Chapter 9

High Spatial Resolution Hyperspectral
Imaging with Machine-Learning
Techniques

Motoki Shiga and Shunsuke Muto

Abstract Recent advances in scanning transmission electron microscopy (STEM)
techniques have enabled us to obtain spectroscopic datasets such as those generated
by electron energy-loss (EELS)/energy-dispersive X-ray (EDX) spectroscopy
measurements in a PC-controlled way from a specified region of interest (ROI) even
at atomic scale resolution, also known as hyperspectral imaging (HSI). Instead of
conventional analytical procedures, in which the potential constituent chemical
components are manually identified and the chemical state of each spectral com-
ponent is successively determined, a statistical machine-learning approach, which is
known to be more effective and efficient for the automatic resolution and extraction
of the underlying chemical components stored in a huge three-dimensional array of
an observed HSI dataset, is used. Among the statistical approaches suitable for
processing HSI datasets, methods based on matrix factorization such as principal
component analysis (PCA), multivariate curve resolution (MCR), and nonnegative
matrix factorization (NMF) are useful to find an essential low-dimensional data
subspace hidden in the HSI dataset. This chapter describes our developed NMF
method, which has two additional terms in the objective function, and which is
particularly effective for analyzing STEM-EELS/EDX HSI datasets: (i) a soft
orthogonal penalty, which clearly resolves partially overlapped spectral compo-
nents in their spatial distributions and (i) an automatic relevance determination
(ARD) prior, which optimizes the number of components involved in the observed
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data. Our analysis of real STEM-EELS/EDX HSI datasets demonstrates that the
soft orthogonal penalty is effective to obtain the correct decomposition and that the
ARD prior successfully identifies the correct number of physically meaningful
components.

Keywords Non-negative matrix factorization + Scanning transmission electron
microscopy + Hyperspectral image analysis - Electron energy-loss spectroscopy
Energy-dispersive X-ray spectroscopy

9.1 Introduction

Current scientific analytical instruments are mostly computer-controlled and based
on digital circuits. This facilitates automated measurements because the experi-
mental procedures can be specified by using program code. For instance, recent
advances in scanning transmission electron microscopy (STEM) techniques,
including the development of brighter electron sources, digitally controlled oper-
ation, detectors with higher sensitivity, and sophisticated online signal processing,
have enabled us to obtain comprehensive information not only on the local struc-
tures but also on the chemistry of solids by concurrently applying spectroscopic
methods such as electron energy-loss (EELS) and energy-dispersive X-ray
(EDX) spectroscopy to a specified region of interest (ROI). The spectrometers
collect a set of spectra, each from the subnanometer area of the sample, using
subnanometric incident electron probe scanning over the two-dimensional ROI with
a subnanometric step width. This method is known as hyperspectral imaging (HSI).
The typical data acquisition time is now reduced to several minutes for an entire
EELS dataset with 2,000 energy channels over 10* = 100 x 100 pixels (sampling
points). Accordingly, the associated volume of data to be analyzed has been
drastically increasing. In this context, statistical analysis methods could be more
effective to thoroughly extract information embedded in massive amounts of data
without any preconception, rather than relying on conventional spectral analysis of
sampling points detected manually based on the insight of experts.

Among the various statistical approaches, principal component analysis
(PCA) [1-3] is one of the most fundamental and popular methods. PCA succes-
sively casts mutually orthogonal eigenvectors (basis vectors) and associated score
images (spatial intensity distributions of the corresponding basis vectors) in the
order of significance, that is, in the order of the magnitude of eigenvalues, by way
of the singular value decomposition of the HSI data matrix consisting of the
experimental spectra as its row vectors. Trebbia and Bonnet [2] and Bosman et al.
[3] applied PCA to EELS-HSI datasets, and not only detected exotic chemical
bonding states in the samples, but also effectively filtered statistical noise from the
HSI data matrix by reconstructing this matrix with a few essential basis spectra and
their spatial intensity distributions. Parish and Brewer [4] studied the validity of
PCA in a quantitative composition analysis of the constituent phases in their
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EDX-HSI data. Note that, in their treatment, the phase overlapping areas were
masked for exclusion from the quantification process; otherwise, the derived phase
compositions could be biased with respect to the actual ones. These reports on PCA
assumed that each pixel contains a linear combination of principal components with
the orthogonality condition intrinsic to PCA. Using simulated atomic resolution
EELS-HSI data, Lichteret and Verbeeck [5] pointed out that, when the noise level
exceeds the intensity of the signal of interest, the signal intensities are distributed
over a number of principal components, and are thus usually considered as noise.
This behavior seems statistically natural, but we would not notice this phenomenon
in actual experimental data. On the other hand, Spiegelberg and Rusz recently
reexamined the applicability of PCA to noisy EELS data [6]. In order to estimate
the amount of bias present in each principal component, Lichtert and Verbeeck [5]
proposed evaluation criteria which, however, do not exhibit the correct asymptotic
behavior considering the size of the dataset. Spiegelberg and Rusz [6] proposed
alternative evaluation criteria, taking the size of the dataset into account.

