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Abstract Engineers associated with construction of tunnels in weak rocks are
frequently met with geotechnical problems like instability of tunnels, yielding of the
rock mass and excessive deformations due to squeezing. The problems are induced
due to redistribution of in situ stresses around tunnel periphery caused by exca-
vation of the tunnel. It is a challenging task to have proper understanding of the
geotechnical issues before starting the excavation. The present chapter discusses
some of the most challenging geotechnical issues which can be resolved in advance
with characterisation of the rock mass at the site. These issues include assessing
rock mass strength subject to given confining pressure for unreinforced and bolted
rock mass, assessment of squeezing potential, assessment of tunnel deformation and
expected support pressure. If adequate understanding on these issues is available
with the designers, proper strategies may be formulated to handle problems at
construction stage.
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1 Introduction

Geotechnical engineers working in hydropower and transportation engineering
sectors often deal with construction of tunnels in rocks. During planning, design
and construction of tunnels, geotechnical engineering plays the most important role
as an inadequate understanding of geotechnical aspects may result in serious cost
implications. The geology in the Himalayan region is extremely fragile and full of
surprises. The rock masses invariably exhibit structural discontinuities like joints,
bedding planes, foliations, shear zones and varying degree of weathering. The rock
masses are characterised with low strength, high deformability and anisotropy in
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engineering behaviour. Tectonic stresses are always present in the region. The stress
regime changes due to excavation of tunnel, and a complex interaction of rock mass
and tunnels support occurs. It is very important to foresee the problems likely to be
caused due to redistribution of stresses. Once the expected engineering behaviour is
adequately predicted, the strategies can then be formulated to cope up with the
problems at the construction stage.

In general, it is common to use the term “weak rock” to represent the behaviour
of the “rock mass” as a whole. The overall behaviour of the rock mass is governed
jointly by the characteristics of intact rock substance and the geological disconti-
nuities present in the rock mass. In addition, the scale of the problem affects the
behaviour of the tunnel in the rock mass.

The basic aim of the geotechnical design in tunnelling is to utilise the rock itself
as a principal structural material without creating much disturbance during exca-
vation process with minimum addition of concrete and steel support. The instability
may be due, but not limited, to: (a) geological structural features, i.e. joints, foli-
ations, bedding planes, shear zones and faults, (b) excessive high stresses due to
tectonic activity, (c) weathering of rock materials or swelling minerals and (d) ex-
cessive ground water pressure. The potential failure mechanism plays key role in
geotechnical design of the tunnels. The failure may be due to structurally controlled
failure mechanism which prevails at shallow depths where structural discontinu-
ities, e.g. joints, bedding planes and foliations dominate the engineering behaviour.
Stress-induced failure occurs at relatively greater depths.

TheHimalayan geology is so varying and full of surprises that it is never possible to
get full information in advance. Though preliminary investigations are done at the
initial stage itself, it is very challenging at the tender stage to exactly quantify the
problems likely to be encountered during tunnel construction. The geotechnical
model needs to be updated during construction and adequate arrangements are
required to accommodate the changes in the support system as the construction
progresses. Sufficient understanding and comprehension is required at the design
stage itself before starting the construction. Some of the challenges to be handled by
the geotechnical engineers, especially for weak rock masses, are as follows:

i. Determination of stresses around tunnels,
ii. Rock mass strength, failure criteria for jointed rocks and behaviour of jointed

rocks reinforced with rock bolts,
iii. Assessment of squeezing potential,
iv. Assessment of tunnel closure,
v. Assessment of ultimate support pressure.

The present chapter discusses how reliable estimates of geotechnical design param-
eters can be made at the design stage itself to tackle the problems during construction.
This chapter is focussed on characterisation and classification-based approaches which
are simple in use in the field. In addition, this chapter concerns the instability issues only.
Seepage problems, numerical analysis, detailed design of support system and con-
struction strategies in the field are beyond the scope of the present chapter.
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2 Stresses Around Tunnels

Excavation of tunnel disturbs the in situ stress state and redistributes stresses around
the tunnel periphery. Closed-form solutions are available for standard shapes of
tunnels to get stress distribution around tunnels (Obert and Duvall 1967). Figure 1
shows typical variation of radial and circumferential stresses in an elastic rock mass
due to excavation of a circular tunnel in a rock mass subjected to hydrostatic stress
state. Hoek (2007) has discussed how deformation and displacements occur as
construction progresses. It is observed by Hoek (2007) that the radial displacement
starts at a distance equal to about one half the tunnel diameter ahead of the
advancing face and reaches its final value at about one and half tunnel diameter
behind the face. The tunnel deformation analysis can be done if the rock mass
properties and in situ stress values are known. A simple analysis of tunnel defor-
mation for a circular tunnel (Fig. 2) subject to hydrostatic in situ stress (po) and
internal support pressure (pi) is given by Hoek (2007). For simplicity, a linear
failure criterion was assumed for the rock mass as follows:

