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Abstract A well-known combinatorial optimization problem, known as the Unca-

pacitated Facility Location Problem (UFLP) is considered in this paper. Given a set

of customers and a set of potential facilities, the objective of UFLP is to open a sub-

set of the potential facilities such that sum of the opening cost for opened facilities

and the service cost of customers is minimized. In this paper, deterministic and ran-

domized heuristic algorithms are presented to solve UFLP. The effectivenesses of

the proposed algorithms are tested on UFLP instances taken from the OR-Library.

Although the proposed deterministic algorithm gives optimal results for most of the

instances, the randomized algorithm achieves optimal results for all the instances of

UFLP considered in this paper including those for which the deterministic algorithm

fails to achieve the optimal solutions.

Keywords Uncapacitated facility location problem (UFLP) ⋅ Simple plant

location problem (SPLP) ⋅ Warehouse location problem (WLP) ⋅ Heuristics

Randomization

1 Introduction

The uncapacitated facility location problem (UFLP) is the problem of finding the

optimal placement of facilities of unrestricted capacities among n potential facil-

ity locations such that the cost of satisfying demands of all the customers is min-

imized [1–5]. Here, the cost is of two types: the service or connection cost to
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provide service to a customer by a facility and the opening cost to open a facil-

ity. UFLP is also known as the Simple Plant Location Problem (SPLP) [1, 6] and

the Warehouse Location Problem (WLP) [7]. UFLP is known to be an NP-hard

problem [8, 9]. So, different heuristic approaches are used to solve this problem to

obtain near-optimal solution. Some of the approaches are branch-and-bound algo-

rithm [10, 11], tabu search [4, 5], constant factor approximation algorithm [12],

greedy heuristic [13], neighborhood search [14], hybrid multi-start heuristic [15],

semi-Lagrangian relaxation [16], message-passing [17], surrogate semi-Lagrangian

dual [18], discrete unconscious search [19], etc.

In this paper, two heuristic algorithms are proposed. We call these two algorithms

as the deterministic BFR and the randomized BFR. Here, BFR is the acronym for

backward–forward–replacement phase. As the name suggests the first algorithm is

deterministic in nature, i.e., it always produces same output for a particular input

data set instance. The output of the second algorithm depends on random behavior

of some steps. Both the algorithms consist of three phases. These phases are forward
phase, backward phase, and replacement phase. The detailed description of these

phases is given in Sect. 3. The effectiveness of these two algorithms is tested on

UFLP instances of different sizes taken from the literature.

The organization of the rest of the paper is as follows: Sect. 2 formally defines the

problem. The proposed algorithms are described in Sect. 3. Computational results

are reported and compared in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Problem Definition

The uncapacitated facility location problem (UFLP) [1, 3–5] can be stated as follows:

A set J = {j1, j2,… , jM} of M customers or cities and a set I = {i1, i2,… , iN} of N
potential facility locations (sites) are given. A nonnegative opening cost fi associated

with each facility location and a nonnegative service or connection cost cij between

facility i and each customer or city j are also given. The objective of UFLP is to

connect each customer or city to the nearest opened facility such that the total cost,
i.e., the sum of service or connection cost and opening cost of opened facilities is

minimized. It is worthy to note that the demand of any customer is fulfilled by only

one facility and hence the capacity of each facility is assumed to be infinite.

Using the above descriptions of variables, the mathematical formulation of

UFLP [4] is as follows:

minimize
N∑

i=1

M∑

j=1
cijxij +

N∑

i=1
fiyi

subject to

N∑

i=1
xij = 1, j = 1,…M,
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xij ≤ yj, i = 1,…N, j = 1,…M,

xij, yi = {0, 1}, i = 1,… n, j = 1,…M,

where

xij =
{

1, if customer j ∈ J is served from site i ∈ I
0, otherwise;

yi =
{

1, if a facility is established at location i ∈ I
0, otherwise.

3 Proposed Heuristic Algorithms

Each of the proposed algorithms, viz., deterministic BFR and randomized BFR con-

sists of forward phase, backward phase, and replacement phase. So, these phases

are described in details in the following Sects. 3.1, 3.2, and 3.3, respectively, before

the two proposed heuristic algorithms. Each of these phases takes two data struc-

tures, viz., cost matrix and a set of opened facilities as its inputs. Throughout the

paper, the cost matrix, the set of opened facilities, and the set of non-opened facili-

ties are denoted by ,  and  , respectively. The cost matrix  is a matrix of order

N × (M + 1) where (i) (i, j) denotes the service cost between the ith facility location

to the jth customer, 1 ≤ i ≤ N, 1 ≤ j ≤ M and (ii) (i,M + 1), 1 ≤ i ≤ N denotes the

opening cost of the ith facility.

