
Chapter 6

Transcriptome Dynamics in Rice Leaves Under

Natural Field Conditions

Takeshi Izawa

Abstract Although crops have been domesticated and bred under natural field

conditions, the majority of molecular genetic analyses have been performed under

controlled artificial conditions, such as growth chambers. This restricts agricultural

application of new findings on important crops based on molecular genetics.

Recently, several transcriptome analyses to elucidate the dynamics of the

transcriptome and several specific biological traits have been reported. These

analyses made full use of cutting-edge methods of statistical modeling and Bayes-

ian approaches. One critical finding of these studies was that thousands of genes

expressed in rice leaves respond significantly to dynamic changes in ambient

temperatures under natural fluctuating conditions. This should serve as a wake-up

call for plant researchers using fixed-temperature conditions in growth chambers.

This chapter discusses the processes involved and provides longitudinal perspec-

tives on field transcriptome analysis.
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6.1 Reasons Why Plant Molecular Genetic Researchers

May Be Hesitant to Perform Experiments Under Field

Conditions

6.1.1 Dealing with Fluctuating Data Obtained Under
Natural Conditions Using Statistical Analysis

Many researchers hesitate to use data obtained under natural field conditions

because the reproducibility of experimental data would be severely affected

under fluctuating ambient growth conditions. In contrast, experimental data are

easily reproducible under artificially controlled growth conditions in the laboratory,

so researchers do not have to repeat experiments to obtain statistically significant

results. Molecular geneticists generally attempt to minimize the repetition of

experiments, which is appropriate when working on mutant lines exhibiting very

clear genetic phenotypes. In such cases, fold changes and differences between wild-

type and mutant plants are normally high. However, when analyzing complex

genetic traits, known as quantitative trait loci (QTL), experimental data contain

both genetic variations due to segregation and environmental variations due to

differences in growth settings under natural field conditions (Lander and Botstein

1989). Thus, QTL analyses include statistical evaluations, such as logarithm of

odds (LOD) scores, to select the next approach or target locus. Furthermore, to

evaluate agronomic traits of a new variety, many crop breeders normally grow a

number of candidate lines for several years in at least a dozen areas. Therefore,

upon next-genome sequencing era, not only plant breeders but also plant molecular

biologists should become familiar with experiments on this scale. Statistically

significant results obtained on a small scale with a small number of experiments

are not suitable for practical use.

To examine the significance of transcriptome data, it has been recommended to

use criteria based on multiple testing, such as the false discovery rate (FDR) (Yang

et al. 2003). However, we often obtain only a few genes which can be beyond such

criteria significantly with several repeats of transcriptome analyses. In our experi-

ence, the paired t-test using 40 pairs of rice leaf transcriptome data yielded several

thousand genes that showed statistically significant changes in expression even

after FDR correction (Izawa et al. unpublished). Interestingly, all of these paired

samples were sampled at distinct timings, although they were obtained from two

neighbor paddy fields with and without nutrition. Furthermore, most of the signif-

icant genes among the 40 pairs of transcriptome data exhibited very small fold

changes of mean values in expression. Meanwhile, hundreds of genes showed

significant changes in expression when we used 20 pairs of transcriptome data.

These observations suggested that statistical analyses with more than a dozen

transcriptome data would give us satisfactory results, even when there is a great
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deal of experimental noise due to differences in environmental conditions. In

addition, it might be very important that the fold changes should be taken into

consideration rather than FDR-corrected P-values to select biologically important

genes. That is, even the statistical significance obtained with larger amounts of data

may have limits for identifying the biological importance.

6.1.2 Correlations Among Distinct Environmental Factors

Temporal correlations between distinct environmental factors in a few days, such as

solar radiation and ambient temperature, are often so high and too difficult to

distinguish them on which factors were relevant to the studies of plant biology.

