
Early System Test Effort Estimation
Automation for Object-Oriented Systems

Pulak Sahoo, J. R. Mohanty and Debabrata Sahoo

Abstract Quality and reliability are the two most important criterions used for
judging a software product from customer’s point of view. Software testing plays a
critical role in delivering a high-quality software product. An early estimation of
system test effort enables software organizations to plan and execute required test
activities thoroughly. This results in the product meeting the required quality goals
and improving customer acceptability. In this work, we propose a method for
prediction of system test effort from Use Case models created in Requirement
Analysis phase of software development. The estimation process includes
automation of steps for extracting parameters from the system’s Use Case models
required for estimation of system test effort.

Keywords Use Case model ⋅ Use Case ⋅ Actor ⋅ Unified modeling language
Test effort estimator ⋅ CASE tool ⋅ UCPM

1 Introduction

Quality of a software product is a major concern for both customers and the
organizations developing it. It is well known that software testing [1] is essential for
producing quality software products. For conducting a thorough and effective
testing, test planning is very much essential. Test planning based on early test effort
estimations is an area of attention for software development organizations of late.

P. Sahoo (✉)
School of Computer Engineering, KIIT University, Bhubaneswar 751024, India
e-mail: sahoo_pulak@yahoo.com

J. R. Mohanty
School of Computer Applications, KIIT University, Bhubaneswar 751024, India
e-mail: jnyana1@gmail.com

D. Sahoo
Utkal University, Bhubaneswar 751004, India
e-mail: debabratasahoo@live.com

© Springer Nature Singapore Pte Ltd. 2018
S. C. Satapathy et al. (eds.), Information and Decision Sciences,
Advances in Intelligent Systems and Computing 701,
https://doi.org/10.1007/978-981-10-7563-6_34

325



If the effort required for testing a system is known early in Requirement Analysis
phase, it will enable the project team to plan for the schedule and resources early.
This will in turn help with effective conduction of test activities within required
timeline.

Unified Modeling Language is currently the most popular standard for systems
developed using object-oriented methodology [2]. Use Case models are created to
capture the functional requirements, user interfaces, and scope of the system in the
Requirement Analysis phase. Use Case models contain elements such as Use Cases,
Actors, and their Associations. Since Use Case models are available early, these
models can be used to provide inputs for an initial estimation of system test effort.

Our work proposes an estimation method for system test effort using Use Case
models of the system. An automated parsing tool has been developed to extract
essential information from Use Case models of the system. The Use Case models
are created using a CASE tool called ArgoUML. This information is stored in a
repository to be used for system test effort estimation.

ArgoUML is an open source Unified Modeling Language CASE tool written in
Java. It supports exporting of Use Case models and essential parameters to XML
metadata interchange (XMI) format, which then serves as inputs to the parsing tool.

The remainder of this paper is structured as follows. In Sect. 2 titled Related
Work, we have described a number of relevant estimation approaches. Section 3,
Proposed Method, contains the Use Case model-based test effort estimation method
proposed by us. In Sect. 4, Implementation and Experimental Study, we describe
the architecture, implementation steps, and experiments. Section 5, Conclusions
and Future Work, provides the summary of our work and discusses the future
scope.

2 Related Work

Over the years, experts have proposed a number of methods to estimate develop-
ment and test effort for software products. In this section, we have discussed some
relevant estimation methods which are widely used by software projects.

Function Point Analysis (FPA) method by Albrecht [3] is widely used to esti-
mate the size of software products in terms of function points based on function-
alities offered. In 1996, Caper Jones [4] proposed a method to calculate approximate
number of acceptance test cases from function points using below formula.

Number of Test Cases = Function Pointsð Þ1.2 ð1Þ

In 2000, Boehm proposed COCOMO [5] model, which estimates software
development effort from the size of the system expressed in lines of code (LOC).
Proposed in 2000, the Test Point Analysis (TPA) [6] method can estimate
acceptance test effort of a system in test points based on its size in function.

326 P. Sahoo et al.



Although FPA-based methods can provide early estimations, collecting the detailed
inputs required for this process is time taking and can sometimes be costly.

The Use Case Points Methodology (UCPM) [7] was introduced to estimate
system development effort from its Use Cases. The effort is expressed in Use Case
Points calculated based on number of actors, number of transactions, and technical
and environmental factors. In 2001, paper [8] proposed a refined UCPM-based
method to estimate acceptance test effort. This method identified and classified
Actors and Use Cases to assign points resulting in a total unadjusted Use Case
Points for the system. Adjusted Use Case Points were obtained by taking into
account nine technical and environmental factors. In paper [9], a more refined
approach called N-Weighted method was proposed to estimate test activity effort
based on systems Use Cases. This method separated Use Case scenarios into two
types: normal and exceptional. Since a normal scenario has more steps than an
exceptional scenario, the higher score was assigned to it.

