
Chapter 14

GeneticMechanisms Involved in the Formation
of Root System Architecture

Yuka Kitomi, Jun-Ichi Itoh, and Yusaku Uga

Abstract Root system is essential for absorbing water and nutrients as well as

anchoring shoots to the ground. Understanding the genetic mechanisms related to

the formation of root system architecture is necessary for improving rice produc-

tivity. Here, we first describe the potential of genetic improvement using quantita-

tive trait locus (QTL) for root system architecture based on our field experiments

using a genetic material of DEEPER ROOTING 1, which is a rice QTL controlling

root growth angle. Next, we summarize the accumulated knowledge on the genetic

mechanisms of root formation in rice including the development of the radicle,

crown roots, lateral roots, and root hairs. We also overview the current status of the

genetic dissection of root system architecture in rice, namely, the identification and

characterization of natural and artificial alleles. Root traits are rarely chosen as

breeding targets because their evaluation in a large number of plants under field

conditions is more laborious and time-consuming than evaluation of aboveground

traits. The genetic dissection of root system architecture would facilitate the

breeding of root traits, eventually improving rice yield irrespective of soil and

other environmental conditions.
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14.1 Introduction

14.1.1 What Is the Ideotype for the Second Green
Revolution?

Half a century ago, ideotype breeding using a semidwarf gene, sd1, resulted in the

Green Revolution in rice (Khush 2001), but breeders and researchers still have to

increase rice yield because rice is a staple food for nearly half of the world’s
population. Thus, we need to consider what the ideotype for the second Green

Revolution could be. Recent climate change is increasing the inequality of water

and nutrient distribution in agricultural lands at a global level; global warming has

caused serious drought damage in farmlands that rely on rainwater or that have

limited access to irrigation (Scheffran and Battaglini 2011). What kinds of traits are

needed to improve rice yield in this situation?

Root system traits should be such candidate traits to achieve the second Green

Revolution. Root, which is the only organ absorbing water and nutrients from soil,

is imperative for the survival of terrestrial plants, which cannot move around after

germination. Optimal root development and distribution allow efficient acquisition

of water and nutrients, which are heterogeneously distributed in soil (Gowda et al.

2011; Lynch 2013). For example, the topsoil tends to hold less water but more

immobile nutrients such as phosphorus than does the subsoil. Nitrate, which is the

main form of nitrogen under aerobic conditions, is leached by precipitation into

subsoil. Therefore, root system architecture greatly affects the acquisition of water

and nutrients from soil (Gewin 2010; Lynch 1995). Many wild species tend to have

adequate root systems to adapt to severe stresses (Canadell et al. 1996); for

example, drought-resistant plants tend to develop deeper root systems, which

allow them to capture water from subsoil and thus avoid drought stress. Increased

roots in subsoil would be also effective to avoid the negative impacts of drought on

crop yield (de Dorlodot et al. 2007). Therefore, the genetic improvement of root

system architecture has been regarded as an important approach to enhance crop

production. However, it is more laborious and time-consuming to select root traits

than aboveground traits. Therefore, many researchers are considering molecular

breeding by using quantitative trait loci (QTLs) as one of the promising strategies

for improving root system architecture (de Dorlodot et al. 2007; Yamamoto et al.

2014).
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14.1.2 Prospects of Ideotype Breeding Using QTLs for Root
System Architecture

In rice, a wide natural variation of root system architecture has been reported

(Lafitte et al. 2001; O’Toole and Bland 1987; Uga et al. 2009). For example, typical

upland rice has deeper, longer, and thicker roots than lowland rice (O’Toole and

Bland 1987) and thus might be a useful breeding material to improve rice produc-

tivity. Root system architecture is a complex trait controlled by tens to hundreds of

genes (Wachsman et al. 2015). Courtois et al. (2009) summarized 675 rice QTLs for

29 root parameters detected in 12 mapping populations reported in 24 published

papers, but only one QTL associated with root system architecture has been isolated

as a single gene in rice (Uga et al. 2013a).

The rice QTL DEEPER ROOTING 1 (DRO1) has been identified on chromo-

some 9 in recombinant inbred lines derived from a cross between the lowland

cultivar “IR64” and the upland cultivar “Kinandang Patong” (Uga et al. 2011) and

has been cloned (Uga et al. 2013a). “Kinandang Patong,” which has a functional

allele of DRO1, has deep roots, whereas “IR64,” which has a nonfunctional allele,

has shallow roots. In a near-isogenic line (Dro1-NIL) that carries DRO1 derived

from “Kinandang Patong” in the genetic background of “IR64,” DRO1 increases

root growth angle, resulting in deep rooting, but has a limited effect on other root

and shoot traits. Field experiments using this unique line, which differs from

“IR64” only in the increased root growth angle, have demonstrated that alteration

of root system architecture improves rice productivity, as discussed in detail below

(Fig. 14.1).

The yield performance of “IR64” and Dro1-NIL was compared under upland

field conditions with no drought, moderate drought, or severe drought (Uga et al.

2013a). Under moderate drought in comparison with no drought, the grain weight

of “IR64” decreased by nearly half, whereas that of Dro1-NIL was almost the same.

Under severe drought, the grain weight of “IR64” was very low, whereas that of

Dro1-NIL was more than 30% of that with no drought. This study suggests that

deep rooting induced by DRO1 enhances drought avoidance, resulting in higher

grain yield (Fig. 14.1a).

Comparison among cultivars with different root and shoot morphologies has

suggested that deep roots increase grain yield in paddy fields (Kawata et al. 1978;

Morita et al. 1988), but the genetic aspects of this effect have not yet been clear in

previous studies. In paddy fields, Dro1-NIL showed about 10% higher grain yield

than did “IR64,” irrespective of nitrogen treatment (Arai-Sanoh et al. 2014). There

was no significant difference between “IR64” and Dro1-NIL in nitrogen content

before heading, but nitrogen uptake was higher in Dro1-NIL than in “IR64” after

heading. These results suggest that deep rooting induced by DRO1 enhances

nitrogen uptake from lower soil layers, resulting in better grain filling (Fig. 14.1b).