However, such correlations between distinct environmental data differ between

seasons. Thus, we found previously that temporal correlations between the fluctu-

ations in various environmental data over several months relatively become small

(Izawa 2015). Therefore, when considering all of the crop seasons of target crops

over several years, the correlations among environmental factors are thought not to

be an obstacle for further biological analysis.

6.1.3 Costs of Gathering Field Transcriptome Data

When planning field transcriptome analysis, it is necessary to consider the costs

associated with gathering data. As of 2016, the financial costs to perform

transcriptome analysis are around 30,000 Japanese yen per sample. Here, we used

a custom microarray with 180 K probes provided by Agilent Technologies. In a

series of preliminary experiments, we examined the use of Cy5 and Cy3 labeling for

the same RNA samples. After calibration to correct for characteristic trends

between Cy5 and Cy3 signals using software provided by the manufacturer, we

found that there were no differences in data according to which label was used

(Izawa et al. data not shown). Thus, we do not care about the swapping effects

between Cy5 and Cy3 for the cost efficiency in our field transcriptome analysis.

Although the numbers of transcriptome data required for biologically significant

field transcriptome analysis depend on the purpose of individual research, around

100 samples for one class of data would be sufficient for most purposes. We usually

perform analyses using 12–13 samples per day to obtain the diurnal changes of

transcriptome.

In addition, the major matters to be attended carefully to obtain reliable good

quality data are those associated with sampling, RNA preparation, labeling, and

microarray analysis. For sampling, we use standard tubes for all collaborating
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teams and provide guidelines for sampling in the field. For microarray analysis, we

use an open laboratory facility at the National Agriculture and Food Research

Organization (NARO) in Tsukuba, Japan. In this open laboratory, experts in

handling RNA and in operation of microarray equipment support us well to

generate very reliable microarray data for all of our samples.

The RNA sequencing (RNA-Seq) technique provides a great deal of information

for each transcript, such as its initiation site or splicing variants. We compared

microarray analysis and RNA-Seq data for the same RNA samples and found that

both yielded comparable data. Furthermore, we found that the reliability of

transcriptome data between RNA-Seq and microarray data differed among target

genes. Thus, it is difficult to say which of the two is better at this moment. In

addition, the financial costs associated with both methods to obtain comparable data

are currently almost the same. However, primary analysis of raw RNA-Seq data

using a high-performance computer is still more laborious and complicated than

microarray analysis. In addition, the conversion of legacy microarray data to the

corresponding RNA-Seq data is largely dependent on the platform used and

requires the setting of distinct rules for data regarding each gene. In the near future,

direct RNA-Seq, such as the MinION nanopore sequencer technology, should be

considered in place of the microarray method.

6.2 Environment-Driven Statistical Modeling

of the Transcriptome

6.2.1 Lognormal Distribution Assumption
for Transcriptome Data

For statistical modeling, experimental noise should be distributed according to a

normal distribution. In contrast, many raw data related to gene expression, includ-

ing qRT-PCR data and transcriptome data obtained by microarray analysis, are not

normally distributed. Empirically, it is known that qRT-PCR and transcriptome

data obtained by microarray analysis have a lognormal distribution (Izawa 2012).

Therefore, all transcriptome data should be transformed in a logarithmic manner

before further statistical analysis. It is better to consider transforming data to a

lognormal distribution when raw data obtained with larger values possesses larger

experimental standard deviations. Experimental noise may not depend on the range

of measured data.

100 T. Izawa



6.2.2 A Model of Field Transcriptome Analysis in Rice

Determining the drivers of gene expression patterns is more straightforward under

laboratory conditions than in the complex fluctuating environments seen in the

field. Nagano et al. (2012) reported gathering 461 transcriptome data from the

leaves of rice plants in a paddy field along with the corresponding meteorological

data and developed statistical models for the endogenous and external influences on

gene expression. In total, expression dynamics of more than 20,000 genes could be

explained based only on information regarding environmental conditions, such as

sampling date and time, transplantation date, and meteorological environmental

data (solar radiation, temperature, atmosphere, wind, and precipitation). The results

indicated that transcriptome dynamics were predominantly governed by endoge-

nous diurnal rhythms, ambient temperature, plant age, and solar radiation. The data

revealed diurnal gates for environmental stimuli to influence transcription and

pointed to relative influences exerted by circadian and environmental factors on

different metabolic genes.

