
ACAM: Application Aware Adaptive Cache
Management for Shared LLC

Sujit Kr Mahto(B) and Newton(B)

Computer Architecture and Dependable Systems Lab.
Department of Electrical Engineering, Indian Institute of Technology Bombay,

Mumbai 400076, India
{sujitkumar,newton}@ee.iitb.ac.in

Abstract. Modern Chip Multiprocessors (CMPs) are typically multi-
core systems with shared last level cache (LLC). Effective utilization
of the shared cache resource can be a challenge when the demands of
competing applications conflict with each other. At times, in order to
accommodate new data required by one application, the other applica-
tion’s useful data may get evicted. Such negative interference results into
increase in memory miss and degrades system’s performance. Hence, a
technique is required which optimally manages the LLC even in the pres-
ence of such conflicting demands.

Various LLC management techniques have been proposed to efficiently
manage shared caches. The state-of-the-art replacement policies like
Static Re-reference Interval Prediction (SRRIP) and Application Aware
Behavior Re-reference Interval Prediction (ABRip) evict a cache block
based on their re-usability in the near future. SRRIP makes the replace-
ment decisions per block basis whereas ABRip also considers the cache
behavior of an application to minimize conflicting data demands. Hence,
ABRip outperforms SRRIP for workload mixes where one application
is cache friendly, and the other one is streaming. However, ABRip does
not perform well when the workload mix is Cache friendly-Cache friendly.
We propose Application Aware Adaptive Cache Management policy that
adapts to both types of workload mixes. The proposed replacement pol-
icy reduces LLC misses per kilo instruction (mpki) up to 22.74% and
12.7% compared to SRRIP and ABRip respectively on a CMP system
running SPEC CPU2006 workloads. Our policy effectively utilizes the
shared LLC and outperforms both SRRIP and ABRip with performance
gains of up to 10.12% and 9.36% respectively.

Keywords: LLC Replacement Policy · Least Recently Used
Set Dueling

1 Introduction

The performance gap between the memory and microprocessor has been widen-
ing for last 4 decades as memory speeds have increased slowly compared to that
c© Springer Nature Singapore Pte Ltd. 2017
B. K. Kaushik et al. (Eds.): VDAT 2017, CCIS 711, pp. 324–336, 2017.
https://doi.org/10.1007/978-981-10-7470-7_32



ACAM: Application Aware Adaptive Cache Management for Shared LLC 325

of the CPU speed [1]. Generally, two or three levels of cache hierarchy are used
to bridge this gap. In a multicore system, L1 and L2 are generally used as a
private cache, and L3 is used as shared LLC for better resource utilization. As
the access latency between LLC and main memory is typically high (100–400
cycles), effective management of LLC is critical to system’s performance. One
of the approaches to effectively manage the LLC is to optimize its replacement
policy. As memory request to shared LLC comes from applications with differ-
ent memory characteristics, the cache access pattern is highly diverse. Memory
request from one application interferes with the other application hence increases
conflict misses at LLC.

For shared LLC, the optimal replacement policy should allocate more cache
resources to the application that shows more data reuse. In a multicore processor,
conventionally Least Recently Used (LRU) is used to manage shared caches.
However, LRU policy allocates cache resources to an application on the basis
of its cache access rate. It does not consider if the application shows temporal
locality and hence gives more ways to an application having high cache access
rate [5,9]. However, it is not necessary that an application having higher cache
access rate also shows more temporal locality and system benefits from such
logical cache partitioning.

Several ideas have been proposed in the literature [5–7,9] to efficiently man-
age LLC. Recently proposed replacement policies like SRRIP [6] and ABRip [7]
associates counters to each cache block to track its position in the LRU recency
stack and use them to predict whether the cache block will get re-referenced
in next few cache accesses or not. On a cache block replacement, both policies
evict those cache blocks which are predicted to get re-referenced in far future.
ABRip, apart from the block level counters, also associates counter at each core
level to differentiate between the cache reuse behavior of applications running
on the multicore system. These core level counters help ABRip in classifying the
application as cache friendly (Cf) or non-cache friendly (Str). As ABRip also con-
siders application’s past cache reuse behavior while deciding about the block’s
re-reference interval, it performs well compared to SRRIP when the workload
mix is Cf-Str. Non-cache friendly application includes the application with data
reuse, but working data sets larger than the cache size (Thrashing application)
and applications which do not show any data-reuse (Streaming application). This
classification helps in giving (or associating) more ways (or cache size) to a Cf
workload when Cf-Str workload mix is running on the cores. However, ABRip
fails to adapt when workload mix is Cf-Cf as shown in [7] because, for such
workload mixes, ABRip does unfair cache partitioning thus favoring one of the
application at the disadvantage of other.

