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Abstract The authors numerically investigate the influence of the forced oscilla-
tion upon the three-dimensional thermal convection in a cubic cavity heated from
one wall and chilled from its opposite wall in the gravity and zero-gravitaty fields
without/with a forced sinusoidal oscillation. The direction of the forced oscillation
is parallel to the temperature gradient direction. In addition, the direction is parallel
to the direction of the gravity, in the gravity field. The authors assume incom-
pressible fluid with a Rayleigh number Ra = 8.0 × 104 in the gravity field without
the forced oscillation or Ra = 1.0 × 104 in the gravity field and a Prandtl number
Pr = 7.1 (water). The forced-oscillation parameters are a vibrational Rayleigh
number Raη and a non-dimentional forced-oscillation frequency ω. In the gravity
field, Raη = 1.0 × 105 and ω = 5.0 × 100, and in the zero-gravity field, Raη =
1.1 × 105 and ω = 5.0 × 100. As a result, supposes reports a new flow structure
in laminar and steady thermal convection, which consists of a pair of trident cur-
rents, namely, three ascending streams and three matching descending streams in a
cube heated from a bottom wall and chilled from its opposite top wall. This flow is
rather robust. Then, it can be observed in a stationary cube under the gravity, and
can be observed in an oscillating cube under the gravity or zero gravity besides.
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1 Introduction

Thermal convection is a key phenomenon for heat and mass transfer and mixing.
Bénard [1] considered a horizontal layer. After Bénard, a lot of researchers have
studied practical problems of thermal convection.

Here, we considers thermal convection in a cavity (or a container). One of the
simplest cavities is a cube. Especially for thermal convection in a cube, for example
Pallares et al. [2–4] numerically showed three-dimensional flow structures in the
cubic cavity for moderate Rayleigh numbers Ra < 6.0 × 104. They reported seven
different steady-flow structures; namely, four kinds of single-roll structures (re-
ferred to as S1, S2, S3 and S7), two kinds of four-roll structures (referred to as S5
and S6), and one kind of a toroidal-roll structure (referred to as S4).

In this report, we reports a new flow structure in laminar and steady thermal
convection as one facet of conductive diversity. This flow structure involves three
downwelling and three matching upwellings in a cube heated from below and
chilled from above, as well as our past studies [5–8] This flow structure is not
transient but stable. So, it is commonly observed in various situations, such as in a
stationary cube under the gravity and in an oscillating cube under the gravity or
zero gravity besides.

2 System Modelling

2.1 Model and Governing Equation

Figure 1 shows the current model. The model is the flow in a cubic cavity with a
length scale H*. We analyse the thermal convection assuming incompressible flow
with a constant Prandtl number Pr = 7.1 (water) in the non-gravitational field.
A pair of opposed walls are taken to be isothermal, and the temperature one of them
(hereinafter, referred to as a cold wall) is greater than the other (hereinafter, referred

Fig. 1 Computational
domain, together with
coordinate system and
boundary conditions
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to as a hot wall). The four walls beside the cold and hot walls (hereinafter, referred
to as sidewalls) are conductive.

The governing equations are the continuity equation, the dimensionless
Navier-Stokes equations with the Boussinesq approximation and a dimensionless
energy equation. They are as follows;

∇ ⋅ u=0 ð1Þ
Du
Dt

= −∇p+PrΔu+RaηPrT sinωtez ð2Þ

and

DT
Dt

=ΔT ð3Þ

where u= u, v,wð Þ, t, p, T, ez and ω denote velocity vector, time, pressure,
tempera-ture, the unit vector in the z direction and (angular) frequency, respectively.
We the definitions of Raη and Pr in the following subsection.The governing
equations Eqs. (1)–(3) are solved by a finitedifference method based on the MAC
method with the FTCS scheme using a staggeredmesh system.

2.2 Governing Parameter

Non-dimensional governing parameters are as follows;

Raη =
η*β* T*

h − T*
c
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, pr=

ν*

α*
, ω=
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α*
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h −T*
c
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ð4Þ

where β*, ν*and η* denote thermal expansion coefficient, kinetic viscosity and
acceleration amplitude, respectively. In the present study, Pr is fixed to 7.1 (water).
The test ranges of Raη and ω are from 5.0 × 103 to 1.1 × 104 and from 1.0 × 100

to 1.0 × 103, respectively.
As global indicators, we considers such physical quantities as a

spatially-averaged kinetic energy K. These are defined as follows.

