
A Modular Approach for Social Media
Text Normalization

Palak Rehan, Mukesh Kumar and Sarbjeet Singh

Abstract The normalized data is the backbone of various Natural Language
Processing (NLP), Information Retrieval (IR), data mining, and Machine Transla-
tion (MT) applications. Thus, we propose an approach to normalize the colloquial
and breviate text being posted on the social media like Twitter, Facebook, etc. The
proposed approach for text normalization is based upon Levenshtein distance,
demetaphone algorithm, and dictionary mappings. The standard dataset named
lexnorm 1.2, containing English tweets is used to validate the proposed modular
approach. Experimental results are compared with existing unsupervised approa-
ches. It has been found that modular approach outperforms other exploited nor-
malization techniques by achieving 83.6% of precision, recall, and F-scores. Also
91.1% of BLUE scores have been achieved.

1 Introduction

Social media networks like Twitter, Facebook, WhatsApp, etc., are most commonly
used medium for sharing news, opinions, and to stay in touch with peers. Messages
on Twitter are limited to 140 characters. This led users to create their own novel
syntax in tweets to express more in lesser words. Free writing style, use of URLs,
markup syntax, inappropriate punctuations, ungrammatical structures, abbrevia-
tions, etc., make it harder to mine useful information from them. There is no
standard way of posting tweets. This lack of standardization hampers NLP and MT
tasks and renders huge volume of social media data useless. Therefore, there is a

P. Rehan (✉) ⋅ M. Kumar ⋅ S. Singh
Computer Science & Engineering Department, University Institute of Engineering
and Technology, Panjab University, Chandigarh, India
e-mail: palakrehan@gmail.com

M. Kumar
e-mail: mukesh_rai9@yahoo.com

S. Singh
e-mail: sarbjeet@pu.ac.in

© Springer Nature Singapore Pte Ltd. 2018
S. C. Satapathy et al. (eds.), Information and Decision Sciences,
Advances in Intelligent Systems and Computing 701,
https://doi.org/10.1007/978-981-10-7563-6_20

187



need to reform such text forms into standard forms. This can be achieved by
normalization which is a preprocessing step for any application that handles social
media text. Process of converting ill-formed words into their canonical form is
known as normalization. In this paper, we propose a modular approach for the
lexical text normalization which is applied on English tweets. First, it is necessary
to categorize text into two classes: Out-Of-Vocabulary (OOV) and In-Vocabulary
(IV). Words that are not in its standard form are considered as OOV while words
which are part of standard orthography fall under IV category. For example,
“talkin” is an OOV word (nonstandard word) having “talking” as its IV form. Some
words, although may be correct, coincide with other IV words, like “wit” is an IV
word which may indicate “with” as its correct form. Such words are neglected for
normalization task.

Due to the presence of unsurprisingly long tail of OOV words, a method that
does not require annotated training data is preferred. Thus, an unsupervised
approach has been proposed with different modular stages for preprocessing, can-
didate generation, and candidate selection steps. The proposed cascaded method
achieves state-of-the-art results on English twitter dataset and can be applied to any
other social media dataset. In addition, a pilot study is conducted on peer
methodologies employed inside the proposed approach.

2 Related Work

Previous work attempted noisy channel model as one of the text normalization
techniques. Brill and Moore characterized the noisy channel model based on string
edits for handling the spelling errors. Toutanova and Moore [1] improved the above
model by embedding information regarding pronunciation. Choudhury et al. [2]
proposed a supervised approach based on Hidden Markov Model (HMM) for SMS
text by considering graphemic/phonetic abbreviations and unintentional typos.
Cook and Stevenson [3] expanded error model by introducing probabilistic models
for different erroneous forms according to sampled error distribution. This work
tackled three common types: stylistic variation, prefix clipping, and subsequence
abbreviations. Yi yang et al. [4] presented a unified log-linear unsupervised sta-
tistical model for text normalization using maximum likelihood framework and
novel sequential Monte Carlo training algorithm.

Some of the previous work was based on Statistical Machine Translation
(SMT) approach for normalization. SMT deals with context-sensitive text by
treating noisy forms as the source language and the standard form as the target
language. Aw et al. proposed an approach for Short Messaging Service (SMS) text
normalization using phrase-level SMT and bootstrapped phrase alignment tech-
niques. The main drawback of SMT approach is that it needs a lot of training data
and it cannot accurately represent error types without contextual information.

