
A Survey on Scheduling Algorithms
for Parallel and Distributed Systems

Rinki Tyagi and Santosh Kumar Gupta

Abstract Task scheduling plays a vital role in distributed computing. It enhances
the performance of the system as it minimizes the overall execution time and
reduces overhead problems like communication delay by allocating suitable task to
appropriate processor. Different scheduling techniques are discussed in this paper
which are employed for task scheduling. Taxonomy of hierarchical classification is
discussed for concurrent system and further several task scheduling algorithms are
described on the basis of dependency and approach used such as static or dynamic
for low throughput and efficient performance.

Keywords Task scheduling � Distributed computing � Real-Time scheduling

1 Introduction

Due to advancement of hardware and software technologies, development of
parallel and distributed system for database, real-time applications are also
increased. But it leads to a problem of scheduling different tasks on various pro-
cessing elements in such a way that performance metrics, such as execution time,
resource utilization, throughput, and response time, should be satisfied [10].
Scheduling is a type of resource and task allocation problem [11]. Scheduling can
be defined as “A set of tasks T can be executed on P processors by some opti-
mization criteria C” [11]. The goal of scheduling is to allocate different tasks to
processors with the aim of increasing execution speed, reducing the runtime of
tasks, minimizing communication delay, communication cost, and priority problem.
In distributed scheduling, whole task is divided into sub-tasks and assigned to

R. Tyagi (&) � S. K. Gupta
Department of Computer Science and Engineering, Krishna Institute
of Engineering and Technology, Ghaziabad 201206, India
e-mail: rinkitg61@gmail.com

S. K. Gupta
e-mail: santoshg25@gmail.com

© Springer Nature Singapore Pte Ltd. 2018
A. Mishra et al. (eds.), Silicon Photonics & High Performance Computing,
Advances in Intelligent Systems and Computing 718,
https://doi.org/10.1007/978-981-10-7656-5_7

51



several processors, thus they execute more quickly as compared to single processor.
While scheduling tasks, prespecified precedence is obeyed among different tasks
[12]. The good scheduler should be General Purpose: it is applicable for all types of
applications with different attributes to execute them in an efficient way; Efficient: it
enhances the overall performance of systems and reduced overhead problems; Fair:
It should be fair. For example, when there are many tasks to execute, scheduler
should maintain load through load balance; Transparent: result should not be
affected by local or remote site executions; and Dynamic: A good scheduler should
respond to local changes and it should fully exploit all resources available to it.

Before describing the approaches, techniques, and algorithms that are used for
task scheduling, the role of scheduler and how scheduling of tasks is to be done on
different workstations or processors is discussed. There are two inter-dependent
steps of task scheduling: one is allocating the tasks to processors (space sharing)
and another is to schedule it with time (time sharing). When job is assigned to a
system, the complete information is noted by the system, i.e., CPU load, memory
size, etc. Meanwhile, system also maintains a status table of different workstations
over which job is to be scheduled. After this, job is divided into several components
and assigned to different workstations on the basis of the status table information.
Synchronization process is needed when tasks are executing on different work-
stations. Besides this, mechanism of process migration is also introduced during
task scheduling. For example, if any processor is highly loaded, the job migrates
lightly loaded processor to improve the overall performance of system [12].

2 Related Work

The concept of “Grid Computing” in distributed system is used to perform users
tasks online at any place and at any time [1]. But it leads to a problem of uncertainty
in scheduling overhead and response time during continuous task arrival and their
execution process. To overcome this problem, MDP (Markov Decision Process) is
introduced where it allocates the task arrival and execution pattern without
uncertainty. In [2], author argued the most general problem of process distribution.
To solve this, a modified version of AO* algorithm using statistical data as a
heuristic function is used to find those processors which can execute the processes
in most efficient way. In [3], author has proposed a general technique to design and
implement priority-based resource scheduling in flow graph-based DSPS with
priority metadata. Experimental results show the effectiveness of this approach. In
[4], author discussed the problem of task scheduling for multi-core CPU and to
solve this multistep, scheduling algorithm is proposed. A clustering algorithm that
is based on SCAN to find clusters in a network in order to find parallelism is used to
decrease the computation of scheduling. In [5], an adaptive distributed scheduling
algorithm is introduced for multi-place parallel computation. A combination of