6.2.2.1 Pretreatment of Raw Environmental Data

Gene expression data are likely to be influenced by the dynamics of environmental

factors. To integrate information regarding past dynamic changes in the environ-

ment, we pretreated environmental data with both a prefixed threshold for percep-

tion and a prefixed perception period. We prepared a series of pretreated

environmental data with all possible combinations of several prefixed thresholds

and several prefixed periods and tried to the best combination to explain the

dynamic patterns of gene expression. Thus, we were able to test various perception

patterns of dynamic data from each environment from a single set of temporal

environmental data. With this approach, we can evaluate which environmental

factors contribute to the dynamics of target genes.

6.2.2.2 Grid Search Modeling of the Transcriptome

To select the best among various pretreated environment data, we developed a

linear model that connects several terms, including bias, development, clock, and

environment, to explain the dynamics of gene expression in the field. Among the

candidate models, the best was selected by a grid search. Six environmental factors

were considered: solar radiation, ambient temperature, humidity, atmosphere,

wind, and precipitation for the entire crop season. Each environmental factor was

considered on a distinct grid, with each grid location having prefixed thresholds and

periods of perception. In addition, we considered gate effects, which reflect the

diurnal changes of sensitivity for each environmental factor. Several hundred

thousands of grid locations were evaluated to select the best model. In fact, we
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developed models for 21,173 genes in which the dynamics of gene expression can

be explained by the environmental conditions among 23,000 genes expressed in

rice leaves under field conditions during the crop season. We considered a model

successful when the residual values between observation and prediction

(or estimation) were normally distributed. Several hundred genes expressed in

rice leaves were still not modeled with our method, suggesting that other environ-

mental factors, such as abiotic and biotic stress, are required to explain the dynam-

ics of these genes.

6.2.2.3 Major Findings from This Model

One of the most important findings in this modeling analysis was that more than

3000 genes are affected by the history of ambient temperature with specific

thresholds and perception periods. As most plant researchers grow their research

plant materials under artificial conditions with a fixed temperature, the findings of

such studies are not necessarily reproducible at different temperatures. On the other

hand, around 3000 genes are expressed very stably in rice leaves and are not

affected by environmental or developmental factors. Of course, this model also

generated predictions for the influence of changing temperature on transcriptome

dynamics (Fig. 6.1). The models would also help to translate the knowledge

amassed in laboratories to problems in agriculture, and our approach to deciphering

the transcriptome fluctuations in complex environments will be applicable to other

organisms.

6.2.3 Differential Equation-Based Modeling
of the Transcriptome

In the above model (Nagano et al. 2012), the degree of generalizability to predict

the entire transcriptome is quite high with Pearson’s correlation coefficients of 0.95
between observations and predictions of the transcriptome based on environmental

data. However, the generalizability for half of the genes was still not practical to

predict gene expression based only on environmental data. One major reason for

this is that we attempted to explain gene expression based on only one environ-

mental factor. Many genes are likely to be regulated by several environmental

factors, such as light and temperature signals. However, we selected the most

effective environmental factor among the six tested—solar radiation, temperature,

humidity, atmosphere, wind, and precipitation. To improve the generalizability of

genes that did not show practical abilities, it is necessary to simultaneously inte-

grate information from at least two independent environmental factors to explain

the expression of the target gene. Therefore, we developed a new method to develop

such models using a differential equation to input two temporal environmental
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factors (Matsuzaki et al. 2015). From the data of the previous model, we focused on

solar radiation and ambient temperature to explain the expression of a set of genes

involved in the circadian clocks in rice. Here, we did not attempt to develop models

at the transcriptome level as the calculation cost to determine the appropriate

parameters would become much larger than the simple grid search models. In the

previous case, we utilized the nonlinear least squares method to determine the

parameters as algebraic solutions for each grid. We then attempted to select the grid

to fit the gene expression data. In this case, we used the particle swarm optimization

method, where several particles that form a vector of numerical parameter values

are dispersed in the parameter space to search for optimal values of each parameter

