
Chapter 1
Descriptors for Machine Learning
of Materials Data

Atsuto Seko, Atsushi Togo and Isao Tanaka

Abstract Descriptors, which are representations of compounds, play an essential

role in machine learning of materials data. Although many representations of ele-

ments and structures of compounds are known, these representations are difficult to

use as descriptors in their unchanged forms. This chapter shows how compounds in

a dataset can be represented as descriptors and applied to machine-learning models

for materials datasets.

Keywords Machine-learning interatomic potential ⋅ Lattice thermal

conductivity ⋅ Recommender system ⋅ Gaussian process ⋅ Bayesian optimization

1.1 Introduction

Recent developments of data-centric approaches should accelerate the progress in

materials science dramatically. Thanks to the recent advances in computational

power and techniques, the results from numerous density functional theory (DFT)

calculations with predictive performances have been stored as databases. A com-

bination of such databases and an efficient machine-learning approach should real-

ize prediction and classification models of target physical properties. Consequently,

machine-learning techniques are becoming ubiquitous. They are used to explore

materials and structures from a huge number of candidates and to extract meaningful

information and patterns from existing data.

A key factor in controlling the performance of a machine-learning approach is

how compounds are represented in a data set. Representations of compounds are

called “descriptors” or “features”. To perform machine-learning modeling, available

descriptors must be determined according to the evaluation cost of the target property
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and the extent of the exploration space. Based on these considerations, we aim to

select “good” descriptors. Prior or experts’ knowledge, including a well-known cor-

relation between the target property and the other properties, can be used to select

good descriptors. However, the set of descriptors in many cases is examined by trial-

and-error because the predictive performance (i.e., the prediction error and efficiency

of the model) strongly depends on the quality and data-size of the target property.

Section 1.2 shows how to prepare descriptors of compounds. Sections 1.3 and

1.4 introduce representations of chemical elements (elemental representations) and

atomic arrangements (structural representations) required to generate compound

descriptors. Sections 1.5, 1.6, 1.7, and 1.8 provide applications of machine-learning

models for materials datasets, including the construction of a machine-learning pre-

diction model for the DFT cohesive energy, the construction of the machine-learning

interatomic potential (MLIP) for elemental metals, materials discovery of low lat-

tice thermal conductivity (LTC), and materials discovery based on the recommender

system approach.

1.2 Compound Descriptors

Most candidate descriptors can be classified into three groups. The first is the phys-

ical properties of a compound in a library and/or their derivative quantities, which

are less available. The second is the physical properties of a compound computed by

DFT calculations or their derivative quantities. The third is the properties of elements

and the structure of a compound and/or their derivative quantities. Combinations of

different groups of descriptors can also be useful.

A set of compound descriptors should satisfy the following conditions: (i) the

same-dimensional descriptors express compounds with a wide range of chemical

compositions. (ii) The same-dimensional descriptors express compounds with a

wide range of crystal structures. This is an important feature because crystals are gen-

erally composed of unit cells with different numbers of atoms. (iii) A set of descrip-

tors satisfies the translational, rotational, and other invariances for all compounds

included in the dataset.

Candidates for compound descriptors based on DFT calculations include volume,

band gap, cohesive energy, elastic constants, dielectric constants, etc. The electronic

structure and phonon properties can also be used as descriptors. Although a few first-

principles databases are available, the numbers of compounds and physical proper-

ties in the databases remain limited. Nevertheless, when a set of descriptors that

can well explain a target property is discovered, a robust prediction model can be

derived for the target property. Examples can be found in the literature (e.g., Refs.

[1–4]). Other candidates are simply a binary digit representing the presence of each

element in a compound (Fig. 1.1) [5]. When training data is composed of m kinds

of elements, a compound is described by an m-dimensional binary vector with ele-

ments of one or zero. As a simple extension, a binary digit can be replaced with the

chemical composition. Such an application is shown in Sect. 1.7.
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H Li Be B C N O F ···

LiH 1 1 0 0 0 0 0 0 ···

LiF 0 1 0 0 0 0 0 1 ···

BeO 0 0 1 0 0 0 1 0 ···

BN 0 0 0 1 0 1 0 0 ···

···

Fig. 1.1 Binary elemental descriptors representing the presence of chemical elements. The num-

ber of binary elemental descriptors corresponds to the number of element types included in the

training data

Another useful strategy is to use a set of quantities derived from elemental and

structural representations of a compound as descriptors. However, it is difficult to

use elemental and structural representations as descriptors in their unchanged forms

when the training data and search space cover a wide range of chemical compositions

and crystal structures. Consequently, it is essential to consider combined forms as

compound descriptors.