52 R. Tyagi and S. K. Gupta



remote spawns and remote work steals is used to reduce the overhead problems in
scheduling and helps to maintain load balance with maximal affinity. In [6], the
author addresses the problem of load balancing optimization. As the load is dis-
tributed randomly to all processors in the distributed system without any fixed
affinity, the goal is to minimize the computation time while distributing the load
with the limited communication delay. For each load transfer, sending and
receiving sites are maintained to obtain optimal delivery and load transmission. In
[7], author proposed long-term CPU load prediction method, namely process search
method also called runtime prediction-based method which predicts long-term CPU
load more accurately than the conventional methods. A prediction module selection
using neural network is proposed that selects an appropriate prediction method
according to the change in the state of CPU load and shows improvement in
prediction accuracy. In [8], author addressed the problem of producing the optimal
schedule using genetic algorithm which minimizes peak load and communication
cost and maximizes load balancing and average CPU utilization. In [9], author
introduced an integrated BOA approach to overcome the efficiency problem while
solving the NP scheduling problems. In [35], a taxonomy of load sharing is
introduced that includes source initiative and server initiative approaches for
evaluation of performance.

3 Issues in Multiprocessor Scheduling

There are many issues during scheduling for multiprocessor system [11]. First is
distinction between Policy and Mechanisms. Mechanism is the ability to do any
action while Policy enables to do with that mechanism. For example, automobiles
have the ability to travel with the speed of 160 km/h (mechanism), while legal
speed is set below 160 km/h (Policy). Second, distinguish between distributed and
parallel system. If the communication between symmetric multiprocessors is
through shared memory, it is parallel but if communication among network of
workstations, it is distributed. Next is the distinction between types of scheduling.
One is local scheduling and another is global. Global scheduling is done before
local scheduling [11] although migration changes the global mapping when task
moves to a new processor. During migration, the system stops the tasks, saves its
state, and transfers that state to new processor and then restarts the task. Due to
migration, several overheads occur. Local scheduling decides which an appropriate
set of tasks at a processor executes next on that processor. Then, there are two
choices at that time of task allocation. Either several processors are assigned to a
single job or several tasks are assigned to a single processor. Few processors
assigned to a single job for execution; then, it is called as space sharing and it is a
function of global scheduling. Time sharing is a function of local scheduling. In
this, several tasks are assigned to a single processor for its execution.

A Survey on Scheduling Algorithms for Parallel and Distributed Systems 53



4 Scheduling Techniques

In Fig. 1, scheduling techniques are categorized into two types: local and
co-scheduling. Local scheduling consists of predictive that easily adopts new
architectures and proportional sharing that executes at a uniform rate. Three
co-schedulings are discussed in which gang co-scheduling is simple than other
two [12].

4.1 Local Scheduling

In local scheduling, an individual site schedules the processes assigned to it to
improve the overall performance [12]. Local scheduler requires global information
for maximizing the performance of system. Many new scheduling techniques are
developed such as proportional sharing schedule approach and predictive
scheduling. A module that has advance reservation capability is discussed that
possessed local scheduling [13]. Local scheduling is used in opportunistic routing
[14], in which wireless topology is broken down into several sub-graphs and
end-to-end transmission of different forwarders is done that proved more efficient in
wireless network compared to traditional routing.

Fig. 1 Scheduling techniques

54 R. Tyagi and S. K. Gupta



4.1.1 Proportional Sharing Schedule

To solve the problem incurred during traditional priority-based schedulers which
take long time to allocate processors, a scheduler that allocates jobs to all processors
in a fair manner is required [12]. In this, resource consumption is proportional to all
jobs that are allocated. In [15], a notion of “Pessimism” is introduced in propor-
tional sharing for improving performance as well as overcome error problem and
meet the deadlines of various real-time applications. Through proportional sharing,
scheduling is done at a uniform rate [16]. It is also beneficial for both real and
non-real-time processing.