In 2011, Paper [10] compared the accuracies of various UCPM-based estimation
methods. It proposed a reduction in a number of environmental and technical
factors from 21 to 6 by conducting factor analysis through experts. It also changed
the Use Case Points calculation process by counting Use Case steps instead of
transactions. But this method estimates development effort, not test effort. The
estimation accuracy depends on expert’s opinion and historical data of the
organization.

In 2007, Paper [11] proposed an innovative approach to produce test cases from
a system’s Use Case and Sequence models. This method translated Use Case
models to Use Case model Graph and Sequence models to Sequence model Graph.
Both graphs were combined to create System Testing Graph which was traversed to
produce test cases. Similarly, in 2010, Paper [12] proposed a method to produce test
cases from State-Chart and Activity models. This method produced a combined
state activity model and traversed all the basis paths to generate test cases. The
abovementioned approaches can be expanded to produce test effort by classifying
each test case by complexity and assigning scores. Unavailability of sequence,
state-chart, and activity models early proves to be the hindrance for early estimation
of test effort.

From above described methods, it is clear that there is a need for developing a
simple and automated approach for estimating early test effort with reasonable
accuracy. In this work, we propose an early system test effort estimation method
using Use Case models and automation for extracting essential information from
Use Case models required for the estimation process.

3 Proposed Method

For early system test effort estimation, we propose to take Use Case models of the
system as inputs. Use Case models are the first UML model created in the
requirement stage to capture functional requirements and user interfaces of

Early System Test Effort Estimation Automation … 327



the system. Use Case models have components like Use Cases, Actors, and
Associations between those [13]. Shown in Fig. 1 is the diagrammatic view of steps
involved in determining Use Case model weights based on the complexity of the
involved components.

3.1 Use Case and Actor Complexity

Use Cases present in Use Case models represent functional units of the system. A Use
Case contains Use Case scenarios [14] of types main or exceptional. While the main
scenario is made up of primary steps to achieve some functionality, the exceptional
scenario contains steps for error handling. The scenarios include transactions. The
complexity of a Use Case from testing perspective is calculated by counting the
transactions in it. Weights assigned to normal scenario are higher than that assigned to
exceptional scenarios due to the presence of greater number of checks. Apart from
this, a Use Case’s complexity depends on number of interacting Actors.

Fig. 1 Steps to determine
Use Case model weights

328 P. Sahoo et al.



Usecase wt =F1 normal scenarios, excep scenarios, int actorsð Þ ð2Þ

In Use Case models, Actors interacts with Use Cases to achieve some func-
tionality. Actor may be an external user or an interfacing system. Actor’s com-
plexity depends on the mode of interaction with Use Cases. An Actor interacts with
Use Cases via GUI, API, Protocol-Driven Interface, or Data Store. Apart from this,
Actor complexity depends on number of interacting Use Cases.

Actor wt =F2 comm type, int usecasesð Þ ð3Þ

3.2 Use Case Model Weight

To calculate Use Case model weight, we combine the Use Case and Actor weights
obtained from Eqs. 2 and 3. A system may contain a number of Use Case models.
Summing up weights for all Use Case models results in the total weight of the
system.

UseCaseModel wt = F1ðÞ + F2ðÞ ð4Þ

After computing total weight of the system, adjustments will be applied by
factoring in organization-specific technical and environmental factors relevant to
testing of the software product. To this adjusted weight, organization-specific
productivity factor will be applied to get system test effort.

4 Implementation and Experimental Study

The proposed architecture of UML test effort estimator containing steps of
implementation is shown in Fig. 2. The major components are as follows:
ArgoUML CASE tool, Use Case model Parser, Use Case model Classifier, Use
Case model repository, test effort estimator, and classification setup interface. The
estimator will produce Unadjusted Test effort, which will be adjusted by applying
technical and environmental factors specific to the system and organization.

In the first step, Use Case models of the system are created with sufficient details
by project team using ArgoUML CASE tool. The models are then exported to XMI
format. In the second step, the Use Case model Parser extracts component infor-
mation like Use Cases, Actors, and their associations from the XMI files and stores
them in Use Case model repository. In the third step, the Use Case model com-
ponent classifier categorizes the components based on complexity classification
setup defined by subject matter experts. In step four, the test effort estimator
computes the Unadjusted Test effort for the Use Case models. Later, relevant

Early System Test Effort Estimation Automation … 329



technical and environmental factors can be applied to compute Adjusted Test
efforts. In this work, we have implemented the first two steps on a real project. The
project is titled “Cluster-based Agricultural Benefit Allocation (CABA)” which was
executed by a reputed national IT organization. A brief description of CABA is
given below.