188 P. Rehan et al.



Gouws et al. [5] developed an approach based on string and distributional
similarity along with dictionary lookup method to deal with ill-formed words. Han
et al. introduced similar technique based on distributional similarity and string
similarity. Selection of correct forms was performed on pairwise basis. Mohammad
Arshi et al. [6] proposed a tweet normalization approach. First, candidates were
generated by targeting lexical, phonemic, and morphophonemic similarities. More
recent approaches handle the text normalization using CRFs and neural networks.
Min et al. [7] proposed a system where Long Short-Term Memory (LSTM)
recurrent neural networks using character sequences and Part-Of-Speech (POS) tags
had been used for predicting word-level edits. Yang and Kim used an CRF-based
approach. CRF using both brown clusters and word embeddings that were trained
using canonical correlation analysis as features.

Abiodun Modupe [8] developed a semi-supervised probabilistic approach for
normalizing informal short text messages. Language model probability had been
used to enhance the relationships between formal and informal word. Then, string
similarity was employed with a linear model to include features for both word-level
transformations and local context similarity.

Proposed approach in this paper also adopts lexical based text normalization
using unsupervised methods in order to handle wide variety of ill-formed words.
This approach can be applied to different social media text messages.

3 Proposed Work

Inspired by earlier work done on text normalization, a modular approach for lexical
text normalization is proposed, which has been applied to English tweets. Pre-
processing, Candidate Generation, and Candidate Selection are the three main
stages of the proposed system.

Text refining is applied on extracted strings and thereafter categorization into IV
and OOV lexicons is performed. Candidate Generation stage generates list of
possible correct words for an input OOV word. In the end, Candidate Selection
stage selects a best possible candidate from all generated candidates. Raw tweets
are fed into preprocessor whose output will act as input for the token qualifier which
will segregate input into two heaps: OOV and IV words. Out of total OOV tokens,
filtration is performed with the help of available python packages as punctuation
symbols, hashtags, URLS, @mentions, and proper nouns. *(Name of persons,
locations, brands, movies, etc., comes under proper noun).

OOV tokens detected by token qualifier will be processed by the candidate
generator which will generate possible normalized candidates via three different
techniques: Levenshtein distance, demetaphone algorithm, and dictionary map-
pings. Candidate selector module will work on candidate list generated by the
candidate generator and will generate best possible candidate for each OOV.

Preprocessing module takes raw tweets as input. Tokenization in the form of
strings is performed and then unwanted strings containing @, hashtags, URLS,

A Modular Approach for Social Media Text Normalization 189



punctuations, emoticons, and any foreign language are filtered out. Output strings
generated after filtration are considered as lexicons. This is initial step required to
carry any NLP task. Output generated by preprocessing module is fed as input to the
Token Qualifier. It performs classification of lexicon into two categories: OOV and
IV. To predict whether a given lexicon is OOV, many Standard English spell checker
like GNU Aspell, Hanspell, and dictionaries (Pyenchant corpus) are available.

According to research, correct formed English words having repeating characters
are found to have maximum of two character repetitions. Thus, repetition of more
than two characters in a string is trimmed off to two characters (helloooo→ hello,
gooood→ good). Regular expressions are applied to OOV strings with alphanu-
meric text. Some of the transformations with examples are given as: 4→ fore
(B4→ bfore), 2→ to (2night→ tonight), 9→ ine (F9→ fine), etc. After applying
trimming and regular expressions, OOV words that are going to be processed
further are obtained. First technique to generate candidates for OOV word is
through Levenshtein distance (also known as edit distance). Edit distance is number
of applied insertions, deletions, and alterations in order to transform one string into
another. It is used to handle spelling errors. Edit distance >2 results in generation of
large number of candidates most of which are inappropriate and at same time are
complex to process. So, we prefer edit distance with <=2. Algorithm 4 takes input
of Algorithm 3 and generates strings having edit distance <=2 with respect to input
OOV. In order to have precise and limited generated candidate list, string similarity
measures are applied on candidate list generated via edit distance (<=2).

Algorithm 1: Levenshtein_candidates (Modified_OOV)
{

1. Levenshtein_set = []
near_by_editcandidates = []

2. Input the Modified_OOV
3. Generate strings having edit distance ≤ 2 from input OOV.
4. If generated string (from step 3) english vocabulary:

Add generated strings to Levenshtein_set only

5. Apply string similarity measures (fuzzy_ratio) between input and
each of corresponding strings in Levenshtein_set:

5:1 Select those pairs having maximum similarity ratio.
5:2 Add above pairs in near_by_editcandidates

6. Return near_by_editcandidates

}

Nowadays, Internet slangs like lol→ laughing out loud and abbreviations
(Cuz→ because) are common in social media text. So that we generate candidates
using dictionary mapping by applying algorithm 2.

