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Abstract. Modular inversion is a very common primitive used for the cryp-
tographic computations. It is the most computation intensive unit which
demands more resources as compared to other primitives. Inside the modular
inversion arithmetic circuits, considerable speed up with optimized architecture
is required. This paper proposes an optimized parallel architecture for Itoh-Tsujii
modular inversion algorithm for the field GF(2>°%) by introducing 2* blocks.
The comparative results with conventional architecture show the 30% reduction
in LUT requirement with 37% in combinational delay.

Keywords: Modular inversion - Galois Field (GF) - Fermat’s little theorem
Euclidean algorithm - Extended Euclidean algorithm

1 Introduction

Galois Field arithmetic grabs a substantial growth in recent years due to its applications
in numerous cryptographic systems. The mathematics in the Galois Field basically
includes three types of function: (i) modular addition (ii) modular multiplication and
(iii) modular inversion. Among them, the modular inversion has gathered significant
attention as its properties are proven to be useful in the field of cryptography. The
Extended Euclidean algorithm and Fermat’s little theorem are two most popular
methods for large finite field inversion [1]. For extension fields GF(2"™), the Itoh-Tsujii
inversion algorithm [2] is the best alternative. It reduces extension field inversion to
inversion in binary field for which inversion operation becomes easier. The inversion in
binary field is done either using look-up tables or with a series of binary squaring and
multiplication operations. The Itoh-Tsujii algorithm is applicable to finite fields GF(2™)
in normal basis representation. However, the original reference deals with composite
fields GF((2")"). This paper applies the idea of Itoh-Tsujii algorithm to composite
fields GF((2")") in polynomial basis representation. Although the use of exponentiation
operations required in the algorithm make it much complex for general fields in a
polynomial basis representation. The exponentiations can be computed with a very low
complexity for certain classes of finite fields.

This paper is organized as follows; Sect. 2 discusses brief overview of mathe-
matical background and related work of Itoh-Tsujii Algorithm, equations for Fermat’s
little algorithm and develops a method for realizing Itoh-Tsujii algorithm. Section 3
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gives an idea about previous works done in this field. Section 4 proposes the modi-
fications in hardware implementation of Itoh-Tsujii algorithm. Experimental results are
discussed in Sect. 5 and Sect. 6 concludes the paper.

2 Mathematical Background

The extended Euclidean algorithm is a modification of the Euclidean algorithm used to
calculate GCD of two numbers. It contains recursive division operations that are not
suitable for hardware implementation. Hence, this procedure is mainly used in software
that is based on modular inversion. The Fermat’s little theorem [1], on the other hand,
is mainly based on exponentiation of numbers which are relatively more hardware
oriented. This approach is used as a reference to implement modular inversion in
hardware architectures. The following subsection describes the mathematics of
Fermat’s little theorem.

2.1 Fermat’s Little Theorem Based Inversion in GF(2™)

Let o is an element in a Galois Field GF(2"). The term o~! € GF(2™) can be deter-
mined using following expression:

_ m_ m—1__
1 22 — 20—

ol =g 2(1+2+...+2m72) (1)

=
Now the term 1 + 2+... + 2 ™2 can be factorized in two ways:

al+2(142).(1+2°4+2*+...+2™*) ifm — lisodd
b.(1+2).(1+2°+2*+...+2™ %) ifm — liseven

2.2 Itoh-Tsujii Multiplicative Inversion in GF(2™)

The Itoh-Tsujii algorithm is the modified form of Fermat’s little theorem. It evaluates
the inversion using a series of recursive multiplications and squarings. Factorization of
the expression 1+2+22+4...+2™2 is carried out in such a way that minimum
number of additions are required for implementation. For example, if m = 9, then
the above expression can be decomposed as 1+2+22+...+27 = (1+2).
(1+22).(1+2%). Since, it includes only three additions, it is most useful for hardware
implementation. The number of plus signs in the decomposition of the statement
1+24...42m2 denotes the number of multiplications required to implement the
inversion. The job of this algorithm is to reduce the number of multiplication blocks as
much as possible. The Itoh-Tsujii algorithm is based on the simple idea shown in (2)
[3]. From these two expressions one can easily derive that the number of multiplica-
tions sufficient to determine the inverse of an element o € GF(2™).

