A Custom Designed RISC-V ISA Compatible
Processor for SoC

Kavya Sharat®™), Sumeet Bandishte, Kuruvilla Varghese,
and Amrutur Bharadwaj

Indian Institute of Science (IISc), Bangalore, India
kavya.sharat@gmail.com, sumeet.bandishte30@gmail.com,
edkuru@dese.iisc.ernet.in, amrutur@ece.iisc.ernet.in

Abstract. RISC-V is an open Instruction Set Architecture (ISA)
released by Berkeley Architecture Group from the University of Cali-
fornia, at Berkeley (UCB) in 2010. This paper presents the architecture,
design and complete implementation of a 32-bit customisable processor
system containing a mix of features as listed below. The 32-bit proces-
sor based on RISC-V ISA, is capable of handling atomic operations in
addition to all integer operations supported by the ISA. The design has
a priority-based nested interrupt controller, giving the user an added
flexibility to program the priority levels of interrupts. In addition, there
is a debug unit which provides internal visibility during program execu-
tion. An error detection and correction interface to memories, makes the
design resilient to radiation induced bit-flips. The on-chip communication
interface follows the standard Wishbone specification. The design has
been implemented on Xilinx Virtex-7 XC7VX48T FPGA and achieves a
peak frequency of 80 MHz, with the processor stand-alone operating at
190 MHz. On a 65 nm technology node, the design operates at a frequency
of 170 MHz, while the processor stand-alone, a maximum frequency of
220 MHz. The design occupies a footprint of 1.027 mm? with 32-KB on-
chip memory.

Keywords: Processor - Pipeline - Cache - Interrupt controller
Error handling - Debug unit

1 Introduction

Processors are found in a plethora of applications from embedded computers
in toys to industrial control systems. Most of them have proprietary ISAs which
makes customisation difficult and expensive. A custom designed system based
on an open ISA is beneficial for fast and variety of development.

1.1 RISC-V

RISC-V is an open-source ISA released by Berkeley Architecture Group from the
University of California at Berkeley(UCB) in 2010 [1]. Its aim is to accelerate
research and development in the field of computer architecture.

© Springer Nature Singapore Pte Ltd. 2017
B. K. Kaushik et al. (Eds.): VDAT 2017, CCIS 711, pp. 570-577, 2017.
https://doi.org/10.1007/978-981-10-7470-7_55

A Custom Designed RISC-V ISA Compatible Processor for SoC 571

1.2 Related Works

System-on-Chip development in the field of RISC-V started with the release of
“Rocket Chip” [7]. It is tethered to an ARM core and requires intervention from
the core to emulate DRAM and peripherals.

In [5], the designers have released a soft core in chisel [4], called ‘ZSCALE’,
following the RISC-V RV32IM extension. The ‘VSCALE’ [6] is the Verilog ver-
sion of ‘ZSCALE’. mRISC-V, a RISC-V based micro controller, is described in
[8]. Since, none of these implementations till date have a combination cache,
atomic instruction support, configurable nested interrupt handling capability,
error handling feature, it was decided to build the entire system from scratch.
Many more implementations of RISC-V like PULPino [9], lowRISC [10] have
been come up lately.

2 Processor System Design

Our system has a 32-bit processor following RV32IMA extensions of RISC-V,
Instruction and Data Cache, Wishbone bus interconnect, configurable peripher-
als, interrupt controller and a Debug Unit.

2.1 Processor

The processor is a 5-stage, in-order execution machine. The 5 stages are fetch (F),
decode (D), execute (E), memory (M) and write-back (W). The stages and their
functionality is similar to that in conventional pipeline, with a few additions.
There is an amo block is for atomic instructions. Also, the execute stage has a
multiplier and divider module.

2.2 Cache

The cache architecture is chosen to be 2-way set-associative, since it serves as a
balance between increase in miss-rate in case of direct mapped cache and increase
in hit-time in case of fully associative cache. The Data and Instruction Cache
are of size 16KB each, with 32-byte block size. Write-back policy is used to avoid
the cost of writing to memory every time change is made to a cache block.

Data Cache: The Data Cache (D-Cache) holds the data section of the program
serving load/store requests from the processor. Figure 1 shows the top level view
of the data cache.

The command sequencer is the interface to the processor pipeline. It handles
requests arriving at both the ports- in D and M stages. It prevents simultaneous
read and write to the same cache line. It infers contention from the addresses
and gives priority to the M stage request since it is chronologically older.

