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Abstract Automatic speaker recognition (ASR) is one type of biometric recognition

of human, known as voice biometric recognition. Among plenty of acoustic features,

Mel-Frequency Cepstral Coefficients (MFCCs) and Gammatone Frequency Cepstral

Coefficients (GFCCs) are used popularly in ASR. The state-of-the-art techniques for

modeling/classification(s) are Vector Quantization (VQ), Gaussian Mixture Mod-

els (GMMs), Hidden Markov Model (HMM), Artificial Neural Network (ANN),

Deep Neural Network (DNN). In this paper, we cite our experimental results upon

three databases, namely Hyke-2011, ELSDSR, and IITG-MV SR Phase-I, based on

MFCCs and VQ/GMM where maximum log-likelihood (MLL) scoring technique is

used for the recognition of speakers and analyzed the effect of Gaussian components

as well as Mel-scale filter bank’s minimum frequency. By adjusting proper Gaussian

components and minimum frequency, the accuracies have been increased by 10–20%

in noisy environment.
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1 Introduction

Automatic speaker recognition (ASR) system was first introduced by Pruzansky

et al. [7]. There are two primary tasks within the speaker recognition (SR), namely

speaker identification (SI) and speaker verification (SV). This paper concerns with
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Fig. 1 Block diagram a for SR and b for MFCC feature extraction

SI and we have used the terms SI and SR synonymously. A general block diagram

for SI and SV is shown in Fig. 1a. The SR can also be classified as text-dependent
and text-independent recognition and further divided into open-set and closed-set
identification.

An immense number of features are invented, but at present day the features that

are popularly used for robust SR are Linear Predictive Cepstral Coefficient (LPCC)

and Perceptual Linear Predictive Cepstral Coefficient (PLPCC) [9], Gammatone
Frequency Cepstral Coefficient (GFCC) [11], Mel-Frequency Cepstral Coefficient
(MFCC), combination of MFCC and phase information [6], Modified Group Delay
Feature (MODGDF) [5], Mel Filter Bank Energy-Based Slope Feature [4], i-Vector
[3], Bottleneck Feature of DNN (BF-DNN). In some cases to increase robustness,

combined features are developed by fusion of some of these robust features. Some

of combined features are LPCC+MFCC, MFCC+GFCC, PLPCC+MFCC+GFCC.

The state-of-the-art methods for modeling/classification are Vector Quantization
(VQ) [10], Hidden Markov Model (HMM), Gaussian Mixture Model (GMM) [8],

GMM-Universal Background Model (GMM-UBM) [1], Support Vector Machine
(SVM), Deep Neural Network (DNN) and hybrid models like VQ/GMM, SVM/GMM,

HMM/GMM. Among these, the hybrid modelbreak HMM/GMM is very useful for

SR in noisy environment because HMM isolates the speech feature vectors from the

noisy feature vectors and then estimates the multivariate probability density function

using GMM in the feature space.

2 Feature Extraction

The first step of SR is feature extraction, also known as front-end processing. It

transforms(maps) the raw speech data into the featurespace. The features like MFCC

and GFCC are computed using frequency domain analysis and Spectrogram. In our

experiment, the MFCC feature is used for SR. The block diagram for extracting

MFCC feature is shown in Fig. 1b. The computation of MFCC is discussed briefly

as follows:



Closed-Set Text-Independent Automatic Speaker Recognition System . . . 339

Pre-emphasis: The speech signal is passed through a HPF to increase the amplitude

of high frequency. If s(n) is the speech signal, then it is implemented as s̃(n) = s(n) −
αs(n), where 0.9 < α < 1. Generally, the typical value of α is 0.97.

Framing: To compute MFCC, short time processing of speech signal is required.

The whole speech signal is broken into overlapping frames. Typically, 25–60 ms

frame is chosen with the overlap of 15–45 ms.

