
Inspection of Fault Tolerance in Cloud
Environment

Deepanshu Jain(&), Nabeel Zaidi, Raghav Bansal, Praveen Kumar,
and Tanupriya Choudhury

Amity University Uttar Pradesh, Noida, India
{deepanshujain002,raghavbansal95}@gmail.com,

nabeelzaidi@ymail.com, {pkumar3,tchoudhury}@amity.edu

Abstract. Cloud environment is a set of various types of software and hard-
ware that are connected with each other and works collectively to provide
various services to the user as an online utility. It basically is the efficient use of
hardware and software to work coherently to deliver services. Through the use
of cloud computing, users are able to access files from almost anywhere or any
device that have access to Internet. We are already familiar with the market of
cloud computing, and how everyone is shifting to cloud because of the benefits
it provides. But many of them are very less aware about the situations when
there comes a failure. The task of facing the failure is not limited to the cloud
providers but also to the customers. They must know what can be done when
such a situation arises. Fault tolerance is basically a property that makes the
system to work properly even though there is a failure. In order to be more
robust and dependable, failure should be handled effectively. This paper deals
with the Inspection of various fault tolerance technologies that are available.
There is no existing algorithm that considers reliability and availability in fault
tolerance as well. We tried to consider these things when discussing about fault
tolerance. Furthermore, a brief analysis of the already proposed FTC model with
some new functionally is also presented.

Keywords: Cloud � Replicating � Scheduling � Cluster

1 Introduction

In order to provide a network access to a shared pool of resources which can be
enabled/disabled on demand and is universal as well as convenient, a special kind of
framework is used which is known as cloud computing. Using cloud computing, we
provide access to the least amount of management and very less or no interaction with
the service provider [1]. One of the basic processes of using cloud as service is to be
able to provide resource processing for which scheduling is necessary. Every cloud
application is designed keeping business processes in mind and includes a set of
abstract functions or services. And to be able to process the tasks, the system needs to
allocate both the resources as well as the tasks that come to the resource. And to ensure
the Quality of Service also known as QoS, there must be a Service Legal Agreement

© Springer Nature Singapore Pte Ltd. 2018
V. Bhateja et al. (eds.), Information Systems Design and Intelligent
Applications, Advances in Intelligent Systems and Computing 672,
https://doi.org/10.1007/978-981-10-7512-4_103



(SLAs) in place [2]. The National Institute of Standards and Technology states that the
Cloud Model consists many service and deployment models along with some key
essential characteristics [1].

1.1 Essential Characteristics

1. On-demand self-service—An end user can automatically get new services granted
to it, may it be server or storage and that too without any interaction with the service
provider [3].

2. Broad network access—The services provided can be used across many platforms
ranging from thin platforms such as mobile phone to thicker platforms such as
workstations and laptops.

3. Resource pooling—All the resources provided by the service provider are pooled
together to serve multiple users at the same time by dynamically allocating
resources according to the demand of the consumer who has no knowledge about
the exact location of the end user unless it is at a higher abstraction [4] level.

4. Rapid elasticity—Services and resources provided to the users can be granted and
released automatically in order to compete with the scaling may it be outward or
inward. From the customer’s point of view, the amount of resources may seem to be
unlimited which can be granted to them at any point of time.

5. Measured service—Cloud system has a metering capability at a certain level to
abstraction which can be used by them to monitor the resources, optimize the
resources, and controlling them. This process is transparent to both the service
provider as well as the end user.

1.2 Service Models

1. Software as a Service (SaaS)—The consumer is given the capability to use the
service provider’s application which is running on the existing cloud infrastructure.
The client can get access to the application from various devices using Web browser
as a thin interface or any other program interface. The infrastructure of the cloud is
not controlled by the end user with the exception any configuration setting, that is,
provided in the application itself.

2. Platform as a Service (PaaS)—The consumer is given the ability to deploy the
applications that the consumer has created using tools provided by the service
provider or acquired onto the cloud. The consumer has control only over the
application, its configuration setting, and the environment over which the appli-
cation is hosted and has no control over the cloud infrastructure.

