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Abstract Feedback turbulence control is a rapidly evolving, interdisciplinary field

of research. The range of current and future engineering applications of closed-loop

turbulence control has truly epic proportions, including cars, trains, airplanes, noise,

air conditioning, medical applications, wind turbines, combustors, and energy sys-

tems. A key feature, opportunity and technical challenge of closed-loop turbulence

control is the inherent nonlinearity of the actuation response. For instance, excitation

at a given frequency will affect also other frequencies. This frequency crosstalk is

not accessible in any linear control framework. This paper will address these nonlin-

ear actuation mechanisms in three parts. First, success stories of human learning in

turbulence control are presented, i.e. cases in which the nonlinear actuation mech-

anism has been modelled and understood. A large class of literature studies can be

categorized in terms of surprisingly few mechanisms. Second, we discuss model-

free machine learning control (MLC) and selected applications. MLC detects and

exploits the winning actuation mechanisms in the experiment in an unsupervised

manner. In all studies MLC has reproduced or outperformed existing optimized con-

trol strategies. Finally, future directions of turbulence control are outlined. Methods

of machine learning are a disruptive technology will contribute to rapidly acceler-

ating progress in turbulence control—both for performance and for physical under-

standing.
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1 Closed-Loop Turbulence Control—Applications
and Challenges

Features of turbulent flows have a large effect on the performance of engineering

applications, like ground, maritime or airborne transport and energy systems. In

numerous studies, feedback control has been shown to change these features employ-

ing small modern actuators and corresponding sensors. Thereby the performance has

been significantly improved. Examples include drag reduction of cars and trucks,

lift increase of airplanes, gust mitigation of wind turbines and NOX reduction in

combustors—just to name a few.

A key challenge for control design is the inherent nonlinearity of turbulence

dynamics. For instance, excitation at a given frequency will affect also other fre-

quencies. Dominant vortex shedding at one frequency may be mitigated by a low-

or high-frequency actuation [1]. This frequency crosstalk is not accessible in any

linear control framework and has many qualitatively different characteristics [2]. Yet,

virtually all turbulence control experiments exploit frequency crosstalk [3].

This contribution addresses these nonlinear actuation mechanisms in three parts.

First (Sect. 2), success stories of turbulence control are presented in which the non-

linear actuation mechanism has been modelled. Second (Sect. 3), we discuss machine

learning control (MLC) and selected applications. MLC detects and exploits the win-

ning actuation mechanisms in the experiment in an unsupervised model-free manner.

Finally (Sect. 4), future developments of turbulence control are outlined.

2 Control with Human Learning—Building Blocks
of Understanding

Myriad control design method have been proposed for flow control. These meth-

ods can be attributed to numerous categories: model-free, model-based with black,

gray and white box models, and open-loop versus adaptive feedback versus in-

time response—just to name a few. Yet, only few actuation mechanisms have been

exploited in the vast majority of flow control applications and the chosen control

design is typically a corollary to that mechanism:

∙ Opposition control (direct, in-time): This mechanism is encapsulated in the sim-

ple example

da∕dt = a + b, (1)
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where a represents the state with unstable fixed point as = 0 and b is the con-

trol. Obviously b = −2a stabilizes the plant. Several skin friction reductions [4]

and Tollmien-Schlichting wave suppressions [5] are based on this mechanism: the

wall-normal velocity is counteracted by a membrane or by suction/blowing.

∙ Phasor control (direct, in-time): Let us consider following dynamical system

coupling a self-amplified amplitude limited oscillator (a1, a2) and a stable linear

oscillator at 10-fold frequency (a3, a4):

da1∕dt = 𝜎a1 − a2, da3∕dt = −0.1a3 − 10a4,
da2∕dt = 𝜎a2 + a1 + b1, da4∕dt = −0.1a4 + 10a3 + b3,
𝜎 = 0.1 − a21 − a22 − a23 − a24 − b2.

(2)

Without control, b1 = b2 = b3 ≡ 0, the first oscillator converges to the limit cycle

a21 + a22 = 0.1with unit frequency, while the second one vanishes, a3 = a4 = 0. We

will ignore the stable oscillator (a3, a4) unless it is excited with b3. The first oscil-

lator can be stabilized with phasor control b1 = −0.4 a2. This can be considered

as opposition control for the evolution equation of the energy E = (a21 + a22)∕2.

Many cavity noise mitigations [6] and low-Reynolds number wake stabilizations

[7, 8] belong to this category.

∙ Constant forcing (indirect, open-loop): The first oscillator of (2) may be sta-

bilized with b2 = 0.2. Physically, this corresponds to an enforced change of the

baseflow towards a more stable regime. Such a stabilization has, for instance, been

realized for mitigating vortex shedding behind high-lift airfoil via Coanda blowing

[9].

