
Chapter 8
Predicting Model of Rockburst Based
on Nondeterministic Theory

8.1 Introduction

Predicting is the basis of prevention and controlling of rockburst hazards.
According to the predicting results, the feedback design of rock engineering and
controlling measures are taken in time. It is of great theoretical and practical value
for the safety and efficiency of deep mine. So far, there are many methods to judge
rockburst tendency, such as rock integrity coefficient method, strength criterion
discrimination method, rock brittleness index method, elastic energy index method,
dynamic failure time method, rockburst energy ratio method, impact energy index
method, impact tendency criterion method, and resistivity method. Most of these
methods and judging indexes, which is only considered the individual factors, were
one-sidedness, limitations and complications. Therefore, the influencing factors of
rockburst are comprehensively based on the non-deterministic theory for estab-
lished a more accurate rockburst predicting model. Rockburst is a complex dynamic
instability phenomenon (Hedley 1992), which can occur during underground
excavation in areas with large in situ stress. As a result of the sudden release of
accumulated strain energy, rocks can be come loose, crack, and even eject violently
(Canadian Rockburst Research Program 1996). As a result, rockbursts were con-
sidered a major technical challenge in deep mining. Duo to the characteristic of
sudden, disruptive, and complex, the accurate prediction of rockbursts was difficult
and an urgent problem need to be solved (Blake et al. 2003).

The phenomenon was discussed extensively by many scholars. Rockburst ten-
dency is an important metric to quantify the risk and potential intensity of occurrences
and grade the hazard of an affected mine. However, there are still no accurate pre-
diction methods or effective control measures. In recent decades, many meaningful
advances have been made by many scholars (Singh 1989; Dou et al. 2009; Marek
2009; Patynska et al. 2009; Marian 2011). Rockburst mechanism was better under-
stand using some proposed some criteria, such as strength theory, stiffness theory and
energy theory. These models could be explained the origin and mechanism of
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rockbursts, but were hard to apply in practice. In addition, several indexes were
proposed tomeasure rockburst tendency, such as strength and brittleness, burst energy
release, impact energy and rock integrity (Hoek et al. 1980; Cook 1965;Wiebols et al.
1968; Tan et al. 1991; Kidybiński 1981; Singh 1988; Hou et al. 1989). These criteria
derived from the mechanical parameters obtained by testing rock samples. Some
important values were compressive strength, tensile strength, capacity to store and
release elastic strain energy, and surrounding rockmass stress and integrity.

In light of rockburst phenomenon complexity, the use of a single parameter was
insufficient for predicting rockburst. Though AE, chip drilling, removal, vibration,
and resistance methods were proposed and applied, each parameter was lacking in
predictive power under isolation. As a multifactor, coupling induced dynamic
hazard, it was essential to establish a calculation method to evaluate rockburst
tendency involving the proper parameters. However, few studies were tried to
combine the various factors relating to rockburst hazard. Recently, some interesting
models were derived using artificial intelligence, such as a neural network (Chen
et al. 2002), fuzzy theory (Adoko et al. 2013; Wang et al. 2015), and distance
discriminant analysis method (Gong et al. 2007), along with other integrated
analysis methods. These research results indicated that the occurrence of rockbursts
was closely related to the mechanical properties of rockmass, the geological
structure, and the surrounding stress. However, these attempts had not yet formed a
complete theoretical system. Based on the Bayesian theory and Fuzzy
element-matter theory, several critical factors were integrated into a single model
for predicting rockburst tendency in this chapter.

Bayesian theory, which is successfully applied in many fields, provides a clear
and a flexible method for making predictions using incomplete knowledge.
Heckerman (Heckerman 1990) used a Bayesian framework to improve the process
of medical diagnosis. Making full use of its strong information processing ability
(Weidl et al. 2003), a Bayesian network was applied to the monitoring and man-
agement of industrial production processes. A Bayesian model was utilized for
choosing investment ventures, and displayed a good ability to cope with future
uncertainty (Kemmerer et al. 2002). In addition, Bayesian theory was used to
identify faults in a computer system (Jensen et al. 2001). It was attempt that the
tendency was predicted more precisely using these incomplete indexes of rockburst
occurrence.