Stride Scheduling

It is an example of proportional sharing that shows how allocation of jobs and
consumption of resources is done in fair manner to a single processor when many
users have to execute their tasks. In this scheduling, users hold a number of tickets
that are in a proportion of resources of competing users and have a time interval
called stride which is inversely proportional to allocation of tickets that helps to
decide how fast it comes in a usable state [12]. Also, a pass is associated with each
user and the user with minimum pass is scheduled in that time interval and
incremented by job stride. Its evaluation can be done by two ways: one is by using
simulations and another is by implementing prototypes for Linux Kernel [17].

Extension to Stride Scheduling

Stride scheduling is only used for CPU-bound jobs, not for interactive and I/O
intensive jobs [12]. In I/O intensive jobs, there is a need to improve response time
and throughput rather than focusing on resources for competing users. For this,
extension of stride scheduling is used. It uses two approaches: one is loan and
borrow and another is system credits. Loan and borrow: In this approach, many
exhausted tickets are distributed among the users. And, if any user wants to exit
from system for a while, then another user borrows its ticket; otherwise, it would be
an inactive ticket. System credits: It is an approximated approach and does not have
any type of overhead and is easy to implement [18].

4.1.2 Predictive Scheduling

Predictive scheduling provides adaptively, intelligence and proactive type of
scheduling to the system so that it can perform well in any type of environment. It
can be easily embedded in new type of architectures. It is divided into three major
components: H-Cell, S-Cell, and allocator [12]. In [19], a scheduling problem is
investigated for minimizing completion time through random machine breakdowns.

A Survey on Scheduling Algorithms for Parallel and Distributed Systems 55



Through predictive scheduling, preferences of users are also considered [20] and it
is done through fuzzy techniques that not only use imprecise information but also
views of users are to be considered.

4.2 Co-scheduling

Co-scheduling introduced in [21] is used for scheduling the interactive activities
such that all jobs executed simultaneously on their workstations. In [22], flexible
co-scheduling is introduced that addresses the problem of internal and external
fragmentations. In this, scheduling is based on synchronization among processors
and also on load balancing requirements. Co-scheduling was used for proper uti-
lization of resources and covers all problems identified in multi-core system [23].
Several key issues are discussed in co-scheduling algorithm for clusters [39]. For
this, co-ordinate scheduling in time-sharing clusters is done through a genetic
framework.

4.2.1 Gang Co-scheduling

In gang co-scheduling, a job is referred as gang and its members are referred as
gang members. They are allocated to a class whose one processor is assigned by
one gang member and executed in parallel. A local scheduler exists in gang
co-scheduling which has its own policies. When timestamps finish, it precepts all
job members and assigns another job to that class [12]. The main disadvantage of
this scheduling is its centralized control. It creates bottleneck when load is heavy. In
[24], gang co-scheduling technique is combined with backfilling for addressing the
problem of space sharing in scheduling. In [37], flexible co-scheduling is done
through gang co-scheduling by reducing fragmentation problem and improves
efficiency by providing the processor to each job through preprocess-based
classification.

4.2.2 Implicit Co-scheduling

Implicit co-scheduling is a type of time-sharing communication process. It has a
local scheduler that schedules the processes individually. It makes individual
decisions while executing the job members rather following centralized policy and
deals with the problem of gang scheduling [12]. It uses communication and syn-
chronization within an application. It schedules both fine- and coarse-grained
parallel application [25].

56 R. Tyagi and S. K. Gupta



4.2.3 Dynamic Co-scheduling

Dynamic co-scheduling is used to make decisions on the arrival of messages.
A schedule is made when a message is arrived to any process and no need for
explicit identification to specify the process that needs co-scheduling. Dynamic
co-scheduling reduces response time up to 20% over implicit [26] and is more
robust and effective.

5 Taxonomy of Scheduling Algorithms

In Fig. 2, hierarchal classification of different scheduling algorithms is given. This
classification can be used for categorizing different types of strategies that are used
for allocating tasks to different processors and also for categorizing resource
management system especially process management system.

Local versus Global: Local scheduling decides the appropriate set of tasks to
execute next on the processor. Global scheduling is done before local scheduling
and is used to allocate the tasks within the systems [27]. A new concurrency control
criterion is proposed for local and flexible transactions execution through global
scheduling in heterogeneous distributed environment [36].

