An Effective FP-Tree-Based Movie
Recommender System

Sam Quoc Tuan, Nguyen Thi Thanh Sang(g),
and Dao Tran Hoang Chau

School of Computer Science and Engineering, International University —
Vietnam National University, Ho Chi Minh City, Vietnam
itiu09030@gmail. com, {nttsang,dthchau}@hcmiu. edu. vn

Abstract. Movie recommender systems play an important role in introducing
users to the most interesting movies efficiently. It is useful for users to find what
they want in a large numerous of various movies on the Web quickly. The
performance of movie recommendation is influenced by many factors, such as
user behavior, user ratings. Therefore, the aim of this study is to mine datasets of
user ratings and user behaviors in order to recommend the most suitable movies
to active users. User behaviors are sequences of users’ movie viewing activities
which can be discovered by a frequent-pattern tree (FP-Tree). The FP-tree is
then modified with rating data and an effective recommendation strategy can
improve the recommendation performance of the FP-tree. A MovieLens dataset
which is public and popular for evaluating movie recommender systems is
observed and examined for assessing the proposed method.

1 Introduction

Due to the information explosion on the Internet, users are facing with an enormous
number of choices. A pool of spam data and inaccurate information may require a lot of
time for searching relevant information. Recommender systems (RSs) have become
indispensable tools to filter available data and provide the user with the most relevant
information. Most RSs use a hybrid approach, which is a combination of content-based
and collaborative approaches. Collaborative filtering algorithms [1] assume that users
with similar tastes will rate items similarly. A content-based recommendation system
[2] uses the user’s history to recommend new items.

In this study, the data of user’s viewing history and ratings are considered. Datasets
are collected from MovieLens site (https://www.movielens.org). We use FP-tree [3] to
present a novel clustering method which generates frequent patterns of movies and
recommend appropriate movies. The FP-tree was built based on users’ movies
watching activities. The rating data is discovered and then modified into the FP-tree in
order to remove low rated movies and improve recommendation performance. The
system will be evaluated by various experiments.

The remaining of this article is organized as follows. Related works are considered
in Sect. 2, and a new movie recommendation framework is introduced in Sect. 3.
Section 3 presents the methodology of using FP-Tree, and Sect. 4 shows its experi-
mental results and discussions. Finally, Sect. 5 concludes and discusses future work.

© Springer Nature Singapore Pte Ltd. 2018

V. Bhateja et al. (eds.), Information Systems Design and Intelligent
Applications, Advances in Intelligent Systems and Computing 672,
https://doi.org/10.1007/978-981-10-7512-4_17

https://www.movielens.org

An Effective FP-Tree-Based Movie Recommender System 173

2 Related Work

In the field of recommender systems, many approaches have been developed and some
recent ones are listed below.

Hybrid Multigroup Co-Clustering (HMCoC) [4]

A Hybrid Multigroup Co-Clustering recommendation framework has been proposed to
achieve meaningful user-item groups by extracting user-item rating records, user social
networks, and item features from DBpedia knowledge base. This framework is com-
posed of three main modules: information fusion, hybrid multigroup co-clustering, and
the top-n recommendation module. Information fusion integrates data from the rating
matrix, user social networks, and item’s topic. After that, it utilizes some publicly
available knowledge base. Then, it uses a uniform graph model to represent the inte-
grated information. HMCoC co-clusters users and items into multiple groups simul-
taneously. It combines the one-sided and two-sided clustering techniques and presents
a fuzzy c-means-based clustering method to discover user-item clusters with different
information sources. As a result, it merges the predictions from each cluster, and then
makes top-n recommendations to the target users.

User-specific Feature-based Similarity Models (UFSMs) [5]

User-specific Feature-based Similarity Models take historical user preferences into
account for building a personalized user model. To build this model, global similarity
functions are learned by combining linearly user-independent similarity functions. As a
result, we will have item similarity functions learned. Furthermore, these global sim-
ilarity functions are combined linearly and personalized for users. It is proved to
outperform both regression-based latent factor modeling (RLFM) and
attribute-to-feature mapping (AFM) methods in cold-start top-n item recommendations.

