
Mining Frequent Fuzzy Itemsets Using
Node-List

Trinh T. T. Tran1,2(&), Giang L. Nguyen3, Chau N. Truong4,
and Thuan T. Nguyen1,2

1 Graduate University of Science and Technology—VAST, Hanoi, Vietnam
thuytrinh85@gmail.com, nguyentanthuan2008@yahoo.com

2 Duy Tan University, Da Nang, Vietnam
3 Institute of Information Technology—VAST, Hanoi, Vietnam

nlgiang@ioit.ac.vn
4 Danang University of Technology, Da Nang, Vietnam

truongngocchau@yahoo.com

Abstract. Data mining plays an important in knowledge discovery in data-
bases; many types of knowledge and technology have been proposed for data
mining. Among them, association rule mining is the problem important not only
in data mining task but also in many practical applications in different areas of
life. These previous studies mostly focused on showing the transaction data with
binary values. However, in real-world applications, transactions also contain
uncertain and imprecise data. To solve the above-mentioned problem, fuzzy
association rule mining algorithms are developed to handle quantitative data
using fuzzy set. In this paper, we present proposed algorithm NFFP, an
improved fuzzy version of PPV algorithm for discovering frequent fuzzy
itemsets using Node-List structure.

Keywords: Fuzzy frequent itemsets � Fuzzy sets � Node-List � Quantitative
databases

1 Introduction

Owing to the speedy development of data, in many enterprises, enormous amount of
data have been collected and stored in the database. In the fact, many important
business information is hidden in data, so efficient tools are necessary for acquiring
useful information. For this reason, data mining which is used to find information and
knowledge from the incomplete, unclear data has developed with a variety of tech-
niques. Since being introduced in [1], the technique of association rule mining
(ARM) has received interest by the data mining community and a lot of researchers in
the world. ARM detects interesting associations, correlations, frequent patterns, and
relationships of data values in the transaction databases. One of them, frequent itemset

© Springer Nature Singapore Pte Ltd. 2018
V. Bhateja et al. (eds.), Information Systems Design and Intelligent
Applications, Advances in Intelligent Systems and Computing 672,
https://doi.org/10.1007/978-981-10-7512-4_5

mining (FIM), is an elemental task of this research field. The previous studies in [2–4]
mostly focused on representing the transaction data of binary value that is only con-
cerned about the presence or absence of these items. When dealing with quantitative
data, it is difficult to discover the frequent itemsets with crisp values. To resolve this
issue, the approach of fuzzy set has been applied to handle the quantitative
databaseQuery.

The earlier algorithms used in mining fuzzy association rules are mostly fuzzy
versions of the Apriori algorithm. With this approach, it has to scan database repeatedly
to generate a large set of candidates and then check the support of them, so it is usually
slow and ineffective in the case of huge database. The algorithm uses the principles of
memory dependences as FFP_Growth [5–7] and MFFP_Tree [8] gain benefits over the
Apriori approach finding out the frequent fuzzy itemsets without generating candidates.
However, these strategies extract recursively frequent fuzzy itemsets from the tree
structure throughout the entire process of algorithm; therefore, it tends to require big
memories to store the temporal trees. In addition, with this approach, it must access
database frequently; this will cause damage to the performance.

In this paper, the proposed algorithm NFFP uses the data structure called Node-List
to extract the frequent fuzzy itemsets. In this approach, we only scan database two
times: The first time is to convert the crisp value in quantitative database into fuzzy
sets. The second time is to calculate the support of each fuzzy region in updated
database and build the FPPC_tree. The tree is used to generate PP_code for each node
by traversing the tree in pre- and post-order. After finishing its task, FPPC_tree will be
deleted and the process of mining the fuzzy itemsets will be executed based on PP_-
code, so it can reduce the memory usage requirements.

The remaining part of the paper includes the following: Part 2 reviews the basic
concepts and related works, Part 3 presents the proposed algorithm NFFP, and Part 4
states the conclusion.

2 Basic Concepts and Related Work

2.1 Frequent Fuzzy Itemset Mining Problem

Let be a set of items, is the quantitative database of transactions. Each Tq in QD is
where TID is a transaction identifier and X is an itemset that contains several items with
their quantities and is a minimum support threshold (minsup) and is membership
function defined by user.

