
Chapter 10

Genetic and Molecular Dissection of Flowering
Time Control in Rice

Kazuki Matsubara and Masahiro Yano

Abstract Flowering time is one of the most important agronomic traits in rice

(Oryza sativa L.) and is primarily controlled by quantitative trait loci (QTLs) that

are associated with a photoperiodic response, particularly in short-day (SD) plants

such as rice. Since the early twentieth century, rice breeders and researchers have

been interested in clarifying the genetic control of flowering time because its

modification is important for regional adaptation. The sequencing of the rice

genome has facilitated genome-wide mapping of loci and gene cloning; thus,

more progress has been made in elucidating the genetic control pathways of

flowering. In this chapter, we provide an overview of the studies investigating

rice flowering.
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10.1 Introduction

Flowering is the dramatic transition from the vegetative phase to reproductive

development and is predominantly regulated by genetic control pathways that

integrate internal and external signals. The ability of plant species to initiate

flowering at the most favourable time for reproduction depends primarily on their

accurate measurement of seasonal changes in day length and temperature (Thomas

and Vince-Pure 1997; Song et al. 2015).

The flowering time (often termed the heading date) is important for regional

adaptability and is easy to observe; therefore, its variations among rice varieties

(Oryza sativa L.) have been known for a long time. Studies investigating the

inheritance of rice flowering time date back to the 1910s. Hoshino (1915) suggested

that multiple loci were involved in the inheritance of the flowering time based on
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the segregation patterns in progeny from experimental crosses between early- and

late-flowering varieties. Since the 1920s, due to the development of the chromo-

some theory of inheritance and the discovery of genetic linkage, the linkage

relationship between the flowering time genes and known loci (for other phenotypic

traits) has been investigated (Chao 1928; Jodon 1940; Chandraratna 1953).

After the discovery of photoperiodism in plants (i.e. the response of an organism

to the relative length of the day and night) by Garner and Allard (1920, 1923), many

researchers have measured the flowering responses in rice varieties by day length.

These studies revealed that rice is a facultative short-day (SD) plant as follows: its

flowering is promoted under SD conditions, and the difference in the photoperiod

response among rice varieties results in extensive variations in the flowering time

(Vergara and Chang 1985).

The development of DNA markers in the 1990s dramatically enhanced the

determination of the chromosomal location of genes/quantitative trait loci (QTLs)

that are involved in the flowering time, and after decoding the genome sequences,

map-based cloning strategies have facilitated the molecular cloning of these genes

(Hori et al. 2016) (see also Chaps. 8 and 9 and those from Chaps. 11, 12, 13, 14, 15,

16, and 17).

In this chapter, we summarise the findings of many studies investigating rice

flowering time using forward- and reverse-genetic approaches based on genomic

information from rice. The studies performed over the last two decades have clearly

shown that the use of a combination of these approaches has enhanced our under-

standing of the genetic control pathways of flowering in rice.

10.2 Mapping of the QTLs Responsible for Flowering Time

In the 1990s, the development of DNA markers allowed researchers to clarify the

number and effects of the genes underlying the flowering time using QTL analyses

(Li et al. 1995; Xiao et al. 1996; Yano et al. 1997). In particular, using several types

of progeny derived from a single cross between the rice varieties ‘Nipponbare’ (ssp.
japonica) and ‘Kasalath’ (ssp. indica), our group detected several QTLs responsible
for the flowering time. Five of these QTLs (Hd1–Hd5) were mapped by performing

a QTL analysis of an F2 population (Yano et al. 1997), and Hd7, Hd8, and Hd11
were detected in the BC1F5 lines (Lin et al. 1998). Other loci were detected only

when advanced backcross progeny, such as BC3F2 or BC4F2, was used (Yamamoto

et al. 2000; Lin et al. 2002). The results of these QTL mapping studies are

summarised by Yano et al. (2001). Since then, many research groups have detected

the QTLs for flowering time using different cross combinations. More comprehen-

sive genetic analyses revealed that more than 100 loci, including major and minor

effects, might be involved in flowering time control (Hori et al. 2016).
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10.3 Molecular Cloning of Flowering Time Genes

Efforts detecting QTL above mentioned have led to the map-based cloning of the

genes responsible for flowering time and improved our understanding of the

function of these genes at the molecular level and the genetic pathways controlling

flowering in rice.