(Lu et al. 2002). The numerical values of each particle are updated after consider-

ation of the inertia of each particle, the center of balance of all of the particles, and

the direction to the optimal position. Therefore, they are not independent but are

weakly connected to each other. With updated particle values, the differential

equation is then solved again, and the values are evaluated for the next update.

With this system, we can perform machine learning to determine the average values

of all particles as the best parameters after iterated learning processes. The new

model obtained in this way clearly improved the generalizability compared to the

previous model selected by the grid search for most of the 20 circadian clock-

related genes in rice examined in this study. We recently developed a fast algorithm

to perform this modeling at the transcriptome level using an improved ABC

(approximate Bayesian computation) method for parameter regression (Lenormand

et al. 2013). We are currently preparing a two-environmental factor-driven model

of the transcriptome with this algorithm.

6.2.4 Potential Use of the Neural Network Algorithm
Concept for Transcriptome Modeling

Although we have not yet evaluated the above two-environmental factor model, in

the near future, we will consider the synergistic interactions of two environmental

factors to explain gene expression for a special group of genes that are very

sensitive and exhibit complicated responses to a given environment. To construct

such a model, it could be reasonable to utilize the concept of multiple neural

network algorithms (LeCun et al. 2015). This algorithm is known to be sufficiently

flexible and rich to explain complicated interactions of various inputs. To maintain

generalizability, we should use regularization terms in squared loss function and/or

cross-validation. In addition, only a few pretreated inputs of environmental factors

and pretreated time information should be used to make a model. Then, the best

model among distinct combinations of pretreated data would be selected to obtain

novel knowledge in biology. However, it is still not clear how many genes will be

targets in a model with such complex interactions among environmental factors.
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6.3 Transcriptome-Driven Sparse Modeling of Biological/

Agricultural Traits

6.3.1 Bayesian Filtering Using Two-Dimensional Probability
Distribution Heat Maps

Transcriptome data obtained under field conditions is likely to contain enough

information to explain dynamic changes in biological and agricultural traits

(Yang et al. 2011). One simple way to extract such information on various traits

is to determine the two-dimensional relationships of probability between the target

trait and expression of a gene within a cluster of genes. According to Bayes’
theorem, with information regarding gene expression in a set of selected genes,

the target trait can be narrowed down as a probability distribution (Matsuzaki et al.

2015). In this way, we demonstrated that having gene expression data of only

16 related genes was sufficient to estimate the time of sampling with an accuracy

of around 20 min (Figs. 6.2 and 6.3). Here, we examined 25 circadian clock-related

genes and selected 16 genes. We searched all possible combinations of the 25 genes

to select the best combination. This way works well for circadian clock-related

traits since we were able to focus a dozen genes before selecting the best combi-

nation. However, this indicates that this way is not possible when we have

transcriptome data, which includes more than ten thousand data, to select related

genes.

6.3.2 Sparse Modeling of the Transcriptome
with Regularization Terms, Such as LASSO Regression

To find any relationship between gene expression of individual genes in

transcriptome and any biological/agricultural traits, it would be a good way to

develop a sparse modeling method to explain biological traits using gene expres-

sion data as the input. Here, it is important to extract as many genes related to

biological traits as possible and establish statistical models to predict the traits with

high generalizability. We examined the use of least absolute shrinkage and selec-

tion operator (LASSO) regression methods to develop such a model (Tibshirani

1996). Although we were unable to develop such models for various traits using

transcriptome data artificially randomly mixed and connected to trait data, we were

able to establish practical LASSO models for various traits with transcriptome data

