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Abstract An adaptive finite elementmethod (FEM) is used for the solution of turbu-
lent reactive flows in 3-D utilizing parallelmethods for fluid dynamic and combustion
modeling associated with engines. A dynamic LES method permits transition from
laminar to turbulent flow without the assumptions usually required for turbulent
sublayers near wall area. This capability is ideal for engine configurations where
there is no equilibrium in the turbulent wall layers and the flow is not always tur-
bulent and often in transition. The developed adaptive FEM flow solver uses “h”
adaptation to provide for grid refinement. The FEM solver has been optimized for
parallel processing employing the message passing interface (MPI) for clusters and
high-performance computers.
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Nomenclature

~ Designates a Favre-averaged variable
– Designates a grid-filtered variable
c Sound speed (m/s)
Cp Specific heat capacity at constant P (J/kg.K)
Cvm Vreman fixed SGS eddy viscosity coefficient
CDVMG Vreman dynamic SGS eddy viscosity coefficient
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Dj Diffusion coefficient of the jth species
(
m2/s

)

Dk Turbulent diffusion coefficient
(
m2/s

)

E Total internal energy (J/kg)
fk, j Body forces

(
N/m3

)

fdrop Body forces related to particulate or droplets in flow
(
N/m3

)

Hj Enthalpy of species j (J)
Hoj Enthalpy of formation (J)
P Pressure (Pa)
Pr Molecular Prandtl number
Prsgs SGS eddy Prandtl number
PrDVMG Vreman dynamic SGS eddy Prandtl number
Q j Subtest-scale heat flux vector
qi Heat flux vector
Re Reynolds number
S̃ij Strain rate tensor

(
N
m2 , kg/m s2

)

Sc Schmidt number
Sct Subgrid-scale turbulent Schmidt number
T Temperature (K)
Ti j Subgrid test-scale stress tensor
ti j Grid-scale (resolved scale) shear stress

(
N
m2 , kg/m s2

)

ui Velocity component (m/s)
ϒ j f j Body force term for the j th component
ẇ

j
chem Chemical reaction

ẇ
j
spray Spray evaporation

Greek Symbols

∂t Discrete time step size (s)
κ Coefficient of thermal conductivity (W/m K)

ρ Density (kg/m3)

ϒ j Mass fraction (jth species)
(

ρ j

ρ

)

τi j Subgrid-scale stress tensor
μ Fluid viscosity (Pa s)
μsgs Turbulent eddy viscosity

1 Introduction

A number of challenges found in combustion modeling are related to developing
methods that handle the numerical requirements of coupled physical and chemical
processes. These requirements related to engines are pronounced, with the highly



A Dynamic LES Model for Turbulent Reactive … 219

transient three-dimensional (3-D) dynamics ranging over flow regimes with evapo-
rating fuel sprays, the ignition of gases, and the subsequent chemical reactions. In
addition, heat transfer and species transport modeling are critical to the success of
the models accuracy. When dealing with multiple phases in the liquid sprays, the
process will get even more complicated to track the dynamically evolving interfaces.
Our efforts in developing accurate methods and models to calculate such flows in
engine cylinders, including the effects of turbulence, improve the current LosAlamos
National Laboratory’s KIVA [1] suite of codes with the creation of an hp-adaptive
FEM all flow regime solve (KIVA-hpFE), where h is associated with mesh adapta-
tion and p is the order of the basis function for FEM. Among the adaptation families,
the hp-adaptive FEM is one of the best mesh-based algorithms. The computational
mesh is automatically refined and unrefined based on the change of flow features;
the shape function order is dynamically controlled by the computational error. In this
study, we only focus on h-adaptation (mesh refinement).

The most widely used approach for modeling turbulent flow, Reynolds-averaged
Navier–Stokes (RANS), is implemented using the two-equation k-ω modeled by
Wilcox [2]. Time averaging methods produce a mean value for turbulent variables,
kinetic energy, dissipation rate, and turbulent viscosity and do not capture flow struc-
tures in unsteady turbulence. The two-equation models generally use a law-of-the-
wall relation for emulating the turbulent boundary layer, but this law is not appropriate
at varying times during the cycle of an engine. For example, the flow is nearly always
perpendicular to the surface near the piston.