Hd1 was the first rice flowering time gene cloned using natural variation

(Table 10.1; Yano et al. 2000). Using more than 9000 recombinants, we defined

theHd1 region within 12 kb on chromosome 6. This region contained one candidate

gene with a high similarity to Arabidopsis CONSTANS (CO). Comparison of the

candidate gene in ‘Nipponbare’ and ‘Kasalath’ revealed many sequence variations,

including a 36-bp insertion and a 33-bp deletion (in exon 1) and a 2-bp deletion

Table 10.1 Molecularly cloned genes underlying the flowering time of rice

Gene

symbol Locus ID

Effect on

flowering

Natural

variation Description

Hd1 Os06g0275000 SD pro-

motion/LD

repression

Known Zinc finger protein

RFT1 Os06g0157500 LD

promotion

Known Florigen

OsTrx1 Os09g0134500 LD

repression

Unknown Trithorax group protein

OsMADS50/
DTH3

Os03g0122600 SD/LD

promotion

Known MIKC-type MADS-box protein

OsMADS56 Os10g0536100 LD

promotion

Unknown Similar to MADS-box transcription

factor 56

OsMADS15 Os07g0108900 SD/LD

promotion

Unknown Similar to MADS-box transcription

factor 15

Hd3a Os06g0157700 SD

promotion

Known Florigen

Ehd1 Os10g0463400 SD/LD

promotion

Known B-type response regulator

Ehd2 Os10g0419200 SD/LD

promotion

Unknown Cys2/His2-type zinc finger tran-

scription factor

Ehd3 Os08g0105000 LD

promotion

Unknown Homeodomain (PHD) transcrip-

tional regulator

Ehd4 Os03g0112700 SD/LD

promotion

Known Zinc finger CCCH domain-

containing protein

OsCOL4 Os02g0610500 SD/LD

repression

Unknown CO-like protein containing two

B-box zinc finger domains and one

CCT domain

OsCOL10 Os03g0711100 SD/LD

repression

Unknown Member of the CONSTANS-like

(COL) family

Hd6 Os03g0762000 LD

repression

Known Similar to protein kinase CK2, alpha

subunit

(continued)
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(in exon 2) in ‘Kasalath’. A small genomic fragment of ‘Nipponbare’ containing the
Hd1 candidate gene was transferred into the near isogenic line of ‘Nipponbare’
carrying Hd1 from ‘Kasalath’ and was found to promote flowering under SD

conditions. These results clearly indicated that the candidate gene homologous to

Arabidopsis CO was Hd1.
At least 14 flowering time QTLs have been isolated using map-based cloning

strategies assessing natural variation (Yano et al. 2000; Takahashi et al. 2001;

Kojima et al. 2002; Doi et al. 2004; Xue et al. 2008; Wei et al. 2010; Bian et al.

2011; Matsubara et al. 2012; Gao et al. 2013; Hori et al. 2013; Koo et al. 2013;

Table 10.1 (continued)