There are two port control units (PCUs) each handling the request of an
access port. After arbitration (if required), the ports control units perform the

572 K. Sharat et al.

ot addrz!:mdé da?I Crld? ;alaQ sla#,in Slali,oul T¢ l
wr_emg wr_emd WRITE DATA
SEQUENCER[] UNIT > T:G WR'lE] {FUS[ON¢
cmd_resp1 TT T Tcmd,respz stall Tbusy »
data_i1 data_i2 — S —>
l l data_ot Jata_o2 [l l
£ busy ,7 | I—¢ TAG RAM DATA RAM
(0] PO
PORT 1 T TaT RT 2
DUAL PORT
CONTROL o el CONTROL daa_in
unT | RAM 1= 2 SN D
data_o1 dala,ozl
addr
bus_resp1 bus_resp2 T -
BUS
bus_reqt bus_req2
stall offset
cmd|
bu—syb word_hit
BUS vt
INTERFACE busresp
BUS data_out
Fig. 1. Data Cache organisation Fig. 2. Port Control Unit + RAM

read/write to the Data and Tag RAMs. Figure 2 illustrates a port control logic
along with the Data and Tag RAMs for a 2-way set associative configuration.

The address decode extracts index, offset and tag from a 32-bit address.
Index addresses the RAMs, tag is used to check for a match and offset is used to
extract the word from the cache line. Multiplexer M3 selects between the 2 ways
based on the tag check. M4 selects a word (32-bit) from a cache block. When
reading data smaller than a word length (32-bit), Read Mask logic extracts data
from a word and performs sign extension.

Instruction Cache: The Instruction Cache (I-cache) stores the instructions of the
program. Figure 3 shows the block schematic of the I-cache.

The instruction cache takes in requests from only the Fetch (F) stage. Hence
does not require a command sequencer to handle contentions. Also, a single port
RAM suffices for the I-cache. The ¢md signal input to the I-cache is rd (read)
as the I-cache is read only. The rest of the blocks and working is as explained in
the D-Cache section.

2.3 Interrupt Handling

The system currently supports nested interrupts from upto 32 sources. There is
a provision to add more interrupts, if required. These interrupts can be dynam-
ically assigned to any of the 4 priority levels.

The handling of interrupts is done by 2 units:

1. Interrupt controller, which is a Wishbone compatible peripheral
2. Interrupt interface towards the processor side.

The interrupt controller receives interrupts from peripherals and sorts them
according to priority. It then updates its registers and signals the CPU by

A Custom Designed RISC-V ISA Compatible Processor for SoC 573

stall_in stall_out

addr cmd data Tol/from
Interrupt Edge Control Logic Interrupt
Interface
STALL CTRL - .
nterrup
UNIT .
busy Controller Register Bank
EORT | o 4 stall SR
< IER
CONTROL | rd/wr ICPR
UNIT data_i SINGLE AR
data 0’ PORT Wish-bone :CS
-« — RAM Interface
N IPrRO
bus_resp | — IPrR1
L, IPrR2
bus_req P IPrR3
—| SEQUENCER
resp req Wishbone

protocol
Signals

o ~0 ~0< g

WISHBONE BUS
INTERFACE
BUS Wishbone Bus

Fig. 3. Instruction Cache organisation Fig.4. Handshake between Interrupt
Controller and Interrupt interface

sending an TR(Q) request. The interrupt interface towards the processor side saves
the current state of the program onto the stack and then sends an ACK signal
acknowledging the interrupt controller. The processor vectors to a common inter-
rupt handler and the interrupt service routine queries the interrupt controller,
by reading its register bank to determine the source of the interrupt.

The encounter of FRET instruction, as specified by RISC-V ISA marks the
end of the interrupt service routine [11]. The interrupt interface restores the
current state of the program from the stack. A DONE signal is sent from the
RISC-V core. The interrupt controller updates its registers with this signal.

Interrupt Controller. Figure4 shows the interrupt controller, its internal
structure and its interface signals.

Interrupt edge detector: This detects a rising edge on any of the interrupt lines,
and asserts a trigger on the Control Logic.

Register bank: The interrupt controller has a set of memory mapped registers:
Interrupt Enable Register (IER), Interrupt Pending Register (IPR), Interrupt
Active Register (IAR), Interrupt Current Priority Register (ICPR), Interrupt
Status Register (ISR), Interrupt Priority Registers (IPrR0-3) and Interrupt Vec-
tor Register (IVR)

Control Logic: On a trigger from the Interrupt Edge Detector, the control logic
block reads the Interrupt Enable Register (IER) and sends an TR(Q request, only
if the interrupt is enabled. The control logic also updates the Current prior-
ity register (ICPR), Status register (ISR), Active (IAR) and Pending registers
(IPR). When a second interrupt occurs while an interrupt is in progress, the

574 K. Sharat et al.

control logic reads the Register Bank (ICPR and IPrR0-3) to decide whether
it has to pre-empt if it is of higher priority level or be kept pending if it is of
lower priority level. On the receipt of a DONE signal, it updates its registers by
clearing the corresponding pending and active bits (IPR and IAR).