190 P. Rehan et al.



Algorithm 2: Slang_candidates (Modified_OOV)
{

1. Slang_output = []
2. Input the Modified_OOV
3. Check input in Slang dictionay

// Slang dictionary is prepared by collecting internet abbreviations
// from www.noslang.com on 4 nov, 2016

3:1 If input is found in dictionary:

output corresponding mapping to Slang_output

4. Return Slang_output }

In order to handle errors due to phonemes (words that sound same), demeta-
phone algorithm is used. Words like nite and night are phonemes of each other. In
order to have limited, precise candidate is set and to reduce processing complexity,
string similarity measures are applied on phonemes generated by the demetaphone
Algorithm.

Algorithm 3: Demetaphone_candidates (Modified_OOV)
{

1. Demetaphone_set = []
Relevant_demetaphone = []

2. Input the ModifiedOOV
3. Generate demetaphone code for each input and english vocabulary

word pair.
4. Add pairs having same code to Demetaphone_set.
5. In order to have only relevant and limited pairs, apply string similarity

measures (fuzzy_ratio) to each pair in Demetaphone_set.

5:1 Select only those pairs that have maximum similarity ratio.
5:2 Add above pairs to Relevant_demetaphone set.

6. Return Relevant_demetaphone.
}

Candidate list generated by all three techniques (output of Algorithm 1–3) acts
as input to candidate scorer (Algorithm 4). Equal probability to each candidate in list
corresponding to a OOV lexicon is assigned. Aggregate probabilities of all those
candidates which are present in more than one list are calculated by performing
summation on their probabilities. This will act as score. Prepare an aggregate list by
combining candidate lists of all three candidate generation techniques.

A Modular Approach for Social Media Text Normalization 191



Algorithm 4: Candidate_Scorer (near_by_editcandidates, Relevant_
demetaphone, Slang_output)
{

1. Editscore = [], demetaphonescore = [], slangscore = [], combinescore = [], aggre-
gate candidates = []

2. Assign equal probability to each candidates in near_by_editcandidates and
store probabilities in Edit_score set.

3. Assign equal probability to each candidates in Relevant_demetaphone and in
Slang_output and store them in demetaphone_score and slang_score
respectively.

4. Aggregate probabilities for common candidates that are present in all above three
sets. Combine score corresponding to a Modified_OOV token is computed as:

Editscore ModifiedOOV½ � + demetaphonescore ModifiedOOV½ � + slangscore ModifiedOOV½ �

5. Prepare aggregatecandidates set by combining candidates from near_by_edit-
candidates, Relevant_demetaphone, Slang_output

6. Return combinescore, aggregatecandidates }

Aggregate candidate list and score list prepared by Algorithm 4 will act as input
to Algorithm 5. Select that candidate from aggregate candidate list (for an OOV
lexicon) corresponding to which maximum scores are present in score list. In case
there are more than one candidate with same scores, then apply POS tagging.
During POS tagging, assign scores according to the importance of context like
nouns will be given highest weight followed by the verb and then the adjective.
This will return a single best candidate for each incorrect word.

Proposed modular approach works on raw tweets. Preprocessing is done by
removing unwanted strings (punctuations, hashtags, etc.). Token qualifier is then
called to detect OOV and IV words. Rules are applied to the output of the token
qualifier to generate OOV tokens which will be used for further processing. Can-
didates are generated via Levenshtein distance (Algorithm 1), demetaphone algo-
rithm (Algorithm 2), and dictionary approach (Algorithm 3). In order to select best
possible normalized word corresponding to an OOV word, candidate scorer
(Algorithm 4) and candidate selector (Algorithm 5) are employed.

Algorithm 5: Candidate_selector (aggregatecandidates, combinescore)
{

1. Best_candidate = []
2. Read candidates from aggregate_candidates.
3. Select those candidates from aggregatecandidates corresponding to which maxi-

mum probability is present in combine_score set.
4. If (only one candidate is outputed from step 3): Store it in best_candidate set.
5. Else:

5:1 Apply POS (Part of speech) tag.

192 P. Rehan et al.



5:2 Assign maximum score (say 1) to noun, followed by verb (0.5) and then
adjective (0.25)

5:3 Select candidate with maximum score // obtained after scoring of 5.2
5:4 Store result in Best_candidate

6. Return Best_candidate

}

4 Experimental Setup and Results

Proposed modular approach has been implemented on LexNorm 1.2 dataset which
was an updated version of dataset for lexical normalization described in [9]. This
dataset contains English messages sampled from Twitter API (from August to
October, 2010). Results are evaluated on the basis of precision, recall, F-score, and
BLEU score. The proposed work is performed on Python 2.7 version for windows
and natural language processing inbuilt python packages are utilized to execute
modules. Let Tdataset be all tokens from dataset and let OOVt be the list of all
detected OOV in dataset ∈ Tdataset • genoov

t be the generated candidates for an oov
∈ OOVt ⋅ seloov

t be the best normalized candidate selected by system for an oov
token, oov ∈ OOVt ⋅ coroov

t be the tagged correction for an oov ∈ OOVt ⋅
normoov

t be the set of normalized oov tokens ∈ OOVt normalized by system.