Definition 1: [9] Fuzzy set
Assume that where each (fuzzy term represented in natural language) is the element

in the fuzzy set of i and are, respectively, their fuzzy values (defined by the mem-
bership function). The fuzzy set is presented as follows:

38 T.T. T. Tran et al.

Definition 2: [9] The support of fuzzy item
The support of the fuzzy item denoted is defined as follows:

Where is the updated fuzzy database after converting quantitative values into fuzzy
values.

Definition 3: [9] In this paper we uses s—norm in fuzzy set such as a s b are min (a,
b)for finding the fuzzy support value. The support of a fuzzy k-itemset, or, is the
minimum of the fuzzy values of the fuzzy items, is:

Lemma 1 [8] If there are n transactions, then we have.
Problem statement
Frequent fuzzy itemset mining (FFIM) is the problem that extracts all frequent fuzzy
itemsets as:

Example 1: Table 1 presents the quantitative database (QD) which will be used for
illustration in this paper. QD has six transactions with five items indicated; the minsup
is set to 30%. Assume that we use the triangular membership function for all items
shown in Fig. 1, and quantities are set into one of fuzzy terms: Low, Middle, and High.

2.2 FPPC_Tree

The FPPC_tree is built on integrating of fuzzy concepts and PPC_tree [2] like
approach.

Table 1. Quantitative database

TID Items

1 (I1:5) (I3:10) (I4:2) (I5:9)
2 (I1:8) (I2:2) (I3:3)
3 (I2:3) (I3:9)
4 (I1:5) (I2:3) (I3:10) (I5:3)
5 (I1:7) (I3:9) (I4:3)
6 (I2:2) (I3:8) (I4:3)

Fig. 1. Triangular membership function for all items

Mining Frequent Fuzzy Itemsets 39

Definition 4: FPPC_tree is a tree with a structure contains one root and a set of item
prefix subtree; each node in a subtree comprises five elements: f_fuzzy_term, f_support,
children_list, fpre_code, and fpost_code, which are the fuzzy items, the support of
f_fuzzy_term in this node, list of child nodes, the pre- and post-order codes of the node,
respectively.

The FPPC_tree_building algorithm is presented in Algorithm 1.

Algorithm 1 (FPPC_tree_building)

Input: A quantitative database QD, membership function, and minsup .

Output: A FPPC-tree (FTr), the set of frequent fuzzy 1-itemset ().

1. Convert the value of each in transaction into a fuzzy set as in (1).

2. Scan updated database containing fuzzy values to compute the support of each
fuzzy item in the transaction as in (2).

3. Check if , put the in . That is .

4. Sort the frequent fuzzy items in in support decreasing order.

5. If , delete from all

6. Generate the root of the FPPC_tree and label it as “null”

7. for each in {

8. Sort the remaining fuzzy items in support decreasing order.

9. Insert the fuzzy items into FFPC_tree (this process is similar to MFFP_tree
[14])

10. }

11. Traverses FPPC-tree to generate the PP_Code of each node.

Example 2: In the illustrative example 1, the algorithm converts the value () of all
items in QD into fuzzy values and then calculates the support of each fuzzy items in the
updated database as given in Tables 2 and 3.

Then, the algorithm discards all fuzzy items, whose supports are less than the
minsup, and sorts the rest of fuzzy items in support decreasing order (Table 4). The
updated transactions with frequent fuzzy1-itemsets are presented in Table 5.

Next, the algorithm inserts the fuzzy items in each updated transaction into
FPPC_tree. Lastly, the algorithm walks through the FPPC_tree (Fig. 2) to generate
PP_code of each node.

40 T.T. T. Tran et al.

2.3 Node-List

Zhihong Deng and Zhonghui Wang [4] presented some important definitions of
Node-List and some properties associated with it. We summarize and apply these
concepts to our fuzzy values as shown below.