Dobigeon and Brun [7] compared the results obtained by applying PCA, inde-
pendent component analysis (ICA) [8], vertex component analysis (VCA) [9], and
Bayesian linear unmixing (BLU) [10] to experimental EELS-HSI data. They
eventually found that BLU provided the most plausible spatial distributions for the
constituent spectral components, presumably because of its more realistic modeling
of the EELS-HSI data. Spiegelberg et al. [11] also discussed a set of such data
decomposition methods. In particular, they established randomized VCA (RVCA),
an extension of VCA for application to noisy data, and compared its efficiency with
that of minimum volume simplex analysis (MVSA) and BLU.

Over a decade, our research group has been developing an alternative method to
nonnegative matrix factorization (NMF), or multivariate curve resolution
(MCR) for the analysis of EELS-HSI [12, 13]. We consider this approach to be
successful because NMF naturally restricts both the spatial intensities and basis
spectra to nonnegative values. Contrary to NMF, the methods mentioned above
such as PCA allow the spatial intensities and spectra to have negative values, which
hampers the direct physical interpretation of the resolved spectral profiles. We
adopted the modified alternating least-square (MALS) fitting algorism of NMF [14]
to map the different phases in the degradation of Li battery cathodes [15-19] and
the chemical states of nitrogen in nitrogen-doped TiO, [20, 21]. We also suc-
cessfully applied NMF to a series of EELS datasets for the extraction of atom
site-specific core-loss spectra, where the relative excitation probabilities of the
spectra varied with the diffraction condition because of the electron channeling
effects [22-25]. In these applied data analyses, the nonnegative constraint of the
elements of extracted basis spectra and spatial intensity distributions were effective,
and the resulting spectra extracted by NMF were consistent with the computational
results obtained by first principles calculations [15-19, 22-25].

In general, approaches such as PCA and NMF are known as matrix factorization
because these methods factorize a HSI data matrix into the product of two thin
matrices, i.e. matrices of the spatial intensity distribution and basis spectra, with
some suitable constraints resulting from the designed model. The next section first
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briefly formalizes the problem setting of matrix factorization with HSI data [26, 27].
We then present our proposed NMF [26], which presents two advantages with
respect to HSI analysis against conventional NMFs: (i) spatially clear decomposi-
tion of overlapping intensity distributions achieved by introducing a spatially
orthogonal penalty term and (ii) automatic selection of a number of essential
chemical components by introducing a penalty term of an automatic relevance
determination (ARD) prior distribution. Our analysis of real STEM-EDX/EELS
HSI datasets demonstrates that the spatial orthogonal penalty is effective to obtain
the correct decomposition and the ARD prior can successfully select the correct
number of physically meaningful components.

9.2 Methodology

9.2.1 Mathematical Formulation of HSI Data

The observed HSI data are stored in a three-dimensional array termed a data cube
D(x,y, E), which is a function of the two-dimensional spatial position (x,y) on the
specimen and the absorption/emission energy E. For the convenience of mathe-
matical manipulation, the data cube is often transformed to a two-dimensional
Ny, X N¢, matrix X, where N,, =N, X N, is the number of pixels, i.e. the product
of the number of scanning steps N, and N, along the spatial x- and y-axis,
respectively, and N, is the number of detector channels. After the transformation,
the observed spectrum at position (x,y) is stored in a row of matrix X. A basic
statistical method to extract a few essential basis spectra and their spatial intensity
distribution assumes that the spectral intensity at each sample pixel is represented
by a linear combination of the basis spectra associated with the underlying chemical
components (states or phases). Assuming that the number of essential chemical
components in the observed spatial region is K, which is much smaller than the size
of matrix X, this analysis can be formulated by matrix factorization, which fac-
torizes HSI data matrix X into low rank (or thin) matrices of the spatial intensity
distribution C and basis spectra S:

X~CST, (9.1)

where the size of C is N, XK and the size of S is N, XK, and superscript T
denotes a matrix transpose. Each column vector of S (referred to as loading in
multivariate analysis) is a basis spectrum of a chemical component. On the other
hand, each column vector of C (referred to as score) is a spatial intensity distri-
bution over the ROI positions. Hence, each row vector of C is the intensities of K
chemical components at a spatial position. Using the i-th column of matrix C, a
two-dimensional spatial distribution of the i-th chemical component can be
reconstructed by rearranging the elements such that they are returned to the original
two-dimensional position.
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The matrix factorization can identify both spatial intensity matrix C and spectral
matrix S by minimizing the reconstruction error, which is the distance between
observation X and the reconstruction, i.e. CST. This identification is possible
because matrix X, which consists of a huge number of elements with a relatively
much smaller K, is highly redundant. Thus, the identification problem is equal to
that intended to find the essential subspace where the original X occurs. This
approach can identify plausible C and S with much higher signal-to-noise ratios
(SNRs) than those manually selected from the small number of representative
observed spatial points, i.e. point-to-point analysis.

Matrix factorization needs to assume a suitable restriction of C and S because the
optimization problem results in many local minima. Principal component analysis

(PCA) identifies C and S by minimizing the squared error || X — CSTH2 with the
orthogonal constraints in both C and S. Owing to the orthogonal constraint, PCA
can easily find the global solution using a singular value decomposition (SVD) al-
gorithm. However, PCA can generate unnatural C and S, in which the element can
include negative spatial intensities and spectral values. Moreover, the strong
orthogonal constraint cannot allow overlaps to exist among the chemical compo-
nents in both spatial and spectral space. These problems require the outputs by PCA
to be adjusted to obtain physically meaningful insights. We overcame these
problems by using an approach involving non-negative matrix factorization, in
which the elements of C and S are not allowed to be negative.