Because root growth angle influences the efficiency of nitrogen absorption, it

might also affect the uptake of other minerals such as heavy metals. In

Cd-contaminated soil, the grain and straw Cd concentrations were significantly
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higher in “IR64” than in Dro1-NIL (Uga et al. 2015a). These results were opposite

to those in the case of nitrogen uptake because the bioavailable Cd concentration

was increased in the oxidized topsoil layer by withholding irrigation water during

the vegetative growth period. Therefore, shallow roots could capture Cd from

topsoil, resulting in a high concentration of Cd in rice plants (Fig. 14.1c). This

suggests that, for phytoremediation, the allele occurring shallow rooting is a

potential genetic resource for developing plants with high Cd accumulation. From

the viewpoint of food safety, the allele giving deep rooting could be a useful

resource to avoid absorbing the bioavailable Cd from topsoil.
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Fig. 14.1 Schematic models of the effect of DRO1 on rice production and phytoremediation. (a)
Drought avoidance (water uptake). In upland fields, where water is most abundant in subsoil, deep

rooting caused by DRO1 allows plants to efficiently capture water. (b) Yield performance

(nitrogen uptake). Under irrigated conditions in paddy fields, deep rooting caused by DRO1 allows
plants to access nitrogen from the subsoil during reproductive stages. (c) Phytoremediation

(Cd uptake). In a rain-fed paddy field after drainage, the bioavailable Cd concentration increases

in the topsoil. Shallow rooting caused by dro1 allows plants to accumulate bioavailable Cd from

the topsoil. (d) Lodging resistance. In wet paddy fields, deep rooting caused by DRO1 increases

pushing resistance (an index of lodging resistance). Rice plants described in each part are IR64 on

the left and Dro1-NIL on the right
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Comparisons of different cultivars and examination of the effects of root pruning

suggest that deep roots influence lodging resistance (Sakata et al. 2004; Terashima

1997; Terashima et al. 1994, 1995), although the genetic aspects of this effect are

still unknown. Under wet paddy field conditions, Dro1-NIL had stronger pushing

resistance (an index of lodging resistance) than “IR64” (Arai-Sanoh et al. 2014),

suggesting that deep rooting induced by DRO1 improves lodging resistance

(Fig. 14.1d).

These field experiments with Dro1-NIL confirm the potential of ideotype breed-

ing for root system architecture, although further studies in other environments are

needed. To design new root ideotypes that are adapted to diverse environmental

stresses and to conduct ideotype breeding by using marker-assisted selection

(Coudert et al. 2010), it will be necessary to update our understanding of the genetic

mechanism associated with root system architecture. Information on gene networks

involved in root formation has been accumulated for the model dicot plant

Arabidopsis thaliana, but our knowledge of these aspects in rice is limited (Coudert

et al. 2010; Rebouillat et al. 2009). In this chapter, we overview this knowledge and

discuss the prospects of applying it to molecular breeding.

14.2 Root Formation

The first root of a rice plant, the radicle, is generated during embryogenesis. A

radicle primordium originates endogenously from the embryo 4 days after pollina-

tion (DAP) (Itoh et al. 2005), whereas in Arabidopsis it is exogenously differenti-

ated from the hypophysis (Dolan et al. 1993). After germination, the radicle is

named the seminal root. Crown roots originate from the parenchyma cells adjacent

to the peripheral cylinder of vascular bundles of the stem; therefore, crown roots are

also named shoot-born roots (Fig. 14.2). Monocots develop a fibrous root system

characterized by numerous crown roots, meanwhile dicots consist of only a main

root system (Klepper 1992). A rice plant usually generates several hundreds of

crown roots under field conditions (Klepper 1992). Lateral roots grow from seminal

and crown roots (Fig. 14.2) and are responsible for taking up most water absorbed

by the root system (Varney et al. 1993). In rice, two distinct types of lateral roots

have been identified (Kawata and Shibayama 1965). L-type lateral roots are gen-

erally long and thick and are able to generate higher-order lateral branches, whereas

S-type lateral roots are short, slender, and non-branching. Crown and lateral roots

are classified as postembryonic roots because they are initiated after embryogene-

sis, whereas the seminal root (radicle) is generated during embryogenesis. Root

hairs are tubular outgrowths of some root epidermal cells. Root hairs occupy most

of the root surface area; they are thought to be important for water and nutrient

uptake, anchorage, and interactions with soil microbes (Kim et al. 2007). Identifi-

cation of genes associated with the formation of the different types of roots in rice

has progressed together with the advances in molecular biology and DNA sequenc-

ing technology (Table 14.1).
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14.2.1 Root Apical Meristem

Except root hairs, each root type has a multicellular organization that can be

described in terms of proximal-distal and radial polarity. All root cells are generated

from stem cell daughters in the root apical meristem (RAM). Coordinated balance

between cell division and differentiation is observed along the proximal-distal axis

in the root tip, which can be divided into three zones according to cell division and

elongation status: proximal division zone, transition zone, and distal elongation

zone (Dolan et al. 1993). In rice, the root tip is formed by different types of cells

arranged in concentric layers. The stele consists of the metaxylem, phloem, fibers,

and pericycle and is surrounded by the endodermis, cortex, sclerenchyma, exoder-

mis, and epidermis. In rice, these five cell layers are generated from single

epidermis-endodermis structural initial cells by eight successive asymmetrical

periclinal cell divisions following the first anticlinal division (Rebouillat et al.

2009).

The central region of RAM contains mitotically inactive cells, or the quiescent

center (QC). The QC region in rice was examined by in situ hybridization with a

probe for the rice CYCLIN-DEPENDENT KINASE (CDK) gene, a marker of cell

division (Umeda et al. 1999). The analysis suggested that rice QC is large, unlike

that of Arabidopsis, which consists of only four cells. In rice, the expression of a

WUSCHEL (WUS)-type homeobox gene designated QUIESCENT-CENTER-SPE-
CIFIC HOMEOBOX (QHB) was detected in the central cells of QC, similar to the

Upper crown root

Lower crown root

Crown root

Lateral root

Fig. 14.2 Schematic view

of the fibrous root system in

rice
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expression of its Arabidopsis ortholog WUS-RELATED HOMEOBOX 5 (WOX5).
WOX5 is involved in QC maintenance, suggesting that QHB plays a similar role in

rice (Kamiya et al. 2003b; Sarkar et al. 2007). The phytohormone auxin is crucial

for QC maintenance (Friml et al. 2002; Sabatini et al. 1999). A mutation in a

member of the AUXIN (Aux)/INDOLE-3-ACETIC ACID (IAA) gene family,

OsIAA23, causes defects in postembryonic QC maintenance due to the disintegra-

tion of the root cap and termination of root growth, suggesting the importance of

auxin in rice QC maintenance (Ni et al. 2011). The GRAS family genes SCARE-
CROW (SCR) and SHORT-ROOT (SHR) are also the key regulators of QC main-

tenance and root radial patterning (Di Laurenzio et al. 1996; Helariutta et al. 2000;

Sabatini et al. 2003). OsSCR1 is specifically expressed in the endodermis, whereas

OsSHR1 is expressed in the stele, similar to the patterns of their expression in

Arabidopsis; OsSCR1 and OsSHR1 interact with each other when produced in

yeast, similar to SCR and SHR in Arabidopsis (Cui et al. 2007; Kamiya et al.