3. Infrastructure as a Service (IaaS)—The consumer is provided with many capabil-
ities such as storage, provisional processing, and networks among other resources
using which the consumer is given the ability to run and deploy many software
including operating systems. The only thing consumer can control are the resources
that are provided to them and the applications they deploy, and they have no control
over the infrastructure of the cloud.

Inspection of Fault Tolerance in Cloud Environment 1023



1.3 Deployment Models

1. Private cloud—This type of cloud infrastructure may be owned by a particular
organization and is used exclusively by the members of that organization only. It
can be under the ownership of the organization or a third party or a combination of
both.

2. Community cloud—This type of cloud infrastructure is used by the members of a
specific community from an organization that have similar concerns. It also maybe
be under the ownership of the organization to which the community belongs or a
third party or maybe a combination of both. This type of infrastructure may exist
either on premises or off premises.

3. Public cloud—This type of cloud infrastructure is not made for any exclusive use
and is open to all. It can be under the ownership of a business, government, or any
academic organization that are also responsible for its maintenance. It always exists
on the premises of the organization providing the service.

4. Hybrid cloud—As the name suggests, this type of cloud infrastructure is a com-
bination of two or more types in which the unique attributes is that each infras-
tructure exist, and they are bounded together by some standardized technology
which allows data and application portability.

Since cloud computing allows its users to have access to resources and services for
as long as they need them and that too without too many interactions, it is becoming
perhaps one of the fastest growing grid technology [1, 5]. Cloud computing focuses on
sharing of information among its various customers by putting up the same information
on the grid of nodes [6]. For the management of resources, the following aspects must
be kept in mind:

1. Infinite resources that must be made available to the consumer on their demand.
2. No commitment from the users in advance.
3. Last but certainly not the least would be the demand of high-end computing

resources and that too for very short duration of time.

Implementation of fault tolerance is very important from the perspective of the
service provider since it rescues the lost, improves the performance, and can also be
used in failure recovery, and in order to achieve it, some mechanisms such as redun-
dancy and replication can be used [2]. In real-time computing applications, adding a
cloud infrastructure does not only mean increasing the chances of error, but it also
increases the cost as the resources required to keep the replicated data increase [5]. And
realizing the power of cloud, some cloud providers have even started to give real-time
cloud support since the power of cloud can prove to a great added benefit to real-time
applications [1]. Cloud computing infrastructure usually comprises of interconnected
data centers and infinite resources which are provided to the consumer as a part of an
on-demand service [7]. In order to get reliable software, fault tolerance is a necessary
demand but it proves to be great difficulty to design an integrated solution since many
of the user’s applications are deployed on the cloud infrastructure only. The major
cause of this difficulty is the complexity of the system and multiple abstraction layers
due to which only limited data is available [7].

1024 D. Jain et al.



2 Resource Manager

The service provider has to keep a consistent sight of all the systems so that the
resources can be assigned to each client request systematically. Hence, a database of
catalogue which consists of the current state of resources is maintained by the resource
manager whose main function is to observe the current state of all virtual as well as
physical resources. The resource manager, therefore, keeps catalogue of each and every
machine in its database along with other information of the system such as its serial
number, speed of the processor, and the date the resource was issued. [7]. Given below
is Fig. 1 of resource graph G(N, E) of the cloud infrastructure [8, 9] consisting of two
clumps of three nodes each which are connected via network switch. In the graph,
processing nodes n2N are represented by the vertices, and to represent virtual con-
nection between two nodes, edges of the graph are used, i.e., e2E. Here, each node
keeps the information about the virtual machine that is kept at that particular node in
the vertex. Each edge and node can be further categorized into three classes which are:
working(W), completely faulty(F), and partially faulty(F). Each node is marked with a
particular class depending on its current state. If it is an ordinary state, it will mark W.
If a failure has occurred such that the node cannot be recovered back to a normal state,
it is marked as F, and the node which is currently not in use is marked as P [7].

