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Abstract This paper presents an adaptive control strategy for aircraft wing struc-
ture based on a nonlinear aeroelastic model with plunge and pitch degrees of
freedom. System nonlinearities in terms of pitching degree of freedom are
accounted in stiffness and damping terms of the model. The closed-loop response of
the model is studied under two cases: (i) polynomial form of nonlinearities and
(ii) combined free play and polynomial form of nonlinearities. The adaptive control
strategy with wing flap based on partial feedback linearization is designed to
suppress the instabilities occurring at certain freestream velocities. Objective of
controller is to stabilize the system within the flutter boundary. A neural network
based observer is used to estimate the uncertain parameters in control law. The
designed control system with neural network estimator is effective in suppressing
the limit cycle oscillations considerably.

1 Introduction

In aeroelastic studies, the interactions of various forces such as aerodynamics,
elastic, and inertia are considered using simple mathematical models. A combina-
tion of these forces leads to an aircraft instability resulting in a direct consequence
of an oscillatory instability known as a flutter which eventually leads to catastrophic
failure due to the loss of a system damping. Aeroelastic instability region is
identified by assuming system as linear one [1], but in real practice, the nonlin-
earities are inevitable. Woolston [2] accounted different types of structural non-
linearities and studied the influence of the initial conditions. The LCO of an
aeroelastic model with hysteresis nonlinearity was controlled by sliding mode
controller and effects of time delay were studied by Xu et al. [3].
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To extend the flutter region, active flutter suppression is carried out using various
control techniques. Efficiency of linear controller in a nonlinear system comes down
when the system nonlinearity effects are aggressive. The fully linearized control
system was designed to make the system globally stable with two flaps [4]. In
several other works [5–7], adaptive controllers were employed to overcome the
dynamic instabilities. The controller was designed to guarantee the stability of
structurally nonlinear system with a single flap using explicit parameterization of
structural nonlinearity [8, 9]. To improvise the controllability of a nonlinear system,
control surfaces at trailing edge and leading edge were used [10]. Block and Str-
ganac [11] used unsteady formulation with optimal controller and Kalman filter as
an observer to enhance the flutter boundary. Effectiveness of various types of
controllers such as artificial intelligence, robust and adaptive on flutter suppression
was discussed in Refs. [12–14]. In earlier work, authors [15] employed a linear
quadratic regulator with neural networks estimator to control the instabilities
occurring in aeroelastic system.

In all the above works, parametric uncertainty is considered in pitch stiffness
only. However, in few works [16], an aeroelastic system was studied with para-
metric uncertainties, similar kind of nonlinearities in stiffness and damping terms
were used. In the present work, an adaptive feedback linearization controller is
designed to control the aeroelastic model subjected to different structural nonlin-
earities in both stiffness and damping in pitch degree of freedom. First, the model is
analyzed with polynomial nonlinearity in both stiffness and damping terms and then
with free play and cubic nonlinearity in stiffness and damping terms, respectively.
Finally, the neural network observer is employed as an estimator for the controller
to predict the estimated uncertain parameters in the control law for further sup-
pressing the nonlinearity effect. Additionally, the influence of initial conditions on
stable region with polynomial nonlinearities and influence of free play region on
system stability is presented.

2 Mathematics Modeling of Nonlinear Aeroelastic System

A two-dimensional aeroelastic system is illustrated by a lumped parameter model
shown in Fig. 1, where the system has two degrees of freedom namely plunge
translation h and the pitching rotation α with trailing edge surface angle β.

By defining elastic axis at E, and b as semi-chord, ba, bxα as distance from airfoil
mid-chord to elastic axis and distance from airfoil elastic axis to center of mass,
respectively, the dynamic equation of aeroelastic system in its standard form is
given by [16]:
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Here, mT, mw, ch, kh, L, and M are respectively indicating: total mass of the system,
mass of wing section, plunge damping, plunge stiffness, aerodynamic lift and
moment. The L and M have nonlinear terms in stiffness and damping in pitch
degree of freedom. In real practice, different forms of nonlinearities occur in
combination with other. In this work, two cases are considered.

