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Abstract Estimation of frequency with high resolution is a crucial task in signal
processing. Raw seismic signals consist of huge noise which can be removed only
by using some signal processing methods. In this paper, the ESPRIT algorithm is
implemented in order to process the signal. A time series data is taken and the
frequency is estimated by total least squares version of ESPRIT algorithm. ESPRIT
employs a basic rotational invariance in the subspaces of the signal. The detailed
implementation of the algorithm is greatly presented in the following sections.
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1 Introduction

Seismology is the study of earthquakes, according to some researches in olden
times, the earthquakes are caused by the volcanic explosions that take place under
the earth’s crust and the waves travel to the earth’s surface causing the tremors
which cause lots of destruction to the mankind and according to some researches,
the earthquakes are caused [1] by the drifting of continents which causes the
landmass to move and create mass earthquakes. These waves are of two types, one
is the transverse waves and the other is the longitudinal waves, the transverse waves
travel parallel to the epicenter of the earthquake while the longitudinal waves travel
perpendicular to the epicenter of the earthquake. Generally, these earthquakes are
detected by a device known as seismograph, it simply records the data of
the earthquake like duration, magnitude, etc. [2], this data is further converted,
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simplified, etc., or simply it is called as processing of seismic signal which is briefly
explained below.

1.1 ESPRIT Algorithm

ESPRIT stands for estimation of signal parameters via rotational invariance tech-
niques which is developed on the similar values just like the other subspace pro-
cedures but additionally exploits a deterministic connection among subspaces [3]. It
is a frequency estimation technique. This method differs from the other subspace
methods in that the signal subspace is estimated from the data matrix A rather than
the estimated correlation matrix. The essence of ESPRIT lies in the rotational
property between staggered subspaces that is invoked to produce the frequency
estimates. In the case of a discrete-time signal or time series, this property relies on
observations of the signal over two identical intervals staggered in time [4]. This
condition arises naturally for discrete-time signals, provided that the sampling is
performed uniformly in time. Extensions of the ESPRIT method to a spatial array of
sensors, the application for which it was originally proposed, the original, least
squares version of the algorithm are described in first place and then the derivation
to total least squares ESPRIT was extended [5], which is the preferred method for
use, as the derivation of the algorithm requires an extensive amount of formulation
and matrix manipulations.

2 Mathematical Modeling

Let us take a complex exponential S0 = ej2πfn which has a complex amplitude α and
a frequency f. The property of the signal which we have taken is shown below [6].

S0 n+1ð Þ= α ej2πf n+1ð Þ = S0 nð Þej2πf ð1Þ

Hence, the phase-shifted version of the present value is the succeeding sample
value. The rotation on the unit circle ej2πf is a representation of this phase shift.

x nð Þ= ∑
P

p=1
αpV fp

� �
ej2πnfp +W nð Þ=V∅nα+W nð Þ=S nð Þ+W nð Þ, ð2Þ

where the P columns of matrix U are length N interval frequency vectors of the
complex exponentials.
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U= ½Uðf1ÞU f2ð Þ . . .U fp
� ��. ð3Þ

The complex exponentials αp amplitudes are present in the vector α. The
diagonal matrix of phase shifts among the adjacent time samples of the individual is
the matrix ∅ complex exponential elements of S(n) [7].

∅=diagf∅1, . . . ,∅pg=

ej2πnf1 0 ⋯ 0

0 ej2πnf2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 ⋯ 0 ej2πnfp

2
6664

3
7775

For p= 1, 2, . . . , P,∅p = ej2πnfp

ð4Þ

This rotation matrix is entirely expressed by the complex exponential frequen-
cies fp. If ∅ can be acquired, then frequency estimates can be acquired. Take two
overlaying sub-windows of length N − 1 with the length N time window vector
and signal which has the sum of complex exponentials.

S nð Þ= SN − 1 nð Þ
S n+N − 1ð Þ

� �
=

S nð Þ
SN − 1 n+1ð Þ

� �
, ð5Þ

where SN − 1 nð Þ is the length (N − 1) sub-window of S(n), hence
SN − 1 nð Þ=UN − 1∅nα.

Matrix UN − 1 is built in the equivalent way as U other than its time window
frequency vectors are of length N − 1, represented as UN − 1 fð Þ [8].

UN − 1 = UN − 1 f1ð ÞUN − 1 f2ð Þ . . .UN − 1 fp
� �� � ð6Þ

Remember that S(n) is a scalar signal which is shaped up of the sum of complex
exponentials at time n.