Resource manager plays a very vital role in providing stability to the cost of the
resource and toward the performance of the fault tolerance method that is used by the
service provider [7].

W W P

W W W

F W W

W P

W

P

W

W

W

W

W

W

W

F F F

W W W

W W W

FW

W

W

W

W

Cluster A Cluster B 

Fig. 1. Graph generated by the resource manager

Inspection of Fault Tolerance in Cloud Environment 1025



3 Fault Tolerance in Cloud Computing

3.1 Basic Notation to Fault Tolerance

When a client needs fault tolerance services, he/she is enlisted by the service provider.
Then, based on the requirements of the client, the service provider [10] creates a
solution. While creating the solution, the balance between the following aspects must
be kept in mind:

1. Fault Model—It defines the maximum capacity of the solution to handle faults and
loss. In order to specify this aspect, the ability of the system to handle protocols of
failure detection and the technology used is of grave importance.

2. Resource utilization—It defines the amount of resources that will be utilized in
order to understand the fault. This feature is inbuilt in the system along with harsh
level of failure detection and recovery.

3. Performance—The performance of any failure tolerance method is defined by the
effect of the solution on the overall quality of service both at the time of failure and
at times when no failure is there.

4. Redundancy—This technique is the most commonly used way of dealing with
failures in a system. A failure tolerance model based on this technique replicates the
components of the analytic system with the help of other resources so that these
duplicated items can be used at the time of failure [7].

3.2 Fault Tolerance and Reliability

Fault tolerance and the overall reliability of the system are perhaps two of the most
important aspects of cloud computing. To be able to provide consumers with the right
solutions even with the presence of faults is of utmost importance to the consumers and
the service providers as well. And as most of the service providers are moving toward
providing a real-time experience, hence the demand of fault tolerance techniques for
real-time systems is increasing drastically. But in most of the services that provide
real-time experience, the processing is done on systems that remote and are on the
cloud due to which the probability of error increases as consumers have very little
control over those computing nodes. Hence, fault tolerance solutions are provided to
the consumers so that such errors can be predicted before they actually take place.
Moreover, even the reliability of virtual machine does not remain constant; it changes
after each and every computing cycle [5].

Fault tolerance is done in two phases; first phase is “Effective Error Processing” in
which the system is brought back to a state before the error took place, i.e., the dormant
state, and the second is “Latent Error Processing.” Real-time systems are characterized
by two main features which separate them from any other kind of system, and these are
timeliness and fault tolerance. Timeliness means that every task must complete its
execution in the given time period, and fault tolerance means that the system must
continue to work even if any fault arises [1]. Hence, with the growing popularity of
cloud computing, service providers have come with a new design approach in which

1026 D. Jain et al.



fault tolerance mechanism is provided as a module-independent service so that this
service can be provided to all the users and by each and every module transparently [7].

In order to achieve fault tolerance, a set of design techniques and algorithms are
applied to increase the overall dependability of the system. With new upcoming
technologies, new applications arrive, and hence, new fault tolerance solutions have to
be introduced as well. Earlier specific hardware and software used to be made in order
to provide fault-tolerant execution of tasks but the new microprocessor chips are highly
complex, and all the hardware and software are made according to pre-defined norms
which are economically feasible as well. Hence, many new techniques have come up to
the surface in the field of fault tolerance such as using the existing technique with
RAID disks where all the information is divided among many disks, and this improves
the bandwidth. Moreover, an extra disk stores the encoded information to restore the
data in case of system failure. Fault tolerance techniques are also being used in parallel
computers in order to detect faults and errors. Fault tolerance techniques are becoming

Table 1. Comparison of fault tolerance strategy [1]

S.
No.

Strategy Fault-tolerant
technique

Programming
framework

Environment Faults detected

1. Nicolae and
Cappello
(2011)

Disk-based
Checkpoint

MPI IaaS cloud Node/network
failure

2. Hakkarinen
and Chen
(2013)

Diskless-based
Checkpoint

NA HPC Process/application
failure

3. Kwak and
Yang (2012)

Checkpoint Probability
analytic
framework

Real-time
systems

Process failures

4. Goiri et al.
(2010)

Checkpoint Java Virtual
machine

Node failure

5. Malik et al.
(2011)

FTRT
(Adaptive)