Case 1: Both nonlinear terms are approximated in polynomial form as:

cα α ̇ð Þ = ∑
m

i= 1
ciα ̇i− 1.

kαðαÞ = ∑
n

i = 1
kiαi− 1.

ð2Þ

Case 2: Free play nonlinearity is considered in stiffness and polynomial form in
damping. That is

kαðαÞ = kαFðαÞ ̸α. ð3Þ

Here, F(α) is a function assigned to represent the free play nonlinearity given by:

FðαÞ =
α+ δ, if α < − δ
0, if αj j ≤ δ

α− δ, if α > δ

8<
: . ð4Þ

For quasi-steady aerodynamics, lift L and moment M are given by [16]:
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, ð5Þ

where cm̄α and cm̄β represent the moment derivative coefficients per unit angle of
attack and trailing edge angle, respectively.

Fig. 1 Aeroelastic model with trailing edge
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The Eq. (1) is rewritten in state-space form as

X ̇=AðXÞX +Bβ. ð6Þ

where A(X) is system matrix and B is a control matrix.

3 Adaptive Feedback Linearization Control

The adaptive control scheme reforms the controller online depending on the system
performance and changes its dynamics accordingly. Two important steps of
adaptive controller are

1. Online parameter estimation.
2. Control law-redesign based on Step 1.

The feedback linearization is a method to transform the nonlinear equations of
motion to an equivalent linear system by deriving a suitable control law to cancel
the nonlinear terms. The output function is defined as y = α = x2. Before designing
the controller, transformation of the equations of motion is carried out.

When parameter estimations cî k̂i
� �

are unknown, then the control law of the
control surface is given by [16]

β=
−
B4

GðθÞ+ ∑
m

i= 1
cîM1ðα̇iÞ+ ∑

n

i = 1
k̂iM2ðαiÞ− υ

� �
. ð7Þ

where θ = [θ1, θ2] is a state vector, while M1 and M2 are nonlinear damping and
stiffness terms and v is design input. Substituting the control law in θ, and sim-
plifying, it is rewritten as

θ1̇ = θ2, θ2̇ = ∑
m

i=1
ci − cîð ÞM1 α̇i

� 	
+ ∑

n

i=1
ki − kî
� 	

M2 αi
� 	

+ υ. ð8Þ

The control input υ= − a1θ1 − a2θ2 must be selected such that the resulting
linear subsystem is stable when the nonlinearities are eliminated via partial feed-
back linearization. The update law for parameter estimation is defined as [16]

Ċ̂ K̇̂
h iT

= Ċ̃ K̇̃
h iT

= θ2M. ð9Þ
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3.1 Parameter Estimation by Neural Network

The artificial neural networks are designed based on the human neuron system and
successfully used in many engineering fields. The feedforward, backpropagation
(BP) network [17] is a well-known model and the inputs are passed forward from
the input to output layer via one/several hidden layers. The calculated error between
actual and target values are propagated back in order to update the weights. The
network is constructed based on the following cost function minimization:

Error=
1
2
∑
p
ðydp − ypÞ2, ð10Þ

where yp and ydp are the pth neural network output and desired (target) values. The
backpropagation algorithm minimizes the above cost function with the following
output weights update law:

wnew =wold − η
∂Error
∂w

, ð11Þ

where η∈ (0, 1) is the learning rate. Likewise, hidden layer weights are also updated
from the error in that cycle. After training the model, neural network can be utilized
to predict the parameters. Now Eq. (8) is rewritten as

θ2 = ∑
m

i=1
ci − yĉið ÞM1 α̇i

� 	
+ ∑

n

i=1
ki − yk̂ið ÞM2 αi

� 	
+ υ. ð12Þ

where y ̂ci and y ̂ki are the parameters estimated by the neural network.