Professor Cai (1994) analyzed a large number of examples found that people in
dealing with incompatibility issues must take things, features and the corresponding
value to consider together. The main idea of this method was to make things to
‘things, features, values’ to describe and analyze. Matter-element analysis is an
effective way to study matter-element and to solve incompatible problems in the real
world. If the magnitude of matter is ambiguous, it constitutes a fuzzy incompatibility
problem. Fuzzy matter-element analysis is the combination of fuzzy mathematics,
and matter-element analysis can solve this kind of fuzzy things. In recent years, this
highly practical theory and method were achieved many gratifying results in the field
of engineering technology. In addition, artificial intelligence methods were used,
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such as fuzzy inference system (FIS) and adaptive neuro-fuzzy inference systems
(Adoko 2013) and Rough set theory and genetic algorithms (Yu 2009). These were
seismological theory and methods were used to predict the rockburst such as the
peak velocity and dynamic energy, the seismic risk assessment method and mining
and seismological parameters (Srinivasan et al. 1997; Li et al. 2011; Stewart 1995).
The above research works indicated that the occurrence of rockburst was closely
related to the strength of surrounding rockmass, geomechanics, geological structure,
hydrogeology, and the construction sequence. Matter-element analysis theory was
primarily used to study the problem of in compatibility (Wang et al. 2015). It could
be also used for solving multiple-parameter evaluation problems by formalizing the
problem and establishing the corresponding matter-element (Cai 1994; David et al.
1997; Chen et al. 2007; Liu et al. 2007). The improved fuzzy matter-element
evaluation method was used to assess water quality, which achieved more reliable
results than that using the traditional method (Liu et al. 2012). Based on the
matter-element method (He et al. 2011) designed a model to evaluate the urban
power net work planning, and Zhu (2010) analyzed coefficients of evaluation in
rockburst. The empirical analysis showed that this model was reliable and feasible.

Therefore, in this chapter, Bayesian theory was demonstrated to be a reliable
approach to address complex problems involving many variables with large
uncertainties, and models that considered a multi-parameter space were better suited
to predicting rockburst tendency than single-variable models. The main factors
affecting of risk and intensity of rockbursts were used to make a Bayesian model.
On the other hand, the main influencing factors of rockburst were considered based
on the concept of matter-element analysis in combination with the fuzzy set and
closeness degree rules. The entropy method was also integrated in the weight
calculation in this model. An integrated rockburst multi-index evaluation model
was established and used to predict the rockburst tendency in a case study.

8.2 Predicting Model of Rockburst Based on Bayesian
Theory

8.2.1 An Overview of Bayesian Theory

A Bayesian model is a statistical analysis method commonly used to distinguish
between types of samples. The primary procedure is based on an artificial familiarity
with known samples and possible attendant consequences. Firstly, the empirical
probability and covariance of each classification was analysed and calculated. Then,
a discriminant function was formulated to grade samples. Finally, a posterior
probability was calculated to verify the original evaluation. New samples could be
easily classified after being input into model (Ren and Yu 1999; Gao 1999).
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8.2.1.1 Empirical Probability

A sample set can be divided into k categories G1;G2; . . .Gk according to a certain
criterion. Assuming each sample has m factors, x1; x2; . . .xm, that are normally
distributed, a given sample can be expressed as a m-dimensional array

XðiÞ
j = [(x1; x2; . . .xmÞðiÞj �T , where i ¼ 1; 2; 3; . . .k, j ¼ 1; 2; 3; . . .ni, and XðiÞ

j 2 Gi.
If there are a sufficient number of samples, the “empirical probability”, which is

the probability that a single sample will be classified into Gi, it can be expressed as

pi ¼ ni
n1 þ n2 þ ; . . .; nk

¼ niPk
i¼1 ni

ð8:1Þ

8.2.1.2 Mean Values and Covariance

Moment estimation of mean values and variances can be introduced to generalize
the distribution characteristics of i-th category:

lXðiÞ ¼ �XðiÞ ¼ 1
ni

Xni
j¼1

XðiÞ
j ð8:2Þ

S2i ¼
1

ni � 1

Xni
j¼1

ðXðiÞ
j � �XðiÞÞðXðiÞ

j � �XðiÞÞT ð8:3Þ

X
¼ 1Pk

i¼1 ðni � 1Þ
Xk
i¼1

ðni � 1ÞS2i ð8:4Þ

where �XðiÞ; lXðiÞ; S2i refer to the mean values, expectation of mean values, and
covariance of ith category, respectively. Additionally, R stands for the covariance
matrix of overall sample population.