– Real time –

6. Sun et al.
(2013)

DAFT
(Adaptive)

Java Large-scale
cloud

Works on historical
failure rate

7. Cogo et al.
(2013)

FITCH
(Adaptive)

Java Large-scale
cloud

–

8. Zhang et al.
(2011)

BFT Cloud
(Adaptive)

Java Voluntary
resource
cloud

Byzantine problems

9. Zhao et al.
(2010)

LLFT
(Adaptive)

C++ Middleware Replication faults

10. Ko et al. (2010) IFT(Adaptive) Hadoop Hadoop Intermediate data
faults

11. Zheng (2010) MFTLL
(Adaptive)

MapReduce MapReduce Replication faults,
stragglers detection

12. Pannu et al.
(2012)

AAD
(Adaptive)

– Local cloud Discovers future
failures

Inspection of Fault Tolerance in Cloud Environment 1027



more famous day by day especially in sub-micron VLSI in order to solve major
problems such as noise and improving the overall yield of the system by increasing its
ability to process even with faults.

We have compared the various fault tolerance techniques which are quite famous
ones as shown in Table 1.

4 Related Works

The model is already proposed and is called fault tolerance in cloud computing
(FTC) [1]. We are going to analyze it more deeply and give more functioning to the
model. This model tolerates the faults based on the reliability each node has. Each node
to be executed is taken to be a real-time application. The model is shown in the figure
given below. Here, we have “N” computing nodes or virtual machines each of which is
running a different algorithm. Further, we perform an acceptance test (AT) whose result
is then forwarded to the adjudication node to take a decision regarding it [2, 5]. Here,
two distinct nodes are displayed, one of which contains some virtual machines on the
cloud infrastructure and running different algorithms to handle real-time applications.
The proposed algorithm then supplies the result again for an acceptance test to see
whether it is logically valid or not. The test modules are similar to each other in every
sense. If the results are valid, only then they are passed to the time checker module;
otherwise, the AT modules send an exception signal reflecting the reason. The pro-
posed scheme just not provides forward recovery but sometimes also can provide
backward recovery. The other node is the adjudication node which comprises of three
separate components: First, the Time Checker [TC] Module, it checks the timing of the
results produced as it contains a timer that records the timestamp at which each result
was produced [11]. Second is the Reliability assessor (RA) module which is used to
check the reliability of each computing node. The final component is the Decision
mechanism (DM) module which selects the best output based on their reliabilities.

As a cloud infrastructure consists of more than one grid, it becomes hard to tackle
various security issues like confidentiality and integrity [6]. In [12], a fault-tolerant

Fig. 2. FTM Kernel [1]

1028 D. Jain et al.



middleware is being proposed by the authors that can use replication to handle the
faults in real-time cloud applications. In [7], in order to build a fault-tolerant protocol,
we propose to use micro-protocols and use them in hierarchical order to form a system.
In [6], to develop a fault-tolerant framework that is proactive as well, we propose to use
a modular approach that can incorporate a requirement-specific strategy as well
(Fig. 2).

The model already proposed can be used in real-time applications based on cloud
infrastructure to handle the faults since the model can tolerate faults to a high extent. It
has high reliability which can be dynamically configured. Moreover, we tried to
introduce an approach that can be used in order to recognize generic fault-tolerant
mechanisms as independent modules, the properties of each mechanism have been
validated, and the user requirements have been matched with the available
fault-tolerant mechanisms.

5 Conclusion and Future Work

A great analysis and design techniques are applied to create improved systems in fault
tolerance. Almost every day, a new technology and applications are being developed so
there is a need for new approaches to fault tolerance. Previously, it was quite easy to
craft a specific hardware and software for a solution, but as technology is getting more
advanced, it is getting complex too to apply a solution. Thus, there is a great deal of
current research focusing on implementing fault tolerance. In this paper, we have
successfully inspected the fault tolerance technology. We have discussed it with reli-
ability and availability, and also, we have added new functionality to FTC-proposed
model.