Here we provide compound descriptors derived from elemental and structural

representations satisfying the above conditions. These descriptors can be applied not

only to crystalline systems but also to molecular systems [6]. Figure 1.2 schemati-

cally illustrates the procedure to generate such descriptors for compounds. First, the

compound is considered to be a collection of atoms, which are described by element

types and neighbor environments that are determined by other atoms. Assuming the

atoms are represented by Nx,ele elemental representations and Nx,st structural repre-

sentations, each atom is described by Nx = Nx,ele + Nx,st representations. Therefore,

compound 𝜉 is expressed by a collection of atomic representations as a matrix with

(N(𝜉)
a ,Nx)-dimensions, where N(𝜉)

a is the number of atoms in the unit cell of com-

pound 𝜉. The representation matrix for compound 𝜉, X(𝜉)
, is written as

X(𝜉) =

⎛
⎜
⎜
⎜
⎜
⎝

x(𝜉,1)1 x(𝜉,1)2 ⋯ x(𝜉,1)Nx

x(𝜉,2)1 x(𝜉,2)2 ⋯ x(𝜉,2)Nx

⋮ ⋮ ⋱ ⋮

x(𝜉,N
(𝜉)
a )

1 x(𝜉,N
(𝜉)
a )

2 ⋯ x(𝜉,N
(𝜉)
a )

Nx

⎞
⎟
⎟
⎟
⎟
⎠

, (1.1)

where x(𝜉,i)n denotes the nth representation of atom i in compound 𝜉.

Since the representation matrix is only a representation of the unit cell of com-

pound 𝜉, a procedure to transform the representation matrix into a set of

descriptors is needed to compare different compounds. One approach for this trans-

formation is to regard the representation matrix as a distribution of data points in

an Nx-dimensional space (Fig. 1.2). To compare the distributions themselves, rep-

resentative quantities are subsequently introduced to characterize the distribution

as descriptors, such as the mean, standard deviation (SD), skewness, kurtosis, and
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Fig. 1.2 Schematic illustration of how to generate compound descriptors

covariance. The inclusion of the covariance enables the interaction between the ele-

ment type and crystal structure to be considered.

A universal or complete set of representations is ideal because it can derive good

machine-learning prediction models for all physical properties. However, finding a

universal set of representations is nearly impossible. On the other hand, many ele-

mental and structural representations have been proposed for a long time, not only

in the literature on the machine-learning prediction but also in the literature on the
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standard physics and chemistry. Using these representations, many phenomena in

physics and chemistry have been explained. Therefore, it is a good way for generat-

ing descriptors to make effective use of the existing representations.

1.3 Elemental Representations

The literature contains numerous quantities that can be used as elemental represen-

tations. This chapter employs a set of elemental representations composed of the fol-

lowing: (1) atomic number, (2) atomic mass, (3) period and (4) group in the periodic

table, (5) first ionization energy, (6) second ionization energy, (7) electron affinity, (8)

Pauling electronegativity, (9) Allen electronegativity, (10) van der Waals radius, (11)

covalent radius, (12) atomic radius, (13) pseudopotential radius for the s orbital, (14)

pseudopotential radius for the p orbital, (15) melting point, (16) boiling point, (17)

density, (18) molar volume, (19) heat of fusion, (20) heat of vaporization, (21) ther-

mal conductivity, and (22) specific heat. These representations can be classified into

the intrinsic quantities of elements (1)–(7), the heuristic quantities of elements (8)–

(14), and the physical properties of elemental substances (15)–(22). Such elemental

representations should capture essential information about compounds. Therefore,

they should assist in building models with a high predictive performance, as shown

in Sects. 1.5, 1.7 and 1.8.

1.4 Structural Representations

The literature contains many structural representations that are not intended for

machine-learning applications. Examples include the simple coordination number,

Voronoi polyhedron of a central atom, angular distribution function, and radial distri-

bution function (RDF). Here, we introduce two kinds of pairwise structural represen-

tations and two kinds of angular-dependent structural representations i.e., histogram

representations of the partial radial distribution function (PRDF), generalized radial

distribution function (GRDF), bond-orientational order parameter (BOP) [7], and

angular Fourier series (AFS) [8].

The PRDF is a well-established representation for various structures. To trans-

form the PRDF into structural representations applicable to machine learning, a his-

togram representation of the PRDF is adopted with a given bin width and cutoff

radius (Fig. 1.3). The number of counts for each bin is used as the structural repre-

sentation.

The GPRF, which is a pairwise representation similar to the PRDF histogram

representation, is expressed as

GRDF(i)n =
∑

j
fn(rij) (1.2)
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Fig. 1.3 Partial radial distribution functions (PRDFs) and generalized radial distribution functions

(GRDFs)

where fn(rij) denotes a pairwise function of the distance rij between atoms i and j.
For example, a pairwise Gaussian-type function is expressed as

fn(r) = exp
[
−pn(r − qn)2

]
fc(r) (1.3)

where fc(r) denotes the cutoff function. pn and qn are given parameters. The GRDF

can be regarded as a generalization of the PRDF histogram because the PRDF his-

togram is obtained using rectangular functions as pairwise functions.

The BOP is also a well-known representation for local structures. The rotationally

invariant BOP Q(i)
l for atomic neighborhoods is expressed as

Q(i)
l =

[
4𝜋

2l + 1

l∑

m=−l
|Q(i)

lm|
2

]1∕2

(1.4)

where Q(i)
lm corresponds to the average spherical harmonics for neighbors of atom i.