Recommender Systems using Category Correlations based on WordNet
Similarity [6]

In these recommender systems, genres of movies in the database are considered to
draw genre correlations among movies. Each movie will be then assigned a new score
by computing its average rating and genre correlations. Through the users’ inputs,
user’s preferred genres are gained, and from the ratings of each movie, average movie
ratings are estimated. From that, the scores are sorted in descending order and the high
position movies can be recommended to active users.

Empirical Study of User Preferences Based on Rating Data of Movies [7]

This study represents a hyper-network of users and movies. In this network, a node of a
user connects to many movies, and a node of a movie connects to many users. Rating
data was used to calculate distances between movies. If a user rated movie a, then it is
predicted that the user will rate movie b, when movies a¢ and b are first-order
h-neighbors. The idea was that if movie a was the first-order h-neighbor of movie b, the
opinion of a user about movies a and b are almost the same. A user preference model
with two tunable parameters has been introduced after many analysis results.

174 S. Q. Tuan et al.

Grouping Like-Minded Users for Ratings’ Prediction (GLER) [8]

Principal components analysis (PCA) and K-Means were used to group like-minded
users. A recommender system was trained using those user groups, and for each group
we build a specific model. GLER algorithm will give ratings predictions of user-movie
based on the previous ratings of that user and others in the same group using this
group’s model. The model of closest group will be used for a new user.
MovieLens-100K data set and SVD++ (Singular Value Decomposition) were used to
evaluate this algorithm. Root mean squared error (RMSE) and mean absolute error
(MAE) were also used as the two evaluation metrics.

3 Methodology

3.1 Framework

Figure 1 illustrates the framework of the proposed recommender system including
three main process units: (1) preprocessing, (2) building FP-tree, and (3) recommen-
dation engine.

ParseDataToMovies()

Transaction of Movies Transaction of Movies
(Training data) (Test data)

BuildHeaderTable()

HeaderTable

BuildFPTree()

y
FP-Tree |
| N

Ll

Fig. 1. Recommender system framework

(1) Preprocessing (ParseDataToMovies() in Fig. 1)
There are two ways to achieve movie transactions from MovielLens dataset in this
phase: (1) Low rating movies are retained and (2) low rating movies are removed. We
are going to have an experimental comparison about accuracy and runtime between
retaining low rating movies and removing them.

The following presents the two algorithms of processing data.

Parameters:

e Timestamp represents seconds since midnight Coordinated Universal Time
(UTC) of January 1, 1970. It is the time when a movie was viewed.

An Effective FP-Tree-Based Movie Recommender System 175

e Constant period represents time interval between two transactions, that is, movies
are viewed continuously.

Method 1: With Low Rating Movie

Input: users’ movie viewing data
Output: Processed data
Data processing:
FOR each line of data
FOR each movie of a user

IF (timestamp of current movie) - (timestamp of
previous movie) < period THEN

Add current movie into current transaction.
ELSE

Add current movie into a new transaction.

Method 2: Without Low Rating Movie

Input: users’ movie viewing data, and rating data
Output: Processed data
Data processing:
FOR each line of data
FOR each movie of a user

IF (timestamp of current movie) - (timestamp of
previous movie) < period THEN

Add current movie into current transaction.
ELSE
Add current movie into a new transaction.

REMOVE all movies whose rating is less than 2.5

(2) FP-Tree

FP-tree is a compact structure compressing a large database of event sequences into a
tree for complete frequent pattern mining. It also avoids scanning data repeatedly, that
is very costly. Generally, an FP-tree structure is defined as follows: “one root labeled as
“null,” a set of item prefix sub-trees as children of the root, and a frequent-item header
table.” Each node in the item prefix sub-trees is constituted by three fields:
(1) item-name registering which item this node represents, (2) count being the number
of transactions, i.e., the portion of the path reaching this node, and (3) node-link linking
to the next node carrying the same item-name. Each entry in the frequent-item header
table is constituted by two fields: item-name and head of node-link that points to the
first node carrying the item-name.