8.2.1.3 Empirical Discriminant

In this Bayesian model, the empirical discriminant of sample classification can be
expressed as:

xiðX) ¼ lTi R
�1X � 1

2
lTi R

�1li þ ln pi ð8:5Þ

The discriminating rule can be simplified to be:
If xiðX Þ ¼ max1� j� k xjðX), then X 2 Gi.
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8.2.1.4 Posterior Probability and Verification

A Bayesian distance discriminant method was used to separate the samples. The
distance of a given sample X ¼ (x1; x2; . . .xmÞT to the i-th category’s centroid can
be calculated as:

d2j ðXÞ ¼ ðX � ljÞTR�1ðX � ljÞ � 2 ln pj ð8:6Þ

so the posterior probability that X belongs to the i-th category can be calculated as
follow:

PðGjjXÞ ¼
exp½� 1

2 d
2
j ðXÞ�Pk

i¼1 exp½� 1
2 d

2
i ðXÞ�

ð8:7Þ

If PðGjjXÞ > 50%, then X 2 Gi.
This confirms the previous result.

8.2.2 Key Factors of Rockburst Tendency

8.2.2.1 Induced Factors of Rockburst

Numerous engineering datasets showed that rockbursts were usually occurred in
hard-rock zones that were mostly intact and exhibited high strength, while there were
few rockbursts in soft-rock areas. Thus, the occurrence of rockbursts was strongly
related to the mechanical properties of surrounding rockmass. The development and
triggering of rockburst was a physical process of gradual energy storage and sudden
instability, which showed as a large energy release. Laboratory tests showed that
these rocks were brittle but high-strength with linear elastic characteristics. The tests
also showed that these rocks had the characteristics of elastic-brittle failure and that
the elastic modulus was relative high. As a result, they were prone to brittle failure in
the high-stress regime. Excavation could result in stress redistribution and concen-
tration of surrounding rockmass. Once local brittle failure occurs, the accumulated
energy was quickly released, caused easily a rockburst.

There was a close relationship between the occurrence of a rockburst and the
characteristics of in situ stress concentration. Under the same geological conditions,
high stress was concentrated in the local rock. Some rock zones had instead low
crustal stress levels. An intact rock with high crustal stress usually had a high elastic
modulus, which meaned a large capacity to store strain energy. High stress loca-
tions were especially prone to occur rockbursts, especially zones not in a hydro-
static status. In the stress concentration zones, most rockbursts were attributable to
the discordance of three dimensional stresses, which leaded to the shear failure of
rock, rapid energy release and rockburst.
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Deformations within rockmass were dominated by elastic strain, and most of
brittle rock with high strength belonged to this category. Conversely, rockmass
dominated by plastic deformation could store less energy. In general, high-strength,
brittle rock at underground engineering sites was most likely to induce rockburst.

With respect to energy, rock deformation and failure was the result of energy
dissipation and release. The relationship between the dissipated energy and released
energy was analysed along the uniaxial loading path; therefore, it might be an
effective method that rockburst tendency characterized using the energy index. The
deformation characteristics prior to rock failure could be approximately captured by
the stress-strain behaviour (Müller 2007).

Rockburst tendency was used to characterize the risk and intensity of these
events. The severity could be estimated using different quantitative or qualitative
methods. Generally, rockburst intensity was divided into four levels, namely, strong
rockburst, moderate rockburst, weak rockburst, and none.

Most scholars studied rockburst tendency using the mechanical properties of
field rocks, while some others believed that the stress status of surrounding rock-
mass was more critical. In the previous literature, one or more factors were used to
formulate variables to evaluate rockburst tendency (Wang et al. 2015). Some factors
adopted here were listed in Table 8.1. Rockburst tendency was associated most
often with rc and rh, and followed by r1 and Wet.