The cache access pattern to LLC is inherently highly diverse in nature. The
workload mixes running on the cores can be of Cf-Cf, Cf-Str, or Str-Str type. As
mentioned in the previous paragraph, different policies are efficient for different
combination of workloads, e.g., SRRIP performs better for Cf-Cf workload mixes
whereas ABRip outperforms SRRIP for Cf-Str type of workload combinations.
Hence, a cache replacement policy should be adaptive to different types of cache



326 S. K. Mahto and Newton

access pattern and various combination of workloads. Techniques like Set Dueling
Monitor (SDM) [5] and Auxiliary Tag Directory (ATD) [9] have been earlier used
to dynamically choose the best policy among competing replacement policies.

In this paper, we propose Application Aware Adaptive Cache Management
(ACAM) for shared LLC. We dynamically switch between two different evic-
tion policies, i.e., taking eviction decision by differentiating application behav-
ior (ABRip) or by considering cache data re-usability only (SRRIP), to make
replacement policy adaptive to the different type of cache access pattern and
different combination of workloads running on the cores. We use techniques like
SDM and ATD to learn the type of cache access pattern so that we can make
best possible eviction decision. We evaluate the proposed policy on a set of SPEC
CPU2006 workloads running on dual core systems sharing 4MB of LLC.

The rest of the paper is organized as follows. Section 2 explains the back-
ground of our work. Our proposal is discussed in Sect. 3. Section 4 provides
details about the experimental methodology adopted. Experimental results are
discussed in Sect. 5. Related work is discussed in Sect. 6, and in Sect. 7 we con-
clude the paper.

2 Background

The commonly used LRU replacement policy inserts a block at Most Recently
Used (MRU) position, i.e., at the top of recency stack and evicts the block
from LRU position, i.e., from the bottom of the recency stack. It performs well
for smaller caches such as L1 and L2 which significantly utilize the temporal
and spatial locality present in the application. However, for LLC, it performs
poorly because most of the blocks inserted to LLC never get re-referenced due
to filtering of the temporal locality by smaller cache as observed by several
studies [8]. To mitigate this problem, recently proposed replacement policies like
LRU Insertion Policy (LIP) [8] and SRRIP [6] insert new block at LRU and
closer to LRU position respectively. Only if the block gets hit, it is promoted to
MRU position predicting that the cache block is useful and will get re-referenced
again in near future.

To study the efficacy of LRU replacement policy on shared caches, we per-
formed experiments to understand the cache reuse behavior under LRU policy for
various SPEC CPU2006 benchmark applications. In our experiment, we studied
impact on mpki of the applications due to variation in the associativity of LLC
keeping number of sets and cache block size constant. Figure 1 shows that as
associativity increases, mpki of bzip and gcc benchmark reduces indicating their
cache reuse behaviour. Whereas mpki of milc and libquantum benchmark remains
almost constant which shows their streaming cache access behavior. Based on
this observation, we categorize bzip and gcc as Cf workloads and libquantum and
milc as Str workloads. LRU replacement policy does not perform well for shared
caches as it allocates cache resources based on the rate of demand and does
not consider whether an application has temporal locality or not. We observed
that mpki of bzip is 5.27 while running mixes (bzip-libquantum) on dual core



ACAM: Application Aware Adaptive Cache Management for Shared LLC 327

system implementing LRU replacement policy in LLC. From Fig. 1, we inferred
that mpki of bzip is 5.27 when it is given 4 out of 8 ways, i.e., allocating half
of the cache resources to application bzip and the another half to libquantum.
However, allocating half of the cache resource to libquantum does not give perfor-
mance benefit as it shows streaming cache access behavior with zero reuse. Other
replacement policies like Thread-Aware Dynamic Insertion Policy (TADIP) [5],
SRRIP manage LLC more efficiently in such cases compared to the LRU policy.

