
Chapter 4

Rice Organelle Genomics: Approaches
to Genetic Engineering and Breeding

Tomohiko Kazama, Asuka Nishimura, and Shin-ichi Arimura

Abstract Although organelle (mitochondria and plastid) genomes have less than 1%

of the genes in the nucleus, they encode essential genes, such as those involved in

energy production, respiration, and photosynthesis, and genes that control agronom-

ically important characteristics such as cytoplasmic male sterility. Organelle

genomes have high copy numbers in each cell (one to two orders of magnitude

greater than in the nucleus) and are characterized by maternal inheritance. To know

functions of genes encoded in the organelle genomes or to develop new plants

adapted to various severe environments, genetic engineering of organelle genomes

is one of the promising approaches. However, modifying the mitochondrial or plastid

genomes in rice is presently impossible or difficult. Here, we discuss the character-

istic features of these genomes and recent attempts at plastid transformation.
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4.1 Mitochondrial Genomics in Rice

The common function of mitochondria in plants and animals is to act as an energy

center to create ATP by oxidative phosphorylation. Despite this similarity, the

genome sizes and structures of the mitochondrial genome in plants are quite

different from those in animals. The size of the mitochondrial genome ranges
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from 200 to 11,300 kb in plants, while it is only about 17 kb in mammals,

apparently as a result of the loss of many fragments. The large size of plant

mitochondrial genome is mostly due to the presences of repeated sequences,

noncoding regions, and introns rather than the increased number of genes.

4.1.1 Rice Mitochondrial Genome Sequencing

In flowering plants, the mitochondrial genome was first sequenced in Arabidopsis
thaliana (Unseld et al. 1997) and subsequnetly in the rice japonica cultivar

Nipponbare (Notsu et al. 2002). The genomes were sequenced by preparing

phage clone libraries and restriction maps, followed by sequencing each clone.

The rice mitochondrial genome was initially proposed to consist of five basic

circular DNAs, with each circle sharing one or two fragments identical to those

in other circles (Iwahashi et al. 1992). A master circle was hypothesized to form by

homologous recombination between those identical fragments in the five circular

DNAs (Iwahashi et al. 1992; Notsu et al. 2002).

So far, the mitochondrial genomes of 14 rice strains including wild rice have

been reported (Table 4.1). The sizes of the genomes range from 402 kb (WA-type

cytoplasmic male sterility, WA-type CMS) to 638 kb (IR 6888B, a maintainer line

of WA-type CMS). The G þ C contents of each genome are very similar. Except

BT-type CMS, the genomes are hypothesized to have a single master-circle struc-

ture. Although the BT-type CMS mitochondrial genome is possible to have the

same structure, a Southern blot analysis suggests that it consists of two separate

circular molecules (Kazama and Toriyama 2016).

4.1.2 Gene Contents and Genes Associated with Cytoplasmic
Male Sterility

The Nipponbare mitochondrial genome is reported to contain 35 genes for known

proteins, 3 ribosomal RNAs, 2 pseudo-ribosomal protein genes, 17 tRNAs, and

5 pseudo-tRNAs (Notsu et al. 2002). Some genes consist of multiple exons that are

dispersed throughout the mitochondrial genome and that are trans-spliced to form

functional mRNAs (Table 4.2). Although 19 open reading frames (ORFs), which

encode over 150 amino acids, have also been predicted, transcriptional products

were detected in only 10 of those ORFs (Notsu et al. 2002). The existence of all

genes except the predicted ORFs was confirmed in reported rice mitochondrial

genome sequences (Tian et al. 2006; Fujii et al. 2010; Bentolila and Stefanov 2012;

Zhang et al. 2012; Igarashi et al. 2013; Okazaki et al. 2013; Asaf et al. 2016;

54 T. Kazama et al.



Kazama and Toriyama 2016). The sequence complexity of plant mitochondrial

genomes sometimes makes new sequences and ORFs via illegitimate homologous

recombination. Expression of such new ORFs sometimes leads to male sterility,

called cytoplasmic male sterility (CMS). Several studies have identified

CMS-associated genes (or CMS-causative genes) (Iwabuchi et al. 1993; Akagi

et al. 1994; Fujii et al. 2010; Bentolila and Stefanov 2012; Okazaki et al. 2013;