In the proposed algorithms, a function, named as TotalCost, is used to compute

the total cost. This function takes  and  as its inputs and gives the corresponding

total cost. The time complexity of this function is (N| |).

3.1 Forward Phase

In this phase, new facilities are opened if and only if the total cost is reduced. The

if block from line 4 to 7 of Algorithm 1 is executed only when the existing set of

opened facilities, e is empty. The sum of each row of  is computed and then these

sums are sorted in line 5 to find the index of each facility. The first facility according

to this sorted index is assigned to e in line 6. So, after the execution of the if block

from lines 4 to 7, the cardinality of e must be at least one. The while loop in line

8 is executed at least once to add a new facility, if possible, in e and the execution

of this loop stops when there is no improvement in terms of total cost by adding a

new facility in e. So, this while loop in line 8 may be executed at most (N − |e|)-
times. For each i ∈ e, the total cost corresponding to the set e ∪ {i} is computed

and the ith facility for which the total cost is minimum is opened if the total cost is
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reduced. The for loop in line 11 is executed (N − |e|)-times. At the end of the while
loop in line 27, e is assigned to the new set of opened facilities, n in line 28. The

pseudocode of forward phase is given in Algorithm 1 and the time required for the

execution of each statement is mentioned there.

Algorithm 1: Forward Phase

Input: Cost matrix , existing set of opened facilities e
Output: New set of opened facilities n

1 N ← no. of facilities; // (1)
2 n ← [ ]; // (1)
3 improve ← True; // (1)
4 if e is empty then
5 Compute the sum of each row of  and sort these sums in ascending order

to find sorted index of each facility; // (N logN)
6 e ← index(1); // (1)
7 end
8 while improve = True do

// This while loop may iterate at most
(N − |e|)-times.

9 old_tcost ← TotalCost(,e); // (N|e|)
10 flag ← 0; // (1)
11 for each i ∈  e do

// This for loop is iterated (N − |e|)-times.
12 temp ← [ ]; // (1)
13 temp ← e ∪ {i}; // (1)
14 temp_tcost ← TotalCost(,temp); // (N|temp|)
15 if temp_tcost < old_tcost then
16 min_cost_f ← i; // (1)
17 old_tcost ← temp_tcost; // (1)
18 flag ← 1; // (1)
19 end
20 end
21 if flag = 1 then
22 e ← e ∪ {min_cost_f }; // (1)
23 else
24 improve ← False; // (1)
25 end
26 new_tcost ← TotalCost(,e); // (N|e|)
27 end
28 n ← e; // (|e|)
29 return n



Deterministic and Randomized Heuristic Algorithms . . . 209

3.2 Backward Phase

In this phase, the facilities are closed from the already opened facilities if and only

if the total cost is reduced. The if condition in line 4 of Algorithm 2 checks the

cardinality of e. If the set e is empty or its cardinality is 1 then n is assigned

as e in line 5 and the algorithm is terminated. If the set e contains more than one

facility then the algorithm performs the following steps to close one facility at a time.

The while loop in line 7 may iterate at most (|e| − 1)-times and the execution of this

loop stops when there is no improvement in terms of total cost by deleting a facility

from e. For each i ∈ e, the total cost corresponding to the set e∖{i} is computed

in line 13 and the ith facility for which the total cost is minimum is closed provided

that it reduces the total cost. These steps are repeated for closing one facility at a

Algorithm 2: Backward Phase

Input: Cost matrix , existing set of opened facilities e
Output: New set of opened facilities n

1 N ← no. of facilities; // (1)
2 n ← [ ]; // (1)
3 improve ← True; // (1)
4 if e is empty or |e| = 1 then
5 n ← e; // (|e|)
6 else
7 while improve = True do

// This while loop may iterate at most (|e| − 1)-times.
8 old_tcost ← TotalCost(,e); // (N|e|)
9 flag ← 0; // (1)
10 for each i ∈ e do