Wishbone Interface: The interrupt controller has a wishbone interface allowing
access to specific registers in its Register Bank. Configuring the priority levels
of interrupts by writing to IPrR0-3 and enabling/disabling interrupts by writing
to IER is done through the bus interface.

Interrupt Interface: The interrupt interface towards the processor side saves
the state of the program by injecting a set of stored instructions. When an
IR@ request signal is received, these instructions are injected to the decode
stage. Similarly, an FRET signal, triggers injection of instructions to restore the
program state.

2.4 Debug Unit

The on-chip Debug Unit assists in debugging software running on the proces-
sor providing the following capabilities: halt, resume, single step, reset the sys-
tem, reading register and memory contents. The communication with the host
is done with a two-wire cable following the UART (Universal Asynchronous
Receiver /Transmitter) protocol. As shown in Fig. 5, the debug unit has 2 sub-
modules: Debug Support Unit (DSU) and Debug Handle Unit (DHU).

Debug Unit Main Memory

cycstb | Address[31:0]

refwr =
General 5qdres

purpose = i
registers | data data

halt_status
halt

SEC-DED logic|, M*py-*™

data Debug
Registers

address

reg refwr
memre/wr

T

Debug
Interface

w
i
(]
h
b
0
n
e

Data [31:0]

Dn_)uble error Single error
interrupt interrupt

Fig. 5. Debug Unit Fig. 6. Error correction interface

Debug Support Unit (DSU). The DSU sends commands to the Debug Han-
dle Unit based on the commands received from the user. The DSU has a set of
debug registers, controlling program flow. They are not memory mapped and
user-programmed through UART. The DSU also has a UART wrapper control-
ling the transmission and reception of data, adhering to the UART protocol.

A Custom Designed RISC-V ISA Compatible Processor for SoC 575

Debug Handle Unit (DHU). The DHU interfaces to the processor core. It
communicates with the DSU through the debug interface as shown in Fig.5.
The DHU provides access the general purpose register and memory contents
for read/write operations while debugging. Through the Pipeline Control Logic
block, it controls data flow through the pipeline stages.

2.5 Error Handling

There is probability of soft errors in memories, due to interference from alpha-
particle or cosmic rays, which disrupt program execution. Hence, memories are
made fault-redundant using Error Correction Codes (ECCs). The error correc-
tion code used in our implementation is Single Error Correction Double Error
Detection (SEC-DED) [13].

Figure 6 shows the main memory with error handling interface. Our 32-bit
processor, requires 6 bits for single error correction and 1 additional bit for
double error detection. The wishbone interface receives synchronisation, memory
read/write, address and data signals from the core through the wishbone bus and
accordingly asserts signals to the RAM macro. During a memory write operation,
the Parity Compute block computes the 7 parity bits, and they are interspersed
between the data bits and written to memory [13]. During a memory read, the
Parity Check block re-computes the parity bits and compares it with the stored
parity bits. Mismatch indicates an error raising single and double error interrupts
as shown in Fig.6. The SEC-DED register bank has memory-mapped Address
Register and Correct Data Register which records the erroneous memory address
and the corrected data respectively. Single-bit errors in memory are corrected by
writing the corrected data to memory in the interrupt service routine. Double-bit
errors terminate the program.

3 ASIC Implementation

The processor system is implemented on a 65nm UMC technology node. The
design is synthesized using Cadence RTL Compiler into a gate-level netlist. The
RAM macro blocks for the instruction and data cache have been generated
using the Standard Memory Compiler, Memaker 201201.1.1, provided by Fara-
day Technology Corporation. Cadence Conformal LEC tool is used to check
the equivalence of the golden RTL and the synthesized netlist. In the backend
design, we use Cadence Encounter to do the power distribution, floorplanning,
placement, clock tree synthesis, design routing and obtain the GDSII file.

4 Results

4.1 FPGA Implementation

Design and implementation is done in Xilinx Vivado 2015.4 with Virtex-7 FPGA
(XCTVX485T) as target. Table 1 shows the resource utilisation after Place and
Route. RAM 36/18 refers to SRAM of si ze 36/18 Kilo bits.

576 K. Sharat et al.
Table 1. Resource utilisation Table 2. Comparison of our processor
system with Vscale implementation on
Module |Look-Up Reg |[RAM RAM FPGA
tables 36 18
Top 14462 692790 9 Parameter|VScale| Our SoC
processor
Processor | 4208 840 0 0
Look-Up (2500 4208 14462
D-Cache | 6327 3310118 0
tables
I-Cache 807 923| 8 2 Reg 1006 840 6927
Intemﬁ)t 819 | 354 0 Max Freq | 131 | 190 121 (no-
controller (MHZ) RMW)
Bus 311 156| 0 0 80(RMW)
controller
Debug 356 229 0 0

The data cache is shown to have the highest resource utilisation due to hard-
ware support for RMW operations. Table 2 shows a comparison of our processor
system with Vscale processor from UCB [6] in Xilinx Vivado 2015.4 Design Suite
with Virtex-7 FPGA target.