r1 ¼ rcm þ kr3 ð2:1Þ

Fig. 1 Stress distribution
around a circular tunnel
(in situ stresses: hydrostatic)

pirp

ro

po
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Fig. 2 A circular tunnel
subject to internal pressure
and hydrostatic in situ stress
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where rcm is the uniaxial compressive strength of the rock mass given as follows:

rcm ¼ ð2c cos/Þ=ð1� sin/Þ ð2:2Þ

and k is the slope of r1 versus r3 line and is given as follows:

k ¼ ð1þ sin/Þ=ð1� sin/Þ ð2:3Þ

r1 is the major principal stress at failure; r3 is confining stress at failure; and
c and / are Mohr–Coulomb shear strength parameters.

If the internal support pressure pi is sufficiently large (greater than the critical
support pressure pcr), no failure occurs, and the behaviour of the rock mass sur-
rounding the tunnel is elastic. The critical support pressure can be obtained as
follows (Hoek 2007):

pcr ¼ ð2po � rcmÞ=ð1þ kÞ ð2:4Þ

However, if the internal support pressure is not sufficient enough, the rock mass
fails and the radius rp of the plastic zone around the tunnel may be obtained as
follows:

rp ¼ ro
2ðpoðk � 1Þþ rcmÞ

ð1þ kÞððk � 1Þpi þ rcmÞ
� � 1

ðk�1Þ
ð2:5Þ

The total inward radial displacement of the tunnel wall, uip, may be obtained as
follows:

uip ¼ roð1þ mÞ
E

2ð1� mÞðpo � pcrÞðrp=roÞ2 � ð1� 2mÞðpo � piÞ
h i

ð2:6Þ

where E and m are modulus of elasticity and Poisson’s ratio of the rock mass.
For designing appropriate support system, rock mass–tunnel support interaction

analysis is carried out for the particular support system adopted. A case of
squeezing ground condition is presented in Fig. 3 (Hoek and Brown 1982). The
plot shows variation of support pressure, p, with tunnel wall displacement, u. If the
support system is too flexible, it will offer relatively little resistance even after
deforming to very large extent. On the other hand, if the support system is too stiff,
it will attract very high stresses and may yield. It is not only important to have a
proper type of support; equally important is the decision when to apply the support.
If the supports are employed too early, they will attract high stresses and may yield.
If the supports are too delayed, large deformations would have occurred and rock
mass would have failed. For a proper economical, safe and efficient design, the
supports installed should be neither too early, nor too late and at the same time,
neither too rigid nor too stiff compared with the stiffness of the rock mass.
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3 Rock Mass Strength and Failure Criteria

While performing rock mass–tunnel support interaction analysis, the designer needs
to assess the rock mass strength subject to the prevailing confining pressure. An
accurate determination of the rock mass strength is therefore the backbone of the
analysis and design. In the simple analysis presented in the preceding section, simple
linear strength behaviour of the rock mass was considered. In reality, the strength
behaves in a nonlinear manner; i.e. the principal stress at failure is a nonlinear
function of confining pressure. A suitable nonlinear strength criterion is used for this
purpose. A number of strength criteria are available in the literature (Hoek and Brown
1980; Ramamurthy 1993; Ramamurthy and Arora 1994; Singh and Singh 2012), and
the use of any criterion may be a matter of choice. The criterion should, however, be
simple in use; its parameters should carry physical meaning, and the designer should
be able to easily obtain these parameters. The criterion parameters should be robust;
i.e. their values should not vary when amount of input data, which is given to obtain
input parameters, is varied. Conventional Mohr–Coulomb failure criterion (linear
form) is the most widely used failure criterion and fulfils the requirement of an ideal
failure criterion except that it is linear criterion. This criterion has been extended to
take care of nonlinearity in strength behaviour, and modified Mohr–Coulomb
(MMC) criterion has been suggested (Singh and Singh 2005, 2012; Singh et al. 2011,
2015; Singh 2016). It is reported that the MMC criterion parameter / is the most
robust (Shen et al. 2014) parameter as compared to other criterion parameters. A brief
description of the MMC criterion is presented in the following.