Gene

symbol Locus ID

Effect on

flowering

Natural

variation Description

Ghd7 Os07g0261200 LD

repression

Known CCT (CONSTANS, CONSTANS-

like, and timing of chlorophyll A/B

binding1) domain protein

DTH2 Os02g0724000 LD

promotion

Known CONSTANS-like protein

Se14 Os03g0151300 Unknown Jumonji C domain-containing

protein

OsMADS51 Os01g0922800 SD/LD

promotion

Unknown MADS-box transcription factor

DTH8 Os08g0174500 LD

repression

Known Putative HAP3 subunit of CCAAT

box-binding transcription factor

OsLFL1 Os01g0713600 LD

repression

Unknown Transcriptional factor B3 family

protein

OsPRR37 Os07g0695100 LD

repression

Known Pseudo-response regulator

Hd18 Os08g0143400 SD/LD

promotion

Known SWIRM and amine oxidase domain-

containing protein

OsVIL2 Os02g0152500 LD

promotion

Unknown Chromatin remodelling factor

Se13 Os01g0949400 Unknown Similar to Phytochromobilin

synthase precursor

Hd17 Os06g0142600 SD/LD

promotion

Known Homolog of Arabidopsis early
flowering 3 protein

Hd16 Os03g0793500 LD

repression

Known Casein kinase I

OsFD Os07g0658400 SD/LD

promotion

Unknown Ferredoxin-dependent glutamate

synthase

GF14C Os08g0430500 SD/LD

promotion

Unknown 14-3-3 protein

OsGI Os01g0182600 SD/LD

promotion

Unknown GIGANTEA protein

Locus ID was based on the Rice Annotation Project (http://rapdb.dna.affrc.go.jp/)
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Ogiso-Tanaka et al. 2013; Wu et al. 2013; Shibaya et al. 2016). Rice mutants have

also been used to isolate flowering time genes and investigate their functions (Izawa

et al. 2000; Lee et al. 2004; Matsubara et al. 2008, 2011; Saito et al. 2012; Dai and

Xue 2010; Yang et al. 2013; Yokoo et al. 2014; Yoshitake et al. 2015). Other

flowering time genes have been identified, and their functions have been investi-

gated using forward- and reverse-genetic approaches, such as overexpression or

knockdown of a target gene. For example, the functions of RFT1 and OsTrx1 were

revealed by knocking down these genes, whereas the functions of OsMADS50,
OsMADS56, and OsMADS15 were verified by overexpressing these genes (Komiya

et al. 2008; Ryu et al. 2009; Lu et al. 2012; Choi et al. 2014).

10.4 Genetic Pathways Controlling Flowering Revealed
by Molecular Cloning

Under SD conditions, rice flowering is promoted by the expression of Hd3a, which
is activated by Hd1 and Ehd1 (Table 10.1; Yano et al. 2000; Kojima et al. 2002; Doi

et al. 2004; Tamaki et al. 2007) (Fig. 10.1). Hd3a acts as a mobile flowering signal

(florigen) (Tamaki et al. 2007). The expression of Ehd1 is upregulated by DTH3,
Ehd2, Ehd3, Ehd4, and OsMADS51 (Kim et al. 2007; Matsubara et al. 2008, 2011;

Bian et al. 2011; Gao et al. 2013) and downregulated by OsCOL4 and OsCOL10
(Lee et al. 2010; Tan et al. 2016).

The transcriptional activation of Hd3a is lower under long-day (LD) conditions

than under SD conditions; consequently, flowering is suppressed (Fig. 10.1).

Although Hd1 activates the expression ofHd3a under SD conditions, Hd1 represses

the expression of Hd3a under LD conditions (Fig. 10.1). This functional conversion

of Hd1 is caused by phytochrome-mediated signalling (Hayama and Coupland

2004; Izawa 2007). The Hd1 repressor function under LD conditions is enhanced

by the kinase activity of Hd6 and is mediated by unknown genes (Takahashi et al.

2001; Ogiso et al. 2010). In addition to Hd1, Ghd7 also represses the expression of

Hd3a by repressing Ehd1 under LD conditions (Xue et al. 2008). Based on genetic

analyses, it was originally believed that rice photoperiodic flowering is controlled

by the following two independent signalling pathways: the Hd1–Hd3a pathway,

which is evolutionarily related to the Arabidopsis CO–FT pathway, and the Ghd7-
Ehd1–Hd3a pathway, which has no Arabidopsis counterpart (Doi et al. 2004; Xue
et al. 2008). However, a physical interaction was recently demonstrated between

Hd1 and Ghd7 in vivo (Nemoto et al. 2016). The protein complex of Hd1 and Ghd7

specifically binds to a cis-regulatory region in Ehd1 and represses its expression,

suggesting that the two pathways are integrated into Ehd1 and repress flowering

under LD conditions (Fig. 10.1).