The third-order invariant BOP W (i)
l for atomic neighborhoods is expressed by

W (i)
l =

l∑

m1,m2,m3=−l

(
l l l
m1 m2 m3

)

Q(i)
lm1

Q(i)
lm2

Q(i)
lm3

, (1.5)

where the parentheses are the Wigner 3j symbol, satisfying m1 + m2 + m3 = 0. A set

of bothQ(i)
l andW (i)

l up to a given maximum l is used as the structural representations.
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The AFS is the most general among the four representations. The AFS can include

both the radial and angular dependences of an atomic distribution, and is given by

AFS(i)n,l =
∑

j,k
fn(rij)fn(rik) cos(l𝜃ijk) (1.6)

where 𝜃ijk denotes the bond angle between three atoms.

1.5 Machine Learning of DFT Cohesive Energy

The performances of the descriptors derived from elemental and structural repre-

sentations have been examined by developing kernel ridge regression (KRR) pre-

diction models for the DFT cohesive energy [6]. The dataset is composed of the

cohesive energy for 18093 binary and ternary compounds computed by DFT cal-

culations. First, descriptor sets derived only from elemental representations, which

are expected to be more dominant than structural representations in the prediction

of the cohesive energy, are adopted. Since the elemental representations are incom-

plete for some of the elements in the dataset, only elemental representations, which

are complete for all elements, are considered. The root-mean-square error (RMSE)

is estimated for the test data. The test data is comprised of 10% of the randomly

selected data. This random selection of the test data is repeated 20 times, and the

average RMSE is regarded as the prediction error.

The simplest option is to use only the mean of each elemental representation as a

descriptor. The prediction error, in this case, is 0.249 eV/atom. Figure 1.4a compares

the cohesive energy calculated by DFT calculations to that by the KRR model, where

only the test data in one of the 20 trials are shown. Numerous data points deviate from

the diagonal line, which represents equal DFT and KRR energies. When consider-

ing the means, SDs, and covariances of the elemental representations, the prediction

model has a slightly smaller prediction error of 0.231 eV/atom. Additionally, skew-

ness and kurtosis are not important descriptors for the prediction.

Next, descriptors related to structural representations are introduced. They can be

computed from the crystal structure optimized by the DFT calculations or the ini-

tial prototype structures. The former is only useful for machine-learning predictions

when a target observation is expensive. Since the optimized structure calculation

requires the same computational cost as the cohesive energy calculation, the ben-

efit of machine learning is lost when using the optimized structure. The structural

representations are computed from the optimized crystal structure only to examine

the limitation of the procedure and representations introduced here. KRR models

are constructed using many descriptor sets, which are composed of elemental and

structural representations. The cutoff radius is set to 6 Å for the PRDF, GRDF, and

AFS, while the cutoff radius is set to 1.2 times the nearest neighbor distance for the

BOP. This nearest neighbor definition is common for the BOP.
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Fig. 1.4 Comparison of the cohesive energy calculated by DFT calculations and that calculated

by the KRR prediction model. Only one test dataset is shown. Descriptor sets are composed of a
the mean of the elemental representation, b the means of the elemental and PRDF representations,

c the means, SDs, and covariances of the elemental and PRDF representations and d the means,

SDs, and covariances of the elemental and 20 trigonometric GRDF representations. Mean of the

PRDF corresponds to the RDF. Structure representations are computed from the optimized structure

for each compound

Figure 1.4 compares the DFT and KRR cohesive energies, where the KRR models

are constructed by (b) a set of the means of the elemental and PRDF histogram

representations and (c) a set of the means, standard deviations, and covariances of the

elemental and PRDF histogram representations. When considering the means of the

elemental and PRDF representations, the lowest prediction error is as large as 0.166

eV/atom. This means that simply employing the PRDF histogram does not yield

a good model for the cohesive energy. However, including the covariances of the

elemental and PRDF histogram representations produces a much better prediction

model and the prediction error significantly decreases to 0.106 eV/atom.
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Considering only the means of the GRDFs, prediction models are obtained with

errors of 0.149–0.172 eV/atom. These errors are similar to those of prediction mod-

els considering the means of the PRDFs. Similar to in the case of the PRDF, the

prediction model improves upon considering the SDs and covariances of the elemen-

tal and structural representations. The best model shows a prediction error of 0.045

eV/atom, which is about half that of the best PRDF model. This is also approximately

equal to the “chemical accuracy” of 43 meV/atom (1 kcal/mol).

Figure 1.4d compares the DFT and KRR cohesive energies, where a set of the

means, SDs, and covariances of the elemental and trigonometric GRDF representa-

tions is adopted. Most of the data are located near the diagonal line. We also obtain

the best prediction model with a prediction error of 0.041 eV/atom by considering

the means, SDs, and covariances of the elemental, 20 trigonometric GRDF, and 20

BOP representations. Therefore, the present method should be useful to search for

compounds with diverse chemical properties and applications from a wide range of

chemical and structural spaces without performing exhaustive DFT calculations.