Fig. 3 Rock mass–tunnel
support interaction analysis
(Hoek and Brown 1982)
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3.1 Modified Mohr–Coulomb (MMC) Criterion
for Jointed Rocks

The MMC criterion derives its base from Barton’s critical state concept for rocks.
A rock tested under low confining pressure fails in a dilatant and brittle manner due
to opening up of the pre-existing microcracks resulting in high value of instanta-
neous friction angle /. For tests at higher confining pressure, the tendency of
dilation is suppressed and the failure mechanism shifts from brittle to ductile and a
relatively lower value of / is obtained. If confining pressure is increased further, the
rock becomes completely ductile; at sufficiently high confining pressure, the rock
enters the critical state (Fig. 4). The tangential gradient of the envelope is steep at
low confining pressure and tends to become asymptotic to a horizontal line at
critical state. Barton (1976) states “critical state for an initially intact rock is
defined as the stress condition under which Mohr envelope of peak shear strength
of the rocks reaches a point of zero gradient. This condition represents the maxi-
mum possible shear strength of the rock. For each rock, there will be a critical
effective confining pressure above which the shear strength cannot be made to
increase”. This characteristic of Mohr failure envelope approaching horizontal has
been used to define the correct shape of the failure criterion (Singh and Singh 2005;
Singh et al. 2011, 2015; Singh 2016), and the conventional Mohr–Coulomb cri-
terion was modified to incorporate nonlinearity in strength behaviour. Based on
statistical back analysis of large number of triaxial test data, it was also shown by
Singh et al. (2011) that for the application of MMC criterion, the critical confining
pressure of an intact rock may be taken nearly equal to its UCS, rci. The modified
Mohr–Coulomb (MMC) criterion was thus expressed as follows:
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Fig. 4 Barton’s critical state
concept for rocks (Singh et al.
2011)

168 M. Singh



ðr1 � r3Þ ¼ rci þ 2 sin/i0

1� sin/i0
r3 � 1

rci

sin/i0

ð1� sin/i0Þ
r23 for 0� r3 � rci ð3:1Þ

where r1 is the major principal stress at failure; r3 is the minor principal stress at
failure; /i0 is the friction angle of intact rock at very low confining pressure
(r3 ! 0); and rci is UCS of the intact rock given as follows:

rci ¼ 2ci cos/i0

1� sin/i0
ð3:2Þ

where ci is the cohesion of the intact rock.
The expression for differential stress at failure (r1 − r3) is applicable up to

critical confining pressure r3 = rci. Beyond this point, the differential stress
(r1 − r3) becomes constant as per the critical state concept (Barton 1976).

Figure 5 shows results from triaxial tests conducted on jointed rock by Brown
(1970). The variation of shear strength indicates that jointed rocks also follow
critical state concept. It is observed that at sufficiently high confining pressure the
Mohr failure envelopes of jointed and intact rocks merge with each other. Singh and
Singh (2012) employed the critical state concept to suggest a nonlinear strength
criterion for jointed rocks. The suggested strength criterion for jointed rock along
with the failure criterion of intact rock is shown in Fig. 6. Based on analysis of a
compiled database comprising of more than 730 triaxial test data for a variety of
rocks (rci = 9.5–123 MPa) from the worldwide literature, Singh and Singh (2012)
suggested that critical confining pressure of jointed rocks may also be taken nearly
equal to UCS of intact rock, rci, for the application of the proposed criterion.
Consequently, the MMC criterion “single parameter form” for jointed rocks was
expressed as follows:
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Fig. 5 Mohr failure
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redrawn from Brown 1970)

Geotechnical Challenges in Tunnelling Through Weak Rocks 169



ðr1 � r3Þ ¼ rcj þ
2 sin/j0

1� sin/j0
r3 � 1

rci

sin/j0

ð1� sin/j0Þ
r23 for 0� r3 � rci ð3:3Þ

where rcj is the UCS of the rock mass; /j0 is the friction angle of the rock mass
corresponding to very low confining pressure range (r3 ! 0) and can be obtained
as follows:

sin/j0 ¼ ð1� SRF)þ sin/i0

1� sin/i0

� ��
ð2� SRF)þ sin/i0

1� sin/i0

� �
ð3:4Þ

where SRF is strength reduction factor = rcj/rci.
Few triaxial tests on intact rock are required to get parameter /i0. If triaxial test

data on intact rock is not available, the following nonlinear form of the criterion
may be used as an alternative (Singh and Rao 2005a):

ðr1 � r3Þ ¼ rcj � 2Ajrcir3 þAjr
2
3 for 0� r3 � rci ð3:5Þ

where Aj is an empirical criterion parameter and may be estimated from the
experimental value of rci, using the following expressions:

For average prediction of r1 Aj ¼ �1:23ðrciÞ�0:77 ð3:6Þ

For lower bound prediction of r1 Aj ¼ �0:43ðrciÞ�0:72 ð3:7Þ
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Jointed
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Fig. 6 Modified Mohr–
Coulomb criteria for intact
and jointed rocks (Singh and
Singh 2012)
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The designer may use the lower bound prediction. However, a parametric
analysis by varying the strength values from low to average prediction gives a good
insight into behaviour of the rock mass.