There was an extremely complex nonlinear relationship between rockburst and
its influencing factors. The selection of rockburst tendency evaluation factor should
reflect the basic characteristics of rock and combine the various indexes.

8.2.2.2 Critical Factors

There was a complicated, nonlinear relationship between rockburst and its induced
factors. In order to make effective prediction of rockburst, multiple variables were
considerated by the integrated indexes. The uniaxial compression strength rc and

Table 8.1 Impact factors of
rockburst tendency

Scholars Impact factors

r1 rh rl rc rt Wet

Russenes (1974) √ √

Turchaninov (1981) √ √ √

Hoek and Brown
(1980)

√ √

Barton (1974) √ √ √

Kidybinski (1981) √

Tao (1987) √ √

Xu (2002) √ √

Wang (1998) √ √

Zhang (1991) √ √ √
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uniaxial tensional strength rt were the main factors influencing the mechanical
properties of rocks. The rock strength-stress ratio Rb, that is, the brittleness coef-
ficient, could be applied to predict rockburst tendency. Generally, larger Rb values
were associated with greater rockburst risks. Where Wet was determined by the
uniaxial load/unload curve. Obtaining the load/unload path, rock was usually loa-
ded to 70–80% peak stress, and then unloaded to zero. Wet equaled to the ratio of
released energy to the dissipated energy along the load/unload path. As shown in
Fig. 8.1, Usp was the area between the loading path, and Ust was the area under
unloading path, and the energy indexWet was calculated as the area ratio Usp/Ust, as
shown in Fig. 8.1.

This elastic energy release index of rocks was used to evaluate rockburst ten-
dency. Moreover, the axial stress status of surrounding rockmass was taken into
account using Russense’s criterion Rt, which also greatly influenced the risk of
rockburst. Multi-paramters, such as physical and mechanical properties, the elastic
energy release index, and the stress in the initial rockmass, were considered from
different perspectives in these methods. A number of single-variable methods were
widely recognized and applied, and three of them are listed in Table 8.2.

Fig. 8.1 Energy index of rockburst testing. From Kidybiński (1981)

Table 8.2 Three classic discriminants for rockburst tendency

Methods Formulas Rockurst grades criterion

No Weak Medium Strong

Rock brittleness
index

Rb ¼ rc
rt

>40.0 26.7–
40.0

14.5–
26.7

<14.5

Russenses’s method Rh ¼ rh
rc
rh ¼ r1 � r3 <0.2 0.2–0.3 0.3–0.55 >0.55

Kidybinski’s method Wet ¼ Usp

U st0
<2.0 2.0–3.5 3.5–5.0 >5.0
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The grading criteria for the different methods were presented on Table 8.2. Each
row represented a different method, and the columns gave the criteria within each
for grading rockbusts into the four intensity levels. Three indexes Rb, Rh and Wet

were used as the critical factors in this book.

8.3 Predicting Model of Rockburst Based on Fuzzy
Matter-Element Theory

8.3.1 Fuzzy Matter-Element and Composite Fuzzy
Matter-Element

For a given object with M items to be evaluated and the characteristic C is x, the
sequential matter-element R ¼ M;C; xð Þ can be constituted. Assumed that x is
fuzzy, M has n characteristics C1;C2; . . .;Cn and the corresponding n values are
x1; x2,. . .; xn; R is called n-dimensional fuzzy matter-elements. If n dimensional
matter elements are combined with m items together, it is a n-dimensional com-
posite fuzzy matter element Rnm, which can be expressed as:

Rnm ¼

M1 M2 � � � Mm

C1 lðx11Þ lðx12Þ � � � lðx1mÞ
C2 lðx21Þ lðx22Þ � � � l x2mð Þ
..
. ..

. ..
. � � � ..

.