176 S. Q. Tuan et al.

The algorithm of FP-tree construction is described as follows:

a. Scan the set of transactions S once; Retrieve F, which is the set of frequent items,
and compute the support of each item; Sort F' in support-descending order.

b. Create the root node of an FP-tree, tree, and label it as “null”’; For each transaction
T in S do the following:

¢ Find frequent items in 7. Let the selected frequent-item list in 7 be [e | E], where
e is the first element and E is the remaining list. Call insert-tree([e | E], Tree).

o insert-tree([e | E], Tree): If tree has a child C: N.item-name = e.item-name, then
increase C’s count by 1; else create a new node C, and set its count to 1, link its
parent-link to tree, and link its node-link to the nodes carrying the same
item-name. If E is nonempty, call insert-tree(E, C) recursively.

(3) Recommendation Engine (GeneratePredictList() in Fig. 1)

The data sets are firstly preprocessed and clean. Firstly, all movies that each user
watches were added into a transaction. Then we divide this transaction into smaller
transactions using timestamp. The reason is that in a period of time, a user may like a
set of movies but in another period this user may be interested in another set of movies.
After having these transactions, we are able to build FP-tree.

A movie recommendation algorithm is proposed as follows: When a testing
transaction is input, the algorithm would apply top-n recommendations based on the
built FP-tree. That means subsequences of movies in the transaction are matched with
patterns in the FP-tree, the longest matching patterns will be considered. Movies in the
matching patterns and movies in children nodes will be candidates for recommenda-
tion. They are sorted in descending weights (counts) and top-n movies are
recommended.

3.2 Evaluation Methods

This study applies two evaluation metrics: precision and satisfaction for assessing the
performance of the movie recommendation system. Precision is the proportion of
number of correct predictions in the next step to the number of matching times. While,
satisfaction is the proportion of the number of correct predictions in next m-steps to the
number of matching times. The following describes evaluation algorithms for perfor-
mance measure.

Performance evaluation:

Testing data is a subset of users’ movie viewing sequences, in which, a transaction is a
sequence of viewing movies continuously. In other words, in a transaction, time
interval between two viewed movies should not be longer than a predefined period.

An Effective FP-Tree-Based Movie Recommender System 177

a. Calculate precision:

set positive = 0; and set negative = 0;
FOR each transaction in the testing data.
FOR 1 = 1 to length of current transaction.

Get the list of recommended movies for the active
sequence of watched movies from 1 to index = 1.

IF movie at index = i+l in current transaction
CONTAINS at least one movie in the recommendation list

THEN INCREMENT positive
ELSE INCREMENT negative

Precision = positive / (positive + negative) *100%

b. Calculate satisfaction with m = 5

FOR each transaction in the testing data.
FOR 1 = 1 to length of current transaction.

Get the list of recommendation movies for the active
sequence of watched movies from 1 to index = 1.

IF movies at index = i+1 to i+5 in current transaction
CONTAINS at least one movie in the recommendation list

THEN INCREMENT positive
ELSE INCREMENT negative

Satisfaction = positive / (positive + negative) *100%

Return Precision and Satisfaction

4 Experiments

In order to evaluate the performance, fivefold cross-validation is applied. Besides, a
number of values are set for the min_support and the timestamp to examine several
different points of view. The min_support is used to filter less interesting movies.
Removing low rating movies can return good experimental results. Applying the
precision and statistical metrics is very effective to evaluate the system’s performance.

178 S. Q. Tuan et al.

4.1 Dataset

A popular MovieLens dataset' containing 20 million of movies is used. In this dataset,
we focus on ratings.csv (rating data) and tags.csv (users’ movie viewing behaviors).
Each line after the header row in file ratings.csv represents one movie’s rating by each
user following this format: userld, movield, rating, timestamp. The lines within this file
are ordered first by userld, then, within a user, by movield. Ratings are based on a
five-star scale, with half-star increments (0.5 stars—5.0 stars). Timestamps represent
seconds since midnight Coordinated Universal Time (UTC) of January 1, 1970.

The datasets are firstly preprocessed and cleaned before building FP-Tree. We add
all movies within a user into a transaction. Then timestamp is used to divide a trans-
action into smaller transactions. The period of each smaller transaction is predefined by
observing the datasets. After having these transactions, we can build the FP-tree.