4 Results and Discussion

The analysis and control modules are implemented with MATLAB program.
Numerical experiments are carried out to verify the performance of the controller
discussed in this paper. Parameters employed in this work are taken from earlier
work [16]. The flutter velocity of the aeroelastic model without considering non-
linearities is 11.57 m/s.

Polynomial nonlinearities in stiffness and damping terms are considered from
[16]. The flutter boundary of the model with the polynomial nonlinearity is iden-
tified with various initial conditions and shown in Fig. 2.

The plunge “h(0)” is varied from 0 to 0.05 m, pitch “α(0)” = −0.2 to 0.2 rad,
ḣð0Þ=0 and αð̇0Þ=0. The flutter boundary shrinks indirectly proportional to the
plunge initial condition. For further analysis, the initial conditions considered are
h(0) = 0.01, α(0) = 0.1, ḣð0Þ=0 and αð̇0Þ=0. As an indication of instability,
flutter velocity is first obtained from nonlinear responses. The flutter velocity of the
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system for above initial conditions is found to be 7.93 m/s and the time responses
are shown in Fig. 3 for the velocity 7 m/s and clearly shows the system as stable.
Further the model is simulated at a velocity 16 m/s and is shown in Fig. 4, wherein
an LCO is observed due to the presence of the polynomial nonlinearity making the
system to oscillate periodically instead of becoming unstable.

To study the effect of the adaptive partial feedback linearization controller, the
simulations are carried out at velocity 16 m/s with nonlinearity and Fig. 5 shows
the time response of plunge and pitch degree of freedom and flap deflection. It is
observed that the system is stable and it shows the effectiveness of the controller in
suppressing the LCO. The pitching response settles at 1.5 s comparatively quicker
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Fig. 2 Influence of initial conditions on flutter boundary
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Fig. 3 Time response plot at freestream velocity 7 m/s

h in m
0

-0.5

0

0.5

 in rad
0-0.02 -0.01 0.01 0.02 -0.2 -0.1 0.1 0.2

-5

0

5

Fig. 4 Phase plot at freestream velocity 16 m/s
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to plunge response which takes 3.5 s to settle. This is because of the control law
which is framed based on the pitch angle as output function and with damping
nonlinearity. Now, the uncertain parameters in adaptive control law are identified
by the three-layer feedforward, backpropagation neural network which acts as the
estimator with learning rate η = 0.7 and α and α̇ as inputs. The system responses
with such neural network estimator are also shown in Fig. 5. However, there is no
marked variation observed by incorporating neural network based estimator.

In the next study, the free play nonlinearity in stiffness and polynomial structural
nonlinearity in damping in pitching degree of freedom is added to a system to study
their effect on the flutter boundary. The system is simulated with the same initial
conditions and free play nonlinearity is not affecting the flutter boundary but the
amplitudes of the pitch and plunge responses are higher as δ increases as seen in
Fig. 6. The response at post flutter velocities is divergent in this case and the time
history at the freestream velocity of 12.5 m/s is shown in Fig. 7.

Figure 8 shows the system as stable at freestream velocity 16 m/s with the
controller active in the system. The time taken to converge is high in pith response
compared to the previous case, where both stiffness and damping nonlinearities are
of polynomial type. When the neural network estimator is added, the system
becomes stable.

Fig. 5 Closed-loop response at freestream velocity 16 m/s
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Fig. 6 Time histories at freestream velocity 8 m/s
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5 Conclusions

In this paper, the effect of a neural network based estimator with adaptive controller
was studied using two different cases on aeroelastic model with nonlinearities in
pitch direction. The adaptive control law was designed based on partial feedback
linearization and three-layer feedforward neural network is used as an estimator to
identify the estimated uncertainty parameters in control law. The effect of initial
conditions on flutter boundary with polynomial nonlinearities was studied. As the
initial conditions increase, the stable region got minimized. The free play nonlin-
earity effect on flutter boundary is small and the response is divergent in post flutter
operation. The effect of controller on unstable region was studied with and without
neural network estimator in both the cases. It practicality extends the flutter
boundary. For more detailed analysis, the control surface dynamics may be
included in the system of equations.
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