Due to the progress in our understanding of the core pathways, many genes

underlying rice flowering under LD conditions have been discovered during the last

decade (Fig. 10.1). RFT1, which is located within 11.5 kb of Hd3a, is an Hd3a
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paralog (Kojima et al. 2002; Komiya et al. 2008). The expression of RFT1 increases
under LD conditions, and RFT1 moves from the leaves to the shoot apical meri-

stem, indicating that the control of the flowering time in rice involves two florigen

genes, Hd3a and RFT1, under LD conditions (Komiya et al. 2008, 2009). The

expression of RFT1 is promoted by Ehd1 and DTH2 but is repressed by Se14 (Doi

et al. 2004; Wu et al. 2013; Yokoo et al. 2014). The expression of Ehd1 is induced

by DTH3, OsMADS51, OsMADS56, Ehd2, and Ehd4 (Kim et al. 2007; Matsubara

et al. 2008; Ryu et al. 2009; Bian et al. 2011; Gao et al. 2013) but is repressed by

DTH8, OsCOL4, OsCOL10, OsLFL1, and OsPRR37 (Peng et al. 2008; Lee et al.

2010; Wei et al. 2010; Yan et al. 2011; Gao et al. 2014; Tan et al. 2016). Recently,

DTH8 has been reported to form a complex with Hd1 to control flowering (Chen

et al. 2014; Zhu et al. 2017). DTH3 and OsMADS56 form a complex that regulates

Ehd1 (Ryu et al. 2009). OsMADS51 is upregulated by Hd18 and induces the

expression of Ehd1 (Kim et al. 2007; Shibaya et al. 2016). OsLFL1 is induced by

OsVIL2 and has been proposed to downregulate the expression of Ehd1 (Peng et al.
2008; Yang et al. 2013). Ehd2 is downregulated by Se13 and induces the expression
of Ehd1 (Matsubara et al. 2008; Yoshitake et al. 2015). OsCOL4 is a constitutive

DTH8
Ehd1

Hd3a/RFT1

Hd1

Ghd7

Hd6

OsGI

SD LD

X

OsMADS56
DTH3

OsMADS51

Ehd2

OsCOL4

Ehd3
Phys

Hd17

Ehd1

Hd3a

Hd1

Floral meristem identity genes
(e.g., OsMADS15)
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Flowering
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Ehd2Ehd3
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Red light

Red light
Blue light

OsCOL10 OsCOL10

Hd16
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OsPRR37
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DTH2
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Fig. 10.1 A schematic representation of the genetic pathways controlling flowering in rice. The

clocks at the top show the circadian clock. Genes with no obvious Arabidopsis counterparts are
shown in red. Orange ovals show physical interactions between genes. Genes with a natural allelic

variation are underlined. X indicates an unknown gene. SD short-day conditions, LD long-day

conditions. Arrows upregulation, bars downregulation. Phys phytochromes
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repressor upstream of Ehd1 (Lee et al. 2010). OsCOL10 downregulates the expres-

sion of Ehd1 and is upregulated by Ghd7 (Tan et al. 2016). The expression of Ghd7
is induced by Hd17 and is repressed by the Ehd3 and OsTrx1 complex (Choi et al.

2014). Ghd7 activity is increased by phosphorylation by Hd16 (Hori et al. 2013).

Hd16 also phosphorylates OsPRR37, which represses the expression of Hd3a either
directly or through Ehd1 (Hori et al. 2013; Koo et al. 2013; Gao et al. 2014).

Thus, under LD conditions, most flowering time gene signals (by both repressors

and promoters) are transmitted to rice florigen genes through Ehd1 in flowering rice
(Fig. 10.1).

The shared regulation by flowering time genes downstream ofHd3a and RFT1 is
an underlying mechanism under both SD and LD conditions (Fig. 10.1). Hd3a

interacts with GF14C, and then the Hd3a-GF14C complex interacts with OsFD

(Taoka et al. 2011; Tsuji et al. 2013). The resultant protein complex induces the

expression of floral meristem identity genes (e.g. OsMADS15) to initiate the floral

transition in the shoot apex.