3.1.1 Assessment of rCj in Field

An important input to the MMC criterion is the UCS of the rock mass, rcj. The
values of rci and /i0 will be available from laboratory tests on intact rocks; how-
ever, determination of rcj is a difficult task. Major factors that govern rcj are intact
rock strength rci, discontinuity characteristics, kinematics and possible failure
mode. Rock mass classification systems are frequently used in the field to assess the
rock mass strength. Table 1 presents some of the approaches available from the
literature. Amongst rock mass classification systems, the Q system is widely used
for tunnelling projects in India. The following expressions may be used to assess rcj
from Q:

Singh et al. (1992)

rcj ¼ 7cQ1=3 MPa ðfor Q\10; 2\rci\100 MPa; SRF ¼ 2:5Þ ð3:8Þ

Table 1 Approaches for assessing UCS of jointed rocks

Author(s) Relation

Yudhbir and Prinzl (1983) rcj=rci ¼ exp 7:65� ðRMR� 100Þf g=100½ �
Ramamurthy et al. (1985),
Ramamurthy (1986)

rcj=rci ¼ exp ðRMR� 100Þ=18:75f g

Trueman (1988), Asef et al.
(2000)

rcj ¼ 0:5 expð0:06 RMRÞ MPa

Kalamaras and Bieniawski
(1993)

rcj=rci ¼ exp ðRMR� 100Þ=24f g

Sheorey (1997) rcj=rci ¼ exp ðRMR� 100Þ=20f g
Aydan and Dalgic (1998) rcj=rci ¼ RMR= RMRþ 6ð100� RMR)f g
Zhang (2010) rcj=rci ¼ 10ð0:013RQD�1:34Þ

Ramamurthy (1993),
Ramamurthy and Arora (1994)

rcj=rci ¼ exp �0:008Jfð Þ

Hoek and Marinos (2000) rcj ¼ 0:0034m0:8
i

� �
rci 1:029þ 0:025e�0:1mi½ �GSI

mi = Hoek-Brown constant

Singh (1997), Singh et al.
(2002)

rcj=rci ¼ exp �aJfð Þ; a = 0.0123 for splitting, 0.010 for
shearing, 0.0250 for rotation and 0.0180 for sliding

Major source Zhang (2010)
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Barton (2002)

rcj ¼ 5c
Qrci
100

� �1=3

MPa ð3:9Þ

where c is the unit weight of the rock mass in gm/cc and rcj and rci are in MPa.
It may be noted that the best estimates of rock mass strength, rcj, can only be

made in the field through large-size field-testing by loading the mass up to failure. It
is, however, extremely difficult, time consuming and expensive to load a large
volume of jointed mass in the field up to ultimate failure. Singh (1997), Singh and
Rao (2005b) have discussed that a better alternative is to get the deformability
properties of rock mass by stressing a limited area of the mass up to a certain stress
level and then relate the ultimate strength of the mass to the laboratory UCS of the
rock material through a strength reduction factor, SRF. It has been shown by Singh
and Rao (2005b) that when jointed rock positions are plotted on Deere and Miller
(1966) classification chart, the points lie around an empirical line passing through
the intact rock position (Fig. 7). The gradient of this empirical line defines a cor-
relation between strength and modulus values of intact and jointed rocks. The
modulus reduction factor, MRF, and the strength reduction factor, SRF, are cor-
related with each other by the following expression approximately:

SRF ¼ ðMRFÞ0:63 ð3:10Þ

) rcj=rci ¼ ðEj=EiÞ0:63 ð3:11Þ

where SRF is the ratio of rock mass strength to the intact rock strength; MRF is the
ratio of rock mass modulus to the intact rock modulus; rcj is the rock mass strength;
rci is the intact rock strength; Ej is the elastic modulus of rock mass; and Ei is the
intact rock modulus available from laboratory tests.

R2 = 0.9355
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Fig. 7 Jointed rock positions
on Deere–Miller classification
chart (Singh and Rao 2005b)

172 M. Singh



The elastic modulus of rock mass, Ej, may be obtained in the field by conducting
uniaxial jacking tests (IS:7317 1974) in drift excavated for the purpose. The test
consists of stressing two parallel flat rock faces (usually the roof and invert) of a
drift by means of a hydraulic jack (Mehrotra 1992). The stress is generally applied
in two or more cycles, and the second cycle of the stress deformation curve is
recommended for computing the field modulus as follows:

Ej ¼ mð1� m2Þffiffiffi
A

p
de

ð3:12Þ

where Ej is the elastic modulus of the rock mass in kg/cm2; m is Poisson’s ratio of
the rock mass (=0.3); P is the load in kg; de is the elastic settlement in cm; A is the
area of plate in cm2; and m is an empirical constant (=0.96 for circular plate of
25 mm thickness).

The results obtained through this approach are likely to be more realistic as
inputs are directly derived from the field data. The size of the drift should be
sufficiently large as compared to the plate size so that there is little effect of
confinement. The confinement may result in overprediction of the modulus values.