A large eddy simulation (LES) model provides a method for solution of unsteady
turbulence intensity, varying turbulent viscosity, and dynamic flow structures. In
many modern combustion devices, the LES method is more widely adopted to study
combustion [3–7]. A LES model solves the spatially averaged Navier–Stokes equa-
tions using a grid-based filtering process. In LES, the larger eddies are directly
resolved at the grid resolution and eddies smaller than the grid are modeled. Using a
dynamic Vreman approach [8] as implemented in the finite element method (FEM),
guarantees vanishing subgrid-scale (SGS) dissipation for various laminar shear flows
and thus there is no need to use any wall-damping functions in simulating boundary
layer flows. These features of this type of LES system are well suited for wall-
bounded shear flows [9]. Hence, the dynamic Vreman LES is capable of modeling
various flow regimes, laminar, transitional, and turbulent flows simultaneously.More
details of the LES implementation can be found in Waters et al. [10].

In this study, Vreman LES modeling, with the use of adaptive FEM and parallel
implicit solution methods, is examined in more detail. LES models, in comparison
to the RANS models, require finer density meshes because the modeled flow size
depends on the filter size decided by the mesh size. Unstructured CFD algorithms
used to model engine combustion typically require large computing resources, typ-
ically provided through parallel computer systems. By linking together hundreds
and thousands of individual processors (or nodes), parallel computer systems deliver
significant enhancements in computational memory, storage, and overall computing
speed. In this study, a message passing interface (MPI) is employed to model 3-D
turbulent flow in engines. Jimack [11] describes a similar procedure using MPI for
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FEM. The parallel system in the KIVA-hpFE code also tracks the motion of spray
particle parcels (droplets) from one position to another and from one processor to
another [12]. Krylov solvers are used withmatrix-vector multiplication and dot prod-
uct operations for shared element updating and convergence of shared nodes [13].

2 Governing Equations

2.1 Turbulent Flow Modeling with Multi-species

The grid-filtered and Favre-filtered continuity, momentum, energy, and species equa-
tions governing the process of large-scale eddies are expressed as

∂ρ̄

∂t
+

∂(ρ̄ũi )

∂xi
(1)

∂(ρ̄ũi )

∂t
+

∂
(
ρ̄ũi ũ j

)

∂x j
� ∂ t̃ j i

∂x j
− ∂ p̄

∂xi
+

∂τ j i

∂x j
+ f̄drop + ρ̄

NumSpecies∑

k�1

Υ̃k fk, j (2)

where t̃i j is the stress tensor evaluated using the Stoke’s hypothesis as

t̃i j � μ
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∂ ũj
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[(
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xi
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+ ρ̄ϒ̃ j f j (xi )

+ ẇ
j
chem + ẇ j

spray (5)

The SGS stress tensor τi j and SGS heat flux vector qi in Eqs. (2) and (4) are
defined, respectively, as

τi j − 1

3
τkkδi j � −2μsgs

(
S̃i j − 1

3
S̃kkδi j

)
(6)
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q j � − μsgs

Prsgs

∂ T̃

∂x j
(7)

where μsgs is the SGS viscosity, Prsgs is the SGS Prandtl number, and S̃ij �
1
2

(
∂ ũi
∂xj

+ ∂ ũj
∂xi

)
is the strain rate tensor. Here ~ is a Favre-filtered variable obtained

from filtering its grid-filtered component. In this work, the box or top hat filter is
applied for the grid-filtered component.

2.2 Mass Conserving Projection Method
for Compressible Flow

In order to create a fractional split method, an initial guess for specific momentum
is advanced in time, utilizing the expression


U ∗
i � −
t × M−1

u [AuUi + KτuUi − Fu]
n (8)

where Ui � ρui , Mu is the mass matrix, Au is the advection matrix, Kτu is the
diffusion matrix, and Fu is the source term. The projection method is presented
here with solving momentum explicitly, but the same algorithm is used when our
governing equations are solved implicitly.