Window: For Short Time Fourier Transform (STFT) for x(n), where x(n) be a short

time frame, we must choose a window function h(n). A typical window function h(n)
is given by

h(n) = β − (1 − β) cos
( 2πn

N − 1

)
(1)

where N is the window length. Here, β = 0.54 for Hamming window and β = 0.5
for Hanning window.

DFT and FFT: The Discrete Fourier Transform (DFT) for the windowed signal is

computed as X(ω, n) =
∑∞

m=−∞ x(m)h(n − m)e−jωn
, where 0 ≤ n ≤ N. For discrete

STFT, continuous X(ω, n) is sampled with N (length of windowed signal) equal

points in frequency (ω) as X(k, n) = X(k) = X(ω, n)|ω= 2π
N

k, where 0 ≤ k ≤ N. The

graphical display of |X(k, n)| as color intensity is known as Spectrogram. Fortu-

nately, two previous equations can be simplified with the help of Fast Fourier Trans-
form (FFT) as X(k) =  {x(n)h(n)},where 0 ≤ k ≤ N. To facilitate FFT, we must

make N as power of 2. To do so, it is required to pad zeros with the frame to make

frame length a nearest power of 2 if N is not a power of 2, otherwise zero padding is

not required.

Magnitude Spectrum: The squared magnitude spectrum is computed as S(k) =
|X(k)|2, where 0 ≤ k ≤ N

Mel-Scale Filter Bank: In Mel scale, nB number of overlapping triangular filters

are set between M(fmin) and M(fmax) to form a filter bank. The relation between Mel

scale (mel) and Linear scale (Hz) is given by

M(f ) = 1127loge

(
1 +

f
700

)
(2)

where f in Hz and M(f ) in mel. A filter in filter bank is characterized by start, center,

and end frequencies, i.e., M(fs), M(fc), and end M(fe), respectively. Using inverse

operation of (2), we can compute fs, fc, and fe using the following equation:

f = 700(e
M(f )
1127 − 1) (3)

where f in Hz and M(f ) in mel. Next, we map the frequencies fs, fc, and fe to the

corresponding nearest FFT index numbers given by f s
bin, f c

bin, and f e
bin, respectively,

which are called FFT bins by using the following equation:
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fbin = ⌊ (N + 1).f
Fs

⌋, f = fs, fc, fe (4)

Here, Fs is the sampling frequency of the speech signal. The filter weight is maximum

at center bin f c
bin which is 1, and zero weight is assumed at start and end bins, f s

bin and

f e
bin. The weights are calculated as follows:

Hm(k) =

⎧
⎪⎪⎨⎪⎪⎩

0 if k < f s
bin

k−f s
bin

f c
bin−f s

bin
if f s

bin ≤ k ≤ f c
bin

f e
bin−k

f s
bin−f c

bin
if f c

bin ≤ k ≤ f e
bin

0 if k > f e
bin

(5)

Filter Energy: The filter bank is set over the squared magnitude spectrum S(k). For

each filter in the filter bank, the filter weight is multiplied with the corresponding

S(k) and summed up all the products to get the filter energy, denoted by {̃S(k)}k=nB
k=1 .

Taking logarithm, we get log energies, {log(̃S(k)}k=nB
k=1 .

DCT: To perform Discrete Cosine Transform (DCT), the following operation is car-

ried out.

Cn =
D∑

k=1
(log ̃S(k))cos(n(k − 1

2
) π
D
), n = 1, 2, ......,D (6)

Here, D = nB is the dimension of the vector Cn which is called MFCC vector.

3 Speaker Model

The models that are used frequently in SR are Linear Discriminative Analysis (LDA),

Probabilistic LDA (PLDA), Gaussian Mixture Model (GMM), GMM-Universal

Background Model (GMM-UBM), Hidden Markov Model (HMM), Artificial Neu-

ral Network (ANN), Deep Neural Network (DNN), Vector Quantization, Dynamic

Time Warping (DTW), Support Vector Machine (SVM). GMM is the most popular

model used in SR. These models are used to build speaker templates. Score domain

compensation aims to remove handset-dependent biases from the likelihood ratio

scores. The most prevalent methods include H-norm, Z-norm, and T-norm.