Igarashi et al. 2013). Previously, CMS-associated genes have been identified by

comparisons of gene structures and their expression profiles between CMS-causing

and normal mitochondria. In rice, CMS lines are bred by cytoplasmic substitution

via repeated backcrossing. In this case, the cytoplasmic donor cultivar carries

restorer of fertility (Rf) genes in its nuclear genome. This indicates that the

Table 4.1 A summary of reported rice mitochondrial genome sequence

Accession

no. Strain Organism

Length

(bp)

%

GC References

BA000029 Nipponbare Oryza sativa japonica
group

490,520 43.9 Notsu et al. (2002)

DQ167399 93-11 Oryza sativa indica
group

491,515 43.8 Tian et al. (2006)

DQ167400 Nipponbare

S

Oryza sativa japonica
group

490,669 43.8 Tian et al. (2006)

DQ167807 PA64S Oryza sativa japonica
group

490,673 43.8 Tian et al. (2006)

AP011076 CW-CMS Oryza rufipogon 559,045 44.0 Fujii et al. (2010)

AP011077 LD-CMS Oryza sativa indica
group

434,735 43.9 Fujii et al. (2010)

JF281153 IR 6888B Oryza sativa indica
group

637,692 43.9 Bentolila and

Stefanov (2012)

JF281154 WA-CMS Oryza sativa indica
group

401,567 43.9 Bentolila and

Stefanov (2012)

JN861111 Hassawi Oryza sativa indica
group

454,820 43.8 Zhang et al. (2012)

JN861112 IR 1112 Oryza sativa indica
group

454,894 43.8 Zhang et al. (2012)

AP012527 RT98-CMS Oryza rufipogon 525,913 44.2 Igarashi et al. (2013)

AP012528 RT102-

CMS

Oryza rufipogon 502,250 44.0 Okazaki et al. (2013)

KU176938 W1340 Oryza minuta 515,022 44.0 Asaf et al. (2016)

AP017385 BT-CMS Oryza sativa indica
group

95,643a 44.0 Kazama and

Toriyama (2016)

AP017386 BT-CMS Oryza sativa indica
group

440,134b 43.9 Kazama and

Toriyama (2016)
aSubgenome 1
bSubgenome 2
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Table 4.2 Location of homologous fragments of the mitochondrial genes in the nuclear genome

Gene Function

Location in the nuclear genome

Exon1 Exon2 Exon3 Exon4 Exon5

nad1 Complex I N.D. chr. 1 chr. 8 chr. 9 chr. 12

nad2 Complex I chr. 9 chr. 9 chr. 1 chr. 1 chr. 1

nad3 Complex I chr. 12 –

nad4 Complex I chr. 12 chr. 12 chr. 12 chr. 12 –

nad4L Complex I N.D. –

nad5 Complex I chr. 12 chr. 12 chr. 12 N.D. N.D.

nad6 Complex I chr. 12 –

nad7 Complex I chr. 12 chr. 12 chr. 12 chr. 12 chr. 12

nad9 Complex I chr. 1 –

cob Complex III N.D. –

cox 1 Complex IV chr. 12 –

cox 2 Complex IV N.D. chr. 12 –

cox 3 Complex IV N.D. –

atp1 Complex V chr. 9 –

atp4 Complex V chr. 12 –

atp6 Complex V chr. 1 –

atp8 Complex V chr. 12 –

atp9 Complex V chr. 12 –

ccmB Cytochrome c chr. 12 –

ccmC Cytochrome c chr. 12 –

ccmFc Cytochrome c chr. 12 N.D. –

ccmFn Cytochrome c N.D. –

mat-r Transcription N.D. –

rps1 Translation N.D. –

rps2 Translation chr. 12 –

rps3 Translation chr. 12 chr. 12 –

rps4 Translation N.D. –

rps7 Translation chr. 12 –

rps11 Translation N.D. –

rps12 Translation chr. 12 –

rps13 Translation chr. 12 –

rps14 Translation chr. 9 –

rps19 Translation N.D. –

rpl2 Translation N.D. N.D. –

rpl5 Translation chr. 9 –

rpl16 Translation chr. 12 –

orfX Transporter chr. 12 –

Sequences existed in nuclear genome entirely are listed

N.D. means full-length sequences are not detected in the nuclear genome
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cytoplasmic donor cultivar has both CMS-associated and Rf genes; RF suppresses

the expression of the CMS-associated gene, and male sterility does not occur. The

most common approach to identify CMS-associated genes has mostly relied on

Northern blot screening between CMS and fertility restored lines (Hanson and

Bentolila 2004).