Static versus Dynamic: Static algorithms are used for scheduling when infor-
mation available at compile time. On the other hand, dynamic algorithm takes all
these factors into account during execution time [27].

Optimal versus Sub-optimal: When information about the states of each pro-
cessor and the types of resource needs is known, the algorithm is called as optimal
otherwise sub-optimal.

Fig. 2 Taxonomy of scheduling algorithms

A Survey on Scheduling Algorithms for Parallel and Distributed Systems 57



Distributed versus Non-distributed: Physically non-distributed algorithms are
centralized. A single processor decides task allocation. On the other hand, in
physically distributed algorithm, all processors decide task placement [11].

Approximate versus Heuristic: Heuristic algorithms use various guidelines for
scheduling such as allocate jobs to a processor with heavy inter-task communica-
tion, while approximate algorithms use same method that is used by optimal
solutions but within a accepted range [27].

Cooperative versus Non-cooperative: In non-cooperative algorithms, each
processor is independent of making choices from other processors for scheduling
while in cooperative, all processors co-ordinate with each other to achieve a
goal [28].

6 Task Scheduling Algorithms

While performing task scheduling, the performance of algorithms is affected by
choosing various strategies. Different task scheduling algorithms are shown in
Fig. 3.

Fig. 3 Task scheduling algorithm

58 R. Tyagi and S. K. Gupta



6.1 Independent Task Scheduling

This is used for dynamic scheduling. Some of the heuristic-based static algorithms
also use this for execution of cost estimates [28]. Max-Min is somehow similar to
Min-Min algorithm. In this, a set of M tasks of low completion time are selected
from a set U of unmapped tasks. Then, the task of high execution time from M set is
assigned to a processor. The newly mapped task is removed from set U and this
process repeats until all the tasks of set U are not mapped. Min-Min is a type of
scheduling which is applied for a set of tasks without dependencies onto a
heterogeneous system. If there is a set of S tasks, then Min-Min selects a task with
minimum execution time and it would be scheduled on that processor which has
minimum completion time. It is one of the fastest algorithm and easy to implement.
Suffrage is based on suffrage value and is calculated as the difference between its
first best completion time and its second best completion time.

6.2 Dependent Task Scheduling

In [28], DAG (Direct Acyclic Graphs) is used to denote task precedence graph
where node represents graphs and edge represents precedence order. The main
objective of dependent task scheduling is to minimize the make-span time. But
some problems are NP-complete which does not produce optimal results. It has
three types of algorithms.

(i) List Heuristic Algorithm: It is based on the idea that some priorities are
assigned to tasks and then repeatedly executes the following two steps until
whole graph is not scheduled. First, remove the first node from list of
scheduling. Then, assign the node to a processor that allows the earliest start
time. Table 1 shows different algorithms for list heuristic.

(ii) Clustering Heuristic Algorithm: Clustering is an efficient process for both
parallel and distributed systems. It is used to minimize communication delay

Table 1 List heuristic algorithms

Type Description

HEFT It is Heterogeneous Earliest Finish Time algorithm. At each step, it selects a task
that has higher upward rank and with maximum distance between current and exist
nodes

Chaining It does not allow duplication of tasks and distribute the tasks among all processors

HLFET Highest Level First with Estimated Times algorithm is one of the simplest
scheduling algorithms. It calculates b-level (bottom level), and then makes a ready
list in descending order (contains only entry nodes). It schedules first node of
ready list to a processor with earliest execution

FCP It is Fast Critical Path algorithm and tries to reduce the complexity of algorithm

A Survey on Scheduling Algorithms for Parallel and Distributed Systems 59



by clustering the same level of tasks into one cluster and assign resources to a
single cluster. Table 2 shows that first phase is task clustering phase in which
clusters are formed by portioning the tasks and same levels of tasks are
clusters into one group. Second phase is post-clustering phase which is used
to refine the cluster to get final task to resource map [28].