U ∗
i � U ∗

i −Un
i (9)

The corrected momentum is determined from the estimated momentum and the
pressure gradient, given by

Un+1 −U ∗ � −
t
∂P ′

∂xi
(10)

Changes of density or pressure are determined from solving an implicit pres-
sure/density Poisson equation created as a result of conservation of mass. This leads
to the value for P ′ as shown in the following continuity solution process:

Mass conservation:

∂ρ

∂t
� −∂(ρui )

∂xi
� −∂Ui

∂xi
(11)

Time advancement in discrete terms for continuity is

ρn+1 − ρn


t
� −∂U ′

i

∂xi
(12)

where
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U ′ � θ1U
n+1 + (1 − θ1)U

n (13)

with U � ρu.

We define P ′ � θ2Pn+1 + (1 − θ2) ∗ Pn and 
P � Pn+1 − Pn . The final specific
momentum as obtained with the explicit corrector defined previously by


Ui � Un+1 −Un � 
U ∗ − 
t
∂P ′

∂xi
� 
U ∗ − 
t

(
θ2

∂
P

∂xi
+

∂Pn

∂xi

)
(14)

The finite element form in matrix form is given by

{
Ui } � {

U∗} − 
t

[
M−1

u

](
θ2[G]{
pi }[G]

{
pni

})
(15)

The final specific momentum is obtained using the corrector,

{
Un+1

i

} � {
Ui } +
{
Un

i

}
(16)

The mass velocity or momentum is solved and velocity is extracted

un+1 � Un+1/ρn+1 (17)

Density is recovered from the equation of state. The speed of sound, c, is calculated
by

c � √
γ RT . (18)

where R is the specific gas constant, for air 287 J/kg K, or it can be determined by a
mass-averaging process.

When it is incompressible flow, we use artificial compressibility β for c.

β � max
(∈, uconv, udi f f

)
(19)

where ∈ is a small constant to ensure β in Eq. (19) is not approaching zero. uconv �
|U | � √

uiui and udi f f � ν
h , where h is the element size and ν is the kinematic

viscosity. The time step for the artificial compressibility methodmay become limited
as β → ∞. Therefore, pseudo time-stepping is needed in the incompressible region.

2.3 Dynamic Vreman SGS LES Model

Vreman [9] developed a fixed model coefficient SGSmodel where the SGS viscosity
is determined as

μsgs � ρ̄Cvm�g (20)
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in which

�g �
√

Bg
β

αi jαi j
(21)

αi j � ∂ ũ j

∂xi
(22)

βi j �
3∑

m�1


2
mαmiαmj (23)

Bg
β � β11β22 − β2

12 + β11β33 − β2
13 + β22β33 − β2

23 (24)

where Cvm � 0.07 and the SGS Prandtl number Prsgs � 0.4.
If αi jαi j or B

g
β is approaching zero, then �g � 0. This is equivalent to running

laminar flow.
It is not realistic to assume the coefficient to be constant throughout the simula-

tion. The development of the dynamic subgrid-scale model (DSGS) model captures
significant progress in the subgrid-scale modeling of non-equilibrium flows. The
DSGS model coefficient is calculated from the energy of the smallest resolved scale
(grid size), instead of setting a priori parameters. The DSGS is obtained by two-filter
processes: in the first filter, we used the grid size 
, where the filtered expressions
are given by (1)–(4). In this portion, the SGS Reynolds stress is included. By adding
a test filter 
̂ � 2
 to the filtering Eqs. (1)–(4) leads to the subtest-scale stress tensor
Tij and subtest-scale heat flux vector Qj:

Ti j − 1

3
Tkkδi j � −2μsgs

(
ˆ̃Si j − 1

3
ˆ̃Skkδi j

)
(25)

and

Q j � − μsgs

Prsgs

∂
ˆ̃T

∂x j
, (26)

We define μsgs � ρ̄CDVMG�t and Prsgs � PrDVMG . Under the aid of the
Germano identity [14] and a least-squares error minimization technique of Lilly
[15], the coefficients CDVMG and PrDVMG are calculated as

CDVMG �
〈
Li j Mi j

〉
V〈

Mi j Mi j
〉
V

(27)

and

PrDVMG �
〈
Mθ

j M
θ
j

〉

V〈
Lθ

j M
θ
j

〉

V

, (28)
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More details regarding the filtering system of this dynamic LES method is pro-
vided in Water et al. [10].