∙ Periodic forcing at high or low frequency (indirect, open-loop): The first oscil-

lator of (2) can also be stabilized exploiting the frequency crosstalk with the stable

one: Now b = cos 10t can be seen to excite the second oscillator which stabilizes

the first one via 𝜎. Physically, this corresponds to baseflow change via an induced

Reynolds stress at a new frequency, ideally exploiting a weakly damped instability.

The actuation frequency may be higher or lower than the natural one. Such high-

and low-frequency stabilization of vortex shedding has been observed numerous

times for wakes, jets and shear-layers [1]. Figure 1 illustrates the drag reduction

by low-frequency forcing of a D-shaped cylinder and high-frequency actuation of

an Ahmed body.

We shall not pause to list obvious variations, like a closed-loop destabilization in

the last example. In addition, adaptive generalizations, e.g. extremum or slope seek-

ing, may allow to adjust open- and closed-loop control to slowly varying operating

conditions. Once, the actuation mechanism and corresponding model is identified,

the nonlinear control design is typically straightforward. We refer to the literature

for the Navier-Stokes based derivation of such models and examples, e.g. our review

article [3] and our books [12, 13]. We also refer to exquisite reviews on specific

topics, like linear control [6, 14, 15], wake control [16] and actuators [17].

The above discussion focusses on nonlinear dynamical models. An alternative

approach follows Brockett’s idea of control design for the equivalent linear
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Fig. 1 Flow visualization behind bluff bodies with significant drag reductions in wind-tunnel

experiments. Left: D-shaped cylinder (ReD = 40, 000) with symmetric low-frequency forcing [10].

The D-shaped body is indicated in gray, the red squares mark the location of the pressure sensors

and the blue arrows indicated the employed zero-net-mass-flux actuators. The flow is visualized

with smoke without forcing (top) and with forcing (bottom). Note the delayed vortex shedding by

actuation. Right: Ahmed body (ReH = 3 × 105) with high-frequency Coanda blowing at all four

rearward edges [11]. The mean flow is displayed in the near-wake symmetry plane from PIV data

without forcing (top) and with forcing (bottom). The top right figure indicates the displayed flow

region (brown) and the Ahmed body (gray). Note the more streamlined form of the forced wake

region (fluidic boat tailing). The subfigures are adapted from [3, 11]

Liouville equation for the probability distribution [18]. A practical data-driven real-

ization is based on clustering of snapshot data and the resulting Markov transition

model [19, 20].

3 Control with Machine Learning—Often Faster, More
Flexible and Better

The bald eagle can perform impressive flight maneuvers under gusty wind condi-

tions with closed-loop control—yet without apparent knowledge of Navier-Stokes

equations and control design. Nature has found another strategy: control design by

evolution with smart trial and error. This approach has been pioneered by Rechen-

berg [21] and Schwefel [22] for shape optimization at the TU Berlin over 50 years
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Fig. 2 Principle sketch of MLC using genetic programming. MLC consists of a fast inner feedback

loop for testing the performance J and a slow outer learning loop for evolving the control law K.

After the learning phase, the best individual of the last generation is taken as control law

ago. Nature’s way of control design is mimicked in the recently discovered Machine
Learning Control (MLC). Control design is framed as regression problem of sec-
ond kind: Find the control law b = K(s, t) which minimizes the cost function J,

K⋆ = argminK J [K(s, t)]. Here, t represents time, s comprises the sensor signals and

b analogously the actuation commands. The chosen form of the control law includes

periodic excitation b = B cosΩt, multi-frequency forcing, sensor-based feedback

b = K(s) and combinations thereof.

Genetic programming [23] is chosen as a powerful regression technique for gen-

eral nonlinear control laws of unknown structure. It is particularly suited for explor-

ing a complex J landscape with several local minima. MLC with genetic program-

ming as regression method consists of following steps (see also Fig. 2):

∙ First generation: Let b = K(1)
i , i = 1,… ,Ni be random control laws, also called

individuals. A typical population size is Ni = 100. These control laws are tested

and graded in the plant J(1)i . Without loss of generality, the individuals are sorted

after testing, J(1)1 ≤ J(1)2 ≤ … ≤ J(1)Ni
. The first step of genetic programming is a

simple Monte-Carlo search.