3.2 Effect of Rock Bolting on Rock Strength

Rock bolts are widely used to reinforce the rock mass for stabilising tunnels.
Numerical methods are the best answer to assess strength of bolted rock. However,
numerical modelling is relatively expensive and time consuming and should
therefore be preferred at the final stage of design. Srivastava and Singh (2015) have
suggested a simple empirical approach to assess approximately the strength of fully
grouted passive rock bolts. The approach is based on outcome of laboratory tests
conducted on jointed rock specimens with and without rock bolts. The rock mass
strength is considered to be governed by the shear strength of the joints present in
the mass. The shear strength of a single joint in the mass (without rock bolt) is
expressed as follows:

sf ¼ cj þ rn tanð/jÞ ð3:13Þ

where cj = cohesion of the joint and /j = friction angle of the joint.
When rock mass is reinforced with bolts, the strength of a series of joints in the

mass is represented as follows:

sf ¼ cj mass þ rn tanð/j massÞ ð3:14Þ

where cj_mass and /j_mass are the cohesion and friction angle along joints in the
mass.
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It was observed by Srivastava and Singh (2015) that when rock mass is rein-
forced with fully grouted rock bolts, there is substantial improvement in the
cohesion of the joints; however, the friction angle remains almost unchanged. The
cohesion enhancement (CE) caused by bolting was expressed as follows:

CE ¼ cj mass � cj ð3:15Þ

where cj_mass is the cohesion of series of joint in mass and cj is the cohesion of a
single joint.

The cohesion enhancement is a measure of improved shear strength of joints
which depends on the amount of steel, geometry of rock mass and configuration of
bolt pattern. The amount of steel was represented by the term per cent area ratio, Ar,
given by the following:

Ar ¼ ðAb=AÞ � 100% ð3:16Þ

where Ab = total cross section area of bolts and A = area of mass on shearing plane.
While considering geometry, the representative rock block dimension (Db) and

bolt spacing (Sb) were found to affect the strength enhancement. If the block
dimension is small and bolt spacing is large, the enhancement will be low, whereas
if the block dimension is large and the bolt spacing is relatively small, the
enhancement can be expected to be high. To account for the importance of the
block dimension and bolt spacing, a number N (spacing ratio) was defined as
follows:

Nb ¼ Sb=Db ð3:17Þ

where Sb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðArea of shearing planeÞ=ðNumber of boltsÞp

, Db ¼ ðvolume of

representative blockÞ1=3.
The cohesion enhancement due to provision of rock bolts was obtained from

laboratory test data and was plotted (as a fraction of intact rock cohesion) against
the quantity Ar/N. The following correlation was obtained for the cohesion
enhancement for the given amount of steel, bolt spacing and representative rock
block dimension:

ðCEÞ=ci ¼ ðcj mass � cjÞ=ci ¼ 0:04 lnðAr=NbÞþ 0:24 ð3:18Þ

A ready-to-use chart was produced by Srivastava and Singh (2015) to assess the
cohesion enhancement (Fig. 8) depending on amount of steel, bolt spacing and
representative block dimension. The cohesion enhancement can be readily used to
find out the enhanced rock mass strength rcj in MMC criterion for incorporating the
effect of rock bolts on strength behaviour of rock mass.
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4 Assessment of Squeezing Potential
of Tunnels in Weak Rocks

Squeezing of tunnels is a common phenomenon in tunnels excavated in weak rocks.
Barla (2001) has defined squeezing as large time-dependent convergence during
tunnel excavation. A particular combination of induced stresses and material
properties may induce squeezing conditions. Excessive deformations may occur
and continue over a long period of time. Identification of squeezing potential is the
first step towards the successful design and construction of tunnels in weak rocks.
Some of the approaches used for identifying the squeezing potential are presented
in brief in the following sections. The approaches have been grouped into two broad
categories, i.e. empirical and semi-empirical approaches.

4.1 Empirical Approaches

4.1.1 Singh et al. (1992) Approach Based on Q System

Singh et al. (1992) analysed 39 case histories, on squeezing and non-squeezing
conditions, and plotted tunnel depth against rock mass quality Q (Barton et al.
1974). A clear-cut demarcation line differentiating squeezing cases from
non-squeezing cases was observed, and the condition for squeezing found as
follows:

H� 350Q1=3 ð4:1Þ

where H is tunnel depth in m.
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cohesion enhancement
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4.1.2 Goel et al. (1995) Approach Based on Rock Mass Number

Difficulty is generally faced in assigning correct rating to the parameter SRF in
Q system. To avoid this problem, Goel et al. (1995) suggested a rock mass number
N, defined as stress-free Q; i.e. Q with SRF = 1.