1.6 Construction of MLIP for Elemental Metals

A wide variety of conventional interatomic potentials (IPs) have been developed

based on prior knowledge of chemical bonds in some systems of interest. Examples

include Lennard-Jones, embedded atom method (EAM), modified EAM (MEAM),

and Tersoff potentials. However, the accuracy and transferability of conventional IPs

are often lacking due to the simplicity of their potential forms. On the other hand,

the MLIP based on a large dataset obtained by DFT calculations is beneficial to

improve the accuracy and transferability. In the MLIP framework, the atomic energy

is modeled by descriptors corresponding to structural representations, as shown in

Sect. 1.4. Once the MLIP is established, it has a similar computational cost as con-

ventional IPs. MLIPs have been applied to a wide range of materials, regardless of

chemical bonding nature of the materials. Recently, frameworks applicable to peri-

odic systems have been proposed [9–11].

The Lasso regression has been used to derive a sparse representation for the IP.

In this section, we demonstrate the applicability of the Lasso regression to derive

the IPs of 12 elemental metals (Na, Mg, Ag, Al, Au, Ca, Cu, Ga, In, K, Li, and

Zn) [11, 12]. The features of linear modeling of the atomic energy and descriptors

using the Lasso regression include the following. (1) The accuracy and computa-

tional cost of the energy calculation can be controlled in a transparent manner. (2)

A well-optimized sparse representation for the IP, which can accelerate and increase

the accuracy of atomistic simulations while decreasing the computational costs, is

obtained. (3) Information on the forces acting on atoms and stress tensors can be

included in the training data in a straightforward manner. (4) Regression coefficients

are generally determined quickly using the standard least-squares technique.
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The total energy of a structure can be regarded as the sum of the constituent atomic

energies. In the framework of MLIPs with only pairwise descriptors, the atomic

energy of atom i is formulated as

E(i) = F
(
b(i)1 , b

(i)
2 ,… , b(i)nmax

)
, (1.7)

where b(i)n denotes a pairwise descriptor. Numerous pairwise descriptors are gen-

erally used to formulate the MLIP. We use the GRDF expressed by Eq. (1.2) as

the descriptors. For the pairwise function fn, we introduce Gaussian, cosine, Bessel,

Neumann, modified Morlet wavelet, Slater-type orbital, and Gaussian-type orbital

functions. Although artificial neural network and Gaussian process black-box mod-

els have been used as functions F, we use a polynomial function to construct the

MLIPs for the 12 elemental metals. In the approximation considering only the power

of b(i)n , the atomic energy is expressed as

E(i) = w0 +
∑

n
wnb(i)n +

∑

n
wn,nb(i)n b

(i)
n +⋯ , (1.8)

wherew0,wn, andwn,n denote the regression coefficients. Practically, the formulation

is truncated by the maximum value of power, pmax.

The vector w composed of all the regression coefficients can be estimated by a

regression, which is a machine-learning method to estimate the relationship between

the predictor and observation variables using a training dataset. For the training data,

the energy, forces acting on atoms, and stress tensor computed by DFT calculations

can be used as the observations in the regression process since they all are expressed

by linear equations with the same regression coefficients [12]. A simple procedure

to estimate the regression coefficients employs a linear ridge regression [13]. This

is a shrinkage method where the number of regression coefficients is reduced by

imposing a penalty. The ridge coefficients minimize the penalized residual sum of

squares and are expressed as

L(w) = ||Xw − y||22 + 𝜆||w||22, (1.9)

where X and y denote the predictor matrix and observation vector, respectively,

which correspond to the training data. 𝜆, which is called the regularization param-

eter, controls the magnitude of the penalty. This is referred to as L2 regularization.

The regression coefficients can easily be estimated while avoiding the well-known

multicollinearity problem that occurs in the ordinary least-squares method.

Although the linear ridge regression is useful to obtain an IP from a given descrip-

tor set, a set of descriptors relevant to the system of interest is generally unknown.

Moreover, an MLIP with a small number of descriptors is desirable to decrease the

computational cost in atomistic simulations. Therefore, a combination of the Lasso

regression [13, 14] and a preparation involving a considerable number of descrip-

tors is used. The Lasso regression provides a solution to the linear regression as well
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as a sparse representation with a small number of nonzero regression coefficients.

The solution is obtained by minimizing the function that includes the L1 norm of

regression coefficients and is expressed as

L(w) = ||Xw − y||22 + 𝜆||w||1. (1.10)

Simply adjusting the values of 𝜆 for a given training dataset controls the accuracy of

the solution.

To begin with, training and test datasets are generated from DFT calculations. The

test dataset is used to examine the predictive power for structures that are not included

in the training dataset. For each elemental metal, 2700 and 300 configurations are

generated for the training and test datasets, respectively. The datasets include struc-

tures made by isotropic expansions, random expansions, random distortions, and

random displacements of ideal face-centered-cubic (fcc), body-centered-cubic (bcc),

hexagonal-closed-packed (hcp), simple-cubic (sc), 𝜔 and 𝛽-tin structures, in which

the atomic positions and lattice constants are fully optimized. These configura-

tions are made using supercells constructed by the 2 × 2 × 2, 3 × 3 × 3, 3 × 3 × 3,

4 × 4 × 4, 3 × 3 × 3 and 2 × 2 × 2 expansions of the conventional unit cells for fcc,

bcc, hcp, sc, 𝜔, and 𝛽-tin structures, which are composed of 32, 54, 54, 64, 81, and

32 atoms, respectively.