3 Adaption Methodology

The computational mesh is automatically refined and unrefined based on the change
of flow features. The smooth flow region usually associates with small computational
error, and the fast-changing flow region usually associated with large computational
error, as discussed in Waters et al. [10]. Mesh adaptation starts with an initial coarse
mesh. A local element refinement indicator is defined to determine if a local refine-
ment for an element is needed, i.e.,

ξi � ‖e‖i
ēavg

(29)

when ξi > 1 the element is refined; when ξi < 1 the element is unrefined.
The local relative percentage error of any single element is ‖e‖i while the average

element error is defined as ēavg . The gradient of the momentum in each element
is used to calculate the error estimate, e.g., e � ∇U . There are different levels of
refinement. When an element is refined once, this is labeled a level one refinement,
refining again produces a level two for refinement, and so on. The adaptation process
is illustrated in Fig. 1. All physical nodes are vertexes of the quadrilaterals. Virtual
nodes are only added physically for visualization. More details can be found in
Wang and Pepper [16].

4 Implicit Solution Method

Developing an implicit solution scheme allows for a larger time step size and main-
taining the accuracy of the overall system of model equations. In this system, the
diffusive terms such as turbulence and other stresses, are moved to the left-hand
side of the equation and integrated into a matrix equation. The advection and source
terms are for the load vector. The method is developed by starting with the momen-
tum Eq. (2) without the pressure gradient term to get the intermediate velocity u∗

i .
For simplicity, we drop all of the superscripts and source terms.

ρnu∗
i − 
t×

(
∂t∗i j
∂x j

− ∂τ ∗
i j

∂x j

)
� ρnuni − 
t×∂(ρnuni u

n
j )

∂x j
(30)

where t∗i j � μ
(

∂u∗
i

∂x j
+

∂u∗
j

∂xi

)
− 2

3μ
∂u∗

k
∂xk

δi j and τi j − 1
3τkkδi j � −2μsgs

(
S̃i j − 1

3 S̃kkδi j
)
,

where the strain rate tensor is given by S∗
i j � 1

2

(
∂u∗

i
∂x j

+
∂u∗

j

∂xi

)
.
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Fig. 1 Adaptation process

Using the mass conserving projection method described previously results in un+1i
by multiplying u∗

i by ρn to form U ∗
i , hence 
U ∗

i � U ∗
i − Un

i , as usual in the semi-
implicit projection.

After determining the pressure as stated earlier, the specific internal energy is
solved again in implicit form:

En+1 − 
t× ∂

∂xi

(
κ

Cv

∂En+1

∂xi

)
− 
t× ∂

∂xi

(
Cpμsgs

Prsgs Cv

∂En+1

∂xi

)

� En − 
t× ∂

∂xi

(
Enun+1i + Pn+1un+1i

)
+ 
t× ∂

∂xi

(
tn+1i j + τ n+1

i j

)
(31)

Here En+1 � ρnen+1 and en+1 is the internal energy, and we can get temperature
T n+1 with T n+1 � en+1

Cv
.



226 J. Waters et al.

The solution to the species transport equations follows in similar manner:

ρnϒn+1
j − 
t× ∂

∂xi
ρn

[(
Dj,N +

μsgs

Sct

)
∂ϒn+1

j

∂xi

]

� ρnϒn
j − 
t× ∂

∂xi
(ρnun+1i ϒn

j )

(32)

For compressible flow, the sound speed is given by c � √
γ RT , where γ and R are

aggregated properties determined from the different speciesmass concentrations. The
aggregation process is described in Carrington [17]. The implicit system is not fully
implicit because we want to keep the matrix as symmetric as possible for large-scale
parallel calculation to reduce computational time, especially for preconditioning.

