserted
our extension codes into ActiveBPEL. ActiveBPEL receives the execution request
for the composite service, then executes the composite service by executing the
activities written in BPEL and returning the result. Because the call graph information
inserted into the execution request and the extending service invocation based on that
information are needed in order to realize our method, we extend the processes of
Receive activity and Invoke activity. Figure 6 shows the class diagram that denotes
classes related to this extension.

The package org.activebpel. ** denotes all packages and classes under the package
org.activebpel that represent modules associated with ActiveBPEL. ActiveBPEL-
Aspect and AspectBase are the aspect and the base class that we implemented.
The package org.apache.axis.**, java.** and javax.xml.soap.** denote a third
party library and Java standard libraries. Pointcuts in ActiveBPELAspect catch the
executions of methods in ActiveBPEL that are needed to modify behavior of com-
posite services and use methods in AspectBase to switch services as specified in
the description. As shown in Fig.6, the ActiveBPEL dependency is enclosed in
ActiveBPELAspect, so AspectBase is independent from it.

javax.xml.soap.**] org.activebpel . **
]
AelnMemoryProcessManager
java.** | org.apache.axis.** | getNextProcessld(): long
]]
1 1 AeAxisinvokeHandler

createCall(AelnvokeContext): Call

AspectBase

extractDescription(): void AeRpcstyleinvoker

modifyEndpoint(): Endpoint invokeRpcCall(AeAxisInvokeCont-
insertDescription(): void ext): void

<<aspect>>

ActiveBPELAspect

around() receiveRequest(): long
around(AelnvokeContext c) determineEndpoint(c): Call
around(AeAxisInvokeContext c) sendRequest(c): void

Fig. 6 A module structure of extension and related classes of ActiveBPEL

Language Service Composition Based on Higher Order Functions 49

5 Evaluation

We evaluate the proposed method by applying it to the Language Grid. In more
detail, we estimate the number of composite services that our method can realize
by calculating the number of all variations of composite services using real services
registered on the Language Grid and measure the execution overhead of our imple-
mentation by comparing the execution time of composite services with and without
our method.

5.1 Number of Service Composition that Can Be Realized

The purpose of the proposed method is to realize various service compositions at
runtime without deployment process to service execution engine. We measure the
actual number of service compositions as the measure used to rate of the effectiveness
of our proposed method. It is calculated as the product of the number of services
conforming to the service invocation interfaces specified in a composite service. The
services can be atomic services or composite services. Though the service invocations
can be executed as long as the interface and the network protocol of the services
match the specification of the service invocations, they could fail. To successfully
complete the invocations, we should consider domain-specific constraints. In the
case of the Language Grid, the constraints are that invoked services must support
the languages specified as parameters from their invokers (composite services or
client programs). For example, the DictTrans composite service invokes services
conforming to MorphologicalAnalysis interface, BilingualDictionary interface and
Translation interfaces, respectively. To invoke the DictTrans, the client sends the
source language and target language as part of parameters. Then, the DictTrans
passes the source language to the MorphologicalAnalysis service, and a pair of source
language and target language to the BilingualDictionary service and the Translation
service. These services must support the language(s) passed as parameters. We can
determine whether a service supports certain language(s) or not by invoking the
search API of the Language Grid. We count only those variations that have services
that satisfy this constraint.

Further, because composite services can be nested like a layer and a composite
service can be used in different layers, it is impossible to calculate the number in a
simple brute-force manner. Therefore, we calculate the variations in each layer step-
by-step. In the first calculation stage, we calculate the number of variations of all
composite services from just the atomic services assigned to invocations and create
variations of composite services. In the stages after the first stage, we calculate the
number of variations according to atomic services and the variations created in the
previous stage. In this way, we can calculate the summation of the variations at
the calculation stage s: ALLV; by using the following formula. The number of first
calculation stage is 1.

50 T. Nakaguchi et al.

n

ALLV, = Zv(k, 5)
k=1

n is the number of all services. v(k, s) is the number of the variations of service k at
stage s and can be calculated by the following formula.

0, s = 0 or service k is ATOMIC

k’ — mi
vk,) [Tvitk,1,5), s>1

=1

v(k, s) becomes 0 when s is O or the service k is an atomic service, otherwise it
becomes the product of vi(k, [, s), which is the number of services that can be
assigned to each service invocation / of the composite service k. my is the number of
invocations of service k. Though the first calculation stage is 1, we define the number
of variations at the stage 0 as 0 because vi(k, [, s), described below, refers previous
stage. vi(k, [, s) can be calculated by the following formula.