For a total of 3000 configurations for each elemental metal, DFT calculations

have been performed using the plane-wave basis projector augmented wave (PAW)

method [15] within the Perdew–Burke–Ernzerhof exchange-correlation functional

[16] as implemented in the VASP code [17–19]. The cutoff energy is set to 400 eV.

The total energies converge to less than 10
−3

meV/supercell. The atomic positions

and lattice constants are optimized for the ideal structures until the residual forces

are less than 10−3 eV/Å.

For each MLIP, the RMSE is calculated between the energies for the test data

predicted by the DFT calculations and those predicted using the MLIP. This can be

regarded as the prediction error of the MLIP. Table 1.1 shows the RMSEs of lin-

ear ridge MLIPs with 240 terms for Na and Mg, where the RMSE converges as the

number of terms increases. The MLIPs with only pairwise interactions have low

Table 1.1 RMSEs for the test data of linear ridge MLIPs using 240 terms (Unit: meV/atom)

Function type for fn and pmax Na Mg

Cosine (pmax = 1) 7.3 11.8

Cosine (pmax = 2) 1.6 2.6

Cosine (pmax = 3) 1.4 1.6

Cosine, Gaussian (pmax = 3) 1.4 1.1

Cosine, Bessel (pmax = 3) 1.4 1.3

Cosine, Gaussian, Bessel

(pmax = 3)
1.4 0.9
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Fig. 1.5 RMSEs for the test data of the linear ridge MLIP using cosine-type and Gaussian-type

descriptors with pmax = 3, Rc = 7.0 Å and 𝜆 = 0.001 for a Na and b Mg. RMSEs of the Lasso

MLIPs are also shown

predictive powers for both Na and Mg. Increasing pmax improves the predictive

power of the MLIPs substantially. Using cosine-type functions with pmax = 3 and

cutoff radius Rc = 7.0 Å, the RMSEs are 1.4 and 1.6 meV/atom for Na and Mg,

respectively. By increasing the cutoff radius to Rc = 9.0 Å, the RMSE reaches a

very small value of 0.4 meV/atom for Na, but the RMSE remains almost unchanged

for Mg. The RMSE for Na is not improved, even after considering all combinations

of the Gaussian, cosine, Bessel, and Neumann descriptor sets. In contrast, the com-

bination of Gaussian, cosine, and Bessel descriptor sets provides the best prediction

for Mg with an RMSE of 0.9 meV/atom.

The Lasso MLIPs have been constructed using the same dataset. Candidate terms

for the Lasso MLIPs are composed of numerous Gaussian, cosine, Bessel, Neumann,

polynomial, and GTO descriptors. Sparse representations are then extracted from a

set of candidate terms by the Lasso regression. Figure 1.5 shows the RMSEs of the

Lasso MLIPs for Na and Mg, respectively. The RMSEs of the Lasso MLIP decrease

faster than those of the linear ridge MLIPs constructed from a single-type of descrip-

tors. In other words, the Lasso MLIP requires fewer terms than the linear ridge MLIP.

For Na, a sparse representation with an RMSE of 1.3 meV/atom is obtained using

only 107 terms. This is almost the same accuracy as the linear ridge MLIP with 240

terms based on the cosine descriptors. It is apparent that the Lasso MLIP is more

advantageous for Mg than for Na. The obtained sparse representation with 95 terms

for Mg has an RMSE of 0.9 meV/atom. This is almost half the terms for the linear

ridge MLIP based on the cosine descriptors, which requires 240 terms.

Figure 1.6a shows the dependence of the RMSE for the energy and stress ten-

sor of the Lasso MLIP on the number of nonzero regression coefficients for the

other ten elemental metals. The number of selected terms tends to increase as the
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Fig. 1.6 a Dependence of RMSEs for the energy and stress tensor of the Lasso MLIP on the

number of nonzero regression coefficients for ten elemental metals. Orange open circles and blue

open squares show RMSEs for the energy and stress tensor, respectively. b Comparison of the

energies predicted by the Lasso MLIP and DFT for Al and Zn measured from the energy of the

most stable structure. c Phonon dispersion relationships for FCC-Al and FCC-Zn. Blue solid and

orange broken lines show the phonon dispersion curves obtained by the Lasso MLIP and DFT,

respectively. Negative values indicate imaginary modes

regularization parameter 𝜆 decreases. The RMSEs for the energy and stress ten-

sor tend to decrease. Although multiple MLIPs with the same number of terms are

sometimes obtained from different values of 𝜆, only the MLIP with the lowest cri-

terion score with the same number of terms is shown in Fig. 1.6a. Table 1.2 shows

the RMSEs for the energy, force, and stress tensor of the optimal Lasso MLIP. The

MLIPs are obtained with the RMSE for the energy in the range of 0.3–3.5 meV/atom

for the ten elemental metals using only 165–288 terms. The RMSEs for the force and

stress are within 0.03 eV/Å and 0.15 GPa, respectively.