Table 2. Fuzzy database after converting quantitative values into fuzzy values

TID Fuzzy items

1 0:2
I2; Low

þ 0:8
I1;Middle

� �
;

0:2
I3;Middle

þ 0:8
I3;High

� �
;

0:8
I4; Low

þ 0:2
I4;Middle

� �
;

0:4
I5;Middle

þ 0:6
I5;High

� �

2 0:6
I2;Middle

þ 0:4
I1;High

� �
;

0:8
I2; Low

þ 0:2
I2;Middle

� �
;

0:6
I3; Low

þ 0:4
I3;Middle

� �

3 0:6
I2; Low

þ 0:4
I2;Middle

� �
;

0:4
I3;Middle

þ 0:6
I3;High

� �

4 0:2
I2; Low

þ 0:8
I1;Middle

� �
;

0:6
I2; Low

þ 0:4
I2;Middle

� �
;

0:2
I3;Middle

þ 0:8
I3;High

� �
;

0:6
I5; Low

þ 0:4
I5;Middle

� �

5 0:8
I2;Middle

þ 0:2
I1;High

� �
;

0:4
I3;Middle

þ 0:6
I3;High

� �
;

0:6
I4; Low

þ 0:4
I4;Middle

� �

6 0:8
I2; Low

þ 0:2
I2;Middle

� �
;

0:6
I3;Middle

þ 0:4
I3;High

� �
;

0:6
I4; Low

þ 0:4
I4;Middle

� �

Table 3. Support of fuzzy items

Fuzzy item Support Fuzzy item Support Fuzzy item Support

I1.Low 0.4 I3.Low 0.6 I5.Low 0.6
I1.Middle 3.0 I3.Middle 2.2 I5.Middle 0.8
I1.High 0.6 I3.High 3.2 I5.High 0.6
I2.Low 2.8 I4.Low 2.0
I2.Middle 1.2 I4.Middle 1.0
I2.High 0 I4.High 0

Table 4. Resulted frequent fuzzy 1-itemsets based on support calculation

Frequent fuzzy items Support

I3.High 3.2
I1.Middle 3.0
I2.Low 2.8
I3.Middle 2.2
I4.Low 2.0

Mining Frequent Fuzzy Itemsets 41

Definition 5: The PP_code of each node in a FPPC_tree is Ci = .

Example 3: The highlighted nodes N1 and N2 in Fig. 2 have the PP_codes: C1 = < 1,
6, 1.6 > and C2 = < 5, 4, 0.6>

Property 1: Node N1 is called an ancestry of node N2, if and only if and

Definition 6: Let C1 be and C2 be, C1 is an ancestry of C2 if and only if pr1 < pr2 and
po1 > po2.

Definition 7: The Node-List of a fuzzy item is a chain of PP_codes of nodes repre-
senting the fuzzy items in the FPPC_tree. The PP_codes are sorted in fpre_code
increasing order. Each PP_code is indicated by.

Example 4: The Node-List of I1.Middle includes three nodes: Figure 3 shows the
Node-List of fuzzy frequent 1-itemsets in the above example.

Fig. 2. FPPC_tree created from QD’ with d = 30%

Table 5. Updated transactions with frequent fuzzy1-itemsets

TID Fuzzy items

1 ,
2 ,
3 ,,
4 ,
5 ,
6 ,,

Fig. 3. Node-List of frequent fuzzy items

42 T.T. T. Tran et al.

After building the FPPC_tree, we traverse the FPPC_tree in fpre_code order. For
each node Ni, we insert into the Node-List of the item specified by Ni and gain the
Node-List of each fuzzy frequent 1-itemset. The construction of the Node-List of all
frequent fuzzy 1-itemsets is shown in Algorithm 2.

Algorithm 2: FNodelist_Generation

Input: FPPC-tree (FTr) and F1 (the list of frequent fuzzy 1-itemsets)

Output: NL1 (the set of Node list of frequent fuzzy 1-itemsets)

1. Assume that NL1[k] is the node list of an kth element in F1.

2. Traverse all nodes Ni in the FPPC_tree by

3. if (Ni. f_fuzzy_term = F1[k]. f_fuzzy_term)

4. insert into NL1[k];

5. return ;

Property 2: Given and, if N1. fpre_code < N2. fpre_code, then N1. fpost_code < N2.
fpost_code.

Proof: If, by traversing across the tree, N1 is traversed before N2. But N1 cannot be the
ancestry of N2 because they have the same f_fuzzy_term, so N1 must locate the left side
of N2 on the tree. In the contrary traversal, we also traverse the tree from left to right,
so.

Property 3: If the Node-List of fuzzy item is, then the support of a fuzzy item is.

Example 5: The Node-List of I1. Middle includes, and the support of I1. Middle is 3.0.
All fuzzy items are true to this property.

