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Abstract Selecting the materialized views optimally is very important in designing
a data warehouse and is NP-hard problem. Various evolutionary algorithms exist in
literature for the appropriate selection of materialized views. In this paper, we have
examined the application of backtracking search optimization algorithm (BSA), for
selecting the materialized views in data warehouse. According to our experiments,
the results obtained by our proposed backtracking search optimization-based
materialized view selection algorithm (BSMVSA) are superior to those found using
particle swarm optimization and genetic algorithm. The solution obtained by
BSMVSA greatly reduces the total cost within the storage constraint.
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1 Introduction

A data warehouse (DW) is a data repository that provides an integrated environ-
ment for reporting, analyzing, and supporting queries which requires complex
aggregations of huge amounts of historical data [1, 2]. It is a big challenge to
operate and manage such an integrated data store in a cost-effective way. Materi-
alized views are the intermediate results stored in a data warehouse [3] that avert
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accessing the original data sources and thus increase the efficiency of the queries
posed to a data warehouse. Optimal selection of materialized views is NP-hard
problem [4] and is needed to design a data warehouse effectively. Recently, lot of
attention is given to solve this problem. Researchers have given various frameworks
and algorithms to deal with this problem. Data cube and lattice [5—13], MVPP [14—
17] and AND-OR view graphs [18-21] are various frameworks that exist in liter-
ature. Lattice framework captures dependency among aggregate views and is used
in building the data cubes with multiple dimensions. MVPP is a global query
processing plan for the complete query set and exploits the existence of common
sub-expressions. AND-OR view graph is used to express all the possible execution
plans for evaluating a query in the query set. Using the above frameworks, various
algorithms like heuristic-based algorithms [11, 20], greedy algorithms [5, 8, 18, 22],
evolutionary algorithms such as genetic algorithm [9, 10, 14, 15, 21, 23, 24] and
simulated annealing [13, 16, 17]have been presented for view selection. However,
heuristic-based algorithms cannot compute a perfect solution within the acceptable
time due to the complex nature of problem. Greedy algorithms are highly
problem-dependent and are susceptible to poor local minima, while evolutionary
algorithms (EA) work on randomly selected multiple solutions simultaneously to
find out the optimum most solution and can be applied on various problems.
Various evolutionary algorithms like particle swarm optimization (PSO) [25, 26],
bee colony optimization (BCO) [27], ant colony optimization (ACO) [28], and
differential evolution (DE) [29]have been used in context of materialized view
selection. Backtracking search optimization algorithm (BSA) comes under the
category of evolutionary algorithm and aids in solving various optimization prob-
lems [30]. With a simple structure, it is effective, fast, and has strategies for gen-
erating trial populations by taking favor of the experiences gained from previous
generations and gives BSA very powerful capabilities for exploring and exploiting
the population [30]. In this paper, we have implemented BSA on lattice framework
to find an optimal set of views within the space constraint, thereby minimizing the
total cost of query processing. We have compared our results with genetic algorithm
and PSO to prove the effectiveness of BSMVSA.

This paper is organized as follows: Definition and mathematical model of
materialized view selection problem is given in Sect. 2. Section 3 gives the brief
review of backtracking search optimization algorithm (BSA), while Sect. 4 presents
BSA-based view selection in a stepwise manner. Experimental results under dif-
ferent space constraints, along with comparative performance analysis with other
algorithms, are discussed in Sect. 5. Section 6 ends up with conclusions.
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2 Materialized View Selection

2.1 Problem Definition

Materialized view selection [31] problem can be illustrated as follows: Given some
storage space X and query set Z, the problem is to determine a set of materialized
views V that reduce the total query processing cost of the selected views, under the
constraint that the total space occupied by selected views, V, is less than X. View
selection is an important decision in the effective design of data warehouse. We
have used the lattice framework [5] in determination of materialized view selection
as lattice framework captures and models dependencies among aggregate views.
Group-by clause [32] characterizes a data cube (DC). A path exists between the two
cubes ci and cj if there is a dependency relation ¢; < ¢;, exists between the two
cubes ¢; and ¢;j, implying if a query can be resolved from c;, then it can also be
resolved by using cube c;. 2 N data cubes are possible in the lattice framework, for a
fact relation having N dimensions. For example, sales transactions in a data
warehouse system (taken from TPC-H star schema benchmark [33]) have three
dimensions, part (P), supplier (S), and customer (C), and in fact depicts the sale of
parts(P) from suppliers(S) to customers(C). This fact relation will generate 22 =38
data cubes in the lattice as shown in Fig. 1.

Each level of the lattice has data cubes which are aggregated at same level of
aggregation along different dimensions. The number beside each cube indicates its
size (i.e., number of rows). The top cube, i.e., psc, is the base cuboid at the lowest
level of aggregation. Bottom cuboid has highest level of aggregation. If a query can
be directly answered from cube (*, s,*) then it can also be answered from any of its
parent cubes (p, s,*), (*, s, ¢), or (p, s, ¢) by summarizing the data along some
dimensions [26].