Cn lðxn1Þ lðxn1Þ � � � lðxnmÞ

2
666664

3
777775

ð8:8Þ

where Rnm is n-dimensional matter element for m items, Mi is the ith item (i = 1,2,
…,m), Cj is the jth characteristic (j = 1,2,…,n), lðxijÞ is the fuzzy value of xij,
which is the corresponding value for M0

is j-th characteristic Cj. In this study, is
lðxijÞ is standardized using the principle of preferable fuzzy membership grade,
which refers to the following methods:

The larger the more optimal model: lij ¼ Xij=maxXij

The smaller the more optimal model:

lij ¼
minXij

Xij
ð8:9Þ

where Xij the value of corresponding characteristics j of i-th item; max Xij, min Xij

refer to the maximum and minimum value of all Xij, respectively.
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8.3.2 Standard Fuzzy Matter-Element and Difference
Square Composite Fuzzy Matter-Element

Standard fuzzy matter-element R0n is the maximum or minimum value of preferable
membership grade for each evaluation method. In this chapter, the maximum value
is the optimal value, which also means the preferable membership grade for each
index is 1. Dij i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;mð Þ is the square sum of element dif-
ference between standard fuzzy matter-element R0n and composite fuzzy
matter-element Rnm. The difference square composite fuzzy matter-element is Dij,

namely Dij ¼ ðl0j � lijÞ2, which can be expressed as:

Dij ¼

M1 M2 � � � Mm

C1 D11 D12 � � � D1m

C2 D21 D22 � � � D2m

..

. ..
. ..

. � � � ..
.

Cn Dn1 Dn2 � � � Dnm

2
666664

3
777775

ð8:10Þ

8.3.3 Weight Coefficients Determined by Entropy Method

Entropy theory is an objective weighting method that entropy value reflects the
chaos level of data. The smaller the entropy value, the smaller the chaos level of
data. Therefore, information entropy can be used to evaluate the order degree and
utility of obtained information, namely it is to determine the index weight by a
judgment matrix constituted by an array of evaluation indexes. It makes the
assessment more realistic because it can eliminate human disturbance in the cal-
culation of each index weight. The calculation steps are described as follows (Cai
1994):

(1) Constructing a judgment matrix with n evaluation indexes for m matters

R ¼ ðxijÞnm ði ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;mÞ ð8:11Þ

(2) Normalizing judgment matrix to get the normalized judgment matrix B

bij ¼ xij � xmin
xmax � xmin

ð8:12Þ
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where xmax and xmin are the most satisfied and the most unsatisfied value for dif-
ferent matters under same method, respectively. For example, the smaller the value
the more satisfied or the larger the value the more unsatisfied.

(3) According to the definition of entropy for n evaluation indexes of matters, the
entropy of evaluation indexes is defined as

Hi ¼ �1
lnm

Xm
j¼1

ðfij ln fijÞ

fij ¼ 1þ bijPm
j¼1 1þ bij

� � ði ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;mÞ ð8:13Þ

(4) Calculating entropy weight w

wi ¼ 1� Hi

n�Pn
i¼1 Hi

ð8:14Þ

where
Pn

i¼1 wi ¼ 1

8.3.4 Closeness Degree and Comprehensive Evaluation

Closeness degree is the proximity degree between the evaluated samples and a
standard sample. Therefore, each evaluation scheme can be sequenced based on the
closeness degree, or be classified according to the closeness degree of standard
value. Considering the detailed evaluation significance, the Euclid closeness degree
qHj is used as the evaluation standard, using (�, +) algorithm (first by multiplica-
tion, then by addition) to calculate and build up closeness degree for the composite
fuzzy matter-element RqH (Cai 1994):

RqH ¼ M1 M2 � � � Mm

qHj qH1 qH2 � � � qHm

� �
ð8:15Þ

where qHj ¼ 1� ðPn
i¼1 KiDijÞ1=2(j = 1,2,…,m), and Ki is the relational degree.
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8.4 Conclusions

By considering multiple factors, the new model can overcome the limitations of
single-factor methods. In this chapter, most of parameters and methods were con-
sidered in order to eliminate subjective judgments. These variables included rock
brittleness index Rb, Russense’s Rh, Kidybinski’s Wet, the surrounding rockmass
stress r1 and rh, and rock strength rc and rt.

The occurrence of rockburst was correlated not only with the physi-mechanical
parameters of rockmass, but also with the surrounding mining environment. This
research was intended to advance the development of predicting rockburst model
based on fuzzy matter element method and measurement data.