3.1 Vector Quantization (VQ)

It is used as a preliminary method for clustering data, so that the process of Vector

Quantization(VQ) can be applied more suitably. The grouping is done by minimizing

Euclidean distance between vectors. If we get V number of vectors after the feature
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extraction phase, then after VQ we will get K vectors where K < V . This set of K
vectors is called codebook which represents the set of centroids of the individual

clusters. In the modeling section, the GMM model is built upon these K vectors.

3.2 Gaussian Mixture Model (GMM)

Let for jth speaker there are K number of quantized feature vectors of dimen-

sion D, viz.  = {xt ∈ ℝD ∶ 1 ≤ t ≤ K}. The GMM for jth speaker, λj, is the

weighted sum of M component D-variate Gaussian densities where mixture weights
wi {i = 1 to M} must satisfy

∑M
i=1 wi = 1. Hence, the GMM model λj is given by

p(xt|λj) =
∑M

i=1 wi (xt;µi,𝜮 i) where  (xt; µi,𝜮 i) {i = 1 to M} are D-variate

Gaussian density functions given by

 (xt;µi,𝜮 i) =
1

(2π)D∕2|𝜮 i|1∕2
e−

1
2 (xt−µi)′𝜮−1

i (xt−µi) (7)

with mean vector µi ∈ ℝD
and covariance matrix 𝜮 i ∈ ℝD×D

. (xt - µi)′ represents

the transpose of vector (xt - µi). The GMM model for jth speaker λj is parameterized

by weight wi, mean vector µi, and covariance matrix 𝜮 i. Hence, λj = {wi,µi,𝜮 i}.

These three parameters are computed with the help of EM algorithm. In the begin-

ning of the EM iteration, the three parameters are required to initialize per Gaussian

component. Initialization could be absolutely random, but in order to converge faster

one can use k-means clustering algorithm also. A block diagram for GMM is shown

in Fig. 2.

Fig. 2 A block diagram of GMM
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3.2.1 Maximum Likelihood (ML) Parameter Estimation (MLE):

The aim of the EM algorithm is to re-estimate the parameters after initialization,

which give the maximum likelihood (ML) value given by

p(|λj) =
K∏

t=1
p(xt|λj) (8)

The EM algorithm begins with an initial model λ0 and re-estimate a new model

λ in such a way that it always provides a new λ for which p(|λ) ≥ p(|λ0).
To estimate the model parameters, mean vector µi is initialized using k-means

clustering algorithm and this mean vector is used to initialize covariance matrix 𝜮 i.

wi is assumed to 1∕M as its initial value. In each EM iteration, three parameters are

re-estimated according to the following three equations to get the new model λnew.

wi =
1
K

K∑
t=1

(i|xt,λj) (9)

µi =
∑K

t=1(i|xt,λj)xt∑K
t=1(i|xt,λj)

(10)

𝜮 i =
∑K

t=1(i|xt,λj)(xi − µi)(xi − µi)′∑K
t=1(i|xt,λj)

(11)

The iteration continues until a suitable convergence criteria holds. For the covariance

matrix 𝜮 i, only diagonal elements are taken and all off-diagonal elements are set to

zero. The probability (i|xt,λj) is given by

(i|xt,λi) =
wi (xt;µi,𝜮 i)∑M
j=1 wj (xt;µj,𝜮 j)

(12)

4 Speaker Identification with MLL Score

Let there are S speakers  = {1, 2, 3, ........., S} and they are represented by the

GMM’s λ1, λ2, λ3,......, λS. Now, the task is to find the speaker model with the max-

imum posteriori probability for the set of feature vectors  of test speaker. Using

minimum error Bayes’ decision rule, the identified speaker is given by
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̂S = argmax
k∈

(
K∑

t=1
log(p(xt|λk))) (13)

Here, ̂S is the identified speaker and kth speaker’s log-likelihood (LL) score is given

by
∑K

t=1 log(p(xt|λk)) [8]. The identified speaker ̂S has the maximum log-likelihood

(MLL) score.