9.2.2 Non-negative Matrix Factorization with a Gaussian
Noise Model

This section presents a formal mathematical description of our model and algo-

rithms to provide the concept of our developed NMF. Let X ERIX“'VXN“” be an HSI

data matrix, where R, is the set of all nonnegative real numbers. NMF factorizes X

. . . Ny XK .
into two thin matrices C€R” *% and S eRAJf*XK , where K is much smaller than

both N, and N,. Hence, the factorization model is given by
X=CS"+e (9.2)

where & € RV» XN js a noise matrix of which the elements are generated statistically
independent of each other. In our problem setting, only X is observed, whereas C
and S are not observed. The goal of NMF is to identify the optimal C and S under a
suitable noise model €. One of the most common models is a Gaussian noise model,
in which an element of a noise matrix is generated from a Gaussian distribution:
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1 €
2\ _ i
p(e4]0,06°) = o exp{ - 202}’ (9.3)
where - is the noise variance. Since the statistically independent assumption of

£=X—X, where X = CS7 is the noiseless data matrix, the log-likelihood function of
matrix X is given by

2

Ny Noy N va ch

— 1 —
log p(X|X,0%) = - 302 Y Z (XU—XU)Z - ’Tlog27r02 (9.4)

Taking a common statistical estimation approach of the maximum likelihood
estimation, i.e. maximizing logp(X|X,6?), C and S can be optimized using only
data matrix X. By taking the negative value of the log-likelihood, i.e.
— log p(X X, 62>, and neglecting 62 in the first term and the second term, the
optimization problem is transformed into the minimization of the squared error
function between observation X and reconstruction X:

Nay Ny

=

Dgy (X[X) = (X —Xy)". (9.5)

1j=1

N | —

i

Contrary to PCA, the minimization problem of Eq. (9.5) over both C and S is
non-convex, and contains a number of local minima. The optimization algorithm
for an NMF does not always converge to the global optimum of C and S. Hence, it
is necessary to run the optimization algorithm multiple times from different ini-
tializations, resulting in considerable computational cost. The computational effi-
ciency has been improved by developing fast optimization algorithms such as
matrix multiplication (MM) [28], alternating least-squares (ALS) [29], and hierar-
chical alternating least-squares (HALS) [30]. In general, MM is sensitive to the
initial configuration, whereas the other algorithms are not. Among these approa-
ches, HALS offers the best convergence to local minima. Hence, we adopted the
HALS framework for the optimization of our new NMF model. Another problem
presented by NMFs is that the number of chemical components needs to be man-
ually selected in advance, which inevitably introduces a problem similar to that of
PCA if the noise level is larger than the signal intensities. As the number of
components increases, the reconstruction error naturally decreases. However, this
decrease is not essential to identify C and S because it results in overfitting to
observed data when the number of components is excessively large. Thus, relying
on the reconstruction error only cannot be useful to identify the essential number of
physically meaningful components.

To overcome the above difficulties in STEM-EELS/EDX HSI data analysis, we
developed a new NMF model that imposes the following penalty terms on the
spatial intensity matrix C: (i) a spatial orthogonal penalty [31] and (ii) a sparse
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penalty to optimize the number of components, termed an automatic relevance
determination (ARD) prior [32]. For the optimization of low-rank matrices C and S,
we further developed an algorithm based on hierarchical alternating least-squares
(HALS) [30], which is more efficient than the matrix multiplication (MM) [28] used
before [32]. The following section describes these extended models and their
optimization algorithms.

9.2.3 Optimization Algorithms with Soft Spatial Orthogonal
Constraint

A goal of HSI data analysis is to identify the pure spectra and spatial intensity
distributions of each chemical component from the spectra and distribution of a
mixture of chemical components, i.e. observed matrix X. The basic NMF model,
e.g. the minimization of Eq. (9.5), often generates unresolved spectra and spatial
distributions that still contain spatially overlapped or unnaturally unresolved spectra
because the basic NMF induces sparse decomposition of C and S. However, the
EELS spectrum of a pure chemical component is not sparse, meaning that the
intensities of an EELS spectrum are more than zero over all energy bands, whereas
the intensities of an EDX spectrum are almost zero except for the peak positions.
Hence, poor resolution is more problematic in STEM-EELS analysis than in EDX
analysis.

Our approach to solve the above problem entails introducing the spatial
orthogonal constraint [31]. This constraint ensures that spectral matrix S is rela-
tively more relaxed than C and then § can be non-sparse. Because the exact
orthogonal constraint is too strict, we used weight parameter w to relax this con-
straint, which is known as a soft spatial orthogonal constraint. Then our objective
function of C.; to be minimized is formulated as follows:

an‘ N(?h 13 T 2 T k
24, 1<[X< >],»,-—[C-ks.k]z:f) two b st ICalh=1 (96)
i=1j=
where
XO=x-cs+C.,8%, k=1, ... K (9.7)
M=% C, k=1 ..,K (9.8)
m#k

Parameter w, 0 <w < 1, is important to adjust the orthogonal penalty and &, is the
Lagrange multiplier for the exact orthogonal constraint of C. When w=1 the
optimized C is an exact orthogonal matrix in which any chemical components do
NOT overlap. When w=0, among all the components, the optimized components
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in C may extensively overlap. The optimal value of w depends on the situation,
such as the spatial resolution of the data (step width of STEM-HSI) and localization
of chemical components. Thus, the optimal value of w must be chosen according to
the measurement level.