U1 =UN − 1∅n andU2 =UN − 1∅n+1 ð7Þ

U1 and U2 relate to the unstaggered and staggered windows, which is

U∅=
U1

* * . . . *

� �
=

* * . . . *
U2

� �
ð8Þ

The two matrices with vectors having intervals are expressed as

U2 =U1∅ ð9Þ

Observe that both matrices spaces a distinct, however related, (N − 1) dimen-
sional subspace. Assume that we possess a data matrix A with M data records of the
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length N interval vector signal x(n). By singular value decomposition (SVD), data
matrix is

A=L∑VH ð10Þ

L is a M × M matrix of left singular vectors and v is a N × N matrix of right
singular vectors. Each of these matrices is a unit matrix, hence LHL= I and
VHV = I. Dimensions of the matrix ∑ are M × N which contains singular quan-
tities on the main diagonal which is ordered in a magnitude of decreasing value [9].
The singular valued magnitudes are squared and are equivalent to the eigenvalues
of R ̂ scaled with a M factor and the V’s columns are their related eigenvectors.
Hence, v shapes an orthogonal and normalized foundation for the underlying
N-dimensional vector space. The signal and noise subspaces are formed by dividing
this subspace as V = [Vs/Vn].

Relating to the p largest magnitudes of the singular values, Vs is a matrix of
right-hand singular vectors [10]. All of these frequency vectors for f = f1, f2, . . . , fp
should lie in the signal subspace since the sum of complex exponentials formed as
time window frequency vectors U(f) is contained in the signal portion. Hence, U
and Vs matrices occupy the identical subspace [11]. Hence, there lies an invertible
transformation T that draws Vs into U = VsT.

In this derivation, T transformation is never elucidated, in the other way, it is
only constructed just like a mapping inside the subspace of the signal among these
two matrices. Divide the subspace of the signal into two tiny subspaces of
dimensions (N − 1).

Vs =
V1

* * . . . *

� �
=

* * . . . *
V2

� �
, ð11Þ

where V1 and V2 relate to the staggered and unstaggered subspaces because U1 and
U2 related to the equivalent subspaces.

U1 =V1T U2 =V2T ð12Þ

The rotation Ø subspaces are being corresponded by the matrix U’s staggered
and unstaggered elements. A same, though unlike, rotation should be present that
associates V1 to V2 because the matrices V1 and V2 also spaces these subspaces as
V2 =V1Ψ [10]. Where Ψ is the matrix of rotation. Remember that the estimation of
frequency arrives below for summarizing the rotation matrix Ø subspace. Rotations
among the subspaces of staggered signal and the relations altogether combined can
be made use of the estimation of Ø [12]. From the data matrix A’s SVD, the
matrices V1 and V2 are known from the procedure. Primarily solve Ψ by utilizing
the technique of least squares.
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Ψ= VH
1 V1

� �− 1
VH
1 V2 ð13Þ

Substituting V2 =V1Ψ , U2 =V2T =V1ΨT is acquired. In the same way, solve
U2, utilizing the relation U2 =U1∅ and substituting U1 =V1T and U2 =V2T for U1,
U2 =U1∅=V1T∅. Hence, by equating both the right-hand sides of
U2 =V2T =V1ΨT and U2 =U1∅=V1T∅. The relation among the two subspaces
rotations is

ΨT=T� or

Similarly,

Ψ=T�T− 1 ð14Þ

Equations ΨT = TØ and Ψ = TØT−1 [13] must be realized as the association
among the matrix Ψ’s eigenvectors and eigenvalues. Hence, elements of the
diagonal of Ø, ∅p for p = 1, 2, 3, …, P are commonly the Ψ’s eigenvalues. Finally,
the frequency estimates are

bfp = ∠∅p

2π
, ð15Þ

where the phase of ∅p is ∠∅p. Even though the utilization of rotational subspaces is
the property of the ESPRIT algorithm is very easy. Pay heed that only matrix
simple relationships are utilized by us. Primarily, provide an algorithm which has a
version of total least squares, a best technique to utilize [10]. Pay heed that V1 and
V2 subspaces are the original subspace’s only estimates that relate to U1 and U2,
naturally acquired through the data matrix A. The subspace rotation’s estimate was
acquired by solving V2 =V1Ψ utilizing the least square criterion.

Ψ ls = ðVH
1 V1Þ− 1VH

1 V2 ð16Þ

This least square result is acquired by reducing the errors in least square per-
ception from the formulation as given below [10].