5 Experimental Results and Discussion

We conducted the SR experiment extensively over the three databases, namely

IITG Multi-Variability Speaker Recognition Database (IITG-MV SR), ELSDSR,

and Hyke-2011. The IITG-MV SR database contains recorded speech from five

recording devices, namely digital recorder (D01), Headset (H01), Tablet PC (T01),

Nokia 5130c mobile (M01), and Sony Ericsson W350i mobile (M02), in noisy envi-

ronment. However, ELSDSR and Hyke-2011 contain clean speech; i.e., noise level is

very low and the speeches are recorded with a microphone. The sampling frequency

for D01, H01, T01 is 16 kHz, for M01, M02 is 8 kHz, and for ELSDSR, Hyke-2011

is 8 kHz. We chose frame size about 25 ms and overlap about 17 ms, i.e., frameshift

is (25 − 17) = 8 ms for 16 kHz speech signal and 50 ms frame size and about 34
ms overlap; i.e., frameshift is (50 − 34) = 16 ms for 8 kHz speech signal. The pre-

emphasis factor α is set to 0.97. To compute FFT 512-point, FFT algorithm is used.

For mel-scale frequency conversion, maximum and minimum linear frequencies are

fmin = 0, 300 Hz and fmax = 5000 Hz. The frequency, fmin, has significant effect on

the accuracy of ASR. Number of triangular filters in filter bank is nB = 26 which

produces 26 MFC coefficients, and among them first 13 MFCC are chosen to cre-

ate MFCC feature vector of dimension D = 13. The accuracy rate for the mentioned

databases is shown in Table 1. In VQ, we consider 512 clusters, to reduce large num-

ber of vectors, upon which GMM is built using 5 EM iteration.

It is clearly shown that the accuracy rate is low for noisy speech as compared to the

clean speech. This is because the noise level distorts the frequency spectrum of the

signal considerably and vectors in the feature space are shifted and distorted from the

original vectors. All the databases show the highest accuracy with vector dimension

equal to 13, no. of Gaussian components equal to 32, and accuracy degrades beyond

this limits. Another observation is that the bandwidth of the filters in the filter bank

in linear scale (Hz) also influences the accuracy rate. The SR under mismatch and

reverberant conditions are more challenging tasks, because in these cases, perfor-

mance of SR system degrades drastically. Other important issues for SR are language

dependency and device mismatch. It has been seen that the accuracy rate degrades

if there is a mismatch of language between training and testing data. Specially, for

the device mismatch between training and testing data, the accuracy rate degrades

drastically. Though GMM shows satisfactory accuracy rate, HMM is more robust

than GMM and provides better result in environmental mismatch condition. Hybrid
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HMM/GMM-based SR in noisy environment performs better than only GMM-based

SR. In noisy environment, the accuracy of GMM-based SR degrades more rapidly

than the HMM/GMM-based SR.

6 Conclusion

SR has a very close relation with the speech recognition. Emotion extraction from

speech data using corpus-based feature and sentiment orientation technique could be

thought of as an extension of SR experiment [2]. In this paper, we cite SR experiment

and analyze feature extraction and modeling/classification steps. It is very important

to mention that number of GMM components and Mel filter bank’s minimum fre-

quency fmin have significant influence on the recognition accuracy. Since there are

sufficient differences in accuracies between clean speech data and noisy speech data,

we can infer that noise level shifts the data from its true orientation. Various normal-

ization techniques in feature domain and modeling/classification domain could be

applied to combat with the unwanted shift of data in feature space. Indeed, before

transforming data into feature space various filtering techniques to reduce the effect

of noise are also available.
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