Applying some algebra to Eq. (9.6) enables us to obtain an analytical solution in
terms of the Lagrange multiplier &;. Substituting the obtained &;, the update rule of
C ., is given by

(KT x (k) g

c y

Wc.k N k=1,,K (99)
+

C.k= X(k)S.k —-—w
where the operator [A] , replaces all negative values in matrix A with zeros. Hence,
it can be calculated by [A] | = {A +abs(A)} /2, where function abs outputs a matrix
consisting of the absolute value of the elements in A. The second term weighted by
w is due to the orthogonal penalty term. After applying Eq. (9.9), each column of C
should be normalized by

C.x<C.i/||C .«

,, k=1,....K. (9.10)

Thus, we omit the normalization of S, and the update is given by

S.k={<x<k>)Tc,k} . k=1,....K. (9.11)

+

Figure 9.1 provides the pseudo-code of this NMF, which we named SO-NMF.

9.2.4 Probabilistic View of a NMF Model with an Automatic
Relevance Determination Prior

Optimizing the number of components using only the observed HSI data is prac-
tically important. Maximum likelihood estimation (or an estimation based on
minimizing errors) cannot be effective for the optimization because it causes
overfitting of the HSI data when the number of components is large. This overfitting
problem is avoided by using a Bayes estimation (or a maximum a posteriori
(MAP) estimation) with a prior distribution of scale parameters (relevance weights)
[32]. The process of choosing only the important components is known as auto-
matic relevance determination (ARD).

To perform ARD in NMF, we assume a prior distribution for C using an
exponential distribution with a scale parameter 4; for the probability density of
column k of C, i.e. C.;:
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Input: Data matrix X, the weight of orthogonal constraint w, the number of
components K, the maximum number of iterations Tmax, the number of
initializations Rmax

Output: Spatial intensities of components C and basis spectra S

1: | Forrfrom 1 to Rmax:

2: t=0

3: While t < Tmax and L& = LELT) (not converged)
4: t=t+1

5: For k from 1 to K:

6: Update C., by Eq. (9.9)

7: Normalize C.; by Eqg. (9.10)

8: end

9: For k from 1 to K:

10: Update S.; by Eq. (9.11)

11: end

12: Compute L™ = D, (X|€ST) by Eq. (9.5)
13: end

14: | end

15: | Choose the best optimization results by rp,,s; = argmin,. L(Tmax")

Fig. 9.1 Pseudocode of our NMF with the soft orthogonal constraint (SO-NMF)

an
Ak

1
p(an|/1k):l—exp<— >, n=1,...,Ny, k=1,... K. (9.12)
k

The above density distribution generates nonnegative random values with a large
probability density around zero, resulting in a sparse matrix of C. For the prior
distribution of 4, we assume an inverse-Gamma distribution:

a
p(/lka,b)z%A;(Hl)exp(—%), k=1, ...,K, (9.13)
where a and b are hyper-parameters to adjust the sparseness of ;. On the other
hand, the probability density distribution of column k of S, i.e. p(S.x), is assumed to
be uniformly distributed on the unit hyper-sphere in RIXL‘”. Using Eqgs. (9.4), (9.12),
and (9.13), the negative log-likelihood function of an NMF model with ARD priors
is given by
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- Ny K
L(C,8,4,6%)= = logp(X|X,0*) = ¥ ¥ logp(Cul)
i=lk=1
K K
- Z logp(S.x) - kZ log p(Ala, b)
NoNew Ny Ny 2 (9.14)
= log2 ” :
) og n6’ + — 752 lzljzl( )

K 1 Ny K
+ ¥ - b+ Y Ci |+ (Ny+a+1) Y logh
k=1

i=1 k=1
+ K(alogh —logI'(a)),

With regard to the optimization of C, L(C,S,A,6?) is a penalized likelihood
function with the L; norm of C, resulting in a sparse matrix C. The NMF mini-
mizing L(C, S, A, %) is referred to as ARD-NMF.

Because the simultaneous optimization of L(C, S, A, 02) overall C, S, A, and 62 is
non-convex, multiple optimizations from different initial configurations are
required. To update C and S, we use HALS [30], which updates each column C.;
and S . alternately. Applying some algebra to the minimization of L(C, S, 1, 6%), we
obtain the following update rule for C.;:

o2

C.k=[X<")S.k——} , k=1,...,K (9.15)
Ml

The second term in Eq. (9.15) is attributable to the ARD prior, which induces
the sparse matrix of C. The update rule for S.; by HALS is given by

Sk

S.k= T~
ISkl

k=1,....K (9.16)
where |x||, is the L, norm of vector x and

= [(X(k))TC.k] . k=1,....K (9.17)

+

Similarly, the update rules for the relevance weight A and 6° to minimize
L(C,S, 4,0°%) with all other quantities fixed are given by

b+ Z C,k

A=
k= Nx}+a+1

. k=1,....K (9.18)
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L1 NNy

< \2
o = Xi'_Xi' 9.19
nyNch [§1 jgl( ! J) ( )

The hyper-parameter b can be set using an approximate empirical estimator [32]
as follows:

-1 N 1 Ny N
p= @ DVNa 3 X,
K nyNchi=1j=1 '

(9.20)

In our experiments, the hyper-parameter a was set to a= 1+ 8, where §=10719,
to choose the minimum number of components with the minimum L(C, S, A, 02).
After the optimization of ARD-NMF, the relevance (or importance) values of
components are given by A, k=1, ..., K. Because the values of redundant com-
ponents cannot be exactly zero, we empirically set a threshold value to remove such
components.