2003a). These data suggest that OsSCR1 and OsSHR1 control the division of the

epidermis-endodermis initial cells in rice. Concerning the outer cell layers (epider-

mis, exodermis, and sclerenchyma) in rice, a mutation in DEFECTIVE IN OUTER
CELL LAYER SPECIFICATION 1 (DOCS1), which encodes a leucine-rich repeat

receptor-like kinase (LRR-RLK), causes irregular epidermal cells with far fewer

root hairs and transformation of some exodermal cells into additional

sclerenchyma-like cells (Huang et al. 2012). The outer cell layers play an important

role in protecting the inner root tissues from various stresses (Huang et al. 2009).

Proper development of both inner and outer cell layers is essential for root

development.

14.2.2 Radicle

A fertilized egg (zygote) undergoes iterative cell divisions to form a globular

embryo with no apparent morphological differentiation until 3 DAP, and a radicle

primordium is observed at 4 DAP together with a shoot apical meristem (Itoh et al.

2005). Therefore, radicle initiation is assumed to occur at the globular stage. The

molecular mechanisms of radicle formation in rice and the key genes involved are

presumed on the basis of experimental reports in Arabidopsis. Some rice mutants

have defects in radicle formation; however, the causative genes have not yet been

isolated.

Hong et al. (1995) reported three independent lines of radicleless (ral) mutants.

One of them, ral1, is viable, although it has a reduced number of crown and lateral

roots (Scarpella et al. 2003). The ral1 plants also have narrower leaves with

vascular patterning distortions associated with a defective response to auxin,

indicating that RAL1 has auxin-related functions. A mutant of Oryza sativa
CONNECTED EMBRYO (OsCEM) produces multiple shoots and radicles (Yang

and Hwa 2008). Endogenous indole-3-acetic acid (IAA) level in oscem embryos is

lower than that in wild-type embryos despite no differences in vegetative stages.
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This result also strongly suggests the relationship between auxin and radicle

formation. Multiple radicles are sometimes observed in the apical displacement 1
(apd1) mutant, in which the apical shoot region and scutellum are reduced and the

basal region of the radicle is enlarged (Kinae et al. 2005). Formation of multiple

radicles in apd1may be a secondary effect of the aberrant apical-basal patterning of

the embryo (Kinae et al. 2005).

Our knowledge of radicle formation is limited compared to that of other types of

rice roots because there are few reports of radicle-related genes. Recently, micro-

array analysis of spatiotemporal gene expression patterns during early embryogen-

esis was performed (Itoh et al. 2016). Based on the datasets from that study, we

listed putative radicle-related genes and assessed their functions by performing in

situ hybridization (Fig. 14.3). The list contained 23 genes (including 14 encoding

transcription factors), which were classified into three groups according to their

expression patterns (Fig. 14.3): genes with radicle-specific expression from radicle

initiation to its development (Group I, 14 genes); genes with radicle-specific

expression during radicle development (Group II, 4 genes); and genes not showing

radicle-specific expression (Group III, 5 genes). We then focused on the transcrip-

tion factor genes in Group I (Fig. 14.3a). Four genes for APETALA 2 (AP2)/

ETHYLENE RESPONSIVE FACTOR (ERF) transcription factors with two AP2

repeats (Os06g0657500, Os02g0614300, Os04g0504500, and Os01g0899800)

were expressed in the center of the 3-DAP embryo where a radicle will be formed

(Fig. 14.3a). They share sequence similarities with PLETHORA (PLT) homologs,

the key factors in root meristem formation and maintenance (Aida et al. 2004;

Galinha et al. 2007). They are assumed to have roles in radicle formation, especially

meristem initiation and development because PLT protein dosage in RAM, which is

determined by auxin, is translated into distinct cellular responses: high levels of

PLT promote stem cell identity and maintenance, whereas low levels enhance cell

division and differentiation (Galinha et al. 2007). Two NAC transcription factors,

Os06g0530400 (OsNAC7) and Os02g0745300, share sequence similarities with

SOMBRERO (SMB) and FEZ, which are involved in root cap development in

Arabidopsis (Willemsen et al. 2008). Both Os06g0530400 and Os02g0745300

showed a root cap-like pattern in the basal region of the embryo (Fig. 14.3a),

suggesting that both genes may be involved in root cap development in radicle

formation.

We also examined the expression patterns of Group I transcription factor genes

in crown root primordia to check whether these patterns are similar to those in the

radicle. Almost all of the genes examined had similar expression patterns,

suggesting that they have the similar function during radicle and crown root

formation (Fig. 14.4a). We also performed double-target in situ hybridization in

crown root primordia, where the identities of cell layers are more easily distin-

guishable than in the radicle. First, we used the probe for OsSCR1 and AP2/
ERFs. OsSCR1 mRNA was localized in the endodermis, including epidermis-

endodermis initial cells, and in central QC cells (Fig. 14.4b). Os06g0657500 was

expressed in the inner and outer layers of the endodermis without overlapping with

the OsSCR1 signal (Fig. 14.4b). Os02g0614300 was also expressed in the inner and
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Fig. 14.3 Expression patterns of candidate genes essential for radicle formation in rice. (a) Group
I: genes showing radicle-specific expression from radicle initiation to development. (b) Group II:

genes showing radicle-specific expression during radicle development. (c) Group III: genes not

showing radicle-specific expression. For each gene, a longitudinal section through a 3-DAP (days

after pollination) to early 4-DAP embryo is shown in the top row and that through a late 4-DAP to

5-DAP embryo is shown in the bottom row. Signals were detected with DIG-NBT/BCIP.

Bars ¼ 100 μm. Of the 23 genes shown, 16 were selected as follows: 1st step, expression in the

basal part of a 3-DAP embryo is >10 times that in the apical part according to microarray datasets

in Itoh et al. (2016); 2nd step, high expression in the root of a 7-DAP embryo in Itoh’s datasets; 3rd
step, high expression in the root in a mature plant and embryo in a seed according to RiceXPro

(Sato et al. 2011). Five transcription factor genes that are coexpressed with these 16 genes and are

highly expressed in the radicle of a 7-DAP embryo were also chosen. Additionally, two genes

(OsSCR1 and QHB) previously reported to be expressed in the endodermis and central cells of QC

were analyzed (Kamiya et al. 2003a, b)
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Fig. 14.4 Expression patterns of transcription factor genes in crown root primordia of rice. (a)
Cross sections through the nodes of 7-day-old plants. Upper sections, initiation to early developing

stage of crown root primordia. Middle sections, developing stage of crown root primordia. Lower

sections, late developing to emergence stage. Signals were detected using DIG-NBT/BCIP.