V2 +E2 =V1Ψ ð17Þ

Since E2 is a matrix which has errors among V2 and the original subspace
relating to U2. The least square formulation presumes that errors exist especially on
V2 estimation and on the other side, it presumes that there exist no errors among V1

and the original subspace that it is trying to estimate relating to U1 [14]. Hence, V1

is an estimated subspace too, an extremely accurate formulation is
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V2 +E2 = V1 +E1ð ÞΨ ð18Þ

Errors among V1 and the original subspace relating to U1 are expressed by the
matrix E1. Minimizing the Frobenius norm of the two error matrices can acquire the
result to this problem, which is known as total least squares (TLS).

E1 E2k kF ð19Þ

As the properties of TLS are far away from the expectation, normally lend the
process to acquire the TLS solution of Ψ. Primarily, prepare a matrix constructed by
the staggered signal subspace matrices V1 and V2 located adjacent to each other and
execute an SVD.

V1 V2½ �=L̃ e∑V ̃H ð20Þ

Later we work on 2P × 2P matrix V ̃ of right singular vectors which are divided
as P × P quadrants.

V ̃= V ̃11 V ̃12
V ̃21 V ̃22

� �
ð21Þ

The subspace rotation matrix Ψ Total least square solution is Ψ tls = −V ̃12V ̃
− 1
22 .

The estimation of frequencies is then acquired by Ψ = TØT−1 and f p̃ =
∠∅p

2π by

utilizing Ψ tls from Ψ tls = −V ̃12V ̃
− 1
22 [10].

3 Simulation and Results

Step 1: The data utilized for the observation is acquired from Book_Seis-
mic_Data.mat of East Texas [3] landmine is the file name. We have
taken the source as a dynamite blast which took place at a depth of
around 100 ft, one trace has 1501 samples of 0.002 s sampling interval.

Step 2: The algorithm’s functioning is assessed with known synthetic signal and
then ESPRIT algorithm is applied to calculate the seismic signal’s tonal.
Synthetic signal’s frequencies are taken as 0.2π, 0.3π, 0.8π, and 1.2π and
are shown as complex exponentials.

Step 3: The normalized frequencies are 0.2π and 0.7π. The signal generated is
shown in Fig. 1.

Step 4: In Fig. 2, power spectral density of the synthetic signal is shown. The
figure shows peaks are at 0.2 and 0.7 normalized frequencies. That
means ESPRIT algorithm is working fine.

Step 5: The raw seismic signal is shown in Fig. 3, which is a single shot taken
from [3].
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Fig. 1 Synthetic signal with
and without noise
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Fig. 2 PSD using
ESPIRIT TLS Method for
synthetic signal
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Fig. 3 Raw seismic signal
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Step 6: The raw seismic signal is detrended which is shown in Fig. 4.
Detrending is done in order to remove bias and baseline drift.

Step 7: ESPRIT algorithm is applied on detrended seismic signal and the power
spectral density obtained is shown in Fig. 5. The max peak is at 0.958
normalized frequency.

w=
2πf
fs

=0.0958π

=
2πf
500

=
2π
fs

f =0.0958π

f =
500
2

* 0.0958

= 250 * 0.0958

= 25 * 0.0958

= 23.950Hz

Step 8: In the reference book, it is written that the data is band-pass filtered in
the range [15 Hz, 60 Hz]. For ensuring purpose, a BP filter with FIR
order 8 is realized. The transfer function of the same is shown in Fig. 6.

Step 9: The detrended seismic signal is convolved with FIR BPF and the output
is shown in Fig. 6.

Step 10: The same PSD, as shown in Fig. 7 is obtained. So, the seismic signal
tonal is 23.95 Hz.
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Fig. 4 Detrended raw
seismic signal
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Another insignificant tonal is w1 =
2Πf
fs

=0.119π

2Πf
500

= 0.119

f =
0.119π * 500

2π
∴ f =250 * 0.119

= 29.75Hz

4 Conclusion

In this paper, signal parameter estimation with high resolution is obtained using
ESPRIT algorithm. The step-by-step process of the seismic signal analysis has been
perfectly presented in the results section, the actual signal strengths in the seismic
signal from time series data taken are clearly estimated with peaks of high reso-
lution, and power spectral density for both synthetic and raw seismic signal is
obtained. From the results obtained, it is concluded that the ESPRIT algorithm is
the best technique for frequency estimation in seismic signal processing which
requires less computation.
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