9.2.5 Optimization Algorithm for C with Both ARD
and Spatial Orthogonal Constraint

When we simply combine the soft orthogonal constraint and the ARD effect using
both penalty terms, then the update rule of C.; can be obtained as follows:

2 (k)T X(k)S _ 2/},)
_|yg o _ € ( k0 /M -
C.k— X S.k /Ik w C(k>TC(k> C.k 5 k—l, ...,K (921)

+

In this update, C.; should not be renormalized to reduce the effect of the
orthogonal constraint for irrelevant components. We propose Eq. (9.21) as an
update rule for C.; when the orthogonal constraint is necessary. Figure 9.2 shows
the pseudo-code of our proposed NMF algorithm, which we named
ARD-SO-NMF. In the special case without the orthogonal constraint, i.e. w =0, the
algorithm is simply ARD-NMF. Line 12-20 has the purpose of merging the
components when the spectra are similar. In this procedure, the similarity is eval-
uated by using the cosine similarity and the spectra are considered to be the same
when the value exceeds 0.99. This operation is necessary to choose the correct
number of components because the orthogonality condition with w > O enforces
splitting of the components even when the spectra are exactly the same.
Our MATLAB and Python codes are available at https://github.com/MotokiShiga.
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Input: Data matrix X, the weight of orthogonal constraint w, the maximum
number of components K, the maximum number of iterations Tmayx, the
number of initializations Rmax
Output: Spatial intensities of components C, basis spectra S and relativeness
A

1: | Set hyper-parameter a = 1 + § and compute b by Eq. (9.20)
2: | Forrfrom 1to Rmax:

3: t=0

4: While t < Tmax and L& = LELT) (not converged)
5: t=t+1

6: For k from 1 to K:

7: Update Cj, by Eq. (9.21)

8: end

9: For k from 1 to K:

10: Update S.; by Eqg. (9.16)

11: end

12: For k from 1 to K:

13: For m from 1 to (k-1):

14: If TS, > 0.99:

15: Son =1/y/Nep,

16: C,=Cr+C,,

17: C,=0

18: end

19: end

20: end

21: Update A by Eqg. (9.18)

22: Update o2 by Eq. (9.19)

23: Compute L&) = L(C, S, A, 6%) by Eq. (9.14)

24: end

25: | end

26: | Choose the best optimization results by rp,,s = argmin,. L(Tmax")

Fig. 9.2 Pseudocode of our NMF with ARD and the soft orthogonal constraint (ARD-SO-NMF)

9.3

Application

9.3.1 Experimental Procedures

A real dataset was acquired from a cross-sectional TEM (XTEM) sample of a Si diode,
prepared by a focused ion beam (FIB) technique. We recorded the HSI data for Si-L; 3
including zero-loss peak (ZLP) using a JEOL JEM-1000 K RS ultra-high voltage
S/TEM of Nagoya University, operated at 1000 kV, with a Gatan Quantum equivalent
EEL spectrometer of which the energy dispersion was set to 0.2 eV/channel.
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Fig. 9.3 a Cross-sectional ADF-STEM image, b spatial distribution of three components, and
¢ their reference Si-L, 3 spectra of silicon diode test sample

The sample thickness of the measured area was estimated at 0.1 pm from the low-loss
spectrum. The energy drift of the spectra during the acquisition was corrected by ZLP
alignment and calibration. After the energy calibration, the pre-edge background
modeled by a power law was subtracted to isolate the Si-L, 3 spectrum. Figure 9.3
shows an annular dark-field STEM (ADF-STEM) image of the ROI of the Si diode, a
manually validated component map and spectra.

Another experimental STEM-EELS HSI dataset was prepared by measuring the
atomic resolution EELS-HSI of Mn;0,. Polycrystalline Mn3O,4 with a spinel crystal
structure was obtained, and a TEM sample was prepared by conventional ion
milling as previously described [24]. We measured the Mn-L, 3 HSI using a JEOL
ARM-200F aberration-corrected STEM, operated at 200 kV, with the Gatan
Quantum EELS having an energy dispersion of 0.5 eV/channel. The average full
width at half maximum (FWHM) of ZLP collected simultaneously (Dual EELS
mode) with Mn L, ; was approximately 2 eV. The thickness of the measured area
was approximately 40 nm, estimated from the low-loss spectra. Prior to applying
NMF to the data, the energy drift of the spectra during the acquisition was corrected
using the dual EELS mode synchronized with the ZLP alignment and calibration.
After the energy calibration, the pre-edge background intensities were subtracted by
modeling them with a power law.