(iii) Duplication Heuristic Algorithm: It is basically used for homogenous sys-
tem. For this, various duplication-based scheduling algorithms are intro-
duced. The main logic behind this is to fully utilize the idle resources by
duplicated tasks.

6.3 Scheduling Inspired by Nature’s Law

Genetic algorithm, simulated annealing, Tabu search, etc., are scheduling methods
that are inspired by nature’s law. They all are used to solve standardized scheduling
problems. A long runtime problem will occur when they are used in practical
application. Then, optimization algorithms are used to overcome the problem of
long runtime [28]. Genetic algorithm optimizes the total flow time and makes span
in task scheduling and is more robust. A simulator package of grid is used for large
problems and to evaluate performance of GA [29]. Tabu search is also an opti-
mization algorithm that gives optimal or close to optimal results for different types
of scheduling [30]. Tabu search is used for bi-objective optimization problems [31].
Simulated annealing is to solve optimization problems for separating continuous
and batch chromatographic systems under various conditions such as gradient and
isocratic [32]. It states that if temperature is lowered sufficiently, then the solid
reached to optimal state, where temperature is completion time and change in

Table 2 Clustering heuristic algorithms

Task clustering
phase

DSC: It is Dominant Sequence clustering algorithm. The scheduled DAG
has a critical path called Dominant Sequence and used to distinguish it
from scheduled clustered DAG critical path

Post-Clustering
Phase

LB: Load Balancing is used to define the overall workload as sum of
execution time of all tasks. It merges a pair of clusters C1 and C2 such that
C1 is the cluster that has minimum workload and C2 is a cluster that
minimum workload with communication edge to all clusters
CTM: It is Communication Traffic Minimization and it is defined by using
two terms C1 and C2. These are the sums of communication time of edges
from C1 to C2 and from C2 to C1
RAND: It is random algorithm and make random pairs of clusters. First,
assign a cluster with highest communication traffic. Then, it selects an
unassigned cluster of highest communication traffic through assigned
cluster. Then repeat step(b) until all processors are assigned

60 R. Tyagi and S. K. Gupta



temperature is task mapping. And if temperature is increased, then it accepts that
“worse” state because it provides a way to escape from local search [28]. Ant
colony optimization is best suited for TSP problems. Ants act as an agent and finds
the best solution by parallel search. Many ants generate many cities and their
corresponding paths, and best suited path (shortest path between source and des-
tination) is selected [33]. Bee colony optimization is best suited for combinatorial
optimization problems. When independent tasks are scheduled in grid environment,
then it is a NP-hard problem. Many approaches are used for this but bee colony is
more efficient as it reduces the finish time and delays during execution time [34]. In
[38], different applications are discussed for BCO. A* algorithm is a type of best
search algorithm for tree search. It initially starts with null solution and then
expanded through partial solution for complete solution by allocating different tasks
to suitable processors [28].

7 Analysis Work

Table 3 shows the different scheduling techniques, task scheduling algorithms, and
approach that can be used for scheduling tasks.

Table 3 Analysis work

Techniques Description Approach Algorithms Advantage

Proportional
share

Resource consumption is
proportional for all jobs

Static List
heuristic

Does not allow
duplication of tasks

Clustering
heuristic

Minimize
communication
delay

Predictive Adaptive, intelligent, and
proactive techniques that
perform well in any type of
environment

Duplication Fully utilized the
idle resources

Gang
co-scheduling

Dynamically scalable and
utilized time sharing and
space sharing simultaneously

Dynamic Min-Min Fastest algorithm
and easy to
implement

Implicit
co-scheduling

A local scheduler that
schedules the processes
individually rather
centralized policy

Max-Min Removes the
penalties occurred
through longer
execution time

Dynamic
co-scheduling

Used to make the decisions
on the arrival of messages

Suffrage Finds minimum
completion time

A Survey on Scheduling Algorithms for Parallel and Distributed Systems 61



8 Conclusion

In distributed environment, task scheduling plays a vital role. To improve, the
performance of system scheduling of tasks can be done in an efficient manner on
several processors. A good scheduler must be efficient, dynamic, transparent,
general purpose, and fair. Different scheduling techniques are employed for both
parallel and distributed systems that are used for proper utilization of resources and
for improving system performance. Two scheduling techniques, i.e., local and
co-scheduling, are described in which co-scheduling technique is better as it is used
for the concurrent execution of the parallel systems and we conclude that gang
co-scheduling is the simplest one among three. A hierarchal classification of
scheduling algorithms is done and on this basis task scheduling algorithms are
described. Further, a comparative analysis for different scheduling techniques has
been done.