4.2 Experimental Results

In the following, we conduct six experimental cases.

a. Keep low rating movies in the dataset, and the period of each examined
transaction is set to 1000000 s. The satisfaction and precision are measured at
different min_support values: 7, 8, and 9%. Table 1 shows the results of satis-
factory measure with m = 5.

Table 1. Satisfactions examined for three min_supports 7%, 8%, and 9%

Min_support (%) Satisfaction (m = 5) (%) Runtime (h)
7 100 40
8 99 12
9 99 3

Table 2. Precisions examined for three min_supports 7, 8, and 9%

Min_support (%) Precision (%) Runtime (h)
7 99 40
8 99 12
9 99 3

Table 1 shows that choosing min_support is not easy. We can achieve 100%
satisfaction for min_support of 7%, but it costs too much time. For min_support of 9%,
the satisfaction decreases 1%, but it takes less time. It is similar when measuring
precisions, but we can just obtain 99% of accuracy at min_support = 7% (Table 2).

! https://www.movielens.org, https:/www.imdb.com.

https://www.movielens.org
https://www.imdb.com

An Effective FP-Tree-Based Movie Recommender System 179

b. Keep low rating movies in the dataset, and the min_support is set to 8%. The
performance is evaluated in two cases: the chosen periods of each examined

transaction are 1000000 and 500000s (Tables 3 and 4).

Table 3. Satisfaction and runtime for the two different chosen periods

Timestamp (s)

Satisfaction (m = 5) (%)

Runtime (h)

1000000

99

12

500000

97

2

Table 4. Precision and runtime for the two different chosen periods

Timestamp (s) Precision (%) Runtime (h)
1000000 100 12
500000 97 2

The chosen period affects the accuracy (satisfaction and precision) and runtime, as
in Tables 3 and 4. Period 100000s gives higher accuracy (99%) but it takes 12 h to
complete all testing data. Period 500000s gives a lightly lower accuracy (97%) but it

takes only 2 h.

c. Low rating movies can be removed or not from the dataset. It is supposed that
low rating movies may be not interested by users, so they should not be taken into
account. The chosen period of each examined transaction is 1000000s, the
min_support is 8%, as shown in Tables 5 and 6.

Table 5. Satisfaction and runtime for two cases: with and without low rating movies

Satisfaction (m = 5) (%)

Runtime (h)

Without rating movies
With low rating movies

99
99

12
4

Table 6. Satisfaction and runtime for two cases: with and without low rating movies

Precision (%)

Runtime (h)

Without rating movies
With low rating movies

99
99

12
4

The results in both Tables 5 and 6 give the same accuracies but the runtimes are
significantly different between the two cases with and without low rating movies. Thus,
removing low rating movies offers much more benefit.

180 S. Q. Tuan et al.

d. Removing low rating movies and the chosen period of each examined trans-
action is 500000s. The min_support is set to 8 %. Table 7 shows that we receive the
same precision and satisfaction (m = 5), i.e., accuracy, with the same runtime.
Thus, it proves that the proposed method can achieve significantly high
performance.

Table 7. Accuracy and runtime when applying the precision and satisfaction (m = 5) metrics

Metric Accuracy (%) Runtime (h)
Precision 96 1
Satisfactory with m =5 96 1

e. Removing low rating movies and the chosen period of each examined trans-
action is 500000s. The min_support is set to 8%. In this experiment, we apply
fivefold cross-validation to accuracy estimate (Table 8).

Table 8. Accuracy (precision and satisfactory) and runtime when applying fivefold
cross-validation

Metric Accuracy (%) Runtime (h)
Precision 98 7
Satisfactory with m = 5 98 7

In fivefold cross-validation, the experimental data is divided into fivefolds, onefold
is used for testing while the remaining fourfolds are used for training. Each fold has
once it becomes testing data and four times it is a part of the training data. Applying
fivefold cross-validation in Table 8 will make the accuracy much more reliable. As a
result, the performance achieves higher accuracy (98%).

f. Comparing with the experimental results in [5] using the same dataset, our
results are remarkable.

The same data set MovieLens-1M was used for our recommendation engine. We
also applied the same Recall at n metric (Rec@n) to compare the performance of our
method with UFSM. User profile was the input for UFSM while we used user history to
recommend movies. Given top-n recommendation movies for a user, Rec@n of the
user is computed as: Rec@n = number of matched movies / n. Rec@n is computed for
each user and then averaged over all test users.