. 10, service j does not satisfy Cy,
vitk,1,s) =Y 11, service j is ATOMIC
=t tv(j,s — 1), service j is COMPOSITE

The calculation of vi(k, [, s) considers only the those services that satisfy condi-
tion Cy;, which is that service j must conform to the interface of service invocation
[and service j must support the language(s) passed from the composite service k.
When the service j satisfies the condition and is an atomic service, vi(k, [, s) is
incremented by 1. If service j satisfies the condition and is a composite service,
vi(k, [, s) is incremented by the number of variations of service j at the former stage
s — 1. At the calculation stage 1, vi(k, [, s) becomes the number of atomic services
that satisfy the condition Cy; because s — 1 is 0 so v(j, s — 1) becomes 0.

Using the above formulas, we calculated the number of variations of composite
services registered to the Language Grid that can translate Japanese (ja) to English
(en). The number of atomic services that translate from ja to en is 65, the largest
number of translation services among all the supported language pairs. Table 1 shows
the results.

As shown in Table 1, the number of variations slightly increases with the stage
number, and can easily explode when composite services are nested. We calculated
the number of variations up to the 5th stage. In the Language Grid, 5-times nested
service composition is practical as in nesting BackTranslation service which com-
bines two Translation services to translate a translation result into source language,
BestTranslationSelection service which combines several Translation services and
SimilarityCalculation services to select a translation service whose result can be
back-translated to yield a result most similar to the source text, TranslationWith-
Backup service which combines two or more Translation services to realize a fallback
function for translation, DictTrans service, and DictCrossSearch service. The vari-

Language Service Composition Based on Higher Order Functions 51

Table 1 Calculation result

Calculation stage ja—en

1 4.09 x 10°

2 1.14 x 103
3 1.89 x 10163
4 2.44 x 10826
5 8.64 x 101131

ations of 5-times nested services which translate from ja to en were 8.64 x 10*13!,

To deploy and use these variations, we must register and manage them in the service
infrastructure. However, we can realize these compositions without paying this cost
by using the proposed hierarchical service binding technique.

5.2 Execution Overhead

The proposed method is an extension to the existing workflow execution engines. It
analyzes the Head part of SOAP request sent to a composite service, adds service
binding information to the SOAP request from the composite service to component
services, and modifies target URL of the SOAP request. These modifications might
increase the execution time of composite services. However, each modification is not
complex, and so overhead is insignificant. To confirm this, we prepare two configu-
rations of ActiveBPEL, one is the existing system and the other is the system with
our method. We use the same atomic services to execute a variation of DictTrans
service which uses DictCrossSearch service in the both configurations, and compare
the results. The call graph that is inserted into the SOAP request in the latter con-
figuration is the same as that shown in Fig.4. Figure 7 shows the sequence diagram
of the composition we use for the evaluation. At each method invocation, a SOAP
request is sent to target component. Client ran on a local machine and measured
execution time, DictTrans and DictCrossSearch ran on ActiveBPEL in Language
Grid and remaining services ran on a Language Grid server.

We extracted texts from two pages of Japanese Wikipedia, and translated them
from Japanese to English using the both configurations of ActiveBPEL. One is the
page for Kiyomizu Temple'? and the other is the page for Life Science.!® Twelve lines
(A-L) were extracted from Kiyomizu Temple text and 7 (M-S) from Life Science.
We translated each sentence 100 times. Figure 8 shows the result of execution. The
left axis denotes the average execution time of 100 translations run for each sentence
(A-S), while the right axis denotes the number of characters in each sentence. The
filled and hollow rectangles denote the execution time by the existing method and
the proposed method, respectively. The triangles denote the number of characters in

2https://ja.wikipedia.org/wiki/ %E6%B8%85%E6%B0%B4%E5% AF%BA.
Bhttps://ja.wikipedia.org/wiki/%E7%94%9F %E5%91%BD%ET%AT7%91%E5%AD%AG.

https://ja.wikipedia.org/wiki/%E6%B8%85%E6%B0%B4%E5%AF%BA
https://ja.wikipedia.org/wiki/%E7%94%9F%E5%91%BD%E7%A7%91%E5%AD%A6

52 T. Nakaguchi et al.

Client DictTrans DictCross Mecab KyotoTou| |Lifescience JServer
Search rismDict Dict

1. translatel()

1
1
1.1. analyde H

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1 1
1.2. searcH() H H H
1.2.1. seatch() | H i
' i i '
1.2.2. seafch() ! ! !
: : U :
1 1 1 1
1.3.trans|a'1te() ' ' ' '
i ! ! ! ! 1]
LJ 1 1 1 1 1 1
1 1 1 1 1 1 1
Fig. 7 Call sequence
Ave. time(ms) # of chars
400 140
350 b . 120
300 100
250 b
& 4 80
200 -
60
150 - %
100 - 40
« RN L el 11418 s

PLCHOOQI NBDJIKATFRSEGM
B existing method O proposed method 4 # of chars

Fig. 8 Execution time (sorted by ascending order of overhead)

each sentence. These execution results are sorted in ascending order of the difference
in execution time between the existing method and the proposed method. Although
the execution time varies among invocations, which is caused by network delay and
the different sentences length, the differences in execution times were small for all
sentences and the average of the overhead is 2.12%. Thus the overhead penalty of
the proposed method is limited.