appropriately connected to trait data. Thus, the LASSO method is a very promising

way. As we used glmnet, which provides the final model after tenfold cross-

validation, the generalizability of the obtained model was sufficient. We used

hundreds of microarray data containing 20–50 K data of gene expression to make
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such LASSO models, and so we often obtained around 100 genes to make a LASSO

model. Expression data of most of the selected genes showed clear correlations with

the target trait values, but several genes did not. Thus, some synergistic interactions

between gene expression values were integrated into the LASSO model. However,

it should be noted that not all of the genes in the obtained LASSO model reflect all

of the genes related to the trait. Thus, a new method is needed to extract all of the

genes related to the target trait.

Fig. 6.2 Construction of transcriptome-driven model for trait prediction. Left: a model of

individual gene expression in wild-type rice growing in the field responding to solar radiation

and ambient temperature was built for circadian clock-related genes and indicated a strong effect

of temperature. Middle: prediction by the model was used to determine the relationship between

physical time of day and expression. Right: using the relationship, we can infer internal time from

expression of multiple genes and found accuracy to 22 min relative to physical time regardless of

weather, day length, or plant developmental age (Cited from Supplemental Fig. 6.1 in Matsuzaki

et al. 2015)
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6.4 Potential Use of Field Transcriptome Data

to Check Crops

In our preliminary LASSO model developed for prediction of heading date from

sample RNAs (Izawa et al. data not shown), the accuracy of heading date prediction

was around 2 days. Unlike the typical phenology model used to predict the target

trait (Nakagawa et al. 2005), in which both real historical and predicted future

meteorological data were needed, the LASSO model used only a single RNA

sample to predict future traits. It is likely that such RNA may contain the develop-

mental status of the sample and can therefore be used to predict the future from such

Genes used for inference

PCL1
LHY-like chr.6
LHY-like chr.2

LHY-like chr.4
FKF1
PRR95
PRR1

LHY
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4

Time of day
sampled (h)
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Prediction
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4

0
0

Posterior
probability
density

Internal time (h)

PRR73
GI
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PHYC
ELF4 chr.11
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Fig. 6.3 Prediction of sampling time based on expression data of 16 circadian clock-related

genes. Estimation and prediction of sampling time using gene combination with the best estima-

tion performance (i.e., the lowest mean absolute estimation). Posterior probability density of

predicted sampling time is plotted against time of day sampled. Each blue (training sample for

estimation, n ¼ 461) and turquoise (validation sample for prediction, n ¼ 125) line

corresponds to a single sample. Among the training samples, those obtained at 10-min intervals

at 04:00–06:00 and 17:00–20:00 are included. Ranges of predicted sampling time with zero

posterior probability density for those samples are presented as areas with dense blue lines at

the bottom of the three-dimensional (3D) space. The thick black diagonal line at the bottom of the

3D space indicates correspondence between internal time and time of day sampled. (Cited from

Fig. 3 in Matsuzaki et al. 2015)
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samples. This type of model would provide information regarding related genes,

which can be used as biomarkers to predict biological traits. In addition, such RNA

contains information on the health status of crops in the field, and LASSO modeling

enables us to narrow the transcriptome data down to several key genes to find

practical biomarkers to estimate the health status of crops. Applying this method to

plant disease responses may provide information regarding the appropriate timing

of herbicide treatments relying on these gene expression biomarkers. Several

technologies will require further improvement to make this idea feasible. First,

the cost of gene expression analysis for biomarker genes must be reduced. Consid-

ering the current cost of 30,000 Japanese yen for detection of approximately 180 K

probes (or genes), it may be possible to reduce the cost to around 100 Japanese yen

for 1000 genes. Second, we usually use liquid nitrogen for leaf sampling and

storage, but this is an obstacle for wider use. Therefore, reagents for fixing RNA

in rice leaves at normal temperature are needed. Finally, sampling under field

conditions is laborious for farmers. As one example, automatic sampling machines,

drones, and self-traveling vehicles would be useful for developing practical han-

dling to check crops based on gene expression data. After efficient sampling, the

users can send samples to the center for RNA and data analyses. The samples would

be analyzed within a few days, and checkup data would be sent back to the users for

diagnosis of their crops.