Fig. 1. Memory characteristic of few SPEC CPU2006 benchmarks

SRRIP manages shared caches well as it promotes only re-referenced cache
blocks to MRU position, hence filtering out streaming blocks from the blocks
having spatial or temporal locality. However, it under-performs compared to
ABRip when the workload mix consists of a Str application with high cache
access rate and a cache-friendly application with low cache access rate. In such
a scenario, before the cache-friendly application’s blocks get re-referenced and
promoted to MRU, they are replaced by blocks of the high access rate Str appli-
cation. ABRip uses N more k-bit saturating counters per set to differentiate the
behavior of applications running on N cores. The value of this counter is used
as core level RRPV (Cr). It defines a value of the counter associated with each
cache block as block level RRPV (Br). If cache block from any application gets
a hit, then its Cr is promoted to 0. This helps in factorizing the behavior of
an application. It defines Application Behavior aware RRPV (ABr) as a linear
combination of Br and Cr.

ABr = Br + α ∗ Cr (1)

Higher value of α gives more weightage to Cr than Br. ABRip (α = 0) will
work same as SRRIP. It evicts cache block which is having ABr value, that
is calculated by Eq. (1), greater than or equal to ABrmax value. ABrmax is
defined as Brmax plus α times Crmax. As cache block of Cf application will re-
referenced more than that of Str application, ABr of Str application’s block will
reach its maximum value faster compare to Cf application’s block which helps
in preserving Cf application’s block longer in LLC.



328 S. K. Mahto and Newton

Fig. 2. mpki Comparison: Benchmarks with (*) are non-cache friendly application and
rest are cache-friendly application

To understand the effectiveness of ABRip and SRRIP on Cf-Str and Cf-Cf
workload-mixes, we studied each policies’ LLC misses. Figure 2 shows the mpki
comparison of ABRip (α = 3) normalized to SRRIP. The X-axis represents the
combination of SPEC CPU2006 benchmarks mentioned in Table 2a. On X-axis,
first 12 combinations of benchmarks are the combination of Cf-Str workloads
whereas following six combinations of benchmarks are the combination of Cf-Cf
workloads. mpki of ABRip is higher for Cf-Cf workloads compared to SRRIP
because ABRip gives higher priority to an application whose cache blocks get
first hit by promoting its Cr value to 0 until Cr value of other application
also gets promoted to 0. It protects blocks with Cr = 0 from early eviction.
However, in Cf-Cf workloads, both applications have temporal locality. So, it
hurts the performance of Cf-Cf workloads, whereas, by the same mechanism
of protecting blocks with Cr = 0, it performs better for Cf-Str workloads. We
illustrate such scenario in Fig. 3 for replacement policies ABRip (α = 2) and
ABRip (α = 0) in shared LLC. In policy ABRip (α = 0), we give zero weight
to Cr and take a decision based on the value of Br only. It works similarly as
SRRIP. Here, we consider two applications X and O are running on two cores.
The mixed cache access pattern as seen by LLC is (O1, X1, X2, O1, X1, X2, O3,
X1). Both applications show temporal locality. We assume that the cache blocks
(O1, O2, O3, X2) are initially present in the cache. Request for block O1 come,
and it is a cache hit resulting in the update of the Cr value of application O
to 0. Then, request for block X1 comes and gets a miss. In both policies, block
X2 gets evicted. Then, request for block X2 comes and gets miss again. Despite
that block O2 has higher Br value and has stayed longer in cache than block X1,
block X1 get evicted in policy ABRip (α = 2) because Cr value of application
X is higher than that of application O. Whereas in policy ABRip (α = 0), block
O2 get evicted because it does not consider the Cr value of application and
make a decision considering Br value only. In policy ABRip (α = 2), Cr value
of application O is protecting their other blocks from getting evicted and give
less number of way to application X. It hurts the performance of application X.
Here, we get six hits in ABRip (α = 0) whereas in ABRip (α = 2) we get only



ACAM: Application Aware Adaptive Cache Management for Shared LLC 329

three hits which are shown by blue shaded box in the Fig. 3. Hence, our study
identifies and has illustrated the reason for poor performance of ABRip in case
of Cf-Cf workload mixes. In our next section, we describe the advanced and
adaptive version of ABRip which efficiently manages LLC for all combination of
workload-mixes.