6 Related Work

In this research, we use higher-order functions to express service composition con-
sisting of hierarchical service combinations. The proposed method can be regarded
as a novel service composition method, where a new composite service is executed
by changing the call-relationship of existing composite services based on a given

Language Service Composition Based on Higher Order Functions 53

description. Moreover, the proposed method can be considered as a service reuse
method since it does not produce new services, and simply uses existing atomic or
composite services.

Some previous studies focused on automatic service composition methods. In the
service composition methods that extend Golog [11] and McDermott [10], a user can
describe his/her requirements in original languages (extended Golog language for
former and extended PDDL for latter) and the service composition will be executed
by selecting the appropriate services based on the description. However, when a user
wants to conduct hierarchical service composition where other composite services
are bound as a part of the overall composite service, these methods demand that con-
crete variations of composite services must be registered beforehand. In contrast, our
method supports the description of hierarchical service composition without register-
ing concrete composite service variations. Therefore, a user can invoke significantly
many service composition variations without registering them beforehand and thus
avoid paying the costs of managing them. QoS-based service selection [9] is one
way to select services used in composite services; it involves the calculation of qual-
ities of services that users prefer. The need of the user may change depends on the
situation such as the domain of use or languages of other participants. The method
proposed herein allows language service users to realize own service composition at
runtime by calculating QoS and selecting services based on the results by using such
selection technologies in combination.

The effort needed to improve the reusability of service composition has also been
reported in some previous studies. For example, Fragmento [14] focuses on the reuse
of process descriptions by extracting and sharing fragments of process descriptions
that realize certain functions so that users can reuse them by searching a repository. In
order to deploy composite services that use process fragments, the user must include
the fragment of process description and related definitions such as WSDLs or XML
Schemas into the services. If the fragment has some bugs, user must redo inclusion
and deployment for all services that use the fragment. Our method uses existing
composite services themselves as the unit of reuse and no modification is needed it,
so we can receive the benefit of bug fix or other improvements of services without
any additional works.

7 Discussion

As the proposed method provides for hierarchical service composition descriptions
at runtime, we can now execute various variations of composite services without
deploying new composite services. Moreover, developers can improve the reusabil-
ity of composite services by providing fine granularity services that focus on simple
problems. For example, developers can design the fallback function as a composite

54 T. Nakaguchi et al.

service that invokes alternate services when the main service fails where the invoca-
tion interface is the same for the main service and for the alternate services. When the
invocation of the main service fails, this fallback composite service invokes alter-
nate services until it succeeds or no more alternate service exists, and returns the
result of successful invocation or error when no services succeed. Users can use this
composite service by specifying a service with high quality and low availability to
be the main service and services with relatively low quality and high availability to
be the alternate services. Furthermore, as more services are created that offer fine
granularity and high reusability, the more variations created by the combinations of
these fine granularity services can be generated, and then other service composition
methods, such like automated service composition, can become more robust.

Moreover, we can easily customize the service composition based on user require-
ments. Because services run independently from each other and provide certain func-
tions to all users equally, it is difficult to change the behavior of existing services
based on the requirements of each user or propagate information across services
that is used in just one service composition. By using the proposed method, ser-
vice composition can be customized flexibly by changing its construction based on
the hierarchical description from different users. Since the customization of service
composition is realized for each execution request, it does not affect the execution
of requests from other users.

8 Conclusion

To well support the changing situations in which multi-language activities are used,
service infrastructure must create various new services quickly by aggregating var-
ious services based on standardized invocation interfaces of them. In this chapter,
we proposed a hierarchical service composition description and applied it to a real
service infrastructure to dealt with this issue. The main contributions of this chapter
are:

1. Propose a hierarchical service composition description by introducing higher-
order functions.
2. Implement it by extending an existing service infrastructure.

For hierarchical service composition description, we introduced the bind func-
tion which can assign an atomic service or a variation of composite services to the
service invocation in a composite service. This allows us to create service compo-
sition variations at runtime. For implementing the proposed method, we introduced
AQP for modularizing codes by extending existing service infrastructures so as to
reduce the dependency between workflow execution engine and our implementation.
This extension enables composite service execution to recognize the hierarchical ser-
vice composition description and transport the description as a part of the service
invocation message.