// This for loop is iterated |e|-times.
11 temp ← [ ]; // (1)
12 temp ← e∖{i}; // (1)
13 temp_tcost ← TotalCost(,temp); // (N|temp|)
14 if temp_tcost < old_tcost then
15 min_cost_f ← i; // (1)
16 old_tcost ← temp_tcost; // (1)
17 flag ← 1; // (1)
18 end
19 end
20 if flag = 1 then
21 e ← e∖{min_cost_f }; // (1)
22 else
23 improve ← False; // (1)
24 end
25 new_tcost ← TotalCost(,e); // (N|e|)
26 end
27 n ← e; // (|e|)
28 end
29 return n
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time as long as the total cost is reduced. The for loop in line 10 is iterated |e|-times.

The pseudocode of backward phase is given in Algorithm 2 and the time required

for the execution of each statement is mentioned there.

3.3 Replacement Phase

The objective of replacement phase is to check whether it is possible to replace

already opened facilities in e with non-opened facilities in  e to reduce the total

cost without changing the number of opened facilities. The algorithm performs the

following steps to replace the opened facility j in e with a non-opened facility i in

 e. For each i ∈ e, the total cost for each of the sets (e∖{j}) ∪ {i} is computed

and the ith facility for which the total cost is minimum is opened and the facility j is

closed if it improves the total cost. These steps are repeated as long as improvement

occurs in terms of the total cost. The pseudocode of replacement phase is given in

Algorithm 3 and the time required for the execution of each statement is mentioned

there.

Algorithm 3: Replacement Phase

Input: Cost matrix , existing set of opened facilities e
Output: New set of opened facilities n

1 for each j ∈ e do
// This for loop is iterated |e|-times.

2 old_tcost ← TotalCost(,e); // (N|e|)
3 flag ← 0; // (1)
4 for each i ∈  e do

// This for loop is iterated (N − |e|)-times.
5 temp ← [ ]; // (1)
6 temp ← (e∖{j}) ∪ {i}; // (1)
7 temp_tcost ← TotalCost(,temp); // (N|temp|)
8 if temp_tcost < old_tcost then
9 min_cost_f ← i; // (1)
10 old_tcost ← temp_tcost; // (1)
11 flag ← 1; // (1)
12 end
13 end
14 if flag = 1 then
15 e ← (e∖{j}) ∪ {min_cost_f }; // (1)
16 end
17 end
18 n ← e; // (|e|)
19 return n
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3.4 Deterministic BFR

The deterministic BFR (i.e., Algorithm 4) takes the cost matrix  as its input and

gives the set of opened facilities  and the corresponding total cost as its outputs.

Algorithm 4 starts with opening all the facilities as shown in line 2. Then, the follow-

ing steps are repeated to reduce the total cost. In line 6, the backward phase is used

to close some opened facilities (if possible) and this is followed by the replacement

phase in line 7 that may replace some opened facilities. Then, the forward phase

is used in line 8 to open new facilities (if possible) which is again followed by the

replacement phase in line 9. The steps at lines 6 to 9 are repeated as long as the total

cost improves.

Algorithm 4: Deterministic BFR

Input: Cost matrix 

Output: Set of opened facilities  , total cost 

1 n ← no. of potential facilities;

2  ← {1, 2,… , n};

3 old_tcost = TotalCost(, );
4 improve ← True;

5 while improve = True do
6  = BackwardPhase(, );
7  = ReplacementPhase(, );
8  = ForwardPhase(, );
9  = ReplacementPhase(, );
10 new_tcost = TotalCost(, );
11 if new_tcost < old_tcost then
12 old_tcost ← new_tcost;
13 else
14 improve ← false;

15 end
16 end
17  ← TotalCost(, );
18 return  , 

3.5 Randomized BFR

It is likely that the deterministic BFR may stuck into a local optima. The randomized

BFR tries to overcome this problem by the help of randomness. The randomized BFR

given in Algorithm 5 also takes the cost matrix  as its input and gives the set  and

the corresponding total cost as its outputs. The deterministic BFR is called in line 2 to
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produce a solution 1. In line 3, the solutions 2, 3, and 4 are generated randomly

from the solution 1 by arbitrarily changing the elements in 1 by the elements

in 1 keeping the cardinality same as 1. We now modify each of the solutions

i, 1 ≤ i ≤ 4, in the following way. Each opened facility in i is swapped with a

randomly chosen non-opened facility in  i with probability 0.5. If any swapping

occurs at all then both the sets i and  i are modified. At the end of the for loop

in line 13, the total cost for each i is computed in line 14 and the solution with

the maximum total cost is replaced by the solution with the minimum total cost of

the previous iteration. Here, the variables iterate and count are used to terminate

Algorithm 5. The value of count is incremented by one if the minimum total cost

for two consecutive iterations remains same, otherwise it is set to zero. Algorithm 5

terminates if the value of either iterate or count exceeds max_iterate or max_count
respectively.