5 Parallel Solver System

Choice of either a semi-explicit or an implicit solver system can be selected, both of
which use themessage passing interface (MPI) paradigm for parallel communication;
truly a requirement for 3-D simulations and LES. The linear equation system uses
the preconditioned conjugate gradient (PCG) solver package having various Krylov
solvers. The user supplies matrix-vector multiplication and dot product operations.
Our in situ preconditioning methods use SSOR or SOR, since no off-block infor-
mation is required during the distributed solution of the matrix equations that might
require a block Jacobi scheme. The global system is solved by a Beam-Warming
method, checking for global convergence, and evoking the additive Schwartz pre-
conditioning system. Communication for preconditioning requires the matrix-vector
multiple and vector dot product; both requiring collocations, that is, a gathering and
reduction processes facilitated byMPI. An array utilizing an array of globally shared
nodes stored onmother processor. The Beam-Warming iteration process provides for
the global convergence of the equation system as developed and described by Car-
rington [18]. For the semi-explicit process, the PCG linear equation solver is used
for the pressure; for the implicit method, the linear equation solver is used for all the
equations. Subcylcing of the species transport equations is recommended since there
are many replications for each species and can be easily threaded onto processing
units by nesting in OpenMP calls, usually this only requires one explicit step, how-
ever. Details regarding this MPI implementation for FEM and its efficiency are given
in Waters and Carrington [19], showing nearly 30 times speed-up (strong scaling
test) over the serial implementation of the overall CFD solver, KIVA-hpFE and is
shown to be super-linear.

Essentially, the super-linear behavior of the system results from the local integra-
tion of each element and the additive property of integrands. A section of the mesh
used for the FEM discretization is shown in Fig. 3. Only those elements dissected are
considered overlapped. Some information about thematerial properties and primitive
variables required for integration on an overlapping element must be gathered. This
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Fig. 2 Speed up
improvement

is a simple message passing gather, as performed by a Message Passing Interface
(MPI). Jimack and Touheed [20] give a brief introduction about using MPI for FEM.
Only the material and primitive variables changing in time need to be part of the
communication. Values at each node are determined by integration over elements,
on which this node resides. The integration over an overlapped element, shown in
Fig. 2, requires gathering values whenever a node is off processor. Therefore, mostly
all information that is required for each processor is as follows:

1. Which elements are overlapped, and placed into a 1-D array of shared element s
having dimension of number of shared elements.

2. How many nodes should be received from each processors—this is a 1-D array
with the dimension of number of processors.

3. How many nodes should be sent to the other processors—this is 1-D array with
the dimension of number of processors.

4. Which nodes should be sent to which processor—this is an 2-D array of shared
nodes between domains in the global domain, called global_sharednode.

5. What ordering of nodes and elements is present for the global numbering,
a mapping from local to global numbering and is called NEWORDER and
NEWORDER_E.

In the explicit case, the solution is merely updated at new time value at n+1 and
no matrix equation needs to be solved except for the pressure Poisson equation (as
described in the next paragraph on implicit procedures). Elements that are needed
to be integrated are elements residing on this processor and the shared elements
found in the shared element array. We only update nodes on each processor when
the value of the array NEWORDER is not zero and is less than the number of nodes
on that processor. After all nodes on that processor are integrated or updated that
information is passed into the shared nodes array and distributed to their correspond-
ing processors (e.g. in Fig. 3, nodes 2, 5, and 8 will be passed to processor (PE) 1
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Fig. 3 Overlapped nodes

and 3, 6 and 10 need to be passed to PE 0). This information is found in the array
global_sharednode and the process occurs via MPI using an all gather command
for vector arrays (MPI_Allgatherv). The procedure is applicable to the momentum
predictor and corrector steps, along with all transport equations, provided both the
viscous and convection terms are stated explicitly.

For the implicit solution processes for pressure or any of the implicit matrices
produced, the PCG linear equation solver package of Krylov solvers with user-
supplied matrix-vector multiplication and dot product operations is incorporated. In
addition, the PCGpackage provides for user-developed equation preconditioning and
overall equation convergence. In this case, a Beam-Warming method is used for the
solution to the equations using an additive Schwartz preconditioning system.Only the
communication for preconditioning requires thematrix-vectormultiplication and dot
product routines inKIVA-hpFE. These systems require the collocation, i.e., gathering
(GATHERV) and reducing (ALLREDUCE) processes from MPI and employing
the 1-D array of shared nodes in the global domain called global_sharednode. The
Beam-Warming iteration process provides for the global convergence of the equation
system.