Our processor system offers a frequency speedup of about 1.4x compared to
the VScale processor. The full SoC achieves a maximum frequency of 121 MHz
without RMW support and 80 MHz with RMW support.

4.2 ASIC Implementation

Table 3 shows the results of our design synthesized with 65 nm UMC process
technology, as compared with some of the commercial implementations. Though
pipelined with five stages, our processor occupies lesser area. However, the overall
system area is higher due to the 32KB on-chip RAM, for the instruction cache

Table 3. Comparison of ASIC implementation of our processor system with commer-
cial implementations

Parameter Shakti F-class [15] | MicroRISC-V [14] Our System
Architecture 5-stage 3-stage 5-stage

Process 55nm 130 nm 65 nm

Area (mm?) 0.27 0.12 (Processor) 0.0497 (Processor)

0.35 (SoC+RAM)

0.0794 (SoC),
1.027 (SoC+RAM)

RAM (on-chip) | Not available 4KB 32KB

Max freq (MHz) | 416 100 220 (Processor),
170 (SoC)

Instance cnt 25176 Not available 24907

A Custom Designed RISC-V ISA Compatible Processor for SoC 577

and data cache. Process, voltage and temperature conditions for corner cases
include: Best case corner - fast, 1.32 V, —40° C; Worst case corner - slow, 1.08 V,
125° C

5

Conclusion

This paper presents the design and implementation of a RISC-V ISA compati-
ble processor system. The scope of extensions in the design include adding vir-
tual memory support, floating point instruction support and multiple execution
modes. Power saving techniques in ASIC flow could be explored.

References

10.
11.

12.

13.

14.

15.

RISC-V, The Free and Open RISC Instruction Set Architecture. RISC-V Founda-
tion (2016). https://riscv.org. Accessed 14 Jun 2016

Waterman, A., Lee, Y., Patterson, D.A., Asanovic, K.: The RISC-V instruction set
manual, volume i: base user-level ISA. EECS Department, UC Berkeley, Technical
report UCB/EECS-2011-62 (2011)

Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach. Elsevier (2011)

Chisel. The Regents of the University of California (2015). https://chisel.eecs.
berkeley.edu. Accessed 14 Jun 2016

Magyar, A., Lee, Y., Ou, A.: Z-Scale: Tiny 32-bit RISC-V Systems with Updates
to the Rocket Chip generator. The International House, Berkeley (2015)

Verilog version of Z-scale, vscale (2016). https://github.com/uch-bar/vscale.
Accessed 14 Jun 2016

Schmidt, C.: “RISC-V” Rocket Chip “Tutorial”. UC Berkeley (2015)

Duran, L.R.C., et al.: A 32-bit RISC-V AXI4-lite bus-based Microcontroller with
10-bit SAR ADC. In: VII Latin American Symposium on Circuits and Systems
(LASCAS) (2016)

PULPino. http://www.pulp-platform.org. Accessed 25 May 2017
https://en.wikipedia.org/wiki/LowRISC. Accessed 25 May 2017

Waterman, A., Lee, Y., et al.: The RISC-V Instruction Set Manual, Volume II:
Privileged Architecture. CS Division, EECS Department, University of California,
Berkeley (2015)

Girard, O.: OpenCores openMSP430, Revision 1.13, 19 May 2015

Error Detection and Correction: Supplement to Logic and Computer Design Fun-
damentals. Pearson Education (2004)

Duran, C., Rueda, L., Castillo, G., et al.: A 32-bit 100 MHz RISC-V Microcon-
troller with 10-bit SAR, ADC in 130 nm CMOS GP. In: Third RISC-V Workshop
Proceedings (2016)

Gupta, S., Gala, N., et al.: SHAKTI-F: a fault tolerant microprocessor architecture.
In: IEEE 24th Asian Test Symposium (2015)

https://riscv.org
https://chisel.eecs.berkeley.edu
https://chisel.eecs.berkeley.edu
https://github.com/ucb-bar/vscale
http://www.pulp-platform.org
https://en.wikipedia.org/wiki/LowRISC

	A Custom Designed RISC-V ISA Compatible Processor for SoC
	1 Introduction
	1.1 RISC-V
	1.2 Related Works

	2 Processor System Design
	2.1 Processor
	2.2 Cache
	2.3 Interrupt Handling
	2.4 Debug Unit
	2.5 Error Handling

	3 ASIC Implementation
	4 Results
	4.1 FPGA Implementation
	4.2 ASIC Implementation

	5 Conclusion
	References