Figure 1.6b compares the energies of the test data predicted by the Lasso MLIP

and DFT for Al and Zn. Both the largest and second largest RMSEs for the energy

are shown. Regardless of the crystal structure, the DFT and Lasso MLIP energies

are similar. In addition, the RMSE is clearly independent of the energy despite the

wide range of structures included in both the training and test data.
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Table 1.2 RMSEs for the energy, force, and stress tensor of the Lasso MLIPs showing the mini-

mum criterion score. Optimal cutoff radius for each element is also shown

Element Cutoff radius

(Å)

Number of

basis

functions

RMSE

(energy)

(meV/atom)

RMSE (force)

(eV/Å)

RMSE (stress)

(GPa)

Ag 7.5 190 2.2 0.011 0.07

Al 8.0 210 3.5 0.020 0.12

Au 6.0 165 2.4 0.030 0.15

Ca 9.5 234 1.2 0.010 0.03

Cu 7.5 202 2.6 0.018 0.12

Ga 10.0 266 2.2 0.017 0.09

In 10.0 253 2.3 0.019 0.07

K 10.0 197 0.3 0.001 0.00

Li 8.5 222 0.4 0.005 0.02

Zn 10.0 288 2.9 0.016 0.15

The applicability of the Lasso MLIP to the calculation of the force has been also

examined by comparing the phonon dispersion relationships computed by the Lasso

MLIP and DFT. The phonon dispersion relationships are calculated by the supercell

approach for the fcc structure with the equilibrium lattice constant. The phonon cal-

culations use the phonopy code [20]. Figure 1.6c shows the phonon dispersion rela-

tionships of the fcc structure for elemental Al and Zn computed by both the Lasso

MLIP and DFT. The phonon dispersion relationships calculated by the Lasso MLIP

agree well with those calculated by DFT. This demonstrates that the Lasso MLIP

is sufficiently accurate to perform atomistic simulations with an accuracy similar to

DFT calculations.

It is important to use an extended approximation for the atomic energy in transi-

tion metals [21, 22]. The extended approximation also improves the predictive power

for the above elemental metals. The MLIPs are constructed by a second-order poly-

nomial approximation with the AFSs described by Eq. (1.6) and their cross terms.

For elemental Ti, the optimized angular-dependent MLIP is obtained with a pre-

diction error of 0.5 meV/atom (35245 terms), which is much smaller than that of

the Lasso MLIP with only the power of pairwise descriptors of 17.0 meV/atom.

This finding demonstrates that it is very important to consider angular-dependent

descriptors when expressing interatomic interactions of elemental Ti. The angular-

dependent MLIP can predict the physical properties much more accurately than

existing IPs.
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1.7 Discovery of Low Lattice Thermal Conductivity
Materials

Thermoelectric generators are essential to utilize waste heat. The thermoelectric

figure of merit should be increased to improve the conversion efficiency. Since the

figure of merit is inversely proportional to the thermal conductivity, many works

have strived to reduce the thermal conductivity, especially the LTC. To evaluate

LTCs with an accuracy comparable to the experimental data, a method that greatly

exceeds ordinary DFT calculations is required. Since multiple interactions among

phonons, or anharmonic lattice dynamics, must be treated, the computational cost is

many orders of magnitudes higher than ordinary DFT calculations of primitive cells.

Such expensive calculations are feasible only for a few simple compounds. High-

throughput screening of a large DFT database of the LTC is an unrealistic approach

unless the exploration space is narrowly confined.

Recently, Togo et al. reported a method to systematically obtain the theoret-

ical LTC through first-principles anharmonic lattice dynamics calculations [23].

Figure 1.7a shows the results of first-principles LTCs for 101 compounds as func-

tions of the crystalline volume per atom, V . PbSe with the rocksalt structure shows

the lowest LTC, 0.9 W/mK (at 300 K). Its trend is similar to that in a recent report

on low LTC for lead- and tin-chalcogenides.
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Fig. 1.7 a LTC calculated from the first-principles calculations for 101 compounds along with

volume, V . b Experimental LTC data are shown for comparison when the experimental LTCs are

available
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Figure 1.7b compares the computed results with the available experimental data.

The satisfactory agreement between the experimental and computed results demon-

strates the usefulness of the first-principles LTC data for further studies. A phe-

nomenological relationship has been proposed where log 𝜅L is proportional to logV
[24]. Although a qualitative correlation is observed between our LTC and V , it is dif-

ficult to predict the LTC quantitatively or discover new compounds with low LTCs

only from the phenomenological relationship. It should be noted that the dependence

onV differs remarkably between rocksalt-type and zincblende- or wurtzite-type com-

pounds. However, zincblende- and wurtzite-type compounds show a similar LTC for

the same chemical composition. The 101 first-principles LTC data has been used to

create a model to predict the LTCs of compounds within a library [5]. First, a Gaus-

sian process (GP)-based Bayesian optimization [25] is adopted using two physical

quantities as descriptors: V and density, 𝜌. These quantities are available in most

experimental or computational crystal structure databases. Although a phenomeno-

logical relationship is proposed between log 𝜅L and V , the correlation between them

is low. Moreover, the correlation between log 𝜅L and 𝜌 is even worse.