N ¼ ðQÞSRF¼1 ð4:2Þ

Considering the tunnel depth H (m), the tunnel span or diameter B (m) and the
rock mass number N from 99 tunnel sections, Goel et al. (1995) plotted the
available data on a log–log diagram between N and HB0:1. The following corre-
lations were suggested:

For squeezing conditions

H � ð275N0:33ÞB�1ðmÞ ð4:3Þ

For non-squeezing conditions

H 	 ð275N0:33ÞB�1ðmÞ ð4:4Þ

4.1.3 Dwivedi (2014) Approach Based on Q, N and Joint Factor

Recently Dwivedi (2014) collected data for more than 180 tunnel sections for the
various ground conditions. Rock mass quality was obtained by computing
Q (Barton et al. 1974), N (Goel et al. 1995) and joint factor Jf (Arora 1987;
Ramamurthy and Arora 1994; Singh 1997; Singh et al. 2002, 2004). The value of
joint factor will vary along the periphery of the tunnel. For simplicity, the joint
factor was obtained at springing level (element A, Fig. 9). Apparent dip of the
joint as obtained in the plane normal to tunnel axis was considered to get the joint
inclination parameter of the joints. The conditions for different ground conditions
were expressed as given in Table 2.

4.2 Semi-empirical Approaches

4.2.1 Rock Mass Strength-Based Approaches

The excavation of a tunnel redistributes the stresses in the tectonically stressed rock
mass. The tangential stresses around the tunnel periphery may become large and in
the absence of adequate support, may exceed the uniaxial compressive strength of
the rock mass. The rock mass at the periphery may fail, and the broken zone may
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progress slowly in the radial direction, giving rise to time-dependent large-tunnel
convergence. The rock-mass-strength-based approaches attempt to “quantify”
squeezing potential by comparing the rock mass strength with the overburden stress
at the tunnel depth.

Jethwa et al. (1984) defined an index “competency factor” as the ratio of uniaxial
compressive strength of rock mass to overburden stress cH. The competency factor
was used to define squeezing potential, and a classification for squeezing potential
was suggested as shown in Table 3.

Fig. 9 Computation of joint factor: a rock mass element “A” near springing level. b Apparent dip
of joints for element “A”

Table 2 Ground conditions based on Q, N and Jf (Dwivedi 2014)

Ground
condition

Based on Q Based on N Based on Jf

Self-supporting H\191ðQ=DÞ0:642 H\127ðN=DÞ0:9087 HD\170009e�0:025Jf

Non-squeezing H\722ðQ=DÞ0:34 H\466ðN=DÞ0:3176 HD\170234e�0:017Jf

Squeezing H[ 722ðQ=DÞ0:34 H[ 466ðN=DÞ0:3176 HD[ 170234e�0:017Jf

Rock-burst H[ 635ðQ=DÞ�0:27

and Q/D > 0.08
H[ 1035ðN=DÞ�0:096

and N/D > 0.14
HD[ 4189e0:0049Jf

Table 3 Classification of squeezing potential (Jethwa et al. 1984)

rcm=ðcHÞ Squeezing type

<0.4 Highly squeezing

0.4–0.8 Moderately squeezing

0.8–2.0 Mildly squeezing

>2.0 Non-squeezing

Where rcm = rock mass uniaxial compressive strength; c = rock mass unit weight; H = tunnel
depth below surface
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Hoek and Marinos (2000) also used the ratio of rock mass uniaxial compressive
strength rcm to the in situ stress po to define tunnel squeezing potential. An
approximate relationship was suggested based on axisymmetric finite element
analysis to assess the tunnel strain for in situ stresses po and support pressures pi as
follows:

etð%Þ ¼ 0:15ð1� pi=poÞðrcm=poÞ�ð3pi=po þ 1Þ=ð3:8pi=po þ 0:54Þ ð4:5Þ

The squeezing level was classified as given in Table 4.

4.2.2 Strain-Based Approaches

Aydan et al. (1993) Approach

Rather than comparing the rock mass strength with the in situ stress, some inves-
tigators find it more convenient to compare the strains or deformations to quantify
the squeezing potential. It is argued by Singh et al. (2007) that the approach of
comparing the strain and not the strength is advantageous as the deformations are
easy to measure in the field. The field engineer can easily observe deformations and
modify the support system during the progress of the project. Aydan et al. (1993)
have used analogy between the stress–strain response of rock in laboratory and the
tangential stress–strain response around tunnels to define squeezing potential. Five
distinct states of stress–strain response were expressed during loading of a specimen
at low confining stress (Fig. 10). Expressions were suggested to obtain the nor-
malised strain levels as follows:

gp ¼ ep=ee ¼ 2r�0:17
ci ; gs ¼ es=ee ¼ 3r�0:25

ci ; gf ¼ ef=ee ¼ 5r�0:32
ci ð4:6Þ

If the strain level around a circular tunnel in a hydrostatic stress field is eah, and
elastic strain limit for the rock mass is eeh, the ratio of eah to eeh gives an indication of
the squeezing potential in the tunnel. A classification of squeezing potential was
suggested as shown in Table 5 (Aydan et al. 1993). The squeezing potential was
divided into five classes.