∙ Second generation: The second generation b = K(2)
i , i = 1,… ,Ni is created from

the first by three stochastic genetic operations mimicking natural selection:

Crossover of two individuals shall produce better individuals; mutations shall

explore potentially new unpopulated minima; and replication shall memorize suc-

cessful individuals. In addition, elitism copies the best Ne individuals directly in

the new generation. Typically, only the best individual (Ne = 1) is saved. The

selection probabilities of crossover, mutation and replication are typically chosen

to be Pc = 0.7, Pm = 0.2 and Pr = 0.1.

∙ Next generations and termination: Analogously, more generations are produced

until a convergence or another stop criterion is reached. In all experiments, con-

vergence is reached before Ng = 10 generations. The best individual KNg

1 of the

last generation yields the desired MLC law.

Genetic programming has numerous parameters. Fortunately, a single set of param-

eters was found to produce the winning control in over a dozen different experiments
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[13]. In addition, the MLC laws have been found to be reproducible modulo small

unavoidable uncertainty.

MLC has been studied in a number of experiments.

∙ Mixing layer energetization (TUCOROM wind tunnel, France [24]). In this

first MLC experiment, a turbulent mixing layer is forced upstream with 96 syn-

chronously operated streamwise fluid jets (b) in the separating plate and monitored

downstream with a vertical array of 24 hot-wire probes s. The Reynolds number

based on initial mixing layer thickness is 500, yielding a laminar boundary layer

for the learning phase. The testing for off-design conditions is done at Re = 2000
with a turbulent boundary layer. The goal J is to increase the mixing layer width

as measured by the hot-wire rag. The best periodic forcing yields a 55% increase

of shear-layer width. MLC yields reproducibly a direct sensor feedback b = K(s′)
which increases this width by 67% and at only 54% of cost of optimal periodic

forcing. In addition, MLC is more robust to large changes of the freestream veloc-

ities as compared to the periodic benchmark. An important enabler of this control

is the feedback of the velocity fluctuations to reduce sensitivity to slow baseflow

changes. MLC converges after few generations with 100 individuals. The actua-

tion mechanism is based on phase synchronization (phasor control). Despite the

simple actuation mechanism, we could not identify a linear ERA-OKID model for

the actuation response—even in a narrow frequency range: Sensor response could

hardly be correlated with the actuation command.

∙ Reduction of a circulation bubble behind a backward facing step (PMMH
water tunnel, France [25]). In this MLC experiment, a flow over backward-facing

step is forced upstream with slot actuator (blowing and suction) and monitored

in the dead-water region with in-time PIV. The sensor signal is the size of the

reverse flow region, which is ‘blind’ to the Kelvin-Helmholtz shedding phase.

The Reynolds number based on step height is 1350 for the learning phase and is

varied between 900 and 1800 for testing off-design conditions. The goal is to min-

imize the recirculation zone with an actuation penalty. MLC yields a direct sensor

feedback b = K(s) which excites a low-frequency flapping mode. The cost is sim-

ilar to an optimal periodic forcing exciting the Kelvin-Helmholtz shedding for the

reference condition. However, MLC is much more robust for a range of (untested)

oncoming velocities resulting in cumulative cost J = 0.43 (MLC) versus J = 0.77
for the periodic benchmark. J = 1 would correspond to the unforced flow at refer-

ence conditions. MLC is converged after 8 generations with 500 individuals. The

actuation mechanism exploits frequency crosstalk with feedback destabilization

of the flapping mode at low frequency.

∙ Drag reduction of a car model (wind tunnel Beton, PPRIME, France [26]).
The drag of a wall-mounted Ahmed body at ReH = 3 × 105 is reduced with 4 inde-

pendent on/off Coanda jets at the rear edges (b ∈ R4
). The flow is sensed with

12 pressure sensors distributed over the rear side (s ∈ R12
). The optimal peri-

odic forcing is found to be at high frequency and low duty cycle, yielding 19%

drag reduction at an estimated actuation power of only 1/7 of the saved drag

power [11]. MLC rapidly converges with a population size Ni = 50 in Ng = 5
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generations (250 runs). MLC depends on the assumed control law. Sensor-based

feedback b = K(s, s′) reproduces high-frequency forcing with similar drag reduc-

tion. Note that the sensor signals have been decomposed into a short-term mean s
(not used by MLC) and a fluctuation s′. The performance is remarkable since the

time delay from actuation to sensing is two (!) periods and since the signature of

high-frequency actuation is below the noise level in most sensors. MLC chooses

the only sensor with good high-frequency signal to noise level, i.e. performs sen-

sor selection for the optimal control law. With the ansatz b = K(s′, h(t)), h being

a harmonic signal at optimal high-frequency forcing, MLC chooses the slightly

better performing open-loop control. Given an open-loop multi-frequency ansatz

b = K(h(t)), MLC improves drag reduction by 22% with a 2-frequency forcing.