We start from an observed data set of five compounds that are randomly cho-

sen from the dataset. The Bayesian optimization searches for the compound with a

maximum probability of improvement [26] among the remaining data. That is, the

compound with the highest Z-score derived from GP is searched. The compound

is included into the observed dataset. Then another compound with the maximum

probability of improvement is searched. Both the Bayesian optimization and random

searches are repeated 200 times, and the average number of observed compounds

required to find the best compound is examined.

The average numbers of compounds required for the optimization using the

Bayesian optimization and random searches, Nave, are 11 and 55, respectively. The

compound with the lowest LTC among the 101 compounds (i.e., rocksalt PbSe) can

be found much more efficiently using a Bayesian optimization with only two vari-

ables,V and 𝜌. However, using a Bayesian optimization only with these two variables

is not a robust method to determine the lowest LTC. As an example, the result of the

Bayesian optimization using the dataset after intentionally removing the first and sec-

ond lowest LTC compounds shows thatNave is 65 to find LiI using Bayesian optimiza-

tion only with V and 𝜌, which is larger than that of the random search (Nave = 50).

The delay in the optimization should originate from the fact that LiI is an outlier

when the LTC is modeled only with V and 𝜌. Such outlier compounds with low LTC

are difficult to find only with V and 𝜌.

To overcome the outlier problem, predictors have been added for constituent

chemical elements. There are many choices for such variables. Here, we introduce

binary elemental descriptors, which are a set of binary digits representing the pres-

ence of chemical elements. Since the 101 LTC data is composed of 34 kinds of

elements, there are 34 elemental descriptors. When finding both PbSe and LiI, the

compound with the lowest LTC is found with Nave = 19. The use of binary elemental

descriptors improves the robustness of the efficient search.

Better correlations with LTC can be found for parameters obtained from the

phonon density of states. Figure 1.8 shows the relationships between the LTC and the
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Fig. 1.8 Relationship between log 𝜅L and the physical properties derived from the first-principles

electronic structure and phonon calculations. Correlation coefficient, R, is shown in each panel

physical properties. Other than volume and density, the following quantities are

obtained by our phonon calculations: mean phonon frequency, maximum phonon

frequency, Debye frequency, and Grüneisen parameter. The Debye frequency is

determined by fitting the phonon density of states for a range between 0 and 1/4 of the

maximum phonon frequency to a quadratic function. The thermodynamic Grüneisen

parameter is obtained from the mode-Grüneisen parameters calculated with a quasi-

harmonic approximation and mode-heat capacities. The correlation coefficients R
between log 𝜅L and these physical properties are shown in the corresponding pan-

els. The present study does not use such phonon parameters as descriptors because

a data library for such phonon parameters for a wide range of compounds is unavail-

able. Hereafter, we show results only with the descriptor set composed of 34 binary

elemental descriptors on top of V and 𝜌.

A GP prediction model has been used to screen for low-LTC compounds in a

large library of compounds. In the biomedical community, a screening based on a

prediction model is called a “virtual screening” [27]. For the virtual screening, all

54779 compounds in the Materials Project Database (MPD) library [28], which is

composed mostly of crystal structure data available in ICSD [29], are adopted. Most

of these compounds have been synthesized experimentally at least once. On the basis

of the GP prediction model made by V , 𝜌, and the 34 binary elemental descriptors
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Fig. 1.9 Dependence of the Z-score on the constituent elements for compounds in the MPD library.

Color along the volume and density for each element denote the magnitude of the Z-score

for the 101 LTC data, low-LTC compounds are ranked according to the Z-score of

the 54779 compounds.

Figure 1.9 shows the distribution of Z-scores for the 54779 compounds along with

V and 𝜌. The magnitude of the Z-score is plotted in the panels corresponding to the

constituent elements. The compounds are widely distributed in V − 𝜌 space. Thus, it

is difficult to identify compounds without performing a Bayesian optimization with

elemental descriptors. The widely distributed Z-scores for light elements such as Li,

N, O, and F imply that the presence of such light elements has a negligible effect

on lowering the LTC. When such light elements form a compound with heavy ele-

ments, the compound tends to show a high Z-score. It is also noteworthy that many

compounds composed of light elements such as Be and B tend to show a high LTC.