6.5 Potential Use of Field Transcriptome Data to Mine

Genetic Resources Against Global Climate Change

Transcriptome data obtained under field conditions will be useful for breeding in

the future. With global climate change, new cultivars with wide regional adaptabil-

ity are required. Previously, a breeding method called shuttle breeding applied in

the Green Revolution of wheat breeding was thought to be effective for developing

new cultivars with wide adaptation (Hesser 2006). However, it is very laborious as

the cultivars were selected in two distant areas with very different climates. Use of

field transcriptome data from multiple fields with distinct climates would allow the

selection of useful alleles to confer distinct responses depending on the given

environments. In addition, we could evaluate which environments can give rise to

distinct responses using statistical modeling. For example, a novel disease resis-

tance gene allele that can exhibit a distinct temperature response would likely

contribute to plant disease resistance within different temperature ranges. We can

make use of this allele as a genetic resource to develop new cultivars with wide

regional adaptability. In the process of maize domestication, ancient humans

mainly would have used genetic changes in cis-regulatory elements of causal

genes (Lemmon et al. 2012). The search for novel alleles with wide regional

adaptability to improve crops would be reasonable from a historical perspective.

There are three possible ways to identify candidates of such novel alleles. The first
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would be the use of paired tests. As described above, we already have more than

40 paired samples in which significant detection would become very sensitive. The

second would be to develop transcriptome-based models of specific traits, such as

temperature responses, and compare with other models, such as LASSO models.

The third is to develop environmental-driven models of gene expression. We can

compare the selected values for specific parameters for each gene among tested

cultivars and determine which environmental factors cause the differences of the

gene expression. The third would require more than a hundred of RNA samples

obtained under various cultivation conditions for each allele of tested cultivars for

comparison. Known QTLs are included among candidate genes, and we would be

able to identify novel useful alleles in the QTLs. If there is no available biological

information on the candidate genes, the CRISPR/Cas9 method could have been

applied to the candidate genes for molecular genetic analysis.

6.6 Future Crop Agronomic Performance Mediated

by Field Transcriptome Data

6.6.1 Spatial and Developmental Regulation In Planta as
Barriers for Field Transcriptome Analysis

There are critical barriers when performing transcriptome analysis for plants cultured

in the laboratory and/or field. One such barrier is that the samples for transcriptome

analysis are mixtures of different plant organs. Although in the case of fully devel-

oped rice leaves, the ratios of mixing of tissues, such as vascular bundle cells and

mesophyll cells, do not vary markedly, so we cannot discuss tissue specificity of

expressed genes in rice leaves. In addition, when performing transcriptome analysis

of differentiating tissues/organs, it would be very difficult to order the samples

according to developmental stages among fluctuations in gene expression according

to environmental factors. Therefore, at present we can only focus on fully differen-

tiated tissues/organs. Furthermore, the damage due to sampling may affect future

samples from the same plants. We usually try to harvest samples at intervals that are

as short as possible in a sampling event. These flaws must be taken into account when

designing biological experiments using field transcriptome analysis.

6.6.2 Understanding of the Effects of Ambient
Environmental Conditions

The final goal of field transcriptomics would be global integration between

environment-driven models of gene expression and transcriptome-driven models

of biological and agricultural traits (Fig. 6.4). Such integration would allow the
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biological and agricultural traits, including some future traits, such as heading date

or flowering time or yield-related traits, to be predicted based on historical envi-

ronmental information. These analyses would also reveal the critical relationships

between given environments and traits, including distinct responses in distinct

developmental stages and gate effects of timing. Such integrated views from

transcriptome data would provide dynamic responses of crops under naturally

fluctuating environmental conditions.
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