Recently, it has become more common to use next-generation sequencing to

identify CMS-associated genes. Whole mitochondrial genomic sequences of CMS

rice were obtained and compared between those of standard cultivars, such as

Nipponbare, to screen for new ORFs that are absent from the reference genome

(Bentolila and Stefanov 2012; Kazama and Toriyama 2016). Then, CMS-associated

gene candidates were selected based on the criteria that they are chimeric in

structure with known mitochondrial genes or encode peptide containing a trans-

membrane domain, because all reported CMS-associated genes have such charac-

teristics. Subsequently, the expressions of candidate genes were checked to

determine whether they exhibit different patterns in the presence or absence of Rf
genes. Expression pattern differences that depend on the presence or absence of Rf
genes indicate that the expression of CMS-associated genes is the cause of CMS.

However, it is presently impossible to modify a plant mitochondrial genome by

DNA fragment knock-in and specific ORF knock-out. Thus, there is not yet an

absolute proof that a CMS-associated gene is a CMS-causative gene that has not

been obtained.

4.1.3 Mitochondrial DNA Fragments in the Nuclear Genome

Many DNA fragments identical to mitochondrial DNA have been found in the

nuclear genome (Notsu et al. 2002; Bentolila and Stefanov 2012). This kind of

nuclear fragment is called “promiscuous” DNA and thought to be translocated from

mitochondria through evolutionary processes and/or organelle establishment. In

Arabidopsis, a 620-kb insertion of a mitochondrial genome sequence was reported

on chromosome 2 (Stupar et al. 2001). In rice, fragments representing 60% of the

mitochondrial genome were found in the nuclear genome (Bentolila and Stefanov

2012). Interestingly, such promiscuous DNA fragments are unequally distributed

among the chromosomes.

To identify which mitochondrial genes exist in the nuclear genome, BLAST

search was performed (Table 4.2). In this analysis, genes except tRNAs and the

predicted ORFs in the Nipponbare mitochondrial genome were used as queries.

Homologous sequences were found for all but 14 mitochondrial genes (Table 4.2)

(International Rice Genome Sequencing Project 2005). The similarity between the

mitochondrial and nuclear gene sequences was more than 88%. This indicates that

almost all of the mitochondrial genes in rice have been translocated into the nuclear

genome and that the translocation events of mitochondrial genome could have

occurred in relatively recent times.
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4.2 Chloroplast Genomics in Rice

4.2.1 Use of Rice Chloroplast Genomes for Comparative
Genomics

Chloroplasts are organelles that are representative of plants; they are the most

prominent plastid present in green tissues, and play a crucial role in plants as a

metabolic center involving various biochemical processes, including photosynthe-

sis. Chloroplasts possess their own genome, which is generally circular and consists

of a large single copy (LSC) region and a small single copy (SSC) region, respec-

tively, that separate two inverted repeat regions (IRs). The chloroplast genome

contains three major groups of genes that encode (i) subunits of the photosynthetic

complex, (ii) components of the gene expression machinery, and (iii) a few proteins

that may function in metabolic pathways and unknown proteins (Shimada and

Sugiura 1991). Compared with the mitochondrial genome, the chloroplast genome

of land plants has a well-conserved structure, although the gene content, gene order,

and fine structural details depend on the species (Jansen et al. 2007; Xu et al. 2015).

In the grass family (Poaceae), the chloroplast genome shares some structural

arrangements that are different from those of other plant families (Doyle et al.

1992; Katayama and Ogihara 1996; Saski et al. 2007). These include three inver-

sions in the LSC; deletions of accD, ycf1, and ycf2; and loss of introns in clpP and

rpoC1 (Katayama and Ogihara 1996; Saski et al. 2007; Daniell et al. 2016).

The rice chloroplast genome was first sequenced in the Oryza sativa L. cv.