For accelerated crop production, large clusters of agricultural lands are taken up
for providing benefits (crop seeds) to farmers based on a cropping system. Using
this system, the Admin allocates benefits to various districts according to crop
production capacity. Then, the DDA (Deputy Director of Agriculture) distributes
the allocated benefits among blocks and selects the crop varieties for production.
Following this, the AAO (Assistant Agriculture Officer) selects the clusters and
corresponding VAWs (Village Agriculture Worker) of that area to distribute the
benefits. VAWs provide the seed requirements of the cluster to the registered seed
agencies based on the production of crops. The seed agencies provide seeds to
farmers according to the requirements and VAWs record the distribution of benefits
among the clusters.

The Use Case models for CABA were created using ArgoUML and exported to
XMI formats. Figure 2 shows the Use Case models for Crop Benefit Target
Allocation (CBTA) and Crop Benefit Target Distribution (CBTD) modules. Fig-
ure 3 shows the Use Case model for Crop Benefit Cluster Distribution (CBCD)
model and the XMI export file (Fig. 4).

Fig. 2 Use Case model estimator architecture

330 P. Sahoo et al.



Fig. 3 Use Case models for CBTA and CBTD modules

Fig. 4 Use Case model for CBCD module and XMI export

Fig. 5 Use Case model—Use Case data in repository

Early System Test Effort Estimation Automation … 331



In the second step, the Use Case model Parser extracts relevant component
information from Use Case models. It extracts all the Use Cases present in the
models along with number of scenario transactions (both normal and exceptional)
and number of interacting actors for each Use Case. It also extracts all the Actors
present in the models along with the communication types and number of inter-
acting Use Cases. This information is then stored in Use Case model repository to
be used later for carrying out the remaining estimation steps. The two main data
stores of Use Case model repository are shown in Figs. 5 and 6.

5 Conclusions and Future Work

In this work, we have proposed a simple method for system test effort estimation for
object-oriented systems using Use Case models in early stage of software devel-
opment. An early estimation of test effort will help project teams to plan ahead for
the system testing phase, so that a quality product is delivered within the timeline.
The estimation method and its steps are explained along with the estimator archi-
tecture. We have implemented the steps to export Use Case models created using
ArgoUML CASE tool into XMI format and extracting relevant component infor-
mation from Use Case models using a Use Case model parser. The extracted details
are stored in Use Case model repository and will be used to estimate system test
effort required for the system. An experimental study was conducted on a real
project named Cluster-based Agricultural Benefit Allocation (CABA) executed by a
reputed IT organization.

Fig. 6 Use Case model—actor data in repository

332 P. Sahoo et al.



References

1. Jorgensen, P.C.: Software testing: a craftsman’s approach. CRC press (2016)
2. Binder, R.V.: Testing object-oriented systems: models, patterns, and tools. Addison-Wesley

Professional (2000)
3. Albrecht, A.: Measuring application development productivity. Proc. Joint SHARE/GUIDE/

IBM Appl. Develop. Symp. 10, 83–92 (1979)
4. Capers, J.: Applied software measurement. McGraw-Hill (1996)
5. Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark, B., Steece, B., Brown, W., Chulani,

S., Abts, C.: Software Cost Estimation with COCOMO II. Prentice Hall (2000)
6. Van Veenendaal, E.P.W.M., Dekkers, T.: Test point analysis: a method for test estimation

(1999)
7. Karner, G.: Metrics for objectory. Diploma Thesis. University of Linköping, Sweden (1993)
8. Nageswaran, S.: Test effort estimation using use case points, pp. 1–6. Quality Week (2001)
9. de Almeida, É.R.C., de Abreu, B.T., Moraes R.: An alternative approach to test effort

estimation based on use cases. In: International Conference on Software Testing Verification
and Validation, pp. 279–288. IEEE (2009)

10. Ochodek, M., Nawrocki, J., Kwarciak, K.: Simplifying effort estimation based on Use Case
points. In: Information and Software Technology, vol. 53, pp. 200–213. Elsevier (2011)

11. Sarma, M., Mall, R.: Automatic test case generation from UML models. In: 10th International
Conference on Information Technology, pp. 196–201. ICIT 2007, IEEE (2007)

12. Swain, S.K., Mohapatra, D.P., Mall, R.: Test case generation based on state and activity
models. J. Obj. Technol. 9, 1–27 (2010)

13. Sahoo, P., Mohanty, J.R.: Early test effort prediction using UML diagrams. Indones. J. Electr.
Eng. Comput. Sci. 5, 220–228 (2017)

14. Hussain, A., Nadeem, A., Ikram, M.T.: Review on formalizing use cases and scenarios:
scenario based testing. In: International Conference on Emerging Technologies (ICET),
pp. 1–6. IEEE (2015)

Early System Test Effort Estimation Automation … 333


	34 Early System Test Effort Estimation Automation for Object-Oriented Systems
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Use Case and Actor Complexity
	3.2 Use Case Model Weight

	4 Implementation and Experimental Study
	5 Conclusions and Future Work
	References