Pb, Cs, I, Br, and Cl exhibit special features. Many compounds composed of these

elements exhibit high Z-scores. Most compounds showing a positive Z-score are

a combination of these five elements. On the other hand, elements in the periodic

table neighboring these five elements do not show analogous trends. For example,

compounds of Tl and Bi, which neighbor Pb, rarely exhibit high Z-scores. This may

sound odd since Bi2Te3 is a famous thermoelectric compound, and some compounds

containing Tl have a low LTC. This may be ascribed to our selection of the train-

ing dataset, which is composed only of AB compounds with 34 elements and three

kinds of simple crystal structures. In other words, the training dataset is somehow

“biased”. Currently, this bias is unavoidable because first-principles LTC calcula-

tions are still too expensive to obtain a sufficiently unbiased training dataset with a

large enough number of data points to cover the diversity of the chemical composi-

tions and crystal structures. Nevertheless, the usefulness of biased training dataset

to find low-LTC materials will be verified in the future. Due to the biased training

dataset, all low-LTC materials in the library may not be discovered. However, some

of them can be discovered. A ranking of LTCs from the Z-score does not necessar-

ily correspond to the true first-principles ranking. Therefore, a verification process



1 Descriptors for Machine Learning of Materials Data 21

PbClBr

Random

CuCl

BOP (Mean, SD)

LiI

GRDF
 (Mean, SD)

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

LT
C

 (
W

/m
K

)

100

101

102

10–1

10–2

Number of samples

Fig. 1.10 Behavior of the Bayesian optimization for the LTC data to find PbClBr, CuCl, and LiI

for candidates of low-LTC compounds after the virtual screening is one of the most

important steps in “discovering” low-LTC compounds. First-principles LTCs have

been evaluated for the top eight compounds after the virtual screening. All of them

are considered to form ordered structures. However, the LTC calculation is unsuc-

cessful for Pb2RbBr5 due to the presence of imaginary phonon modes within the

supercell used in the present study. All of the top five compounds, PbRbI3, PbIBr,

PbRb4Br6, PbICl, and PbClBr, show a LTC of<0.2W/mK (at 300 K), which is much

lower than that of the rocksalt PbSe, [i.e., 0.9 W/mK (at 300 K)]. This confirms the

powerfulness of the present GP prediction model to efficiently discover low-LTC

compounds. The present method should be useful to search for materials in diverse

applications where the chemistry of materials must be optimized.

Finally, the performance of Bayesian optimization has been examined using the

compound descriptors derived from elemental and structural representations for the

LTC dataset containing the compounds identified by the virtual screening. GP mod-

els are constructed using (1) the means and SDs of the elemental representations

and GRDFs and (2) the means and SDs of elemental representations and BOPs.

Figure 1.10 shows the behavior of the lowest LTC during Bayesian optimization rel-

ative to a random search. The optimization aims to find PbClBr with the lowest LTC.

For the GP model with the BOP, the average number of samples required for the

optimization, Nave, is 5.0, which is ten times smaller than that of the random search,

Nave = 50. Hence, the Bayesian optimization more efficiently discovers PbClBr than

the random search.

To evaluate the ability to find a wide variety of low-LTC compounds, two datasets

have been prepared after intentionally removing some low-LTC compounds. In these

datasets, CuCl and LiI, which respectively show the 11th-lowest and 12th-lowest

LTCs, are solutions of the optimizations. For the GP model with BOPs, the average

number of observations required to find CuCl and LiI is Nave = 15.1 and 9.1, respec-

tively. These numbers are much smaller than those of the random search. On the other

hand, for the GP model with GRDFs, the average number of observations required

to find CuCl and LiI is Nave = 40.5 and 48.6, respectively. The delayed optimization



22 A. Seko et al.

may originate from the fact that both CuCl and LiI are outliers in the model with

GRDFs, although the model with GRDFs has a similar RMSE as the model with

BOPs. These results indicate that the set of descriptors needs to be optimized by

examining the performance of Bayesian optimization for a wide range of compounds

to find outlier compounds.

1.8 Recommender System Approach for Materials
Discovery

Many atomic structures of inorganic crystals have been collected. Of the few avail-

able databases for inorganic crystal structures, the ICSD [29] contains approximately

105 inorganic crystals, excluding duplicates and incompletes. Although this is a rich

heritage of human intellectual activities, it covers a very small portion of possible

inorganic crystals. Considering 82 nonradioactive chemical elements, the number of

simple chemical compositions up to ternary compounds AaBbCc with integers sat-

isfying max(a, b, c) ≤ 15 is approximately 108, but increases to approximately 1010
for quaternary compounds AaBbCcDd. Although many of these chemical composi-

tions do not form stable crystals, the huge difference between the number of com-

pounds in ICSD and the possible number of compounds implies that many unknown

compounds remain. Conventional experiments alone cannot fill this gap. Often, first-

principles calculations are used as an alternative approach. However, systematic first-

principles calculations without a priori knowledge of the crystal structures are very

expensive.

Machine learning is a different approach to consider all chemical combinations.

A powerful machine-learning strategy is mandatory to discover new inorganic com-

pounds efficiently. Herein we adopt a recommender system approach to estimate the

relevance of the chemical compositions where stable crystals can be formed [i.e.,

chemically relevant compositions (CRCs)] [30, 31]. The compositional similarity is

defined using the procedure shown in Sect. 1.2. A composition is described by a set

of 165 descriptors composed of the means, SDs, and covariances of the established

elemental representations. The probability for CRCs is subsequently estimated on

the basis of a machine-learning two-class classification using the compositional sim-

ilarity. This approach significantly accelerates the discovery of currently unknown

CRCs that are not present in the training database.
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