Nipponbare (Hiratsuka et al. 1989); its length was 134,525 bp with 38.99% GC

content. The present annotation data (https://www.ncbi.nlm.nih.gov/nuccore/NC_

001320.1) show that the Nipponbare chloroplast genome contains 159 genes,

including 108 protein-coding genes, 8 ribosomal RNA genes, 38 transfer RNA

genes, and 5 pseudogenes. To date, more than 100 rice chloroplast (plastid) genome

sequences, including that of wild rice, are available in the National Center for

Biotechnology Information (NCBI) database (https://www.ncbi.nlm.nih.gov/nucle

otide/) because of advances in sequencing technologies.

Oryza, which includes 23 species, is divided into 10 nuclear genome types,

which include 6 diploids (AA, BB, CC, EE, EF, and GG) and 4 allotetraploids

(BBCC, CCDD, HHJJ, and HHKK) (Ge et al. 1999). The AA genome type includes

three cultivated rice species (Oryza sativa ssp. japonica and O. sativa ssp. indica in
Asia and O. glaberrima in Africa) and six wild relatives: O. barthii,
O. glumaepatula, O. longistaminata, O. meridionalis, O. nivara, and

O. rufipogon. The Asian cultivated rice, O. sativa, is generally thought to have

originated from O. rufipogon (Khush 1997; Vaughan et al. 2008; Huang et al.

2012). However, despite numerous studies (Ma and Bennetzen 2004; Vitte et al.

2004; Zhu and Ge 2005; Londo et al. 2006; Molina et al. 2011; Huang et al. 2012;

Yang et al. 2012; Civáň et al. 2015; Huang and Han 2015), the domestication

history remains under debate.
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Recent studies of the evolutionary and phylogenetic relationships among the AA

genome species based on whole chloroplast genome sequences showed that two

subspecies of O. sativa, japonica and indica, had distinct maternal origins

(Wambugu et al. 2015; Kim et al. 2015; Tong et al. 2016). It is indicated that the

maternal genome of japonica has been derived from O. rufipogon, whereas the

indica maternal genome has been originated from O. nivara, although the nuclear

genomes seem to be of complex origin (Kim et al. 2015). Nuclear genome analyses

suggest that the African cultivated rice O. glaberrima was domesticated from

O. barthii (Li et al. 2011b; Wang et al. 2014). Phylogenetic relationships of several

chloroplast genomes also indicated that the maternal origin of O. glaberrima was

O. barthii (Wambugu et al. 2015; Kim et al. 2015; Tong et al. 2016). Moreover,

chloroplast genome analyses of worldwide rice accessions revealed that South

American wild rice, O. glumaepatula, has a distinct chloroplast genome (Kim

et al. 2015), andO. rufipogon contains cytoplasm derived from different geographic

regions (Kim et al. 2015; Wambugu et al. 2015). Chloroplast-based phylogenies

usually reflect geographic distributions better than nuclear genomes and should be

useful for resolving the evolutionary and domestication history of rice. Wild species

have disease-resistance and stress-tolerance genes, which make them valuable

genetic resources for rice improvement and breeding (Brar and Khush 1997). In

recent years, wild species with the EE genome (O. australiensis) and BBCC genome

(O. minuta) chloroplast sequences were also reported (Nock et al. 2011; Waters

et al. 2012; Asaf et al. 2017). These chloroplast genome studies will elucidate the

detailed genetic relationships among rice species and will be helpful in developing

future breeding strategies using new genetic resources. In addition, the accumulated

rice chloroplast sequences also provide insight for chloroplast genome engineering

to improve chloroplast function such as photosynthetic capacity.

4.2.2 Perspectives on Rice Chloroplast Genome Engineering

In higher plants, the first successful chloroplast transformation was achieved in

tobacco by particle bombardment about 30 years ago (Svab et al. 1990). Chloroplast

transformation has many advantages over nuclear transformation, including a high

level of transgene expression, multigene transformation, site-directed gene integra-

tion, absence of gene silencing, and maternal inheritance that prevents transgene

flow into the environment. Each plant cell has dozens of chloroplasts, each of which

contains multiple genome copies. Thus, gene expression can be ten to a hundred

times greater in chloroplast genomes than in nuclear genomes. With this property,

plants can be used to make large amounts of foreign proteins, such as pharmaceu-

tical proteins (e.g., vaccine antigens and antibiotics) and industrial enzymes (e.g.,

hydrolases, redox enzymes, and transferases). Many functional proteins have been

expressed in tobacco and lettuce chloroplasts (reviewed in Jin and Daniell 2015;
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Daniell et al. 2016), and expression can be as high as 70% of total leaf protein

(Ruhlman et al. 2010). Chloroplasts have great potential as bioreactors for com-

mercial production. Now, many therapeutic proteins are in clinical development

(Zhang et al. 2017).