Algorithm 5: Randomized BFR

Input: Cost matrix 

Output: Set of opened facilities  , total cost 

1 n ← no. of potential facilities;

2 Create a set of opened facilities 1 using the deterministic BFR (Algorithm 4);

3 Create other three solutions 2,3,4 randomly using 1;

4 iterate ← 1, count ← 1;

5 while iterate ≤ max_iterate and count ≤ max_count do
6 Find the total cost for each of the solutions 1,… ,4;

7 Let best be the solution with the minimum total cost;

8 for i ← 1 to 4 do
9 r ← a random number in [0, 1];
10 if r ≥ 0.5 then
11 Swap each of the opened facilities in i with a randomly chosen non-opened

facility in  i;

12 end
13 end
14 Find the total cost for each of the solutions 1 …4;

15 Replace the solution having the maximum total cost value with best;

16 if iterate ≠ 1 then
17 if the minimum total cost for two successive iterations are same then
18 count ← count + 1;

19 else
20 count ← 0;

21 end
22 end
23 iterate ← iterate + 1;

24 end
25  ← the solution from the set 1,… ,4 with minimum total cost;

26  = TotalCost(, );
27 return  , 
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4 Experimental Results and Discussion

The efficiency of the proposed two algorithms is tested on 15 benchmark instances of

Beaslay’s OR-Library [20]. Here, all the benchmark instances and the correspond-

ing optimal costs are taken from UflLib [21]. The proposed algorithms are coded

with MATLAB R2013a and all the computations are performed in a machine with

Intel Core i3 2.30 GHz processor having Ubuntu 14.40 LTS with 4 GB of RAM. To

evaluate the performance of the proposed algorithms, we define two performance

metrics Gap% and Quality% which are defined as follows:

Gap% =
(
Total Cost − Optimal Value

Optimal Value

)
× 100,

Quality% = 100 − Gap%.

At first, we run the deterministic BFR on the instances of UFLP. If optimal results

given in UflLib [21] are obtained for these instances then we do not run the ran-

domized BFR. The randomized BFR is applied on UFLP instances only when the

deterministic BFR fails to give optimal results. In our experiments, the values of

max_iterate and max_count are set to 10 and 4 respectively. The results for the

benchmark instances are given in Table 1. Out of the total 15 instances, the deter-

ministic algorithm achieves optimal results for 13 instances and for the remaining

two instances, the randomized algorithm achieves the optimal results. In Table 2, the

results of large size OR-Library instances [20] are compared with the Lagrangian-

type relaxation algorithm proposed by Monabbati [18]. It is observed from Table 2

that the proposed algorithms perform better.

Table 2 Comparison for OR-library benchmark

Data file

[21]

HDA [18] CPLEX time (s) [18] Deterministic BFR Randomized BFR

Time (s) Quality% With

HDA

Without

HDA

Time (s) Quality% Time (s) Quality%

Capa 4.391 96.45 65.88 28.02 12.827 100 − −
Capb 4.625 99.29 74.58 30.84 10.259 100 − −
Capc 3.704 98.14 106.5 100.8 13.118 99.742 35.572 100
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5 Conclusion

In this paper, two heuristic algorithms are proposed to solve the Uncapacitated Facil-

ity Location Problem (UFLP). For most of the instances, the deterministic BFR gives

optimal or near-optimal results. The randomized BFR has been found to provide opti-

mal results for all the instances where the deterministic BFR fails to give optimal

results. It is to be noted that the result found by the randomized BFR is always better

or at least same as the result obtained by the deterministic BFR. For future work, the

effects of the three phases used in the proposed algorithms on the final result can be

analyzed and more experiments on other UFLP instances available in the literature

can be performed.
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