PrecisionðPÞ= ∑t∈ Tdataset seltoov: sel
t
oov = cortoov, sel

t
oov ∈ gentoov, oov∈OOVt

� ��� ��

∑t∈ Tdataset normt
oov: normt

oov, oov∈OOVt
� ��� ��

ð1Þ

RecallðRÞ= ∑t∈ Tdataset seltoov: sel
t
oov = cortoov, sel

t
oov ∈ gentoov, oov∈OOVt

� ��� ��

∑t∈ Tdataset oov: oov∈OOVtf gj j ð2Þ

59
.9

59
.9

59
.9

82
.0

6

82
.0

6

82
.0

6

83
.6

83
.6

83
.6

0

10

20

30

40

50

60

70

80

90

Precision Recall F-score

Pe
rc
en

ta
ge

Paul Cook et al Yi Yang et al Proposed normalization approach

Fig. 1 Comparative results with unsupervised methods

A Modular Approach for Social Media Text Normalization 193



F − score=
2*Precision *Recall
Precision+Recall

ð3Þ

Figure 1 shows that the proposed modular approach yields better accuracy as
compared to existing unsupervised methods. Modular approach has 1.54% better
results than log linear model for unsupervised text normalization [4]. Moreover, an
unsupervised model for text normalization proposed by Paul cook et al. [3] also has
low performance (57.9% accuracy) than the proposed approach (having 83.6%
performance).

5 Conclusion

Text normalization addresses all forms of OOV words and aimed at standardization
of these words. Proposed approach is based on three methods: Levenshtein dis-
tance, demetaphone algorithm, and dictionary approach. Experimental results are
calculated for Lexnorm 1.2, standard dataset for twitter messages. The proposed
system is compared with existing unsupervised text normalization methods. It has
been found that modular approach outperforms other exploited normalization
techniques by achieving 83.6% of precision, recall, and F-scores. Also 91.1% of
BLUE scores have been achieved.

References

1. Toutanova, K., Moore, R.C.: Pronunciation modeling for improved spelling correction. In:
Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL
02, pp. 144–151, Philadelphia, USA (2002)

2. Choudhury, M., Saraf, R., Jain, V., Mukherjee, A., Sarkar, S., Basu, A.: Investigation and
modeling of the structure of texting language. Int. J. Doc. Anal. Recogn. 10, 157–174 (2007)

3. Cook, P., Stevenson, S.: An unsupervised model for text message normalization. In:
Proceedings of the Workshop on Computational Approaches to Linguistic Creativity, pp. 71–
78. Association for Computational Linguistics, Boulder, USA, June (2009)

4. Yang, Y., Eisenstein, J.: A log-linear model for unsupervised text normalization. In:
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2013), pp. 61–72, Seattle, USA, Oct 2013

5. Gouws, S., Hovy, D., Metzler, D.: Unsupervised mining of lexical variants from noisy text.
In: Proceedings of the First workshop on Unsupervised Learning in NLP, pp. 82–90,
Edinburgh, Scotland (2011)

6. Saloot, M.A., Idris, N., Shuib, L., Raj, R.G., Aw, A.: Toward tweets normalization using
maximum entropy. In Proceedings of the ACL 2015 Workshop on Noisy User-generated
Text, pp. 19–27. Association for Computational Linguistics, Beijing, China, 31 July 2015
(2015)

7. Min, W., Mott, B., Lester, J., Cox, J.: Ncsu_sas_wookhee: a deep contextual long-short term
memory model for text normalization. In: proceedings of WNUT, Beijing, China (2015)

194 P. Rehan et al.



8. Modupe, A., Celik, T., Marivate, V., Diale, M.: Semi-supervised probabilistics approach for
normalising informal short text messages. In: Conference on Information Communication
Technology and Society (ICTAS). IEEE (2017)

9. Han, B., Baldwin, T.: Lexical normalisation of short text messages: makn sens a# twitter. In:
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, vol. 1, pp. 368–378. Association for Computational
Linguistics, Portland, Oregon, June (2011)

A Modular Approach for Social Media Text Normalization 195


	20 A Modular Approach for Social Media Text Normalization
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Work
	4 Experimental Setup and Results
	5 Conclusion
	References