Chloroplast transformation has also been used to control agronomic traits,

including resistance to insects, diseases, and herbicides, and abiotic stress tolerance

of plants (reviewed in Jin and Daniell 2015; Daniell et al. 2016). For example,

double-stranded (ds) RNA expressed in chloroplasts was shown to induce RNA

interference (RNAi) of target genes in insect hosts (Jin et al. 2015; Zhang et al.

2015), demonstrating a new approach to protecting crops without chemicals.

Chloroplast engineering of metabolic pathways or photosynthetic ability could

be used for crop improvement (Maliga and Bock 2011; Hanson et al. 2013; Wani

et al. 2015). To manipulate the isoprenoid pathway, seven genes were simulta-

neously inserted into the chloroplast genome, resulting in the accumulation of high

levels of target metabolites (Kumar et al. 2012). Photosynthetic efficiency was also

enhanced by replacing the tobacco chloroplast rbcL gene with three genes from the

cyanobacterium Synechococcus (rbcL, rbcS, and an assembly gene) (Lin et al.

2014).

Despite the remarkable progress in chloroplast transformation technologies,

there are still substantial limitations to their use. Successful examples of chloroplast

genome engineering have been restricted to only tobacco and a few dicots (Jin and

Daniell 2015). Development of fully chloroplast-engineered monocots has not yet

been achieved because of the lack of transformation protocols (Bock 2007; Clarke

and Daniell 2011; Khan 2012; Rigano et al. 2012). Major obstacles to chloroplast

transformation in monocots are thought to be (i) difficulty of tissue culture and

regeneration from green tissue and (ii) no effective selection systems for retaining

the transformed chloroplasts (plastids) and facilitating the transition from

heteroplasmic to homoplasmic state (that is, all chloroplast genomes are replaced

with identical transformed chloroplast genomes). Indeed, efficient protocols for

tobacco chloroplast transformation were established based on tissue culture systems

of green leaf materials using spectinomycin selection with the aminoglycoside

300-adenyltransferase gene, aadA, as a selection maker (Lutz et al. 2007; Verma

and Daniell 2007; Scotti and Cardi 2012). Unfortunately, most monocotyledonous

plants are endogenously resistant to spectinomycin, because of the point mutations

in their targeted 16S rRNA gene (Fromm et al. 1987). Additionally, regenerable

tissue culture materials in monocots are generally nongreen tissues, such as dark-

grown embryogenic calli or suspension cells. In nongreen tissues, a small number

of plastids exist as undifferentiated plastids called proplastids. Proplastids are about

fivefold smaller in size than chloroplasts, and the gene expression levels are lower

than those of chloroplasts (Vera and Sugiura 1995; Sakai et al. 1998; Silhavy and

Maliga 1998; Daniell et al. 2002; Pyke 2007; Liebers et al. 2017).

Even with these disadvantages, several advancements have been reported in

monocotyledonous cereal crops, particularly in rice. Khan and Maliga (1999) were

the first to transform rice plastids. They used a fluorescent antibiotic resistance

gene, aadA11gfp, a fusion gene of the Aequorea victoria green fluorescence protein
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gene (gfp) and aadA. They introduced the fusion gene to rice suspension culture

cells and selected the transplastomic lines with streptomycin: aadA confers resis-

tance to both spectinomycin and streptomycin, and rice cells are sensitive to

streptomycin. Twelve shoots regenerated from surviving cells on streptomycin-

containing medium from 25 bombarded plates. The plastid transformation was

proven by PCR detection of the transgene, but the GFP fluorescence was only

observed in a few populations of highly heteroplasmic cells, including wild-type

and transgenic chloroplasts. Despite this success, the authors did not indicate

inheritance of the transgene or the fertility of the transplastomic plants. Subse-

quently, Lee et al. (2006) again attempted to introduce gfp and aadA by using

streptomycin selection with the conventional rice cell culture with mature seed-

derived calli. They successfully produced fertile transplastomic rice plants and

demonstrated transmission of both transgenes to the progeny. However, the trans-

formation efficiency was quite low, with two transgenic lines out of approximately

4000 calli on 100–120 bombarded plates; and all transplastomic lines still have

been in heteroplasmic state.