Figure 2 shows that the performance of top-n recommendation of USFM and our
method for values of n = 5, 10, 20. The accuracy of our method are much higher than
USFM. About the training time, if we run on the MovieLens-20M dataset, it will take
68.5 minutes. While, USFM takes about eight times of training the MovieLens-1M
dataset, which is 20 times smaller than the one used in our experiments. Table 9 shows
how efficient our method is.

An Effective FP-Tree-Based Movie Recommender System 181

Top-n Recommendation performance

5 10 20

® UFSM = Our method

Fig. 2. Performance of top-n recommendation

Table 9. Training time in minutes

Method Training time in minutes
USFM 566.31
Our method 68.5

5 Conclusions

In this study, we have proposed a recommendation system with an advanced sequence
mining method using FP-tree and the effective recommendation strategy. This
methodology compresses a large database into a compact FP-tree. Based on that,
movies are recommended efficiently. In particular, the largest dataset (20M) in
MovieLens is used to test its performance.

The experimental results have showed that if we remove low rating movies from
the dataset, we can save a lot of time with a slightly decreased accuracy rate (about
1%). The proposed methodology is proved to achieve high performance, and the
precision is almost acceptable.

In the future, we will consider the levels of rating movies which helps rank the
movies and recognize which movie a user likes most. The count of a node in FP-tree
will be replaced by the weight. Ratings will be used to calculate the weight. Since
ratings are based on five-star scale, we choose the average of rating 2.5 to be equal to 1
unit of weight. The function insert-tree([e | E], Tree) will have some change according
to the weight.

Acknowledgements. The authors would like to thank the anonymous reviewers for their
valuable comments and suggestions to improve the quality of this article.

182 S. Q. Tuan et al.

References

1. Mcleod, D. & Chen, A. Y.-A., Collaborative Filtering for Information Recommendation
Systems. Non-published Research Reports (2009).

2. Pazzani, M. J. & Billsus, D., Content-Based Recommendation Systems. In: Brusilovsky, p.,
Kobsa, a. & Nejdl, W. (eds.) The Adaptive Web: Methods and Strategies of Web
Personalization. Berlin, Heidelberg: Springer Berlin Heidelberg (2007).

3. Han, J., Pei, J., Yin, Y. & Mao, R., Mining Frequent Patterns without Candidate Generation:
A Frequent-Pattern Tree Approach. Data Mining and Knowledge Discovery, 8 (2004) 53-87.

4. Huang, S., Ma, J., Cheng, P. & Wang, S., A Hybrid Multigroup Coclustering Recommen-
dation Framework Based on Information Fusion. ACM Trans. Intell. Syst. Technol., 6 (2015)
1-22.

5. Asmaa Elbadrawy and George Karypis, User-Specific Feature-Based Similarity Models for
Top-n Recommendation of New Items, ACM Transactions on Intelligent Systems and
Technology, Vol. 6, No. 3 (2015).

6. Choi, S.-M., Cho, D.-J., Han, Y.-S., Man, K. L. & Sun, Y. Recommender Systems Using
Category Correlations Based on WordNet Similarity, International Conference on Platform
Technology and Service (PlatCon), 26-28 Jan. (2015) 5-6.

7. YingSi Zhao, Bo Shen, Empirical Study of User Preferences Based on Rating Data of Movies,
PLoS ONE 11(1): e0146541. https://doi.org/10.1371/journal.pone.0146541, January 6
(2016).

8. Jaffali S., Jamoussi S., Hamadou A.B., Smaili K., Grouping Like-Minded Users for Ratings’
Prediction. In: Czarnowski 1., Caballero A., Howlett R., Jain L. (eds) Intelligent Decision
Technologies 2016. Smart Innovation, Systems and Technologies, vol 56. Springer, Cham
(2016).

http://dx.doi.org/10.1371/journal.pone.0146541

	An Effective FP-Tree-Based Movie Recommender System
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Framework
	3.2 Evaluation Methods

	4 Experiments
	4.1 Dataset
	4.2 Experimental Results

	5 Conclusions
	Acknowledgements
	References