Fig. 1 Lattice framework

with 8 possible data cubes [5] /DSC 6M Base
pc\ 6M ps 0.8M sc 6M
p 0.2M s 0.01M c0.1M

hone 1 Bottom
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2.2 Mathematical Model of Materialized View Selection
Problem

Selection of materialized views is crucial for designing an efficient data warehouse.
It aims at reducing the query response time by selecting an optimal set of materi-
alized views within the storage space and cost considerations, to help accelerating
the entire data warehouse. We have used the lattice framework, where cubes cor-
respond to the views to be selected, whenever a query is invoked by user. Query
invoking frequency corresponds to the cube invoking frequency. We have followed
the linear cost model as proposed in [5], for evaluating the cost of answering query.
This query answering cost is equivalent to the no. of rows to be accessed in the
corresponding cube for the query. So, the materialized view selection (MVS) using
lattice framework [9] can be defined as follows: Given a cube-lattice X, having a set

of s cubes B = (by, by, ..., by), set of y user queries U = (uy, uy, ..., uy), a set of
query frequency values W = (wy;, Wyo,..., Wyy), set of update frequency values CF
= (Zb1, Ev2» ---» Cps) Of the cubes in B, constrained by storage space T. Our objective

function is to select a set of cubes (views) P to minimize the cost function defined in
Eq. 1, under the space constraint ), _, [B| <T [9].

Ti_, wui*R(ui , P)+ ¥, p gb*M(b ,P) (1)

where R(u;, P) and M(b, P) depict the cost to evaluate query u; and the maintenance
cost of cube b, with reference to the set of materialized cubes (views) P.

3 Brief Review of Backtracking Search Optimization
Algorithm

Backtracking search optimization algorithm (BSA) is one of the most popular
evolutionary algorithms, for finding solution to global optimization problems. It has
a simple structure, i.e., fast and efficient in solving various problems. BSA retains a
memory in which it caches a population from previous generation and uses the past
generated solutions while searching for solutions with superior fitness values. It has
strategies for generating trial populations by taking favor of the experiences gained
from previous generations and gives BSA very powerful capabilities for exploring
and exploiting the population [30]. Random mutation and non-uniform crossover
strategy of BSA produces very useful trial populations in each generation and
enhances its ability to solve problems. It can be described by partitioning its
functions into five major processes: initialization, selection-I, mutation, crossover,
and selection-II [30]. Algorithm 1 presents the pseudocode for BSA.
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Algorithm1: Pseudocode for BSA [30]
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Input: ObjFun, N, D, maxcycle, mixrate, low:.p, upi.p
Output: globalminimum, globalminimizer

// tnd~U(0,1), rndn ~N(0,1), w=rndint(.), rndint(.)~ U(1,.) [WwE(1,2,3,.......,.)
//INITIALIZATION

1 function bsa(ObjFun,N,D,maxcycle,low,up)

2 globalminimum =inf

3 forifrom 1toNdo

4 forjfrom 1toD do

5 Pij=rnd.(up; — low;) + low; //Initialization of population,P
6 01dP;;j=rnd.(up;— low;) +low; //Initialization ofoldP
7 end

8 fitnessP; = ObjFun(P;) //Initial fitness values of P
9end

10 for iteration from 1 tomaxcycle do

//Selection — 1
11if(a<b|a,b~U(0,1))thenoldP:=P end

12 oldP = permuting (oldP) // permuting arbitrary changes in positions of two
Individuals in oldP

13 Generation of Trial-Population

// Mutation

14 mutant=P+3.mdn.(oldP - P)

//CROSSOVER

15 map).y;.p= 1 //Initial-map is an N-by-Dmatrix of ones.
16if(c<d|c,d~ U(0,1)) then

17 forifrom 1 toN do

18 map; (il mixmte- ma- 21)=0 | u = permuting((1.2.3.....D))
19 end

20 else

21 for ifrom 1 to N do, map  uqi =0 > end

22 end

23 T ==mutant

24 forifrom1toN do

25 for j from1toD do

26if map ij=1 then T =Py

27 end

28 end

// Boundary Control Mechanism

29 for ifrom 1 to N do

30 for jfrom1toD do

31if (Tyy <low;) or (T';;>up;) then

32 T;j=rnd.(up;— low;) +low

33 end

34 end

35end

36 end

// SELECTION-II

37 fitnessT = ObjFnc (T)

38 forifrom 1 to Ndo

39 if fitnessT; < fitnessP; then

40 fitnessP; := fitnessT;

Pi = T,

41 end

42 end

43 fitnessPus = min(fitnessP) | best € {1,2,3,....N}

44 if fitnessPpey < globalminimum then

45 globalminimum := fitnessP pes

globalminimizer := P

/I Export globalminimum and globalminimizer

46 end

47 end
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4 BSA-Based Materialized View Selection (BSMVSA)

The steps of the BSA-based algorithm for materialized view selection are elabo-
rated below.