Figure 9.4a—c show the ADF-STEM image, schematic projected structure of the
Mnr,, (divalent Mn occupying the tetrahedral site, Mng, (trivalent Mn at the
octahedral site) and O (oxygen) columns along the present incident beam direction
and the extracted site-specific spectra, respectively. In (a) the heavier element
(Mn) alone appears bright. These data are more difficult to analyze, because the
inner shell excitation is delocalized by a certain distance and the neighboring
atomic columns simultaneously contribute to the spectrum intensity at a sampling
point due to electron channeling effects [25] and orbital hybridization between the
elements.
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Fig. 9.4 a ADF-STEM image, b corresponding atom-site positions in the framed area of (a), and
¢ Mn-L, 5 reference spectra for STEM-EELS-HSI data from Mn;0,4

For all datasets, even after the above pre-processing, a few elements in X had
small negative values due to background removal. Thus, we replaced these values
with zeros. To normalize the scale of X, all elements were divided by the average of
the elements in X.

An STEM-EDX-HSI dataset was acquired from a sintered ceramic composite of
Y-doped ZrO,—LaSrMnOj; (supplied by courtesy of Dr. T. Mori of the National
Institute of Materials Science), which exhibits a distinct composition variation
across the electron transparent sample area. A thin film was prepared for TEM by
using an FIB technique. We measured the EDX-HSI using a JEOL 2100F S/TEM

(b) o
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Sr La
4 il
|.La| La Mn
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E LY
3 0
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Fig. 9.5 ADF-STEM image of LaSrMnOs5-Y doped ZrO, ceramic composite sample (a) and
typical EDX counts per pixel from framed areas (b)
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operated at 200 kV, equipped with a JEOL EDX silicon drift detector, Dry
SD60GV. Figure 9.5 shows the ADF-STEM image and typical counts (spectra) in
representative points, corresponding to the two different phases, where the maxi-
mum net peak counts per pixel do not exceed 10 counts, and have a typical sparse
feature that is suitable for testing the relevance of the proposed method.

9.3.2 Spatial Orthogonal Constraint on STEM-EELS Data

We evaluated the effect of the orthogonal constraint by changing the value of
w with a fixed number of components, i.e. SO-NMF. We used the two
STEM-EELS-HSI datasets described in Sect. 9.3.1. Because neither the spatial
distribution maps nor the spectra in the datasets are sparse, the conventional NMF
optimization has multiple local minima. Thus, reaching the global minima (or a
good local minimum) is difficult. Our aim in this experiment was to verify that the
orthogonal constraint reduces the search space and that SO-NMF generates a rea-
sonable decomposition of NMF.

9.3.2.1 XSTEM-EELS Data from a Silicon Device

The method was first applied to the dataset from the Si diode sample, as shown in
Fig. 9.3 in Sect. 9.3.1. The number of components in SO-NMF was set to K = 3,
which is the number of reference components. In the result with w =0 (no
orthogonal constraint: first row in Fig. 9.6), the third spectral components exhibit
unnatural intensity decreases at 110 eV, where a sharp peak from the first spectral
component is overlaid. This can happen in EELS-HSI under certain conditions [17].
This sudden lowering in intensity disappears when spatial orthogonality
(w > 0.01) is included, as seen in Fig. 9.6. Slight cross-talk between the second
and third components remains in both the spatial distribution maps and spectra for
w = 0.01. The resolved spectral profiles and their spatial distributions are almost
the same for w > 0.05, which effectively reproduces the spectra and expected
spatial distributions, although the spatial phase separation seems (unnaturally)
overly emphasized for w = 1.0.

9.3.2.2 Atomic Resolution STEM-EELS of Mn3;0,

Next, we validated the method using the atomic resolution Mn-L, 5 SI data from the
Mn;0y spinel sample (cf. Fig. 9.4 in Sect. 9.3.1). The number of components in
SO-NMF was set to K = 3, which is the number of components determined by
ARD-SO-NMF in Sect. 9.3.3.3. The SO-NMF results for 0 < w < 1 are shown in
Fig. 9.7, with the score images in the first, second, and third columns and the
resolved spectral profiles in the fourth column. In the case without spatial



194 M. Shiga and S. Muto

#1 Comp.#2 Comp.#3

0.01

0.05

0.10

0.50

[ R R R =)
[ [l

f=

100 105 110 115 120 125
Energy loss (ev)

Fig. 9.6 Results of SO-NMF with various weights of spatial orthogonality constraint for Si-L; 3
STEM-EELS-HSI data

orthogonality (w = 0), the resolved spectral profiles are inconsistent with the
expected reference profiles (Fig. 9.4c), the peak at around 640 eV of component 2
shifted to the left. Further, component 3 exhibits a physically unnatural intensity
drop at the distinct peak positions of component 1, as for the case of no orthogo-
nality (Fig. 9.7, top-right figure). With a small spatial orthogonality (w = 0.01)
included, the spectral shapes converged to those consistent with the reference
spectra and the additional component localized on the oxygen columns. It can be
seen that there is an optimum value of w for reproducing good spectral profiles and
plausible spatial distributions. As w increases, the spatial distributions become more
orthogonal to each other, whereas the resolved spectral shapes converge to one
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Fig. 9.7 Results of SO-NMF with various weights of the spatial orthogonality constraint for Mn-
L, ; STEM-EELS-HSI data

form. For w > 0.5 the spatial distributions are far from the actual projected
structures, even though the resolved spectral shapes are essentially identical.