Proposed model was based on fuzzy matter-element analysis, combining with
the concept to Euclid closeness degree, an integrated rockburst multi-index pre-
dicted model was proposed. In this model, the rock brittleness (B), the major
principal stress (r1), rock integrity (kV ) and impact energy parameters (WCF) were
all considered. At the same time, the entropy theory was introduced to determine
the weight of each evaluation index, preventing the subjectivity of weight distri-
bution. Finally, we recommend the fuzzy matter-element model on predicting
rockburst method in field.

References

Adoko AC, Gokceoglu C, Wu L (2013) Knowledge-based and data-driven fuzzy modeling for
rockburst prediction. Int J Rock Mech Min Sci 61:86–95

Barton N, Lien R, Lunde J(1974) Engineering classification of rock masses for the design of tunnel
support. Rock Mech 6(4):189–236

BlakeW, Hedley DGF (2003) Rockbursts: case studies fromNorth American hard-rockmines. SME
Cai W (1994) Matter element model and its application. Scientific and Technical Documents

Publishing House, Beijing, pp 256–68 (in Chinese)
Canadian Rockburst Research Program (1996) Rockburst research handbook: a comprehensive

summary of five years of collaborative research on rockbursting in hard rock mines. CAMIRO
Mining Division, CRRP, Sudbury ON

Chen HJ, Li NH, Nie DX, Shang YQ (2002) Artificial neural network model for prediction of
rockburst. Chin J Geotech Eng 24(2):229–232 (in Chinese)

Chen HQ, Wang N, Sheng YR (2007) Application of fuzzy matter element model in evaluation of
water security based on Euclid approach degree. J Xi’an Univ Technol 23:37–42 (in Chinese)

Cook NGW (1965) The failure of rock. Int J Rock Mech and Min Sci Geomech Abstr Pergamon 2
(4):389–403

David KWN, Cai W (1997) Treatingnon-compatibility problem from matter element analysis to
extenics. ACM Sigice Bull 22:2–9

Dou LM, Lu CP, Mu ZL (2009) Prevention and forecasting of rock burst hazards in coal mines.
Min Sci Tech (China) 19(5):585–591

Gao HX (1999) Multivariate statistical analysis application. Beijing University Press, Beijing
Gong FQ, Li XB (2007) Rockburst intensity and grading forecast based on Byesian distance

discriminant analysis method. Chin J Rock Mech Eng 26(5):1012–1018
He YX (2011) Risk assessment of urban network planning in china based on the matter–element

model and extension analysis. Int J Electr Power Energy Syst 33:775–782

8.4 Conclusions 159



Heckerman D (1990) Probabilistic similarity networks. Networks 20(5):607–636
Hedley DGF (1992) Rockburst handbook for Ontario hardrock mines. Canmet SP92-1E
Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Geoenviron

Eng 106(ASCE 15715)
Hou FL, Wang MQ (1989) Criterion and prevention measures on rockburst in circular tunnel. In:

Chinese Society for Rock Mechanics Engineering, Proceedings of the 2th National Rock
Mechanics and Engineering. Knowledge Press. Beijing

Jensen FV, Kjærulff U, Kristiansen B (2001) The SACSO methodology for troubleshooting
complex systems. AI EDAM 15(04):321–333

Kemmerer B, Mishra S, Shenoy PP (2002) Bayesian casual maps as decision aids in venture
capital decision making: methods and applications. Acad Manage, pp C1–C6

Kidybiński A (1981) Bursting liability indices of coal. Int J Rock Mech Min Sci Geomech Abstr
18(4):295–304

Li J, Qian YH, Da PL (2011) The rockburst experiment usage of similar material and the
mechanism of the energy releasing. Adv Mater Res 295:378–82

Liu ZJ, Li JL (2007) Comprehensive prediction method for rockburst based on fuzzy probability
theory. J Yangtze River Sci Res 24:42–45

Liu D, Zou Z (2012) Water quality evaluation based on improved fuzzy matter–element method.
J Environ Sci 24(7):1210

Marek U (2009) Monitoring of methane and rockburst hazards as a condition of safe coal
exploitation in the mines of Kompania Weglowa SA. Proc Earth Planet Sci 1(1):54–59

Marian T (2011) Directions of changes of hard coal output technologies in Poland. Min Sci Tech
(China) 21(1):1–5