Stepl:

Step2:

Step3:

Step4:

Step5:

Population initialization: In this step, a set of views V is created con-
strained by the rule that the total space occupied by V is less than S as
shown in (2) and the objective function, i.e., cost function of (1) is defined
as

Var ~U (x,y,2) )

where b=1,2, ... z,a=1, 2, ..., y, X represents the number of cubes
(views), z corresponds to the problem dimension, and y represents the
number of user queries. Each V, is a target individual in the view set V.
U is the uniform distribution. Fitness function, of the initial population (set
of views V), fitness V, is initialized as the objective function.
Selection-I: Selection-I of BSMVSA gives the historical population oldV
according to (3). It is used for directing the search toward the set of

oldVy, ~U(x,y,2) (3)

The historical population oldV can be redefined at the start of each itera-
tion by the ‘if-then’ rule shown in (4):

ifm<nthen oldV: =V|m,n ~U(0, 1), 4)

After determining oldV, (5) is used to alter the order of views in oldV
randomly.

oldV: =permuting(oldV) (5)

Mutation: BSMVSA’s mutation process gives the basic form of trial set of
views,M using (6)

M=V +R. (oldV - V) (6)

In this, R manages the amplitude of (0ldV — V). The value of R = 3.rndn.
Crossover: During the crossover, BSMVSA generates the final form of the
trial set of views S with the help of two steps as shown in Algorithm1
(Lines 15-21). The boundary control mechanism in (Algorithml, lines 29—
34) is used to reconstruct the individuals.

Selection-II: In this stage, the trial set of views S;’s having better fitness
values than the analogous set of views V;’s are used to update the V;’s.
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5 Experimental Results

We have implemented BSMVSA using MATLAB and conducted experiments by
running it over standard test data sets of TPC-H star schema benchmark [33]. To
test and validate the effectiveness of BSMVSA, we have compared it with PSO and
genetic algorithm. The main parameters of BSMVSA are as follows: population
size k = 50, problem dimension d = 3, and mix rate = .5. We have calculated the
cost function on varying the dimensions of lattice, query invoking frequency, and
cube invoking frequency to show the effectiveness of BSA for materialized view
selection.

5.1 Considering Different Space Constraints

If unlimited space is provided to store materialized views, then all the cubes can be
materialized to attain minimum query processing cost. But providing unlimited
space is infeasible, so we considered different cases of space constraints as 5, 10,
15, 20, 25, 30, 35, and 40% to examine the performance of the proposed algorithm
in selecting views under different space constraints. It is from Fig. 2 that aimlessly
increasing the storage space cannot reduce the cost. According to the test data set,
the optimal and effective storage space in terms of cost is about 20% of the total
views.

5.2 On Varying the Dimensions of Lattice

We have considered three cases, i.e., by using (a) three dimensions (b) four
dimensions, and (c) five dimensions, respectively. We have used the part of TPC-H
benchmark [33]. For three dimensions, we chose Product p, Customer c, and

Fig. 2 Results of BSMVSA == No materialization
under different space 3000

constraints
2500 & Sl ¢

2000

1500 = = B

1000

(*10%)

500

Query processing Cost

5 10 15 20 25 30 35 40
Space Constraint (in %)
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Fig. 3 a Results of BSMVSA on varying lattice dimensions keeping the query frequency and
update frequency uniform b Results of BSMVSA on varying lattice dimensions with random
query frequency and update frequency

Supplier s from the test set. For the fourth dimension, we included Time t
dimension from the benchmark. For considering five dimensions, we added an
additional dimension, Location 1. The results of the experiments on changing the
number of dimensions of lattice are depicted in Fig. 3a, b with uniform frequency
sets and random frequency sets, respectively. It has been observed that on an
exponential rise in the number of views, the processing cost of query increases
linearly.

5.3 On Increasing the Number of User Queries

To examine the performance distribution of query processing cost achieved, we
conducted an experiment on increasing the user queries. Keeping the query
invoking frequency and cube invoking frequency uniform or random, the difference
between query processing cost without materialization and query processing cost
with materialization decreases on increasing the number of user queries as shown in
Fig. 4a, b. This apparently depicts that our proposed algorithm, BSMVSA is
scalable.
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Fig. 4 a Number of user queries versus query processing cost (keeping query frequency and
update frequency uniform) b Number of user queries versus query processing cost (with random
query frequency and update frequency)

5.4 Comparison with PSO and Genetic Algorithm

BSMVSA yields much better results than PSO and genetic algorithm, inspite of
storage and invoking frequency of data set used. Thus, BSMVSA is a better option

than PSO and GA in selecting materialized views with lower query processing cost
(Fig. 5).
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6 Conclusion

In this study, we have implemented BSA for selection of materialized views using
lattice framework. Experiments were conducted using TPC-H benchmark data set
on different lattice dimensions, on different frequency sets, and considering different
cases of storage space. According to the experimental results, BSMVSA always
generates a superior solution. The total cost of processing and maintaining the
queries approaches a minimum when space is approximately 20% of size of all
views. This clearly shows that any further increase beyond this amount does not
notably reduce the cost. To prove its effectiveness, over other view selection
methods, it is compared with PSO and genetic algorithm.
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