9 Future Work

Further, more comprehensive survey can be made on real-time scheduling and
scheduling inspired by nature’s law and these can be compared with other
scheduling algorithms.

References

1. Zhao T, Zheng X (2014) Proactive scheduling in distributed computing—A reinforcement
learning approach. J Parallel Distributed Computing, pp 2662–2672

2. Gyire T (1995) A distributed process scheduling algorithm based on statistical heuristic
search. IEEE International Conference

3. Bellavista P (2014) Priority-based resource scheduling in distributed stream processing
systems for big data applications. Utility and Cloud Computing (UCC). In: IEEE/ACM 7th
International Conference on IEEE

4. Yamazaki H, Konishi K, Shin S, Sauada, K (2013) Multistep scheduling algorithm for parallel
and distributed processing in heterogeneous systems with communication costs. Mathematical
Problems in Engineering

5. Narang A, Srivastava A, Shyamasundar RK (2013) High performance adaptive distributed
scheduling algorithm. In: Parallel and distributed processing symposium workshops & PhD
Forum (IPDPSW), 27th international IEEE

6. Haddad E (1994) Real-time optimization of distributed load balancing. Proceedings of the
second workshop on IEEE

7. Sugaya Y, Tatsum H, Kobayashi M, Aso H (2008) Long-Term CPU Load Prediction System
for Scheduling of Distributed Processes and its Implementation. Advanced Information
Networking and Applications, 22nd International Conference on. IEEE

8. Wang PC, Korfhage W (1995) Process scheduling using genetic algorithms. Parallel and
distributed processing, proceedings seventh ieee symposium on IEEE

62 R. Tyagi and S. K. Gupta



9. Qiang L, Xiao TY (2006) Cooperated Bayesian algorithm for distributed scheduling problem.
Frontiers Electr Electron Eng China, pp 251–254

10. Shirazi BA, Hurson AR, Kavi KM (1995) Introduction to scheduling and load balancing in
parallel and distributed system. Wiley-IEEE computer society press

11. Chapin SJ, Weissman JB (1996) Distriibuted and Multiprocessor scheduling. published ln:
ACM computing survey(CSUR), 28:233–235

12. Dongning L, Ho PJ, Liu B (2000) Scheduling in distributed system
13. Nakada H, Kishimoto M, Kudoh, T, Tanaka Y, Sekiguchi S, Takefusa A (2006) Design and

implementation of a local scheduling system with advance reservation for co-allocation on the
grid. In: Computer and information technology, sixth IEEE international conference

14. Li Y, Liu YA, Li L, Luo P (2009) Local scheduling scheme for opportunistic routing. In:
Wireless networking conference IEEE, pp 1–6, (2009)

15. Regehr J.: Some guidelines for proportional share CPU scheduling in general purpose
operating system. In: Work in progress of the 22nd IEEE Real -time system symposium
(RTSS) (2001)

16. Stoica I, Wahab HA, Jeffay K, Baruan SK, Gehrke JE, Plaxton CG (1996) A proportional
share resources allocation algorithm for real time, time shared systems. IEEE, pp 288–299

17. Gu W, Carl A, Weihl WE (1995) Stride scheduling: deterministic proportional share resource
management. Massachuesetts Institute of Tech, laboratory for computer science

18. Koshy R (2014) Scheduling in distributed system: a survey and future perspective. Int J Adv
Technol Eng Sci

19. Xing Z, Zhijon C, Yugeng X (2007) The applications of predictive scheduling algorithm for
single machine problem. In: Control conference IEEE, 810–814

20. Sauer J, Chua TJ (2014) Fuzzy predictive and reactive scheduling in soft computing for
business intelligence. Springer Berlin Heidelberg, pp 281–297