Bars ¼ 200 μm. (b) Double-target in situ hybridization with probes for OsSCR1 and AP2/ERF
transcription factors. The OsSCR1 signal was detected with biotin-TSA-fluorescein (green fluo-

rescence), and Os06g0657500 and Os02g0614300 signals were detected with DIG-Fast Red (red

fluorescence). Arrowheads indicate the central cells of QC. (c) Double-target in situ hybridization
with the probes for NAC transcription factors. The Os02g0745300 signal was detected with biotin-

TSA-fluorescein, and the Os06g0530400 signal was detected with DIG-Fast Red
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outer layers of the endodermis but overlapped with the OsSCR1 signal in the stem

cell region (Fig. 14.4b). The expression patterns of two NACs were slightly

different: the Os06g0530400 signal was observed in peripheral root cap cells and

columella cells, whereas Os02g0745300 was expressed mainly in columella cells

(Fig. 14.4c). Slight differences in the expression regions among the same gene

family members might suggest the specialized function of each gene.

14.2.3 Crown Roots

Monocot plants produce numerous crown roots from nodes, which form a fibrous

root system. During crown root morphogenesis, three developmental stages can be

clearly distinguished: initiation, development, and growth (Coudert et al. 2010; Itoh

et al. 2005; Kitomi et al. 2011; Zhao et al. 2009). The regulation of crown root

formation in rice and that of lateral root formation in Arabidopsis share several

common characteristics. The molecular mechanism of crown root formation is

relatively well analyzed compared with that of other root types (Fig. 14.5).

Auxin is essential throughout root morphogenesis in these species, and auxin-

related mutations lead to morphological abnormalities in rice crown roots and

Arabidopsis lateral roots. Rice YUCCA 1 (OsYUC1) and CONSTITUTIVELY
WILTED 1 (OsCOW1) encode flavin monooxygenases, the key enzymes in auxin

Fig. 14.4 (continued)
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biosynthesis (Woo et al. 2007; Yamamoto et al. 2007). Overexpression of OsYUC1
enhances crown root formation, whereas OsYUC1 antisense plants show severe

growth retardation (Yamamoto et al. 2007). Alleles of OsCOW1 with the insertion

of the Tos17 transposon or T-DNA decrease the root-to-shoot ratio by reducing

crown and lateral root numbers (Woo et al. 2007). OsCOW1 was also reported as

NARROW LEAF 7 (NAL7)/OsYUC8, which was identified in a mutant with narrow

leaves (Fujino et al. 2008). The fish bone ( fib) mutant defective in crown and lateral

root formation has a mutation in the gene encoding TRYPTOPHAN AMINO-

TRANSFERASE OF ARABIDOPSIS 1 (OsTAA1), an auxin biosynthetic enzyme

(Yoshikawa et al. 2014). Several PIN-FORMED (PIN) genes, which encode auxin

Cytokinin response

Auxin

Crown root initiation

Biosynthesis

Cytokinin

OsYUC1*, OsCOW1, FIB

OsPIN1b*, OsPIN2*, OsPIN3t*(OsPIN10a), OsPID*CRL4/OsGNOM1

OsmiR393*OsTIR1*, OsAFB2*

CRL1/ARL1CRL6

CRL5
ERF3*, WOX11

OsCKX4

OsMT2b*

OsRR2

OsRAA1

OsCAND1

OsIAA3*(OsIAA31)

Crown root development

Transport

Perception

Signaling

OsARF

OsRR1

Auxin response

Crown root growth

Signaling

Cell cycle

Fig. 14.5 Proposed gene regulatory pathways of crown root formation in rice. *Genes character-

ized by using reverse genetic approaches (overexpression, knockdown, or both). Genes without

asterisks are cloned and characterized by using forward genetic approaches
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efflux carriers mediating polar auxin transport, also play a pivotal role in crown root

formation. Downregulation of OsPIN1b and OsPIN3t (termed OsPIN10a in Wang

et al. 2009; OsPIN3a in Miyashita et al. 2010), and overexpression of OsPIN2,
reduces crown root number (Chen et al. 2012b; Xu et al. 2005; Zhang et al. 2012a).

Overexpression of OsPINOID (OsPID), which controls auxin distribution by con-

trolling subcellular localization of PINs, also causes abnormal crown root devel-

opment (Morita and Kyozuka 2007). Crown root initiation is impaired in crown
rootless4 (crl4)/osgnom1 mutant (Kitomi et al. 2008b; Liu et al. 2009). GNOM is a

membrane-associated guanine-nucleotide exchange factor for the G protein

ADP-ribosylation factor (Arf-GEF) and plays an important role in polar auxin

transport by establishing coordinated polar localization of PIN1 in Arabidopsis
(Geldner et al. 2003; Steinmann et al. 1999). Distortion of polar auxin transport and

altered expression patterns of OsPINs were observed in crl4/osgnom1 mutants,

indicating that polar auxin transport is required for crown root initiation in rice.

Besides auxin biosynthesis and polar transport, auxin perception and signal

transduction are essential for crown root formation. A rice microRNA, miR393,
affects crown root initiation and seminal root development through negative regu-

lation of the homologs of Arabidopsis auxin receptors TRANSPORT INHIBITOR
RESPONSE 1 (TIR1) and AUXIN SIGNALING F-BOX 2 (AFB2), OsTIR1, and
OsAFB2 (Bian et al. 2012). Auxin signal is transmitted by a pathway mediated by

Aux/IAA and AUXIN RESPONSE FACTOR (ARF) (Liscum and Reed 2002).

Transgenic plants that produced constitutively active Aux/IAA, which was

obtained by mutagenizing a conserved amino acid residue in the degradation-

related domain (domain II) of OsIAA3 (OsIAA31 in Jain et al. 2006), have reduced

crown root number (Nakamura et al. 2006). The crl1/adventitious rootless1 (arl1)
mutants develop few crown roots; CRL1/ARL1 encodes a plant-specific LATERAL
ORGAN BOUNDARIES DOMAIN (LBD)/ASYMMETRIC LEAVES2-LIKE

(ASL) transcription factor, which acts downstream of the Aux/IAA and

ARF-mediated auxin signaling pathway and whose expression is directly regulated

by OsARF (Inukai et al. 2005; Liu et al. 2005). CRL6, which encodes a

chromodomain helicase DNA-binding (CHD) family protein, is thought to influ-

ence crown root initiation and development through the Aux/IAA and

ARF-mediated auxin signaling pathway because most of the 31 Aux/IAA genes

are downregulated in the crl6mutant (Wang et al. 2016). The phenotype of the crl2
mutant, impaired root gravitropism and crown root initiation, suggests that CRL2
might also be involved in auxin signaling, although the causal gene has not yet been

identified (Inukai et al. 2001; Yamamoto et al. 2010). Most of the auxin-related

crown root mutants mentioned above also show defects in lateral root formation and

root hair development, indicating the importance of auxin in overall root

morphogenesis.