Table 4 Squeezing levels
defined by Hoek and Marinos
(2000)

Class Squeezing level Tunnel strain (%)

1 Few support problems et � 1

2 Minor squeezing 1\et � 2:5

3 Severe squeezing 2:5\et � 5:0

4 Very severe squeezing 5:0\et � 10:0

5 Extreme squeezing 10:0\et
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Critical-Strain-Based Approach (Singh et al. 2007)

The critical strain is defined as an empirical level of tangential strain at the
periphery of the tunnel above which construction problems are likely to occur.
Sakurai (1997) used critical strain to define various warning levels for severity of
construction in a tunnel. Aydan et al. (1993) and Hoek (2001) considered critical
strain value equal to 1% as a thumb rule. It has, however, been observed that there
are some tunnels which suffered strains as high as 4% but did not exhibit stability
problems (Hoek 2001). Singh et al. (2007) suggested that the critical strain should
not be taken as 1%, rather it should depend on the properties of the intact rock
material and jointed rock mass. Based on laboratory experiments on large number
of rock mass specimens, Singh et al. (2007) suggested the following relationship for
computing critical strain, ecr.
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Fig. 10 Idealised strain levels used for defining squeezing levels (Aydan et al. 1993)

Table 5 Classification of squeezing behaviour according to Aydan et al. (1993)

Class Squeezing degree Symbol Theoretical expression

1 Non-squeezing NS eah=e
e
h � 1

2 Light squeezing LS 1\eah=e
e
h � gp

3 Fair squeezing FS gp\eah=e
e
h � gs

4 Heavy squeezing HS gs\eah=e
e
h � gf

5 Very heavy squeezing VHS gf\eah=e
e
h

Note eah is the tangential strain around a circular tunnel in a hydrostatic stress field and eeh is the
elastic strain limit for the rock mass
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ecrð%Þ ¼ rci
E0:37
tj E0:63

i

� 100 ð4:7Þ

where Etj and Ei are the tangent moduli of rock mass and intact rock, respectively.
To assess rock mass modulus Etj, one can use Q system and strength reduction

factor. The following two alternative expressions were then obtained for critical
strain.

ecrð%Þ ¼ 31:1
ðrciÞ1:6

Eic0:6Q0:2 ð4:8Þ

and

ecrð%Þ ¼ 5:84
ðrciÞ0:88
E0:63
i Q0:12

ð4:9Þ

To define squeezing potential, Singh et al. (2007) suggested that the observed or
expected strain may be obtained either from numerical modelling or preferably
from actual monitoring in the field. The squeezing index, SI, may then be obtained
as follows:

SI ¼ Observed or expected strain
Critical strain

ð4:10Þ

A classification was suggested to quantify the squeezing potential (Table 6)
which can be used to classify the squeezing potential based on the index SI. Based
on the expected squeezing levels, the strategies may be formulated to face the
construction problems.

5 Prediction of Tunnel Deformation

Deformations are major concern in case of tunnels excavated through weak rocks.
If proper counter measures to install sufficient supports are not taken in time,
excessive deformations may occur leading to instability problems. A prior

Table 6 Squeezing potential
in tunnels (Singh et al. 2007)

Class Squeezing level Tunnel strain (%)

1 No squeezing SI� 1:0

2 Light squeezing 1:0\SI� 2:0

3 Fair squeezing 2:0\SI� 3:0

4 Heavy squeezing 3:0\SI� 5:0

5 Very heavy squeezing 5:0\SI
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knowledge of deformation level is therefore very essential to keep contingency
plans ready in advance. An empirical approach to assess likely tunnel deformation
that has been suggested recently is presented in the following section.

Dwivedi et al. (2013) have compiled a database of case histories from hydro-
electric projects. Rock mass characteristics were defined either by Q or joint factor
Jf. Attempts were made to find correlations amongst the deformation up, support
stiffness K, in situ stress rv (MPa), tunnel radius a and rock mass characteristics Jf
or Q for squeezing and non-squeezing ground conditions. The relationships so
obtained are presented in Table 7.

6 Prediction of Support Pressure

The adequacy of the tunnel support system will depend on the ultimate support
pressure and capacity of the support to resist that pressure. Various correlations are
available in the literature to estimate the support pressure for squeezing and
non-squeezing ground conditions.