21. Gupta A, Taucker A, Urushibaras S (1995) The impact of OS scheduling policies and
synchronisation methods on performance of parallel applications. In: SIGMETRICS perform
evaluation review

22. Frachtenberg E, Feitelson DG, Petrini F, Fernandez J (2005) Adaptive parallel job scheduling
with flexible coscheduling. IEEE, pp 1066–1077

23. Schonhers JH, Lutz B, Richling J (2012) Non-Intrusive co-scheduling for general purpose
operating system. Springer Berlin Heidelberg, pp 66–77

24. Zhang Y, Franke H, Moreira JE, Sivasubramaniam A (2000) Improving parallel job
scheduling by combining Gang scheduling and backfilling techniques. IEEE, pp 133–142

25. Anglano C (2000) A Comparative evaluation of implicit coscheduling strategies for network
of workstations. IEEE, pp 221–228, 1 Aug–4 Aug

26. Sobalvarro PG, Scott P, Weihl EW, Andrew AC (1998) Dynamic coscheduling on
workstations clusters in Job Scheduling Strategies for Parallel Processing. Springer Berlin
Heidelberg, pp 231–256

27. Casavant TL, Kuhl JG (1988) A taxonomy of scheduling in general-purpose distributed
computing systems. Software Engineering, IEEE Transactions on 14(2):141–154

28. Shahsavari M, et al (2004) Task scheduling policies in general distributed systems: a survey
and possibilities

29. Carretero J, Xhafa F (2006) Use of genetic algorithm for scheduling jobs in large scale grid
application. ISSN 1392–8619 UKIO Technologinis IR Econominis Vystymas, pp 11–17

30. Glover F (1990) Tabu search: a tutorial. pp 74–94
31. Xhafa F, Carretero J, Dorronsoro B, Alba E (2012) A tabu search algorithm for scheduling

independent jobs in computational grids. Comput Inform 28:237–250
32. Kaczmarski K, Antos D (2006) Use of simulated annealing for optimization of chromato-

graphic separations. Acta Chromatographica 17
33. Darquennes D (2005) Implementation and Applications of Ant Colony Algorithms. Facultées

Universitaires Notre-Dame de la Paix, Namur Institute Informatique

A Survey on Scheduling Algorithms for Parallel and Distributed Systems 63



34. Mousavinasab Z, Entezarii ME, Movaghar A (2011) A bee colony task scheduling algorithm
in computational grids. Digital Information Processing and Communications, Springer, Berlin
Heidelberg

35. Wang Y Load sharing in distributed system. IEEE
36. Zhang A, Noidine M, Bhargava B (2001) Global Scheduling for flexible transactions in

heterogeneous distributed database systems. 13(3):439–450
37. Frachtenberg E, Feitelson DG, Petrini F, Fernandez I (2003) Adaptive Parallel job scheduling

with flexible co-scheduling. Parallel and Distributed processing, 10 pp, IEEE
38. Karwan KS, Choudhary S, Sharma K Applications of artificial bee colony optimization

techniques. pp 1660–1664, IEEE, (2015)
39. Agarwal S, Yoo AB, Choi GS, Nagar S (2003) Coordinated co-scheduling in time sharing

through a genetic framework. pp 84–91, IEEE, (2003)

64 R. Tyagi and S. K. Gupta


	7 A Survey on Scheduling Algorithms for Parallel and Distributed Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Issues in Multiprocessor Scheduling
	4 Scheduling Techniques
	4.1 Local Scheduling
	4.1.1 Proportional Sharing Schedule
	Stride Scheduling
	Extension to Stride Scheduling

	4.1.2 Predictive Scheduling

	4.2 Co-scheduling
	4.2.1 Gang Co-scheduling
	4.2.2 Implicit Co-scheduling
	4.2.3 Dynamic Co-scheduling


	5 Taxonomy of Scheduling Algorithms
	6 Task Scheduling Algorithms
	6.1 Independent Task Scheduling
	6.2 Dependent Task Scheduling
	6.3 Scheduling Inspired by Nature’s Law

	7 Analysis Work
	8 Conclusion
	9 Future Work
	References