We subsequently focus on the additional third component, the spatial distribu-
tion of which was found to be localized on the projected oxygen atom positions.
This localization was attributed to the electron channeling effect [25], which is
responsible for propagating the incident electron wave function along the neigh-
boring Mn columns for a sample exceeding a certain thickness when the electron
probe is placed on the oxygen column. The resolved spectrum of the third com-
ponent actually exhibits a spectral profile characteristic of the weighted average of
the other two components, because each oxygen atom is coordinated with trivalent
Mng,; and divalent Mnr,; atoms.
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9.3.3 Results of Optimizing the Number of Components
by ARD-NMF

9.3.3.1 STEM-EDX Data

To examine whether ARD can select the correct number of components, our
ARD-NMF (i.e. without the orthogonal constraint imposed, w = 0) was applied to
the STEM-EDX-HSI data of a Y-doped ZrO,(YSZ)-LaSrMnO;(LSM) ceramic
composite material. The conventional elemental distributions are shown in Fig. 9.8
for reference purposes. Starting with 10 components, only two survived after the
optimization algorithm terminated, as shown in Fig. 9.9. The distribution of each
identified component shown in Fig. 9.9a is consistent with the elemental distribu-
tions of: (1) the union of La, Mn, and Sr and (2) the union of Zr and Y in Figs. 9.5
and 9.8. The identified spectra shown in Fig. 9.9c consist of sets of peaks, each
reflecting the correct composition of YSZ or LSM in Fig. 9.5. This indicates that
our ARD-NMF identified the constituent phases correctly for this STEM-EDX data.

These results indicate that the present method effectively removed the statistical
noise in the resolved spectra (Fig. 9.9c), and the score images (Fig. 9.9a) exhibit no
artificial mixing of the two spectral components. Note that a 10-nm layer of LSM
(Fig. 9.9a: Comp.#1) covers the YSZ substrate surface; this can be seen more
clearly here than in the elemental maps.

Fig. 9.8 EDX elemental maps of LaSrMnO;-Y-doped ZrO, ceramic composite sample
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Fig. 9.9 Result of ARD-NMF for STEM-EDX-HSI data

9.3.3.2 XSTEM-EELS Data from a Silicon Device

We then applied both ARD-NMF and ARD-SO-NMF with K = 10 to the
EELS-HSI data of Si-L, 3 energy-loss near edge structure (ELNES) obtained from a
cross-sectional Si diode sample. The reference component spectra (Fig. 9.3¢c) are
not sparse, that is, nonzero values range over the energy-loss axis. We compared the
results of ARD-NMF with those from ARD-SO-NMF to verify that the orthogonal
constraint produces a clearer decomposition for non-sparse data. The results are
shown in Figs. 9.10 and 9.11.

Figure 9.10b shows that ARD-NMF selected four components whereas the
reference contains three. In Fig. 9.10a, the generated component distribution of
components 1 and 3 exhibit extensive overlap, whereas the actual spectra of these
components are not overlapped, as also seen in the case of w = 0 in Fig. 9.6. This
result was attributed to a property of basic NMF, which induces a sparse decom-
position on both spatial and spectra matrices.

The ARD-SO-NMF results (with w = 0.1) are shown in Fig. 9.11b. Fig-
ure 9.11c shows that the identified spectra are consistent with the reference spectra
shown in Fig. 9.3c. The spatial distributions of components obtained by
ARD-SO-NMF (Fig. 9.11a) are clearly separated, whereas those resulting from
ARD-NMF (Fig. 9.10a) overlap extensively. This difference demonstrates the effect
of the orthogonal constraint. In this case, ARD-SO-NMF selected three components
and their spectra are consistent with their reference spectra, whereas the spectra by
ARD-NMF (w = 0) display unnatural reductions in intensity. Thus, these results
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suggest that the method can effectively detect subtle spectral differences by intro-
ducing the orthogonal constraint.

9.3.3.3 Atomic Resolution STEM-EELS of Mn3;0,

The ARD-NMF technique was also applied to the experimental atomic resolution
Mn-L,; SI data from the Mn;O, spinel sample. Figures 9.12a—c show the
ARD-NMF results with K = 10. As shown in Fig. 9.12b, ARD-NMF selected three
components and eliminated the other seven components during the optimization.
Thus, ARD-NMF detected an additional component other than those related to the
two Mn sites, as discussed in Sect. 9.3.2.2. The spatial distributions of the resolved
components shown in Fig. 9.12a and c are basically consistent with the projected
Mng,, and a Mnr,, atom positions in Figs. 9.4b and 9.4c, respectively, the relative
chemical shifts of which are also consistent with their valence states. However, the
boundary between the components is less clear because of the delocalization of the
chemical bonding states, and the resolved spectral profiles (Fig. 9.12¢) are incon-
sistent with the expected theoretical profiles, with component 2 exhibiting physi-
cally unnatural intensity decreases at the distinct peak positions of component 1.
Because an ARD prior induces sparseness, this problem often occurs when
ARD-NMF is applied to EELS in which different spectral profiles largely overlap.