Jethwa et al. (1984) used an analytical closed-form solution for a circular tunnel
under a hydrostatic stress field and data from in situ monitoring and suggested
expression for the ultimate rock pressure pu on the tunnel lining in terms of peak
and residual friction angles of the rock mass as shown in Fig. 11. The rock mass
was considered to be elastic–plastic ideally brittle model with a Mohr–Coulomb
strength criterion with known values of shear strength parameters for peak and
residual conditions.

Grimstad and Barton (1993) suggested an empirical approach for estimation of
roof support pressure, Pu, for squeezing and non-squeezing conditions in tunnels
using rock mass quality, Q, as follows:

Pu ¼ 0:2
ffiffiffiffiffi
Jn

p
3Jr

Q�1=3 ð6:1Þ

where Pu is the tunnel support pressure, MPa; Jn, the joint set number; Jr, the joint
roughness number; and Q, the rock quality index.

Goel (1994) has suggested a correlation for support pressure, Pe, for
non-squeezing ground based on rock mass number N as

Table 7 Tunnel deformation based on Q and Jf (Dwivedi 2014)

Ground condition Based on Q Based on Jf
Non-squeezing up

a ¼ 0:0046rv
Q0:5ðK þ 7Þ þ 0:0004 up

a ¼ 3�10�10rvðJf Þ3
K þ 6 þ 0:0003

Squeezing up
a ¼ 0:0191rvQ�0:2

Kþ 1 þ 0:0025 up
a ¼ 5�10�10rvðJf Þ3

K þ 0:5 þ 0:0052
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Pe ¼ 0:07H�0:1a�0:1

N0:33 þ 0:022 ð6:2Þ

Goel (1994), based on case histories of 63 tunnels, concluded that the effect of
tunnel size and depth of overburden is less in non-squeezing conditions, but it is
significant in squeezing conditions. The following empirical correlation was sug-
gested for prediction of ultimate support pressure in squeezing ground conditions:

PN ¼ ðf =30Þ10H0:6a0:1

50N0:33 ð6:3Þ

where PN = tunnel support pressure in MPa; f = correction factor for tunnel closure
(Goel 1994); H = depth of tunnel (m); a = radius of tunnel (m); and N is rock mass
number.

Bhasin and Grimstad (1996) took into consideration the size of the tunnel
suggested the following correlation for poor quality brecciated rock mass.

Pb ¼ 0:04
Jr

DQ�1=3 ð6:4Þ

where Pb defines the ultimate tunnel support pressure, MPa; D is the diameter or
span of the tunnel (m); Jr is the joint roughness number; and Q is the rock quality
index.

Recently Dwivedi (2014) analysed data of 35 tunnel sections from 10 different
tunnelling projects for non-squeezing ground conditions. The following correlation
has been suggested to estimate support pressure based on joint factor.

Fig. 11 Support pressure as
per Jethwa et al. (1984)
approach
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Pe ¼ 10�6rv
7� 10�4J3f

d0:2
þ 4058

� �
ð6:5Þ

where Pe = ultimate support pressure in non-squeezing ground, MPa; rv = vertical
in situ stress (0.027H), MPa; and d = radial tunnel deformation (%).

Dwivedi et al. (2014) analysed deformation data of several squeezing tunnels.
Variation of deformation with joint factor was studied. The following correlation
for predicting ultimate support pressure for squeezing ground condition was
suggested:

Ps ¼ 9:23� 10�3rv J3f r
0:1
h

� ��
107r0:1ci d0:2 þ Jf

1434

� �� �� �1:7
ð6:6Þ

where Ps = predicted support pressure, MPa; rv = vertical in situ stress (0.027H),
MPa, rci = uniaxial compressive strength of intact rock, MPa; rh = horizontal
in situ stress, MPa; and d = radial tunnel deformation (%).

7 Concluding Remarks

Geotechnical issues are the most dominating aspects which cause delay and cost
escalation in tunnelling projects, especially in weak rocks. The major issues are
estimation of rock mass strength, suitable nonlinear failure criterion, assessment of
squeezing potential, likely tunnel deformation and support pressure for various
ground conditions. In the present chapter, a brief description has been given as to
how reliable information can be generated based on simple characterisation of rock
mass and classification techniques which are very easy to use in the field.
A nonlinear strength criterion (MMC criterion) has been discussed. The criterion
has the advantage in that the conventional parameters c and / are retained as such.
Correlations have been suggested to assess squeezing potential, tunnel deformation
and support pressure based on rock mass quality Q, rock mass number N and joint
factor Jf.

The empirical correlations are based on certain assumptions about the shape of
the tunnel and in situ stress state. It is recommended that if significant problems are
foreseen, detailed rock mass–tunnel support interaction analysis (2D and 3D)
should be carried out using computer software for the actual shape of tunnel and the
in situ stress state to arrive at final solution. The geotechnical model should be
constantly updated as additional information is gathered during progress of tunnel
and modifications in the support system should be made accordingly.
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