Fig. 3. Access pattern Example: Here, Brmax = 3, Crmax = 3, ABrmax for α = 2
is 9 and for α = 0 is 3. Blue shaded box represents re-referenced block. (Color figure
online)

3 Proposed Methodology

3.1 Advanced ABRip

Advanced ABRip (a-ABRip) is an advanced version of ABRip with modifica-
tions in its insertion policy. In ABRip, new blocks are inserted at Br equal to
(Brmax− 1) whereas, in a-ABRip, new blocks are inserted at (ABrmax− 1). For
most of the time when Cf-Str combinations of workload is running on the cores,
the Cr value of Str application is equal to Crmax and that of Cf application is
equal to 0. So, the ABr value of newly inserted block of Str application will be
equal to (ABrmax− + α * Crmax), i.e., LRU position. Whereas for Cf appli-
cation, it is inserted with ABr value equal to (ABrmax− 1) as its Cr = 0, i.e.,
closer to LRU position. This helps in reducing interference from Str application
further and reduces mpki more for Cf-Str combination of workloads. In SRRIP,
it has been shown that inserting blocks closer to LRU position works better com-
pared to other insertion positions. Eviction and promotion policy of a-ABRip is
same as that of ABRip.

3.2 Application Aware Adaptive Cache Management (ACAM)

As shown in Fig. 2, for some workload-mixes ABRip has fewer cache misses
compared to SRRIP and for other workload-mixes ABRip has more misses. So,
different eviction policies perform better for the different combination of work-
loads. Hence, the replacement policy should be adaptive by dynamically choosing
the best performing policy.



330 S. K. Mahto and Newton

The characteristics of a workload-mix, whether it is Cf-Cf or Cf-Str, running
on a multicore system can be understood by its mixed cache access pattern
as seen by the shared LLC. If the cache access pattern shows that both the
applications have temporal locality, then eviction decisions can be taken based
on data re-usability, i.e., SRRIP policy. However, if it shows that one of the
application has temporal locality while the other application has streaming cache
access behavior and causes interference to the first application, then eviction
decisions can be taken by differentiating application’s behavior, i.e., a-ABRip
policy. To make our replacement policy adaptive to different combination of
workloads and different type of cache access patterns, we use SDM [5] and ATD
[9] to dynamically switch the replacement policy between a-ABRip (α = 3) and
SRRIP, based on the types of cache access pattern.

SDM. SDM estimates the miss or miss rate of given policy by dedicating few
sets to each policy. We use two SDMs on Main Tag Directory (MTD), one for a-
ABRip (α = 3) and other for SRRIP. After a fixed number of cache accesses (i.e.,
phase), we compare the miss rate of both SDMs and choose the winner policy
for remaining sets. Here, we consider 90,000 cache accesses for each phase. The
winner policy is then implemented on the remaining sets. The winner policy in
each phase can be different and is chosen dynamically based on the type of its
cache access pattern. After every phase, we reset the counter values. We use 32
sets for each SDM. In previous work [5,8,10], the authors have compared cache
miss of SDMs for comparison. However, in our experiments, we observed that
sometimes the number of cache access to one SDM is very high compared to
that of other SDM for the same phase. So, there is more chance that cache miss
of SDM which gets high cache access will be more than that of the other SDM
which gets low cache access. For fair comparison, we compare the cache miss
rate of SDMs instead of cache miss. To make comparisons more accurately, we
have also used ATD where both SDMs see the same cache access pattern as the
same sets are dedicated to both competing replacement policies.

Fig. 4. ACAM Implementations: (a) ACAM-SDM (b) ACAM-ATD



ACAM: Application Aware Adaptive Cache Management for Shared LLC 331

ATD. Here we use one SDM on MTD for a-ABRip policy and we create ATD
for SRRIP policy to be used as other SDM. ATD and MTD have the same
associativity. We create ATD of those 32 sets that are dedicated to a-ABRip
policy in the first SDM on MTD so that both SDMs will see same cache accesses
and it will be a fairer comparison. We use saturating counters to count the
number of misses of both SDMs. After every phase, we compare the counters to
decide the winner policy. We implement the winner policy on remaining sets of
MTD. On completion of each phase, we reset the counter value. Figure 4 shows
the implementation of ACAM using SDM and ATD.

4 Experimental Methodology

4.1 Simulation Infrastructure

To evaluate our proposed policy ACAM, we used Sniper [2] multicore x86 sim-
ulator. Three level of memory hierarchy was used where L1 and L2 were used
as private cache and L3 as shared cache. Table 1 shows the parameter values of
baseline processor architecture used. Our cache hierarchy is roughly comparable
to the Intel Core i7 [4]. Architecture parameters of the simulated system used
here is same as the one used in recent work on shared cache [7].