The employed actuation mechanism is based on frequency crosstalk in all cases.

∙ Separation mitigation of a turbulent boundary layer (wind tunnel, LML and
PRISME, France [13, 27]). The separation of a turbulent boundary layer over

a smooth ramp is mitigated by an upstream array of synchronously operated jets

in two geometrically similar wind-tunnel experiments at different Reynolds num-

bers based on step height: 13,000 at LML and 130,000 at PRISME. The flow is

monitored with skin-friction and pressure sensors. The goal is to mitigate the sep-

aration, as measured by a cost function J with actuation penalization. The optimal

open-loop forcing laws are found to be constant blowing (LML) and periodic actu-

ation (PRISME). The ansatz for the control laws is sensor feedback b = K(s). The

optimal MLC laws found intermittent forcing (LML) and high-frequency actua-

tion (PRISME)—outperforming the optimized open-loop benchmark.

∙ Other MLC studies. Applications to other plants with the author include:

– Stabilization of a noisy unstable oscillator [13]. Here the optimal control solu-

tion is almost exactly reproduced using random filters.

– Chaos maximization of a Lorenz system [28].

– Stabilization of two coupled oscillators, Eq. (2) [13].

– Stabilization of three nonlinearly coupled oscillators [26].

– Energetization of a 2D mixing layer in a direct numerical simulation.

– Lift-increase of a NACA0015 airfoil with an emulated plasma actuator in a

direct numerical simulation. Intriguingly, MLC found intermittent actuation

leading to a series of small vortices moving over the top side of the airfoil. This

actuation increases lift beyond constant and periodic forcing while reducing the

actuation power [Joint work with H. Fukumoto and A. Oyama].

– Stabilization of a fluidic pinball in a wind-tunnel experiment [29].

– Mixing increase behind a backward-facing step in a wind-tunnel experiment

[31].

– Drag reduction of a D-shaped cylinder in a wind-tunnel experiment [30].

– Symmetrization of the Ahmed body wake to mitigate bimodal behavior. The

problem and benchmark feedback controller are described in [32].

In all cases, MLC has reproduced or outperformed the optimized benchmark con-

trol in some 1,000 test runs using the same parameters of genetic programming.
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In the mentioned studies, we have used genetic programming as powerful regres-

sion method for arbitrary nonlinear control laws. MLC may also be performed with

other regression techniques. Starting from an assumed linear control law, the gains

may also be optimized with a simpler genetic algorithm [33]. A further simplifica-

tion is achieved in the rare case that the optimal actuation for given flow state can

be computed with a full-state simulation. In this case, the search for a mapping from

known sensor signals to know actuation commands constitutes a regression problem
of the first kind. A sensor-based feedback law may, for instance, be obtained with a

neural network [34].

4 Conquering Terra Incognita—Paradigm Shifts
by Machine Learning

Presented results indicate that methods of machine learning will dramatical change

and accelerate progress in turbulence control in the coming years. Here are few

expected future directions.

∙ The control laws to be explored will go far beyond constant and periodic actuation

(or small variations thereof). MLC makes it easy to explore control laws of the

form

b = K(s,h,n)

where h comprises harmonic functions and n noise terms for stochastic forcing.

∙ The traditional paradigm: ‘From understanding tomodeling to control’will largely

be replaced by the new paradigm ‘From control to modeling to understanding’.
The winning control tends to be too complex to be predicted by any model. More-

over, identified models will be much more powerful and predictive if they incor-

porate many different control laws.

∙ Also modeling will be strongly affected. Modern data-driven regression tech-

niques may allow to derive simple human-interpretable dynamical models from

data. For instance, SINDy [35] has been shown to derive first-principle based gen-

eralized mean-field models—similar to (2)—from properly prepared simulation

data. The traditional paradigm ‘From first principles to modes to dynamics’ is

likely to be replaced by the new paradigm ‘From (controlled) dynamics to modes
(or more general flow estimators) to a first-principles based understanding’. The

old paradigm assumes, for instance, that the optimal actuation mechanism is cor-

rectly predicted. However, the mentioned MLC studies have, more oven than not,

surprised with unexpected better mechanisms. We show the potential of the new

paradigm for a transient wake flow [36].

∙ As consequence of machine-learned models, we can expect many new qualita-

tively different nonlinear dynamics models enabling more a powerful control.

∙ A key task of turbulence control includes to estimate achievable performance with

control for a new configuration and to predict the right choice and location of
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actuators. These are likely to remain a challenging topic in the first principles

domain until the performance data of actuators in different configurations is

becoming very rich.
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