Definition 8: (relation) Given two frequent fuzzy items and (. when if and only if is
before in.

3 Proposed NFFP Algorithm for Mining Frequent Fuzzy
Itemsets

In this section, we introduce the NFFP algorithm and present two main contributions in
this paper: (1) improve Node-List intersection of frequent fuzzy k-itemsets from [4] and
(2) propose the new approach using Node-List structure to find the frequent fuzzy
itemsets; this approach helps lessen the memory utilization requirements, since storing
FPPC_tree during frequent fuzzy itemset mining process is not needed.

Mining Frequent Fuzzy Itemsets 43

3.1 Node-List Intersection

In paper [4], the author proposed the Code_intersection method for determining the
Node-List of k-itemsets which is only consistent with crisp values. In this case,
PPC_tree is constructed according to itemsets arranged in their descending order of
frequency. If i1is before i2in L1then all nodes of i1 are always ancestry of nodes of i2. So
author only check whether Node-List of is ancestry of Node-List of i2. This work
proposes an improved method that offers the Node-List intersection of frequent fuzzy
k-itemsets to obtain the Node-List of frequent fuzzy (k + 1) itemsets.

Definition 9: (Node-List of frequent fuzzy 2-itemsets).
Suppose that two different fuzzy frequent items in which (is before in), and their Node-List
respectively are: and. For any PP_code and. If and has the ancestry—descendant rela-
tionship of PP_Code, then insert the descending PP_Code into the Node-List of.

Example 6: The Node-List of two itemsets I1.Middle and I2.Low is shown in Fig. 4

Based on Definition 9, we generalize to the concept of the Node-List of a frequent
fuzzy k-itemsets (k � 3) in below.

Definition 10: (Node-List of frequent fuzzy k-itemsets): Let be an frequent fuzzy
itemsets (), the Node-List of be, the Node-List of be. For any PP_code and. If and has
the ancestry—descendant relationship of PP_Code, then insert the descendant
PP_Code into the Node-List of.

Example 7: We have known that the Node-List of (I1.Middle, I2.Low) and (I1.Middle,
I4.Low) is < 5, 4, 0.6 >, < 9, 8, 0.6 > and < 3, 1, 0.8 >, < 6, 3, 0.6 >. The Node-List
of (I1.Middle, I2.Low, I4.Low) is shown in Fig. 5.

Fig. 4. Node-List of two items (I1.Middle, I2.Low)

Fig. 5. Node-List of two items (I1.Middle, I2.Low, I4.Low)

44 T.T. T. Tran et al.

Property 4: For any Node-List of fuzzy k-itemsets, represented by, the support of P is.

Proof: With k = 1: In accordance with Property 3, the conclusion is true.
With: The designed algorithm sorts the fuzzy items in a in their supports decreasing
order in each transaction for building the FPPC_tree structure and uses - norm in fuzzy
set such as (as the intersection operator so we can obtain the minimum values between
fuzzy regions from support of the child nodes. Given any fuzzy k-itemsets have the
Node-List then according to Definitions 9 and 10, is a child node. So the support of P
following the Definition 4 is.

The improved Node-List intersection method is presented in Algorithm 3.

Algorithm 3: FNodelist_Intersection

Input: and where , are the node list of two frequent fuzzy k-itemsets.

Output: , the node list of frequent fuzzy (k+1) itemsets.

1. for

2. for

3. if {

4. if

5. insert into ;

6. }

7. else {

8. if

9. insert into ;

10. }

11. }

12. }

13. return

Mining Frequent Fuzzy Itemsets 45

3.2 Mining Frequent Fuzzy Itemsets Using Node-List

According to the main idea of process sequence, the proposed NFFP algorithm includes
four main steps: (1) construct FPPC tree and identify all fuzzy frequent 1-itemsets,
(2) construct Node-List of fuzzy frequent 1-itemsets, (3) perform Node-List intersection
of k-1-itemsets to build Node-List of k-itemsets, and (4) mining all frequent fuzzy
itemsets.

Algorithm 4: NFFP

Input: A quantitative database QD, membership function, and minsup .