Table 1. Architecture parameter of simulated system

L1-D Cache 32 KB, 4-Way, LRU, Private, 4-cycles

L1-I Cache 32 KB, 4-Way, LRU, Private, 4-cycles

L2 Cache 256 KB, 8-Way, LRU, Private, 8-cycles

L3 Cache 4 MB, 8-way, Shared, 30-cycles

Main memory latency 175 Cycles

Baseline Processor x86 Nehalem microarchitecture,
2.67 GHz, 4-wide fetch, 128-entry ROB

4.2 Workloads Combination

On a dual core CMP having shared LCC, we evaluate ACAM replacement pol-
icy on 18 different combinations of SPEC CPU2006 benchmarks [3] shown in
Table 2a. Out of 18 combinations, 12 are Cf-Str workload combinations, and
6 are Cf-Cf workload combinations. We do not evaluate our policy on Str-Str
workload combinations because they do not show any changes in performance
irrespective of different replacement policies. We also evaluate our policy on 13
different combinations of SPEC CPU2006 benchmarks shown in Table 2b on
4-core CMPs to understand the scalability of our architecture. We implemented
SRRIP with maximum block level RRPV = 15 (i.e., m = 4 bits counter used)
and ABRip (α = 3) and ABrmax = 60 (i.e., 6 bit counter used at the block level
and 4 bit counter used at core level) and evaluate its performance to compare
with that of ACAM replacement policy.



332 S. K. Mahto and Newton

Table 2. Combination of workloads under evaluation

(a) DualCore

Workloads
Combination

Type
Workloads

Combination
Type

bzip-libq Cf-Str sphinx-milc Cf-Str
bzip-lbm Cf-Str soplex-libq Cf-Str

sphinx-lbm Cf-Str lbm-gcc Str-Cf
gcc-libq Cf-Str sphinx-gcc Cf-Cf
bzip-milc Cf-Str bzip-soplex Cf-Cf
milc-gcc Str-Cf sphinx-soplex Cf-Cf

sphinx-libq Cf-Str bzip-gcc Cf-Cf
lbm-soplex Str-Cf gcc-soplex Cf-Cf
soplex-milc Cf-Str sphinx-bzip Cf-Cf

(b) QuadCore

Mix
Name

Workloads
Combination

Type

MIX 01 bzip-gcc-milc-libq Cf-Cf-Str-Str
MIX 02 bzip-gcc-lbm-milc Cf-Cf-Str-Str
MIX 03 bzip-sphinx-milc-libq Cf-Cf-Str-Str
MIX 04 bzip-sphinx-libq-lbm Cf-Cf-Str-Str
MIX 05 bzip-lbm-milc-libq Cf-Str-Str-Str
MIX 06 gcc-lbm-milc-libq Cf-Str-Str-Str
MIX 07 soplex-lbm-milc-libq Cf-Str-Str-Str
MIX 08 sphinx-lbm-milc-libq Cf-Str-Str-Str
MIX 09 bzip-gcc-soplex-libq Cf-Cf-Cf-Str
MIX 10 bzip-gcc-soplex-milc Cf-Cf-Cf-Str
MIX 11 bzip-gcc-sphinx-libq Cf-Cf-Cf-Str
MIX 12 bzip-gcc-sphinx-lbm Cf-Cf-Cf-Str
MIX 13 bzip-gcc-soplex-sphinx Cf-Cf-Cf-Cf

5 Results and Discussion

5.1 Performance Improvement

Figure 5 shows the performance comparison of ABRip, a-ABRip and ACAM
using SDM and ATD over baseline SRRIP. a-ABRip improves the performance
for most combination of Cf-Str workloads over ABRip by inserting Str applica-
tion block at LRU position and Cf application block at closer to LRU position.
However for Cf-Cf combination of workloads, SRRIP outperforms both policies,
i.e., a-ABRip and ABRip. On an average for Cf-Str combination of workloads,
a-ABRip outperforms ABRip by 1.22%.