Cytokinin also plays an important role in the regulation of root morphogenesis

and is widely known to act antagonistically to auxin: root formation is promoted by

auxin but is suppressed by cytokinin. In Arabidopsis, root meristem size is con-

trolled by the balance between cell differentiation and division, which results from

antagonistic regulation by auxin and cytokinin (Dello Ioio et al. 2007, 2008). This
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antagonistic regulation is also important in rice crown root formation. The pheno-

type of the dominant mutant root enhancer1 (ren1-D), which has an increased

crown root number, is caused by the activation of a CYTOKININ OXIDASE/
DEHYDROGENASE (CKX) family gene, OsCKX4 (Gao et al. 2014). CKXs are

the only enzymes known to catalyze the irreversible degradation of cytokinin

(Werner et al. 2003). Rice METALLOTHIONEIN 2b (OsMT2b) also has a role in

the development of crown and lateral roots by influencing the endogenous cytoki-

nin level (Yuan et al. 2008). Not only cytokinin content but also cytokinin signaling

affects crown root formation. CRL5 encodes an AP2/ERF transcription factor

AINTEGUMENTA (ANT), and its expression is induced by OsARFs (Kitomi

et al. 2011). Auxin-induced CRL5 upregulates a type-A response regulator gene

OsRR1, which suppresses cytokinin signaling and thus promotes crown root initi-

ation. WOX11 activates crown root development by directly repressing OsRR2
(Zhao et al. 2009). Further analysis demonstrated that ERF3 interacts with

WOX11 and promotes WOX11 binding to OsRR2 (Zhao et al. 2015a).

Cell division is essential for crown root formation because it contributes to the

development of crown root primordia. The crl3 mutant produces a few crown root

primordia consisting of vacuolated cells, whereas those in wild type consist of

non-vacuolated cells (Kitomi et al. 2008a). Vacuolated cells divide in the early

stage of crown root primordia development; however, cell division activity is

gradually arrested, and primordia development is stopped in crl3. Overexpression
of O. sativa ROOT ARCHITECTURE ASSOCIATED 1 (OsRAA1) increases the

number of crown and lateral roots compared with control plants (Ge et al. 2004).

OsRAA1 is an anaphase-promoting complex/cyclosome (APC/C)-targeted protein

to block the cell cycle at the transition from metaphase to anaphase (Han et al.

2008). A mutation in rice CULLIN-ASSOCIATED AND NEDDYLATION-
DISSOCIATED 1 (OsCAND1) causes a defect in the emergence of crown root

primordia, although crown root initiation occurs normally (Wang et al. 2011).

CAND1 is an SCFTIR1 E3 ubiquitin ligase involved in the degradation of Aux/IAA

proteins in response to auxin in Arabidopsis (Chuang et al. 2004; Feng et al. 2004).
OsCAND1 is involved in auxin signaling to maintain the G2/M cell cycle transition

in the crown root meristem and consequently the emergence of crown roots (Wang

et al. 2011).

14.2.4 Lateral Roots

Molecular mechanisms of lateral root formation are similar to that of crown root

formation; therefore, most of the crown rootless mutants show lateral rootless

phenotype as well. However, the differences between crown root and lateral root

obviously exist: the sites of their initiation, the number of inner cell layers,

physiological functions, and plasticity in response to environmental stimuli (Luquet

et al. 2005; Rebouillat et al. 2009; Suralta et al. 2008). Although most of the

mutants lacking crown roots also lack lateral roots, some mutants have
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abnormalities in lateral root formation without crown root defects. Analysis of such

mutants might disclose lateral root-specific factors and schemes.

As mentioned above, auxin is a major player in lateral root formation. T-DNA-

insertion mutants of the rice gene AUXIN RESISTANT 1 (OsAUX1), which is

evolutionarily close to the members of the auxin influx carrier gene family

AUX1/LIKE AUX 1 (LAX), have reduced lateral root number (Zhao et al. 2015b).

The double mutant of nal2 and nal3 (nal2/3), which has mutations in two identical

OsWOX3A/OsNARROW SHEATH (OsNS) genes located on chromosomes 11 and

12, respectively, produces fewer lateral roots than does the wild type (Cho et al.

2013). Reduced lateral root initiation in nal2/3 seems to be attributable to

compromised distribution of endogenous IAA caused by altered expression of

OsPIN1 and OsPIN2. Phenotypes of these mutants demonstrate that polar auxin

transport mediated by auxin influx and efflux carrier proteins is important for lateral

root formation. The phenotypes of some mutants also indicate the importance of

auxin signaling mediated by Aux/IAA and ARF in lateral root formation. The gain-

of-function mutants osiaa11 and osiaa13, which have stabilizing mutations in

domain II of Aux/IAA proteins, have dramatically reduced lateral root number

(Kitomi et al. 2012; Zhu et al. 2012). The rice cyclophilin 2 (oscyp2) mutant also

shows impaired lateral root initiation (Kang et al. 2013). OsCYP2 is involved in

Aux/IAA degradation by stimulating the activity of the SCFTIR ubiquitin E3 ligase

complex. Auxin signaling is likely disturbed in these mutants because degradation

of Aux/IAA proteins allows auxin-responsive transcription to be regulated by ARF

proteins, which then act as transcriptional activators or repressors (Gray et al.

2001). A mutation in rice HEME OXYGENASE (OsHO1), which encodes an

enzyme that catalyzes the degradation of heme into biliverdin IXa, Fe2+, and carbon

monoxide, also affects lateral root formation in a manner dependent on auxin and

stress-related signals (Chen et al. 2012a). Some mutants with auxin-related abnor-

malities also have defects in lateral root formation; these include lateral rootless 1
(lrt1), lrt2, auxin-resistant mutant 1 (arm1), and arm2 (Chhun et al. 2003; Faiyue

et al. 2010; Hao and Ichii 1999; Wang et al. 2006b).