In future, we look forward to implement the proposed framework in order to
measure the strength of the fault tolerance approach. Work is also proposed to create a
new module called Resource Awareness Module or RAM that can help the cloud
service provider’s scheduler to schedule decision that is based on the characteristics of
the infrastructure of the cloud system.

References

1. Dilip Kr Baruah, Lakshmi P. Saikia, “A Review on Fault Tolerance Techniques and
Algorithms in Cloud Computing Environment”, in International Journal of Advanced
Research in Computer Science and Software Engineering Volume 5, Issue 5, May 2015.

2. Michael K. Reiter and Avishai Wool, “Probabilistic Quorum Systems”, Information and
Computation 170, 184–206 (2001).

3. Apolinar González-Potes, Walter A. Mata-López, Vrani Ibarra-Junquera, Alberto M.
Ochoa-Brust, Diego Martínez-Castro, Alfons Crespo, “Distributed multi-agent architecture
for real-time wireless control networks of multiple plants”.

4. Zohaib A. Faridi, S. Rawat “Analysis and proposal of a novel Approach to collision
detection and avoidance between moving objects using Artificial Intelligence” 5th Fifth
International Conference on System Modelling & Advancement in Research Trends in
TMU, Moradabad (UP) 25–27 Nov. 2016.

Inspection of Fault Tolerance in Cloud Environment 1029



5. Alain Tchana, Laurent Broto, Daniel Hagimont, “FaultTolerant ApproachesinCloudCom-
putingInfrastructures”, in ICAS 2012: The Eighth International Conference on Autonomic
and Autonomous Systems.

6. John D. Slingwine, Paul E. McKenney, “Apparatus and method for achieving reduced
overhead mutual exclusion and maintaining coherency in a multiprocessor system utilizing
execution history and thread monitoring”.

7. Hagit Attiya2, Alla Gorbach3, Shlomo Moran4, “Computing in Totally Anonymous
Asynchronous Shared Memory Systems”, Information and Computation Volume 173, Issue
2.

8. Praveen Kumar, Dr. Vijay S. Rathore “Improvising and Optimizing resource utilization in
Big Data Processing” in the proceeding of 5th International Con-ference on Soft Computing
for Problem Solving (SocProS 2015) organised by IIT Roorkee, INDIA (Published in
Springer), Dec 18–20, 2015. PP 586–589.

9. Seema Rawat, Praveen Kumar, Geetika, “Implementation of the principle of jamming for
Hulk Gripper remotely controlled by Raspberry Pi” in the pro-ceeding of 5th International
Conference on Soft Computing for Problem Solving (SocProS 2015) organised by IIT
Roorkee, INDIA, Dec 18–20, 2015. PP 199–208.

10. Sheril Yadav “Analysis and Implementation of Business Intelligence Software for Report
Bursting” International Conference in Smart Computing & Informatics (SCI-2017) held in
ANITS, Visakhapatnam March 2017.

11. Michael Wei, Amy Tai, Chris Rossbach Ittai Abraham, “Silver: Ascalable, distributed,
multi-versioning, Alwaysgrowing(Ag) FileSystem”.

12. HyoJong Lee, Shwetha Niddodi, David Bakken, “Decentralized voltage stability monitoring
and control in the smart grid using distributed computing architecture” published in Industry
Applications Society Annual Meeting, 2016 IEEE.

1030 D. Jain et al.


	Inspection of Fault Tolerance in Cloud Environment
	Abstract
	1 Introduction
	1.1 Essential Characteristics
	1.2 Service Models
	1.3 Deployment Models

	2 Resource Manager
	3 Fault Tolerance in Cloud Computing
	3.1 Basic Notation to Fault Tolerance
	3.2 Fault Tolerance and Reliability

	4 Related Works
	5 Conclusion and Future Work
	References