Fig. 5. Performance Comparison: Benchmarks with (*) are non-cache friendly appli-
cation and rest are cache-friendly application



ACAM: Application Aware Adaptive Cache Management for Shared LLC 333

Using SDM, ACAM outperforms SRRIP and ABRip for most combination
of workloads by being adaptive to cache access pattern. It gives maximum
performance benefit of 10.12% over SRRIP for workload combination sphinx-
libquantum. However for some combination of workloads such as milc-gcc, lbm-
gcc, gcc-soplex and sphinx-gcc, it fails to adapt and lose performance compare
to SRRIP. On average, it gives performance improvement of 1.97% and 2.99%
over SRRIP and ABRip respectively.

Using ATD, ACAM outperforms SRRIP and ABRip for all combination of
workloads except gcc-soplex where it loses performance by 0.4% compare to
SRRIP. It gives performance gain up to 10.12% for workloads sphinx-libquantum
compared to SRRIP and 9.36% for workloads bzip-soplex over ABRip. On aver-
age, it gives performance improvement of 2.32% and 3.33% over SRRIP and
ABRip respectively.

Figure 6 shows the performance comparison of ACAM-ATD and ABRip over
baseline SRRIP for multi-programmed workloads on 4-core CMPs. The X-axis
represents different workload combinations shown in Table 2b. ABRip gives max-
imum performance benefit of 11.95% for Mix-5. On an average, ABRip gives
performance benefit of 6.38% over SRRIP. On top of ABRip, ACAM-ATD gives
performance benefit of 4.68% on average. It gains performance by more than
10% compared to SRRIP for 10 out of 13 workload mixes. It gives maximum
performance benefit of 19.22% over SRRIP for Mix-2. It outperforms SRRIP
policy in all workload mixes and gives performance improvement of 11.35% on
average which verifies that our approach is scalable to a large number of cores.

Fig. 6. IPC comparison of multi-programmed workloads: Combination shown in
Table 2b

5.2 mpki Comparison

Figure 7 shows the mpki comparison of ABRip and ACAM-ATD over baseline
SRRIP on a dual core CMPs. ACAM using ATD reduces mpki up to 22.53%
over SRRIP for workloads bzip-milc. For Cf-Cf workload mixes, ABRip increases
mpki by 9.94% over SRRIP. By choosing the best policy based on cache access



334 S. K. Mahto and Newton

Fig. 7. mpki Comparison: Benchmarks with (*) are non-cache friendly application and
rest are cache-friendly application

pattern, ACAM-ATD decreases mpki by 1.7% for Cf-Cf workload mixes and by
8.28% for Cf-Str workload mixes on an average over SRRIP.

5.3 Hardware Overhead

In order to implement ABRip over SRRIP, additional hardware required is 20
bits per set, i.e., 0.5% on top of SRRIP. a-ABRip does not require extra hardware
on top of ABRip. In ACAM using SDM, additional hardware required on top of
ABRip is 4 11-bits saturating counters and logic circuit is required to monitor
and compare the miss rate to decide the winner policy. Hence hardware overhead
to implement ACAM using SDM is very low on top of ABRip. In order to
implement ACAM using ATD, hardware required to create ATD contributes to
major portion of total hardware overhead over ABRip. Assuming 40 bit physical
address space, total hardware require to create ATD is 1.16 KB. In addition to
this, 2 11-bits saturating counters and logic circuit is required to compare the
cache misses to decide the winner policy. Total hardware overhead to implement
ACAM using ATD is 0.026% on top of ABRip.

6 Related Work

The replacement policy of LLC impacts system’s performance considerably.
Hence, many researchers from academia and industry have significantly con-
tributed with their research work to the improvement in replacement policy
managing LLCs. In this section, we summarize prior literature that is relevant
to improving LLC’s performance.

Jaleel et al. [5] proposed a policy for shared LLC which tried to reduce the
interference from non-cache friendly application by inserting its most of cache
block at LRU position using Bimodal Insertion Policy (BIP). Using SDM, they
implemented BIP policy for non-cache friendly application and LRU policy for



ACAM: Application Aware Adaptive Cache Management for Shared LLC 335

cache friendly application. However, LRU policy failed to manage cache blocks
efficiently at private LLC even for cache friendly application [6].

Qureshi and Patt [9] logically partitioned the LLC dynamically. They used
Utility Monitor (UMON) circuit to track the utility of LLC for each application.
Based on each application cache’s utility, they partitioned the ways in cache-
sets among the applications sharing the LLC. They implemented two UMON
circuits for dual core CMPs. Auxiliary tag directory (ATD) and counter for
UMON circuit were used to study the cache’s utility. However, they also used
LRU as underlying replacement policy which is not efficient in managing dead
blocks in LLC.