Müller L (2007) Fundamentals of rock mechanics. Blackwell, London
Patynska R, Kabiesz J (2009) Scale of seismic and rock burst hazard in the Silesian companies in

Poland. Min Sci Tech (China) 19(5):604–608
Ren XS, Yu XL (1999) Multivariate statistical analysis. China Statistics Press, Beijing
Russenes BF (1974) Analyses of rockburst in tunnels in valley sides. Norwegian Institute of

Technology Google Scholar
Singh SP (1988) Burst energy release index. Rock Mech Rock Eng 21(2):149–155
Singh SP (1989) Classification of mine workings according to their rockburst proneness. Min Sci

Tech 8(3):253–262
Srinivasan C, Arora SK, Yaji RK (1997) Use of mining and seismological parameters

aspremonitors of rockbursts. Int J Rock Mech Min Sci 34:1001–1008
Stewart RD (1995) Development of seismic risk assessment method for application to

rockburst-prone sites in deep-level South African gold mines. Int J Rock Mech Min Sci
Geomech Abst, pp 32297A–297A(1)

TaoZY(1987)Rockburst determination in high in-situ stress region. J PeopleYangtzeRiver 25(5):32
Tan Y, Sun GZ, Guo Z (1991) A composite index K(rb) criterion for the ejection characteristics of

the burst rock. Chinese J Geol 2: 193–200
Turchaninov IA, Markov GA (1981) Conditions of changing of extra-hard rock into weak rock

under the influence of tectonic stresses of massifs. ISRM International Symposium
Wang YH, Li WD, Li QG, Xu Y, Tang GH (1998) Comprehensive evaluation method of fuzzy

mathematics for the prediction of rockburst. Chinese J Rock Mech Eng 5(17):493–501
Wang CL, Wu AX, Lu H et al (2015) Predicting rockburst tendency based on fuzzy

matter-element model. Int J Rock Mech Min Sci 75: 224–232
Weidl G, Madsen AL, Dahlquist E (2003) Object oriented Bayesian networks for industrial

process operation. In: First Bayesian Applications Modeling Workshop, http://www.intel.com/
research/events/UAI03_workshop

Wiebols GA, Cook NGW (1968) An energy criterion for the strength of rock in polyaxial
compression. Int J Rock Mech Min Sci Geomech Abstr 5(6):529–549

Xu LS, Wang LS, Li YL (2002) Study on mechanism and judgement of rockbursts. Chinese
J Rock Soil Mech 23:300–303

160 8 Predicting Model of Rockburst Based on Nondeterministic Theory

http://www.intel.com/research/events/UAI03_workshop
http://www.intel.com/research/events/UAI03_workshop


Yu HC (2009) Prediction method of rockburst proneness based on rough set and genetical gorithm.
J Coal Sci Eng 15(4):367–373

Zhang JS, Lu JY, Jia YR (1991) Study on tunnel rockburst in Tian Sheng Qiao sub-hydropower
station. J Hydroelectric Power (10):34–37

Zhu JR (2010) Application of fuzzy matter–element model based on coefficients of evaluation in
rockburst (Natural Science Edition). J Hunan Univ Sci Technol

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the book’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

References 161

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

	8 Predicting Model of Rockburst Based on Nondeterministic Theory
	8.1 Introduction
	8.2 Predicting Model of Rockburst Based on Bayesian Theory
	8.2.1 An Overview of Bayesian Theory
	8.2.1.1 Empirical Probability
	8.2.1.2 Mean Values and Covariance
	8.2.1.3 Empirical Discriminant
	8.2.1.4 Posterior Probability and Verification

	8.2.2 Key Factors of Rockburst Tendency
	8.2.2.1 Induced Factors of Rockburst
	8.2.2.2 Critical Factors


	8.3 Predicting Model of Rockburst Based on Fuzzy Matter-Element Theory
	8.3.1 Fuzzy Matter-Element and Composite Fuzzy Matter-Element
	8.3.2 Standard Fuzzy Matter-Element and Difference Square Composite Fuzzy Matter-Element
	8.3.3 Weight Coefficients Determined by Entropy Method
	8.3.4 Closeness Degree and Comprehensive Evaluation

	8.4 Conclusions
	References