The MPI code is implemented in Fortran and has been tested for 3-D flow over
a cylinder with 50,720 elements and 57,508 nodes. Figure 2 shows the super-linear
speed improvement with MPI incorporated into the semi-implicit algorithm.



A Dynamic LES Model for Turbulent Reactive … 229

6 Numerical Results

6.1 Implicit Solver for 3-D Flow Over a Cylinder

Turbulent flow over a circular cylinder for Reynolds numbers 1.2e+05 (determined
by the cylinder diameter and inlet velocity) is investigated here using the dynamic
Vreman LES with implicit solver. For simplicity, we assume all species consist of
air. The dimension of the domain is

x ∈ [−2.75m, 2.75m], y ∈ [−1.375m, 1.375m], z ∈ [−0.275m, 0.275m].

Inlet velocity U�9.0 m/s, V�0.0 m/s, and W�0.0 m/s, and the cylinder diame-
ter is 0.2 m. Here we want to show the efficiency of our implicit solver; therefore, we
used a mesh with 114 K nodes and 104 K elements. The flow domain is decomposed
into eight subdomains which are assigned to eight processing elements. The domain
decomposition is done by ParMETIS, which is an MPI-based parallel library that
implements a variety of algorithms for partitioning unstructured graphs, meshes, and
for computing fill-reducing orderings of sparse matrices [21]. The domain decom-
position is shown in Fig. 4a and the simulation mesh set up is as Fig. 4b. Since no
reactions are occurring for the problems described here, the source terms in the gov-
erning equations are zero. We use free outflow and no slip as boundary conditions on
all walls, and expect 3-D effects from the side walls (along Z direction). The wake
starts in a symmetric fashion, as seen in Fig. 5a, then the symmetry breaks down:
one eddy becomes larger, as shown in Fig. 5b. Secondary eddies form downstream
where the boundary layer separates from the cylinder surface. This is the onset of the
eddy separation process, as shown in Fig. 3c. Asymmetry continues to develop in
higher Re flows, and eddies are shed from the cylinder, producing the familiar flow
pattern of periodic vortex shedding. At later times, the vortices in the wake generate
large recirculation zones on the leeward side of the cylinder and develop into the
oscillatory von Karman vortex street, as shown in Fig. 5d, e. These results agree
with Mustto and Bodstein [22]. Figure 5 shows the instantaneous velocity contour
plot at meridional slice of Z�0 for different time where the vortex shedding is well
captured. The Reynolds number is close to the critical Reynolds number and under
the influence of 3-D side well effect, we experience some turbulence in the down-
stream after the cylinder and vortex shedding starts at a further distance compared
to small Reynolds number, e.g., Re�1000. Figure 6 shows the turbulent viscosity
and local Mach number. In order to compare the pressure coefficient with the exper-
imental data from Merrick and Bitsuamlak [23], we have the same set up as the
experiments shown in [23]. The comparison is shown in Fig. 7. The detachment of
the boundary layer flow from the cylinder occurs at θ�85°, which is approximately
5◦ different from that described in the literature where θ�80° [24]. This difference
may be a result of the 3-D side-wall effects (Taylor–Gortler vortex) in the narrow
domain with no-slip walls. Overall, results match the experimental values for the
coefficient of pressure, shown in Fig. 7. The implicit solver allows for a time step
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(a)                                              (b)

Fig. 4 a Simulation domain decomposition onto eight processors (PE is the number of the proces-
sor) and b mesh set up

t=0.25 t=0.5    t=1.0

 t=1.3  t=1.6

(a)                                              (b)

(d) (e)

(c)

Fig. 5 Instantaneous velocity streamlines at different time (seconds) of the simulation, Re � 1.2 ×
105 and SD is the velocity magnitude

size of 
t�1.64×10−5 while 
t�1.21×10−7 is needed for the explicit solver,
running this lower than stability limits require. The implicit solver requires more
computational effort, taking 2.62 s for each time step compared to only 0.25 s for the
explicit solver. However, the implicit solution scheme produces a shorter wall-clock
time per calculation by a factor of 10.
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(a)                                              (b)