Cell cycle regulation is necessary for lateral root development. The mutant of

O. sativa ORIGIN RECOGNITION COMPLEX SUBUNIT 3 (OsORC3) has a

temperature-dependent defect in lateral root development (Chen et al. 2013). In

OsORC3 knockdown plants, the emergence of lateral root primordia is blocked due

to the perturbation of cell cycle-related gene expression in the primordia (Chen

et al. 2013).

14.2.5 Root Hairs

Root hairs are long cylindrical outgrowths of individual root epidermal cells and are

thus different from seminal, crown, and lateral roots. Root hair development

includes three stages: cell fate determination, root hair initiation, and root hair

elongation (Huang et al. 2013b). Vesicle trafficking, cytoskeleton reorganization,
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and cell wall loosening and synthesis are major driving forces for root hair

elongation that depend on gene expression promoted by signals such as auxin,

cellular pH, calcium ions, extracellular reactive oxygen species (ROS), and

phosphatidylinositols (Libault et al. 2010).

A mutation in O. sativa SEC14-NODULIN DOMAIN PROTEIN (OsSNDP1),
which encodes a phosphatidylinositol transfer protein, leads to short-branched root

hairs (Huang et al. 2013b). Similar defects were reported in Arabidopsis mutants

with defects in phospholipid metabolism and signaling (Kusano et al. 2008; Vincent

et al. 2005), indicating the critical roles of phospholipids in root hair elongation.

ROOT HAIRLESS 1 (RTH1)/O. sativa APYRASE 1 (OsAPY1), which encodes an

enzyme that hydrolyzes NTPs and/or diphosphates, also affects root hair elongation

(Yuo et al. 2009). Apyrases control the concentration of extracellular ATP, which

functions as a signal molecule for growth control and is localized in the regions of

active growth and cell expansion such as root hair tips (Roux and Steinebrunner

2007; Wu et al. 2007). Rice FORMIN HOMOLOGY 1 (OsFH1) is important for

root hair elongation under submerged conditions (Huang et al. 2013a). Formins

play critical roles in cytoskeleton organization by nucleating actin polymerization

and elongation and bundling actin filaments, which drive tip growth (Paul and

Pollard 2009). OsFH1 is assumed to have similar functions, although no null

mutant with a defective root hair phenotype has been reported in Arabidopsis or
rice (Deeks et al. 2005; Yi et al. 2005).

Factors involved in cell wall modification are closely related to root hair

development. Root hair length is reduced in the rice short root hair 2 (srh2) mutant,

which has a mutation in the XYLOGLUCAN XYLOSYLTRANSFERASE 1 (OsXXT1)
gene (Wang et al. 2014a). Xyloglucan is not considered to be an important

component of cell wall in grasses, including rice, because its content is below 5%

(Vogel 2008). However, the srh2 mutant demonstrates the importance of

xyloglucan in rice root hair development. Expansins, which are associated with

cell wall loosening, permit turgor-driven cell elongation (Cosgrove 2000). Rice

EXPANSIN A17 (OsEXPA17) and OsEXPA30 are also involved in root hair elon-

gation because the osexpA17 mutant shows defects in root hair elongation, and

these defects are partially complemented by OsEXPA30 (Yu et al. 2011). The

promoters of OsEXPA17 and OsEXPA30 contain conserved root hair-specific cis-
elements (RHEs), which are also found in root hair-specific genes and genes

paralogous to AtEXPA7 (Kim et al. 2006). These EXPAs with RHEs are expressed

in a root hair-specific manner in Arabidopsis and rice (Kim et al. 2007; Yu et al.

2011).OsEXPB5, which is so far found in Gramineae family and is absent in dicots,

also has RHEs in the promoter region, and its expression is strongly associated with

root hair initiation and elongation (Won et al. 2010); however, its in vivo function

in root hair development has not been demonstrated. RTH2/O. sativa CELLULOSE
SYNTHASE-LIKE D1 (OsCSLD1) is also required for root hair elongation (Kim

et al. 2007; Yuo et al. 2011). Only OsCSLD1 is specifically expressed in roots,

similar to root hair-specific genes with RHEs, whereas other OsCSLD subfamily

members are expressed in both roots and shoots.
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The root epidermis comprises hair cells (trichoblasts) and non-hair cells

(atrichoblasts). In each plant species, root hair patterning belongs to one of three

types according to the way how the fate of each cell is determined (Kim et al. 2006).

In Type 1, hair cells can differentiate from any epidermal cell. In Type 2, the root

epidermis consists of cells of two sizes, and only the short cells differentiate into

hair cells. In Type 3, hair cells produce rows along the longitudinal root axis,

resulting in a striped pattern. Root hair patterning in rice is Type 2, and the

differences in size between mature hair and non-hair cells result from differential

cell expansion relatively late in the development, after initiation of root hair growth

(Kawata and Ishihara 1959; Kim and Dolan 2011). A mutation in the O. sativa
ROOT HAIRLESS 1 (OsRHL1) gene, which encodes a basic helix-loop-helix

(bHLH) transcription factor, results in very short root hairs (Ding et al. 2009). In

the osrhl1 mutant, clearly short and long epidermal cells characteristic of Type

2 species are not observed, suggesting that OsRHL1 controls root hair elongation

and epidermal cell patterning, similar to the bHLH gene ROOT HAIR DEFECTIVE
6-LIKE 4 (RSL4) in Arabidopsis (Ding et al. 2009; Yi et al. 2010).

14.3 Formation of Root System Architecture

The outline of the rice root system is formed by multiple crown roots developed

from several phytomers; a phytomer is a nodal unit consisting of a leaf, an axillary

bud, and crown roots (Rebouillat et al. 2009). Crown roots developed from the

upper and lower regions of each node are called the upper and lower crown roots,

respectively (Fig. 14.2). The lower crown roots have a larger diameter than the

upper crown roots (Abe and Morita 1994). Another feature of lower crown roots is

downward elongation, whereas upper crown roots elongate randomly in directions

ranging from lateral to vertical, suggesting that they respond to gravity more

weakly than do the lower crown roots (Abe and Morita 1994). Overall, the growth

angle of each upper and lower crown root determines vertical distribution of the

whole root system in the soil. Shallow and steep root growth angles favor root

distribution in the topsoil and subsoil, respectively. The maximum length of each

crown root restricts range of access for absorption of water and nutrients from the

soil. Short roots result in compact root systems, whereas long roots produce large

root systems.