Language Service Composition Based on Higher Order Functions 55

Moreover, we applied the proposed method to an existing service infrastructure:
the Language Grid, which is agglomeration of language resources and services, and
evaluated the effect of the number of variations our method can realize under domain
dependent constraints. We further evaluated the overhead of our method in terms of
execution time. The results showed that various service compositions can be realized
at runtime and the overhead of our method does not exceed 2.12%.

Acknowledgements This research was supported by a Grant-in-Aid for Scientific Research (S)
(24220002, 2012-2016) and a Grant-in-Aid for Young Scientists (A) (17H04706, 2017-2020) from
Japan Society for the Promotion of Science (JSPS). Most of this work was done while the first author
was a researcher at Department of Social Informatics, Kyoto University.

References

1. Bentley, R., Csillaghy, A., Aboudarham, J., Jacquey, C., Hapgood, M., Bocchialini, K.,
Messerotti, M., Brooke, J., Gallagher, P., Fox, P., Hurlburt, N., Roberts, D., Duarte, L.S.:
Helio: the heliophysics integrated observatory. Adv. Space Res. 47, 2235-2239 (2011)

2. Donvito, G., Vicario, S., Notarangelo, P., Balec, B.: The Biovel Project: robust phylogenetic
workflows running on the grid. In: EGICF12-EMITC2, pp. 26-30 (2012)

3. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Pearson Education
India, Delhi (2005)

4. Hughes, J.: Why functional programming matters. Comput. J. 32(2), 98-107 (1989)

5. Ide, N., Pustejovsky, J., Cieri, C., Nyberg, E., Wang, D., Suderman, K., Verhagen, M., Wright,
J.: The language application grid. In: Chair, N.C.C., Choukri, K., Declerck, T., Loftsson, H.,
Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC’14), pp. 22-30. Euro-
pean Language Resources Association (ELRA), Reykjavik, Iceland (2014)

6. Ishida, T. (ed.): The Language Grid: Service-Oriented Collective Intelligence for Language
Resource Interoperability. Springer Science & Business Media, Berlin (2011)

7. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview of
Aspectj. In: European Conference on Object-Oriented Programming, pp. 327-354. Springer,
Berlin (2001)

8. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.:
Aspect-oriented programming. In: European Conference on Object-Oriented Programming,
pp. 220-242. Springer, Berlin (1997)

9. Lin, D., Shi, C., Ishida, T.: Dynamic service selection based on context-aware QoS. In: 2012
IEEE Ninth International Conference on Services Computing, pp. 641-648 (2012)

10. McDermott, D.: Estimated-regression planning for interactions with web services. In: Pro-
ceedings of the Sixth International Conference on Artificial Intelligence Planning Systems, pp.
204-211 (2002)

11. Mcllraith, S., Son, T.C.: Adapting golog for composition of semantic web services. In: Pro-
ceedings of the 8th International Conference on Knowledge Representation and Reasoning,
pp- 482-493 (2002)

12. Murakami, Y., Lin, D., Ishida, T.: Service-oriented architecture for interoperability of multi-
language services. In: Buitelaar, P., Cimiano, P. (eds.) Towards the Multilingual Semantic Web,
pp. 313-328. Springer, Berlin (2014)

13. Murakami, Y., Lin, D., Tanaka, M., Nakaguchi, T., Ishida, T.: Service grid architecture. In:
Ishida, T. (ed.) The Language Grid: Service-Oriented Collective Intelligence for Language
Resource Interoperability, pp. 19-34. Springer, Berlin (2011)

56

14.

15.

T. Nakaguchi et al.

Schumm, D., Dentsas, D., Hahn, M., Karastoyanova, D., Leymann, F., Sonntag, M.: Web service
composition reuse through shared process fragment libraries. In: International Conference on
‘Web Engineering, pp. 498-501. Springer, Berlin (2012)

Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-Reyes,
S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K., Bacall, F., Hardisty, A.,
Nieva de la Hidalga, A., Balcazar Vargas, M.P., Sufi, S., Goble, C.: The Taverna workflow
suite: designing and executing workflows of web services on the desktop, web or in the cloud.
Nucleic Acids Res. 41(W1), W557-W561 (2013)

	Language Service Composition Based on Higher Order Functions
	1 Introduction
	2 Composite Services and Their Variations
	3 Description Language for Hierarchical Service Composition
	4 Implementation
	4.1 Building SOAP Request
	4.2 Intercepting and Replacing Service Invocation

	5 Evaluation
	5.1 Number of Service Composition that Can Be Realized
	5.2 Execution Overhead

	6 Related Work
	7 Discussion
	8 Conclusion
	References