Addition chain can also be used to reduce the number of multiplications [4]. It is a
series of successive numbers formulated such that each number can be obtained by
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addition of two of its precedent numbers. An addition chain with minimum number of
elements is generated and inverse can be computed using the expression

Oc_l = [ﬁm—l ((x)]z

Where f5, = o> !
For simplicity, we shall denote f3,(«) by f;. For the analytical approach, we use the
identity

Besi = (B B = (B) B (3)

For an element o € GF(2™) the inverse can be calculated as o' = [f,s5()]* [5]. The
term f,s5(o) is obtained using (3) and an addition chain for 255 given by

Uass = {1,2,3,6,12, 15,30, 60, 120, 240,255}

3 Related Work

Hardware architectures for modular inversion are proposed in [1] for extended Eucli-
dean algorithm and Itoh-Tsujii algorithm, using polynomial as well as Gaussian normal
basis. The Itoh-Tsujii algorithm is used to determine the modular inversion for the field
GF(2™). Tt was first proposed in [2] for the normal basis representation. A lot of work
has been done to improve the original algorithm and make it feasible to analyse for
different basis representation. In [4], a theoretical model to implement Itoh-Tsujii
algorithm on a k-input LUT based FPGA is presented. This idea was further reviewed
in [5], where a modified Itoh-Tsujii algorithm was proposed for efficient implemen-
tations on FPGA platforms. A fast implementation of the algorithm was proposed in [6]
which can evaluate the inverse in 10 clock cycles for GF(2%) and GF(2*") fields. In
[7], the Itoh-Tsujii algorithm is generalized for the fields GF(¢™) using polynomial
basis representation. In this paper, we propose an optimized parallel architecture of
Itoh-Tsujii algorithm for GF(2%°°) on FPGA platform.

4 Proposed Work

In this paper, the architecture of Itoh-Tsujii algorithm is modified in order to achieve
efficient implementation on FPGA. We assess the analytical complexity of the addition
chain shown in Table 1 as follows. The algorithm performs 10 iterations (since f3; (o) is
o itself) and one field multiplication per iteration. Thus, we conclude that a total of 10
field multiplication calculations are required. This is much better than the Fermat’s little
theorem implementation which requires 255 multiplications. However, the number of
square blocks required is still very high. The Itoh-Tsujii algorithm requires 254 square
computation blocks. A hybrid Karatsuba multiplier is used for multiplication operation
in binary field. The efficiency of architecture is estimated in terms of maximum
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Table 1. Inverse of & € GF(22°%) using conventional squarer blocks [5]

S.No. | fi(«) |Expression Ny
1 Bi(a) |«

2 K@ B() = (Bi() 8 () !

30 B Byii() = (Ba(2) i () !
4By () = (Bs(0)” Ba() ’

5 Bia(2) Bois(a) = (/36(06))26-/36(“) 6

6 [ Bis) | By, s(2) = (Bua(@)? Ba() 3

7 Bo(2) Bissrs(@) = (Bis(@)® Bis(2) 15
8 Boo (%) | Byg s 30(a) = (B3o(2))>" B30 (%) 30
9 Biao(2) Beoe0(®) = (Beo(2)™ o () 60
10 Baao(@) Biao+ 120(2) = (ﬁlzo(“))zuo-/glzo(“) 120
11 Bass (@) Baao +15(2) = (/5240(0‘))215~ﬁ15(°‘) 15
Total 254

combinational delay and power. In case of conventional (parallel) architecture of
Itoh-Tsujii algorithm, a large number of cascaded square blocks are used, which
degrades the performance of the device. The use of Quad [5] and Octet block improves
the speed of modified architecture.