Fig. 6 a Turbulent viscosity and b local Mach number

Fig. 7 Pressure coefficient
comparison with experiment
for Re � 1.2 × 105

6.2 3-D Flow Over a Backward-Facing Step Using Adaptive
FEM and LES

For this test case, 3-D flow over a backward-facing step is examined using the h-
adaptive system and LES. The Reynolds number for this test case is 28,000 (deter-
mined by the step height) using air as the fluid at 296 K° with Prandtl number (Pr)
of 0.71. The step height (H) is 0.025 m. The outflow boundary is modeled with a
zero-gradient applied for momentum, which is located 30 step height downstream
from the expansion. No-slip boundary conditions are applied on the walls except for
the Z direction, which receives a periodic boundary condition to remove 3-D effects
from the side walls. The 2-D version of the model is discussed in Waters et al. [10].
Here, we present the comparison of LES and RANS model with the help of the h-
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(a)

(b)

Fig. 8 2-D instantaneous flow magnitude with adaptation by LES (a) and RANS, (b) at 24 s

adaptation in Fig. 8 where LES in Fig. 8a is better at capturing the instantaneous flow
than RANS in Fig. 8b where only the average results are shown. Figure 9 is showing
the h-adaptation and the heat flux is well simulated here. In this work, we adapted
the mesh twice (level 2 adaptation). 3-D simulation is demonstrated in this study.
The initial mesh starts with a coarse mesh having 6,955 nodes and 4,976 elements
as shown in Fig. 10a. LES requires a resolved grid in order to evaluate the boundary
layer properly so with the use of mesh refinement algorithm, h-adaptation, the grid
density is altered automatically in the region of interest. The refinement is limited
to this region since the solution is performed on 1 processor, restricting the amount
of memory available for more cells and greater refinement. In order to capture the
recirculation after the step in the downstream, the initial grid is adapted twice and
the final grid has 18,930 nodes and 16,316 elements shown in Fig. 10b. Figure 10c
shows the adaptation at a meridional slice at Z�0, where the recirculation region
has been h-adapted to two levels. Taking the time-averaged velocity allows for the
measurement of the mean recirculation length behind the step. Figure 11a shows the
reattachment region ranges from −0.25 to −0.07 m, with a secondary eddy being
well captured in the corner. The reattachment length is therefore 7.6H, agreeing with
the experimental value~7.2H and previous work by Waters and Carrington [19].
Figure 11b shows the instantaneous flow at t�0.6 s, where fully turbulent flow is
shown behind the step.

7 Conclusions

A parallel implicit solver with a dynamic 3-D LES model has been embedded in
KIVA-hpFE. Flow over a cylinder with Re�1.2 × 105 is tested and the numerical
results compared with experimental data. The vortex shedding is shown to be accu-
rately captured in the 3-D simulation. Comparing with the use of an explicit solver,
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Fig. 9 Shown the adaptation up to level 2 adaptation with temperature contour

(a)                                              (b)

(c)

Fig. 10 Initial mesh (a), final mesh after adaptation (b), and (c) slice mesh adaptation at z�0
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Average velocity Instantaneous flow at t=0.6s

(a)                                              (b)

Fig. 11 Average velocity streamline and velocity magnitude are the average velocity magnitude,
instantaneous flow at t�0.6 s (a) average velocity (b) instantaneous flow at t�0.6 s

a 10x improvement in wall-clock time is achieved for achieving the same results.
It should be noted that the parallel MPI implementation provides for~30x speed-up
over serial solution. Overall, the implicit method, when combined with paralleliza-
tion, essentially yields a 300x speed-up over the explicit serial system. The adaptive,
dynamic LES model was also applied to 3-D flow over a backward-facing step and
achieved very good results compared with studies reported in the literature with just
two levels of grid refinement. Efforts are underway to expand the system to include
a parallel hp-adaptive scheme. The hp-adaptive FEM strategy follows a three-step
strategy using posterior error estimators based on the L2 norm and is expected to
achieve exponential convergence rates.
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