The genetic mechanism of root system development in rice has been dissected

mainly on the basis of QTL analysis; the first such study was reported by Champoux

et al. (1995). Hundreds of QTLs with small to intermediate genetic effects on many

root parameters that affect root system architecture have been detected in rice; such

parameters include the growth angle, length, volume, and thickness of the roots

(Rebouillat et al. 2009). However, the genetic mechanisms underlying these QTLs

are poorly understood. On the other hand, several genes for root development have

been isolated in rice mutants showing abnormal root phenotypes (Rebouillat et al.
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2009; Wu and Cheng 2014). In this section, we discuss the genes and QTLs related

to quantitative variation of root system architecture in rice (Table 14.1; Fig. 14.6).

14.3.1 Root Growth Angle

Root growth angle is controlled by several environmental factors such as gravity,

light, and water potential (Oyanagi et al. 1993; Uga et al. 2015a). Root gravitropism

has been well studied in Arabidopsis (Baldwin et al. 2013; Morita 2010), but not in

monocot plants including rice. Only two QTLs for the root gravitropic response

have been reported in rice (Norton and Price 2009), but the underlying genes have

not yet been isolated. DRO1, which was reported originally as a major QTL

responsible for root growth angle, is also involved in gravitropism (Uga et al.

2013a). DRO1 is negatively regulated by auxin signaling downstream of Aux/IAA

and ARF and is involved in cell elongation in the root tip, which causes gravitropic

bending (Uga et al. 2013a). Under normal growth conditions, DRO1 is expressed

around the RAM in the root tip and crown root primordia. For the response to

gravitropic stimuli (i.e., rotation of the roots from the normal vertical axis to the

horizontal axis),DRO1 transcripts in the outer cells of the distal elongation zone are
repressed on the lower side than on the upper side of the roots by the redirected

auxin flow to the lower side of the root, resulting in decreased cell elongation in the

lower side relative to the upper side. This process contributes to asymmetric
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growth, leading to root gravitropic bending. Thus, QTLs for gravitropism should

affect root growth angle, resulting in a natural variation of root system architecture.

Genes with high sequence similarity to DRO1 have been found in other mono-

cots such as maize, sorghum, and barley, but their physiological and molecular

functions are still unknown (Uga et al. 2013a). Recently, genes with low sequence

similarity to DRO1 have been identified in dicots. The legumeMedicago truncatula
carrying mutations in NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR)
shows a negative root gravitropic response (Ge and Chen 2016). Only triple mutants

of three redundant AtNGR genes (At1g17400, At1g72490, At1g19115) in

Arabidopsis also showed a similar negative root gravitropic response (Ge and

Chen 2016). These NGR genes may be DRO1 homologs in the IGT family, the

members of which have relatively low sequence similarity to each other but have

conserved amino acid motifs (Guseman et al. 2017). These findings suggest that the

functions of DRO1 and DRO1 homologs in root gravitropism are conserved in

monocots and dicots. The IGT family also includes TILLER ANGLE CONTROL 1
(TAC1) and LAZY1, which control the branching angle of lateral shoot organs in

both monocots and dicots (Guseman et al. 2017), suggesting that this gene family

might be associated with the regulation of growth angle in shoot and root organs.

Many other QTLs for root growth angle have been reported in rice (Kitomi et al.

2015; Lou et al. 2015; Uga et al. 2012, 2013b, 2015b). DRO2 (Uga et al. 2013b),

DRO3 (Uga et al. 2015b), DRO4 (Kitomi et al. 2015), and DRO5 (Kitomi et al.

2015) were detected in seven F2 mapping populations derived from a cross between

several rice accessions with different root growth angles and “Kinandang Patong”

as a donor line with a large root growth angle. Therefore, QTLs associated with root

growth angle distinct from DRO1 exist in “Kinandang Patong.” qSOR1 (quantita-
tive trait locus for SOIL SURFACE ROOTING 1) has been detected on chromo-

some 7 in recombinant inbred lines derived from a cross between “Gemdjah

Beton,” a lowland rice accession with a high proportion of crown roots that run

along or near the soil surface, and “Sasanishiki,” a lowland rice accession that does

not form soil-surface roots (Uga et al. 2012). The “Gemdjah Beton” allele of qSOR1
causes many thick crown roots to elongate near the soil surface from the seedling

stage. This phenotype is very unique because thick crown roots generally elongate

downward. qSOR1 was fine-mapped to a 812-kb candidate region on chromosome

7 (Uga et al. 2012; Fig. 14.6). Lou et al. (2015) also reported QTLs for root growth

angle on chromosomes 1, 2, 4, 7, and 10. Among them, three QTLs on chromo-

somes 2, 4, and 7 are located near the regions of DRO4, DRO2, and qSOR1,
respectively. Cloning of these QTLs would deepen our understanding of the genetic

mechanisms that determine root growth angle in rice.

14.3.2 Root Length

Maximal root length is determined by the rate and duration of root elongation. Root

elongation is caused by cell division and elongation. Mutant analyses revealed that
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genes related to cell wall growth, cell expansion, and auxin signaling are involved

in the division and elongation of root cells. Cell wall development affects root

elongation and the maintenance of root structure. OsDGL1 encodes the dolichyl-

diphosphooligosaccharide-protein glycosyltransferase 48-kDa subunit precursor

(Qin et al. 2013). An ethyl methanesulfonate (EMS)-induced osdgl1 mutant has a

defect in N-glycosylation, an altered composition of matrix polysaccharides in the

cell wall, and cell death in the root, resulting in a decrease in root elongation

without a decrease in the numbers of crown roots, lateral roots, or root hairs.

OsMOGS encodes a putative mannosyl-oligosaccharide glucosidase and acts down-

stream of OsDGL1 during N-glycan processing in the endoplasmic reticulum

(Wang et al. 2014b). An EMS-induced osmogsmutant has a decreased cell division

and elongation in the root, resulting in short roots. OsMOGS is needed for cellulose

biosynthesis and OsABCB-mediated auxin transport in rice (Wang et al. 2014b).

Other genes associated with cell wall modification also control root elongation.

ROOT GROWTH INHIBITING (RT)/OsGLU3, which encodes a membrane-

anchored endo-1,4-β-D-glucanase, is involved in cell wall loosening necessary for

root cell elongation (Inukai et al. 2012; Zhang et al. 2012b). The rt./osglu3 mutants

have short-root phenotypes due to a decrease in longitudinal cell elongation without

changes in root differentiation, root cell division, or shoot development. Interest-

ingly, cellulose content in roots is increased in an ethylene imine-induced rt.mutant

(Inukai et al. 2012) but is decreased in EMS-induced osglu3 mutants (Zhang et al.

2012b). To reconcile these contradictory findings, further studies are needed.