Wu et al. [10] observed the performance of DRRIP [6] LLC replacement
policy in the presence of L2 cache prefetcher. They found that the cache blocks
brought into LLC due to the prefetch requests pollute the cache. They tried
to reduce such interferences by changing the insertion and promotion policy of
prefetched cache blocks. Prefetched cache blocks brought in LLC were inserted
at LRU position and were not promoted to MRU even on cache hit.

7 Conclusion

In this paper, we first proposed a-ABRip which helps further in reducing interfer-
ence to Cf application from Str application when compared to ABRip for Cf-Str
combination of workloads. However for Cf-Cf combination of workloads, SRRIP
outperforms a-ABRip. To make replacement policy adaptive to different types
of cache access pattern and different combination of workloads, we proposed a
policy ACAM that switches between a-ABRip (α = 3) and SRRIP based on type
of cache access pattern. To learn the cache access pattern and decide which evic-
tion policy is better for the next phase of program, we used SDM and ATD. We
compared our policy with ABRip and SRRIP for SPEC CPU2006 benchmark.
We found our policy ACAM-SDM outperforms ABRip and SRRIP by 2.97%
and 1.96% respectively. ACAM-ATD outperforms SRRIP and ABRip by 2.32%
and 3.33% respectively on average on 2-core CMPs. On 4-core CMPs, ACAM
using ATD outperforms SRRIP and ABRip by 11.35% and 4.68% respectively
on average.

References

1. Borkar, S., Chien, A.A.: The future of microprocessors. Commun. ACM 54(5),
67–77 (2011)

2. Carlson, T.E., Heirman, W., Eeckhout, L.: Sniper: Exploring the level of abstrac-
tion for scalable and accurate parallel multi-core simulation. In: Proceedings of
2011 International Conference for High Performance Computing, Networking, Stor-
age and Analysis, p. 52. ACM (2011)

3. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput.
Archit. News 34(4), 1–17 (2006)

4. Intel: Intel Core i7 Processor. http://www.intel.com/products/processor/corei7/
specifications.htm

http://www.intel.com/products/processor/corei7/specifications.htm
http://www.intel.com/products/processor/corei7/specifications.htm


336 S. K. Mahto and Newton

5. Jaleel, A., Hasenplaugh, W., Qureshi, M., Sebot, J., Steely Jr., S., Emer, J.: Adap-
tive insertion policies for managing shared caches. In: Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques,
pp. 208–219. ACM (2008)

6. Jaleel, A., Theobald, K.B., Steely Jr., S.C., Emer, J.: High performance cache
replacement using re-reference interval prediction (RRIP). In: ACM SIGARCH
Computer Architecture News, vol. 38, pp. 60–71. ACM (2010)

7. Lathigara, P., Balachandran, S., Singh, V.: Application behavior aware re-reference
interval prediction for shared LLC. In: Proceedings of the 33rd IEEE International
Conference on Computer Design (ICCD), pp. 172–179. IEEE (2015)

8. Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely Jr., S.C., Emer, J.: Adaptive insertion
policies for high performance caching. In: ACM SIGARCH Computer Architecture
News, vol. 35, pp. 381–391. ACM (2007)

9. Qureshi, M.K., Patt, Y.N.: Utility-based cache partitioning: A low-overhead, high-
performance, runtime mechanism to partition shared caches. In: Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture, IEEE
Computer Society (2006) 423–432

10. Wu, C.J., Jaleel, A., Martonosi, M., Steely Jr., S.C., Emer, J.: Pacman: Prefetch-
aware cache management for high performance caching. In: Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 442–453.
ACM (2011)


	ACAM: Application Aware Adaptive Cache Management for Shared LLC
	1 Introduction
	2 Background
	3 Proposed Methodology
	3.1 Advanced ABRip
	3.2 Application Aware Adaptive Cache Management (ACAM)

	4 Experimental Methodology
	4.1 Simulation Infrastructure
	4.2 Workloads Combination

	5 Results and Discussion
	5.1 Performance Improvement
	5.2 mpki Comparison
	5.3 Hardware Overhead

	6 Related Work
	7 Conclusion 
	References