An additional description of the genes described above is provided in Table 10.1.

10.5 Circadian Clock Genes Control the Expression
of Flowering Time Genes

The expression of many rice flowering time genes depends on the day length (Izawa

2007; Itoh et al. 2010). For example, Hd3a and Ehd1 are expressed in the morning

under SD conditions, whereas Ghd7 is expressed in the morning under LD condi-

tions. The expression of OsGI shows daily circadian oscillations with a peak at the

end of the light period, and the expression of OsGI is regulated by the circadian

clock and activates the expression of Hd1 (Table 10.1; Hayama et al. 2002, 2003)

(Fig. 10.1). OsGI also activates the expression of Ehd1 either directly or via

OsMADS51 (Kim et al. 2007; Itoh et al. 2010). The expression levels of certain

flowering time genes are regulated by the circadian gating of light responses

through phytochromes (red-light receptors) and cryptochromes (blue-light recep-

tors) (Itoh et al. 2010). The expression of Ehd1 is induced by blue light in an OsGI-
dependent manner regardless of day length; however, the expression is repressed by

Ghd7 under LD conditions. The expression of Ghd7 is induced by phytochrome

signalling, and the sensitivity to red light is gated at the beginning of the light period

under LD conditions.

Recently, Matsuzaki et al. (2015) developed a statistical model of the expression

of multiple genes with phase setting by sunlight and the circadian clock under field

conditions. The integration of the expression patterns of individual flowering time

genes can accurately estimate the internal biological time determined by both the

circadian clock and the actual physical time of day.
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To date, the control of flowering by the circadian clock in rice remains largely

unknown compared to that in Arabidopsis likely because experiments in the

laboratory are difficult to perform due to its large plant size. However, field

experiments, such as those performed by Matsuzaki et al. (2015), will provide a

better understanding of the role of the circadian clock in rice flowering.

10.6 Genetic Architecture of the Natural Variations
in Flowering Time

To clarify the natural allelic variations in flowering time, we carried out QTL

analyses in 12 F2 populations derived from crosses of ‘Koshihikari’ (ssp. japonica),
which is an elite Japanese variety that is commonly used as a parental line, with

varieties originating in various regions in Asia (Ebana et al. 2011; Shibaya et al.

2011). A limited number of loci with large effects that corresponded to Hd1, Hd2,
Hd6, RFT1, Ghd7, DTH8, and Hd16 accounted for some varietal differences, but

additional QTLs are likely to be involved in the flowering variation in these

populations.

To detect QTLs with small effects, we analysed advanced backcross progeny

derived from each cross combination by Ebana et al. (2011) and Shibaya et al.

(2011) and detected a total of 255 QTLs widely distributed across the genome (Hori

et al. 2015). We detected 128 QTLs with a relatively large effect, which

corresponded to the genomic positions of previously detected flowering time

genes, such as Hd1, Hd2, Hd6, RFT1, Ghd7, DTH8, and Hd16. The sequence

analyses revealed that the chromosomal positions of the large-effect QTLs mainly

corresponded to those of different alleles of the flowering time genes in 12 rice

varieties. The other 127 QTLs were detected in chromosomal regions other than

those of the flowering time genes and had relatively small effects. These results

indicate that much of the variation in the flowering time can be explained by

combinations of alleles in large- and small-effect QTLs.

Genome-wide association studies have also supported the hypothesis that allelic

variations at multiple QTLs play an important role in the differences in the

flowering time among rice varieties (Zhao et al. 2011; Huang et al. 2012; Yano

et al. 2016). Zhao et al. (2011) detected ten genomic regions that were significantly

associated with the flowering time variation, although only Hd1 was detected as a

major QTL. These genomic regions explained less than 50% of the flowering time

variation. Huang et al. (2012) found 14 significant genomic regions: 5 regions

surrounding Hd1, Ghd7, RCN1, OsGI, and Hd3a and 9 newly discovered regions.