A different selection approach using PPT (L-phosphinotricin), the active ingre-

dient of the herbicide Basta, and the resistance gene bar was also attempted for rice

plastid transformation (Li et al. 2009). Although the transformation efficiency was

not clear, six transplastomic plants were obtained with various heteroplasmic

levels, and maternal transmission of bar was suggested based on crossing experi-

ments (Li et al. 2009). More recently, Li et al. (2016a, b) tried other selection

strategy using a rice-specific chloroplast transformation vector with hygromycin-

resistance cassette that contains the hygromycin phosphotransferase gene hpt. The
antibiotic hygromycin B blocks protein biosynthesis in both prokaryotic and

eukaryotic cells (Gonzalez et al. 1978), and hygromycin selection was widely

used for nuclear transformation in rice (Hiei and Komari 2008). Fertile

transplastomic plants were obtained, and transgene inheritance in progeny was

demonstrated. However, only a few transformation events occurred in these exper-

iments (24 surviving plants with approximately 20,000 total calli), and the number

of transformed plastids was very small, probably because of weak selection pres-

sure (Li et al. 2016b).

A possible reason for the lower transformation efficiencies observed in

nontobacco species is reduced activity of plastid homologous recombination

(Sikdar et al. 1998). Assuming this was the case, the application of transcription

activator-like effector nucleases (TALENs) was tested in rice plastid transforma-

tion (Li et al. 2016a). TALENs are a powerful tool for targeted genome modifica-

tion (Bogdanove and Voytas 2011). They induce genomic double-strand breaks

(DSBs) for gene insertion and thus greatly stimulate the homologous recombination

DNA-repair pathway (Wyman and Kanaar 2006). To improve the insertion effi-

ciency of exogenous DNA fragments into the rice plastid genome by homologous

recombination, Li et al. (2016a) conducted co-transformation of the TALEN vector

and plastid transformation vector into rice calli by particle bombardment. As a

result of preliminarily PCR analyses of T0 plants, the transformation efficiency
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(detection frequency of transgene fragments) of co-transformation (0.35%) was

much higher than that of transformation with a single vector (0.11%).

In summary, despite the interest in chloroplast transformation of rice, it has not

yet been successful. Issues to be solved include (i) choice of target tissues for gene

introduction, (ii) activation of homologous recombination, and (iii) development of

efficient selection methods. The candidate target tissues (plastids) include nongreen

tissue (proplastids) and green tissue (chloroplasts). As mentioned above, calli, a

nongreen tissue used in conventional tissue culture systems, contain small pro-

plastids with low introduction efficiency and low levels of gene expression. In

contrast, green tissue contains large chloroplasts that are thought to have high

efficiency and high levels of gene expression. However, no culture system capable

of regenerating green tissues has yet been established in rice. In maize, a leaf-based

culture system has been constructed (Ahmadabadi et al. 2007). We attempted a

similar culture method using rice seedlings, and confirmed that it can be used to

culture (unpublished data). We are now testing this green tissue to see if it can be

used for chloroplast transformation of rice.

The selection methods, for transplastomic rice plastids, streptomycin-aadA,
PPT-bar, and hygromycin-hpt, all failed to achieve homoplasmy, which indicates

that these selection methods are not suitable for rice plastid transformation. In

dicots, a few alternative selection systems have recently been developed for plastid

transformation (Barone et al. 2009; Li et al. 2011a; Bellucci et al. 2015; Dunne et al.

2014; Yu et al. 2017). The selection methods for dicots and other novel selection

methods need to be tested for transforming rice plastids.

Furthermore, because of their low plastid transformation efficiency, monocots,

including rice, seem refractory to integration of foreign genes into the plastid

genome. Perhaps monocots have specific biological mechanisms to prevent it. At

present, many aspects of monocot plastid biology remain unclear. Elucidation of

the molecular mechanisms of plastid genome maintenance will be indispensable for

establishing methods for plastid transformation in rice.
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