4.1 Significance of Quad Circuits

Since the number of squaring operations is as high as 255 for conventional Itoh-Tsujii
algorithm over the GF(2%°°), we need to improve the circuit in order to reduce the number
of blocks for square operation. The quad circuit can be used to overcome this problem [6].
A quad circuit is a block which performs the operation of raising the input by a power of
four instead of squaring operation. In Itoh-Tsujii algorithm, we can use any exponentiation
circuit of the form 2". In this paper, the advantages of using 2° circuits on FPGAs for
exponentiation in fields with irreducible trinomials are observed. Quad circuits offer the
best LUT utilization for an FPGA with four or six input LUTs. The irreducible trinomial
for the field is x” + x + 1. We observe from Table 2 that the quad circuit’s LUT
requirement significantly reduced by around 25% [5]. This is because the quad circuit
utilizes FPGA resources better than the squarer. Moreover, since quad is a single stage
combinational circuit, both circuits have the same delay of one LUT. These observations
are scalable to larger fields like GF(2°%) and GF(2'%?) [4].

The limitation of using quad circuits instead of squarers depends on the fields
generated by irreducible polynomial. When irreducible pentanomials are used for
generating the field instead of irreducible trinomials, the saving of area is almost
negligible due to the fact that a quad circuit and two cascaded squarers will have about
the same area. Unfortunately there is no irreducible trinomial for GF{( 2%°%) field.
However, the combination of squarer and quad computation blocks, significant
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improvement in overall area delay product is possible. Based on these observations we
propose a hybrid-Itoh-Tsujii algorithm for fields generated by irreducible pentanomials
which use quad exponentiation circuits as well as squarer circuits. Table 3 shows the
evaluation of f,55(2) using an improved Itoh-Tsujii algorithm implemented using
hybrid approach.

Table 2. LUTSs required for a squarer and quad circuit for GF{(. 2°) [5]

Output bit | Squarer circuit | Quad circuit
b(x)> | #LUTs|b(x)* #LUTs

0 bo 0 bo 0
1 bs 0 by 0
2 b, +bs|1 bs + by 1
3 be 0 bs + by 1
4 by + b | 1 by + bz +bs+bs|1
5 by 0 bg 0
6 by + bg |1 be + bg 1
7 bg 0 by + bg 1
8 by + bg |1 by, + by + bg + bg | 1
Total LUTs 4 6

Table 3. Inverse of o € GF(2%°) using quad blocks [5]

S.No. | f;(«) | Expression Ns | Nq

1 Bi(a) o

2 B () Bii1(0) = (B (“))2-31(“) 1

3 B3(®) | Byy (o) = (Ba(2))* By (2) 1

O g = (@) e ]

5 Bra() Boyole) = (/36(“))43-ﬁ6(°‘) 3

2

OB = (Bee))

7 Baol2) Bisi1s(e) = ((ﬁls(“))47>2~/315(°‘) b7
Beo(1) B0 +30(2) = ﬁ30(°‘))4lj~ﬁ30(°‘) 15

43()

9 Biao (@) Bso+60(c) = (Beo()™ - Beo() 30
10 P00 | oy s 120(2) = (Brao(@)* Brog(@) | | 60
(

11 Bass(a0) Paao 1 15(%) = (ﬁ240(0€))47)2~ﬁ15(°‘)
Total 6 |14
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4.2 Significance of 2° Circuits

The idea of combining multiple squarer blocks into a single unit is further explored
using a 2° circuit. The proposed logic block is a combinational unit, mathematically
equivalent to three cascaded squarer blocks. However, combining multiple blocks into
a single unit results in efficient LUT utilization and less computation time. Also, 3
completly divides 253, the architecture consists of 2° blocks only, except at the initial
stage for precomputation of the term o’ and the final stage of inversion [5]. Table 4
shows the evaluation of f,s5(o) using an optimized Itoh-Tsujii algorithm architecture
implemented using 2* blocks. It is observed that the cascade blocks of Quads and
Squarer block shown in Table 3 is completely eliminated.