OsGNA1 encodes glucosamine-6-P acetyltransferase, which is involved in de

novo UDP-N-acetylglucosamine biosynthesis (Jiang et al. 2005). A T-DNA inser-

tion osgna1 mutant has decreased root cell elongation caused by cell shrinkage,

perhaps because of insufficient UDP-GlcNAc for protein N-glycosylation, which is
necessary for plant development including cell wall synthesis (Lerouge et al. 1998;

Lukowitz et al. 2001). Cell expansion occurs in turgor-driven cell elongation.

Transgenic plants overexpressing OsEXPA8, which encodes a root-specific

α-expansin (Shin et al. 2005), have increased seminal, crown, and lateral root

length as well as plant height and increased leaf number and size caused by an

increase in cell length in both shoot and root vascular bundles (Ma et al. 2013).

Auxin regulates cell fate determination and cell elongation (Tanaka et al. 2006).

These effects are mostly mediated by ARFs. Loss-of-function Tos17 and T-DNA

insertion mutants of osarf12, which is a member of ARFs (Wang et al. 2007), have

short-root phenotypes due to a smaller elongation zone in seminal roots compared

to the wild type (Qi et al. 2012). The short elongation zone is likely caused by a low

auxin concentration. O. sativa SHORT POSTEMBRYONIC ROOTS 1 (OsSPR1)
encodes a putative mitochondrial protein with an Armadillo-like repeat domain (Jia

et al. 2011). EMS-induced osspr1 mutants have short-root phenotypes (decreased

lengths of seminal, crown, and lateral roots) due to reduced cell elongation, whereas

lateral root initiation and lateral root number are similar to those in the wild type.

OsCYT-INV1/OsNIN8 encodes alkaline/neutral invertase and is homologous to

AtCYT-INV1 in Arabidopsis (Ji et al. 2005, Jia et al. 2008). An EMS-induced

Oscyt-inv1 mutant has a short-root phenotype due to a decreased cell length
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probably caused by hexose deficiency, as hexoses play various roles in cell

elongation.

Despite isolation of several genes, our knowledge of the genetic mechanism

controlling root length in rice is still limited compared to that for Arabidopsis.
Reverse genetics should be a valuable approach to gain a better understanding of

the gene network that regulates root length. Antisense transgenic plants with

downregulated OsCKI1, which encodes putative casein kinase I, have short seminal

roots and a low number of crown and lateral roots caused by reduced cell elongation

(Liu et al. 2003). Examination of transgenic rice plants over- and under-expressing

OsRPK1, which encodes an LRR-RLK, revealed that this gene affects seminal root

length and crown root number by negatively regulating polar auxin transport (Zou

et al. 2014).

Several QTLs for root length have been fine-mapped in rice, although none of

them have been cloned (Fig. 14.6). qRL6.1, a QTL controlling root length at the

seedling stage under hydroponic conditions, was mapped to a 337-kb interval on

chromosome 6 (Obara et al. 2010). qRL7, a QTL affecting root length at the heading

stage under hydroponic conditions, was mapped to a 657-kb interval on chromo-

some 7 (Wang et al. 2013). Recently,QUICK ROOTING 1 (QRO1) andQRO2 have
been fine-mapped on chromosomes 2 and 6, respectively, in chromosome segment

substitution lines derived from a cross between “IR64” and “Kinandang Patong”

and grown under hydroponic conditions (Kitomi et al. in press, Fig. 14.6).

14.3.3 Other Root Traits

The combination of growth angle and length in seminal and crown roots is the main

determinant of root system architecture in cereals (Abe and Morita 1994; Araki

et al. 2002), although other root traits such as volume and thickness are also

important.

Root volume affects root surface area and thus absorption of water and nutrients

from soil (Gowda et al. 2011; Wang et al. 2006a), but rice genes that control root

volume have not yet been isolated. qFSR4, a QTL for root volume per tiller, has

been fine-mapped on chromosome 4 (Ding et al. 2011). The 38-kb qFSR4 candidate
region has three open reading frames including NAL1 (Qi et al. 2008). The NAL1
gene is associated with polar auxin transport and controls leaf width. qFSR4 also

affects flag leaf width. NAL1 may be the most promising candidate gene for qFSR4
because polar auxin transport affects root development and shoot growth.

Root thickness affects uptake of water and nutrients as well as root penetration

ability (Gowda et al. 2011; Wang et al. 2006a). qRT9, a QTL for root thickness, has

been fine-mapped to an 11.5-kb candidate region on chromosome 9 (Li et al. 2015)

with only one annotated open reading frame, Os09g0455300, which encodes a
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putative bHLH transcription factor (OsbHLH120). Haplotype and expression ana-

lyses suggest that OsbHLH120 is the candidate gene for qRT9. For water and

nutrient translocation, stele and xylem structures should be more important than

root thickness (Uga et al. 2008). STELE TRANSVERSAL AREA 1 (STA1), a QTL

controlling stele transversal area, has been fine-mapped to a 359-kb interval

between SSR markers RM566 (14.70 Mb) and RM24334 (15.06 Mb) on chromo-

some 9 (Uga et al. 2008, 2010). qRT9 (17.13 Mb) and STA1 are located near DRO1
(16.31 Mb). As mentioned above, upland rice tends to have deeper and thicker roots

than those of lowland rice (O’Toole and Bland 1987). The tight linkage of these

QTLs should be associated with the phenotypic relationship between these root

traits.

14.4 Conclusions

Several rice-specific genes controlling the root system have been found. However,

the many rice genes homologous to Arabidopsis genes associated with the forma-

tion of the main root system are also involved in the formation of the fibrous root

system. Thus, many parts of the genetic mechanism related to the root system have

features common between monocots and dicots. On the other hand, much remains

to be clarified about the difference between monocots and dicots in the natural

variation of root system architecture because most related genes have not been

cloned. Because dicots have DRO1 homologs, their genetic mechanism related to

the natural variation in root system architecture might have many common features

with that of monocots. Recent progress of forward and reverse genetic strategies,

such as MutMap (Abe et al. 2012; Takagi et al. 2015) and TILLING (Suzuki et al.

2008; Till et al. 2007), and the CRISPR/Cas9-mediated genome editing system

(Doudna and Charpentier 2014; Schaeffer and Nakata 2015) allow us to isolate

genes and find new alleles easily. Using QTL cloning and these approaches, we

would be able to elucidate the entire genetic network related to natural variation in

rice root system architecture. Understanding of the genetic mechanism of root

plasticity in response to environmental variation is also important for improving

crop production under abiotic stresses, but it is difficult to obtain reliable pheno-

typic data and identify related genes or QTLs under field conditions. To resolve this

issue, a reproducible root phenotyping platform with controlled soil water, nutri-

ents, and temperature in which we can evaluate accurately a large number of plants

is needed.
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