K =
1
V

ZZZ
1
2

u2 + v2 +w2� �� �
dxdydz ð5Þ
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3 Results and Discussion

3.1 Flow Structure Sα

Figure 2 shows a result of the present computations for Ra = 8.0 × 104 and
Pr = 7.1, being based on many preliminary computations over wide ranges of
system parameters. The figure is a perspective view looking downward.
Three-dimensional flow structure is visualised by iso-kinetic-energy surfaces of
0.38 × Kmax, where Kmax is the maximum value of kinetic energy K.

Brightness of the surfaces represents the value of w which is shown as a legend
on the lower right of the figure. The flow visualisation based on K is more suitable
for the concerning laminar problem to grasp the whole three-dimentional structure,
than other physical quantities such as velocity vector u, temperature T, vorticity
vector and the second invariant of the velocity-gradient tensor.

From Fig. 2, we can see a pair of trident currents on thermal convection in a
cube, which consist of three ascending streams and three matching descending
streams. we name this flow structure Sα. Until now, this trident convection in a
cube have not been reported, mainly because of the dependency of initial condition.
According to past studies [5, 6], we usually expect another flow structure with two
ascending and two descending streams which is referred to as S5 for Ra = 8.0
104 and Pr = 7.1. Actually, the author observes the S5, if we start our computation
with such an initial condition as the conductive state or if we compute with
very-slowly increasing/decreasing Ra from zero/infinity.

However, this initial-condition dependency does not necessarily mean weak
stability of the trident convection. As an example for this, we can consider the time
development of K for Ra = 8.0 × 104 and Pr = 7.1 in a stationary cube under the
gravity. we regard K as a global indicator representing the systemʼs state. K is
defined by such a physical quantity as a spatially-averaged value of K over the
whole volume of a cube. Then, as initial condition, we use the steady solution of S2
with a relatively-small K =20.2 for Ra = 1.0 × 104 and Pr = 7.1, instead of the
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Fig. 2 Perspective view
(look-down view) of the flow
structure visualised by
iso-kinetic-energy surfaces of
0.38 × Kmax for
Ra = 8.0 × 104 and
Pr = 7.1. The value of w is
represented by gray scale
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S5 or instead of the conductive state. Such time development of K show that the
trident convection steadily and permanently appears at t > 0.06, after the initial
transient process where another flow structure of one ascending and one descending
streams (the S2) is dominant.

As another example to show the durability of the trident convection, we cosider
the thermal convection in an oscillating cube instead of a stationary cubeunder the
gravity or zero gravity. More specifically, the forced sinusoidal oscillationis parallel
to the given temperature gradient direction. Figure 3a is a sample of the
forcedly-oscillating cube under the gravity. Figure 3b is another sample of the
forcedly-oscillating cube under zero gravity. Both the samples are rigorously
periodic except for the first start-up period of computation at t ˂ 2π/ω, while we see
high-frequency fluctuations due to higher harmonics. Then, we consider only the
third period at t = 4π/ω − 6π/ω in each figure. There exist the time-intervals where
K becomes completely zero (or in the conductive state) each forcing cycle. Con-
vective motion always starts with the S4 in each forcing cycle. We can confirm the
appearance of the trident convection S9 at t = (4π + 1.01)/ω − (4π + 2.07)/ω in
Fig. 3a and at t = (4π + 1.49)/ω − (4π + 2.95)/ω in Fig. 3b, together with other
flow structures like the S2, the S4.

4 Conclusions

To summarise, we have reported a pair of trident currents on thermal convection in
a cube. This previously-unidentified flow is rather robust, and can be observed not
only in a stationary cube under the gravity, but also in an oscillating cube under the
gravity and zero gravity. This finding implies a diversity of three-dimensional
Rayleigh-Bénard convection, even if we suppose laminar and steady flow with very
simple boundary condition.

(a) Case I (b) Case II

Fig. 3 Time development of K, together with Ra + Raη sinωt in figure (a) and Raη sinωt in
figure (b). In each figure, denotes K, and denotes Ra + Raη sinωt or Raη sinωt in
figure (a) is at Ra = 1.0 × 104 and the S5. In both the samples, the duration times of the S9 are
effectively long with enough large values of K
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