Table 4. Inverse of o € GF(2%3) using Octet blocks

S.No. | () | Expression Ns | No
1 Bi(2) |

2 Ba (%) Biyi(2) = (ﬁl(“))z-ﬁl(“) 1
3B By (0) = (Ba() (%) !

4 Bo (%) | By 5(2) = (B5(2))".B5(2) !
5 Bra(a) Bo6(2) = (ﬁé(d))sz-ﬁs(“) 2
6 s Biois(®) = (Bua(®)* By() !
7 Bao(2) | B1s15(2) = (Bis(@)® (@) >
8 Boo(2) | Byg s 30(a) = (B3o(2)™" B30 (@) 10
9 Brao(2) Boo+60(%) = (/360(“))820~/560(°‘) 20
10 Brao(2) Biao 4 120(a0) = (5120(“))840-3120(“) 40
11 Bass (1) Basos15(e) = (/3240(“))85~ﬁ15(“) >
Total 2 |84

The architecture for Itoh-Tsujii algorithm considering a special class of irreducible
polynomial, m(x) = x> + x'0 4 x° + x> + 1 for GF(2*°°) is presented in Fig. 1. It uses
field multiplication, field squaring and field Octet operators as its primary building
blocks. We also show how this version of the algorithm can be parallelized to improve
the efficiency when implemented in hardware platforms.

5 Result and Discussions

The comparison of performance of various exponentiation blocks on the binary fields
with irreducible polynomials is shown in Table 5. The use of 2" circuit improves the
performance of exponentiation. For Virtex-6 and 7, both area and speed of Octet
architecture is improved. This is due to higher utilization factor of respective FPGAs.
The purpose of optimization of FPGA design is to ensure that the resources of the
device are utilized completely. The smallest programmable unit in the FPGA is the
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Multiplier
Octet X 5

Fig. 1. Architecture of ITA for GF(2*°°) using Octet Blocks

lookup table, which generally has four (or six) inputs. The LUTSs are used to implement
any Boolean logic function of four (or six) variables. When a logic function with less
than four (or six) variables is implemented using LUT, the LUT is underutilized. An
optimized implementation is obtained when each LUT is utilized up to the maximum
extent. The proposed 2° blocks are best-utilized using Virtex-6 and Virtex-7 FPGA
platforms.

Table 5. Comparison of squarer and quad circuits on xilinx virtex FPGAs

Field Squarer circuit | Quad circuit Octet circuit Size ratio Delay ratio
LUT, | Delay | LUT, | Delay |LUT, |Delay |LUT/2(LUT,) | LUT/3(LUT,) | D/2(D,) | D,/3(Dy)
Dy (ns) D, (ns) D, (ns)
GF (2% | 96 148 | 145 |148 |- - 0.75 - 0.5 -
GF (2% |153 | 148 [230 |148 |- - 0.75 - 0.5 -
GF (2%° {255 | 1.081 |380 |1.750 |536 |2.069 |0.74 0.70 0.80 0.63

Table 6. Comparison with NIST binary fields having irreducible trinomials

Field Algorithm LUTs |Delay (ns) | T (ns)

GF (2%%) | Squarer ITA 256945 |342.215 | 342.215
Squarer + Quad ITA | 240825 | 291.127 | 291.127
Squarer + Octet ITA | 237709 | 243.599 | 243.599
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Table 6 compares various parameters of our architectures with generic architec-
tures. These results show that in case of finite fields with irreducible pentanomial, the
parameters of the circuit can be improved enough to be compared with finite fields with
irreducible trinomials. The results show almost 40% improvement in cumulative delay
when octet architecture is used.

6 Conclusion

This paper optimizes the parallel Itoh-Tsujii inverse algorithm to implement on FPGA
platforms using Squarer, Quad and Octet blocks. Hybrid Itoh-Tsujii algorithm is put
forward for the fields generated by irreducible pentanomials. Area-delay product is
considerably reduced by using Octet block. The octet block of proposed architecture
requires 30% less area and increases the speed of operation by 37%. An FPGA
architecture of the Octet Itoh-Tsujii algorithm architecture results in 40% and 20%
improved delay as compared with squarer and quad architectures respectively.
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