Output: The complete set of frequent fuzzy itemsets (FFIs)

1. Call FPPC_tree_building (D,) to generate FPPC – tree (R), F1

2. Call FNodelist_Generation (R, F1);

3. Call Find _FFI (, F1, NL1);

4. Return FFIs

Procedure Find_FFI (, F1, NL1)

1. For do begin
2. For all , where , {
3.
4. If all k-1 subsets of P are in {
5. = FNodelist_Intersection (,);

6. Calculate ; // Use Property 4
7. If {
8. ;
9. ;

10. }

12. }
11. }

13. Delete
14. }
15.

Example 8: Table 6 shows the final results of the frequent fuzzy itemsets in illus-
trative example.

46 T.T. T. Tran et al.

4 Conclusion

In this paper, the proposed algorithm NFFP uses a FPPC_tree to store the quantitative
database with descending order membership values. Based on the FPPC_tree, we detect
the Node-List of each frequent fuzzy item. Then, NFFP algorithm obtains Node-Lists
of the frequent fuzzy (k + 1) itemsets by intersecting the Node-Lists of frequent fuzzy
k-itemsets and then extracts the fuzzy frequent (k + 1)-itemsets. The advantage of this
algorithm is that the FPPC_tree is used to generate pre–post code for each node to get
the Node-List of each frequent fuzzy item, and after that, it will be deleted so it can
reduce the memory usage requirements. However, suppose that the data used in this
paper is static, in the real applications, data may be changed with time and automat-
ically inserted into database. In the future works, we will attempt to solve this problem
of fuzzy data mining.

References

1. Agrawal R., Srikant R.: Fast algorithms for mining association rules. In proceedings of 20th
International Conference on Very Large Databases, Santiago, Chile (1994).

2. Deng Zhihong, Wang ZhongHui and Jiang JiaJian: A new algorithm for fast mining frequent
itemsets using N-lists. Science China Information Sciences, Vol. 55 No.9, (2012) 2008–2030.

3. Farah Hanna AL-Zawaidah, Yosef Hasan Jbara: An improved algorithm for mining
association rules in large database. World of Computer Science and Information Technology
Journal (WCSIT), Vol. 1, No. 7, (2011) 311–316.

4. Zhihong Deng, Zhonghui Wang: A new fast method for mining frequent patterns.
International Journal of Computational Intelligence Systems, Vol.3, No. 6, (2010) 733–744.

5. De Cock, M., Cornelis, C., Kerre, E.E.: Fuzzy Association Rules A Two-Sided Approach. In:
FIP, (2003) 385–390.

6. Reza Sheibani, Amir Ebrahimzadeh, Member, IAUM: An Algorithm For Mining Fuzzy
Association Rules. Proceedings of the International MultiConference of Engineers and
Computer Scientists 2008 Vol I, (2008) 486–490.

7. Yan, P., Chen, G., Cornelis, C., De Cock, M., Kerre, E.E.: Mining Positive and Negative
Fuzzy Association Rules. In: KES, Springer, (2004) 270–276.

Table 6. Final results of frequent fuzzy itemsets

Fuzzy frequent 1-itemsets Support Fuzzy frequent 2-itemsets Support

I3.High 3.2 {I3.High, I1.Middle} 2.2
I1.Middle 3.0 {I3.High, I4.Low} 1.8
I2.Low 2.8
I3.Middle 2.2
I4.Low 2.0

Mining Frequent Fuzzy Itemsets 47

8. Tzung-Pei Hong, Chun-Wei Lin and Tsung-Ching Lin: The MFFP-tree fuzzy mining
algorithm to discover complete linguistic frequent itemsets. Computational Intelligence,
Vol.0, No.0, (2012).

9. Chun-Wei Lin, Philippe Fournier-Viger, Tzung-Pei Hong: A fast algorithm for mining fuzzy
frequent itemsets. Journal of Intelligent and Fuzzy Systems (2015).

48 T.T. T. Tran et al.

	Mining Frequent Fuzzy Itemsets Using Node-List
	Abstract
	1 Introduction
	2 Basic Concepts and Related Work
	2.1 Frequent Fuzzy Itemset Mining Problem
	2.2 FPPC_Tree
	2.3 Node-List

	3 Proposed NFFP Algorithm for Mining Frequent Fuzzy Itemsets
	3.1 Node-List Intersection
	3.2 Mining Frequent Fuzzy Itemsets Using Node-List

	4 Conclusion
	References