We overcame this problem by applying ARD-SO-NMF with w = 0.01.
Figure 9.13a demonstrates that, because of the orthogonal condition, the

(a) Component maps
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Fig. 9.12 Result of ARF-NMF (w = 0) for Mn-L, 5 STEM-EELS-HSI data from Mn3O,4
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Fig. 9.13 Result of ARF-SO = NMF (w = 0.01) for Mn-L,; STEM-EELS-HSI data from
Ml’l304

components are separated more clearly. Especially, overlaps between the first
component and the others are resolved with greater clarity, as shown in Fig. 9.13a,
and detection of the third component was improved.

9.4 Discussion

The ARD-SO-NMF and ARD-NMF algorithms proposed in this study were able to
optimize the number of spectral components for both the EDX and EELS datasets.
An additional orthogonal constraint was required when neither the spatial distri-
bution nor the spectra were sparse. Such a constraint is offered by the proposed
ARD-SO-NMF. Our NMF realistically extracts spectral components from the
EELS-HSI data when the spatial orthogonality penalty is appropriate, implying that
different spectral features are spatially well separated.

Because of the differing complexities intrinsic to EELS and EDX spectra, NMF
processes these datasets differently. An EDX spectrum can be characterized by a set
of Gaussian-like peaks, generally separated in energy, whereas an elemental core
EELS includes various spectral components overlapped in the same energy range,
where the corresponding electronic energy levels in solids are approximately
continuously distributed. Furthermore, the spectral components of EDX are mostly
sparse and orthogonal along the energy axis, contrary to those in EELS. NMF with
only an error function as the objective function prefers the orthogonal basis spectra
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in the energy axis because of their completeness. On the other hand, NMF with
spatial orthogonality models the practical situation, in which an EELS-HSI dataset
is assumed to be more orthogonal in space than in energy, more accurately.

There are several local minima in the likelihood functions. The type of NMF
algorithm appears to eventually achieve a more appropriate minimum, although it is
not mathematically possible to prove the dependence. Moreover, because of the
computational cost, it is difficult to obtain all of the local minima, even when we
apply the spatial orthogonality constraint and sparse priors for the ARD effect, i.e.
by using a small value of K, in the data matrix. The present NMF method is capable
of minimizing and extracting the objective function of particular solutions by
systematically varying the weight of the spatial orthogonality in the object function.
In both of the EELS examples presented herein, an increase in w caused the
resolved components to be distributed more widely over the sample space and their
spectral shapes to become less sparse (or orthogonal). This change in spectral
shape, which is prone to be sparse under the basic NMF, is clearly resolved and
exhibits the composition more accurately when the orthogonal constraint is applied.
Hence, the proposed NMF can identify chemical states from the resolved spectra
more accurately than existing methods that do not use spatial orthogonality. In the
case of the atomic resolution HSI of Mn;0,, the method resulted in physically
meaningless solutions when we overestimated the spatial orthogonality. In general,
we can reach solutions that are physically more realistic/interpretable, comparable
to the theoretical spectra predicted by first principles calculations or reference
experimental spectra, by changing the value of w systematically and understanding
the extent to which the spectral shapes and spatial distributions of the resolved
components vary. This scheme seems much more effective and pragmatic than
estimating the solution bounds by repeating the decomposition routines with many
different initial random numbers in the loading or score matrices.

In this respect the proposed SO constraint may fail when the spatial distributions
of the component states strongly overlap with each other. Spiegelberg et al. pro-
posed an alternative scheme to extract nonnegative source signals of strongly mixed
data [33], instead of imposing the present SO constraint. By randomly drawing
samples from the space of positive spectra in the signal subspace spanned by the
prominent principal components, a sampled dataset of which the spectral compo-
nents can be conveniently extracted using, e.g., VCA or NMF, is obtained with a
large probability. These components typically correspond well to the pure spectra of
the original data assuming that the spectral components are orthogonal to each other
in at least one channel.

Existing processing schemes can produce controversial results should the
spectral background be subtracted in advance before the statistical processing, and
this probably depends on the type of spectral data being processed. Although
background subtraction is generally considered to lose important spectral infor-
mation, we believe background subtraction to be necessary in the present frame-
work because our NMF assumes that no background structure is incorporated. As
demonstrated in the supplementary material in a previous paper [26], our proposed
NMF was unable to provide the expected correct results for STEM-EELS SI



202 M. Shiga and S. Muto

without background subtraction, which thus presents further work for the future, i.e.
incorporating a background structure in our model.

9.5 Summary

We proposed a new multivariate curve resolution method based on NMF with two
penalty terms: (i) a soft orthogonal constraint to effectively resolve overlapping
spectra, and (ii) an ARD prior to optimize the number of components. Validations
using experimental STEM-EDX/EELS SI data demonstrated that the ARD prior
successfully resolved the correct number of physically interpretable spectral com-
ponents. The soft orthogonal constraint was effective for STEM-EELS HSI data
that were neither sparse in the spatial nor the spectral regions. The proposed
SO-NMF and ARD-SO-NMF schemes can successfully resolve physically mean-
ingful components by reducing the search space for low-rank matrices, even in
cases where conventional NMF is unable to correctly resolve the components.
These advantages reduce the costs of HSI data analysis and of extracting hidden
spectral information from experimental data using objective and statistical measures
rather than empirical knowledge. The proposed method is applicable to any type of
HSI dataset, such as that generated by Raman spectroscopy, infrared absorption,
and time-of-flight mass spectroscopy. Future prospects would include investigating
the ability of the present ARD-NMF scheme to correctly detect small amounts of
significant phases.
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