The detected regions explained 36% of the flowering time variation. More recently,

a genome-wide association study revealed that two novel QTLs on chromosomes

1 and 11 contributed to the flowering time variation in japonica rice varieties (Yano
et al. 2016). The above-mentioned studies suggest that QTLs that have not yet been
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discovered are associated with the natural variation in the flowering time in rice

varieties.

10.7 Regional Adaptation Based on Allelic Differences
in Flowering Time Genes

Early flowering conferred by deficient alleles in the flowering time genes is

important for expanding the range of rice cultivation to high latitudes

(LD conditions) (Izawa 2007; Shrestha et al. 2014), where early heading and

maturity are required for seed production. A sequence analysis of the known

flowering time genes, including Hd1, Ghd7, DTH8, Hd16, OsPRR37, DTH2, and
Ehd4, indicated that allelic differences contribute to regional adaptation (Takahashi
et al. 2009; Naranjo et al. 2014; Gómez-Ariza et al. 2015; Zheng et al. 2015; Goretti

et al. 2017). The functional alleles of Hd1 are associated with late flowering, and its
non-functional alleles are associated with early flowering under natural day-length

conditions; the geographical distribution of the Hd1 alleles suggests that favourable
alleles have been selected by breeders to enhance rice productivity and adaptability

in each region (Takahashi et al. 2009; Fujino et al. 2010; Ebana et al. 2011;

Takahashi and Shimamoto 2011; Naranjo et al. 2014; Gómez-Ariza et al. 2015;

Goretti et al. 2017). The deficient or weak alleles ofGhd7,DTH8,DTH2,Hd16, and
OsPRR37 are distributed in cultivation areas at high latitudes (Xue et al. 2008; Wei

et al. 2010; Fujino et al. 2013; Hori et al. 2013; Koo et al. 2013; Wu et al. 2013;

Kwon et al. 2014; Goretti et al. 2017), suggesting that these alleles must be involved

in the expansion of rice cultivation areas.

10.8 Conclusions and Perspectives

During the last two decades, tremendous progress in genome sequencing has

improved our understanding of the genetic and molecular mechanisms that control

the flowering time in rice. For example, Ehd1 is an important integrator in genetic

control pathway, the putative homolog has found in sorghum (SD plant); on the

other hand, it has not been found in Arabidopsis and wheat (LD plants) (Brambilla

et al. 2017). Such a finding in rice provides valuable suggestion about the genetic

control of flowering time in sorghum; additionally, it plays an important role in

understanding of the diversity and evolution of flowering time control in plants.

This progress was due not only to genomic approaches, such as QTL analyses

and map-based cloning, but also to the large number of rice accessions (including

wild relatives) and genetic mapping populations derived from artificial crosses.

Most genes with major effects on flowering time have already been identified
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during the last 20 years. Although some genes with minor effects have also been

analysed, additional new QTLs with minor effects need to be further examined. In

fact, genome-wide association studies could be an effective method for detecting

new chromosomal regions (QTLs) responsible for the flowering time (Yano et al.

2016). The verification of the allelic effects of these QTLs with minor effects must

be performed using experimental populations derived from single crosses. This

approach will lead a more in-depth understanding of the genetic control of

flowering time in rice. Information derived from these analyses has also been

applied to the modulation of the flowering time of cultivars for regional adaptation

and cropping system (Takeuchi et al. 2006; Takeuchi 2011; Hori et al. 2016).

Recently, genome-wide prediction models of the flowering time in rice have

been tested and demonstrated high prediction accuracy by adding environmental

variables (Nakagawa et al. 2005; Onogi et al. 2016; Spindel et al. 2016). Further-

more, it appears that these models can predict the flowering time using genome-

wide genotypes and trait values in various types of populations, such as experi-

mental biparental populations or an array of varieties (Spindel et al. 2016). Further

progress using these approaches will enhance the fine-tuning of flowering time in

rice breeding programmes.
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