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Preface

The biological systems and their functions are driven by information stored in the
genetic material, the DNA, and their expression is driven by different factors. The
active units of these DNA sequences are genes, which also interact with each other to
define a condition-specific expression. The soft computing approaches recognize the
different patterns in DNA sequence and assign them biological relevance with
available information. At times these patterns not only help in the classification of
but also predict functionally active domains. These approaches are equally helpful in
predicting protein-protein interaction. To understand any stressed scenario, there is
need to predict gene networks by applying tools which can suggest differential gene
expressions. The issue extends these tools in a wide range of models from bacteria to
human cancers. We wish to present the status of diverse possibilities and our views
and opinions to finally provide mankind with novel, innovative, and long-lasting
strategies, in the book entitled Soft Computing for Biological Systems. The book
provides insights into bioinformatics tools for neural networks, metagenomics data
analysis, genetic barcoding, machine learning, and diagnostic predictions. The well-
illustrated articles written by the experts in the area provide information on thrust
scientific R&D areas and their future perspectives for the prospective researchers and
graduate students – future of the scientific society. This book has reached its
completion primarily due to the sincere efforts of the dedicated academic experts –
to share their vision and wisdom. This collection of chapters has been presented in a
manner which can benefit the curious minds of the society. We are indebted to all the
people, whose invaluable contributions brought this book to fruition.

Delhi, India Vipin Chandra Kalia
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Current Scenario on Application
of Computational Tools in Biological
Systems

1

Hemant J. Purohit, Hitesh Tikariha, and Vipin Chandra Kalia

Abstract

The uncertainties and complexities of biological system challenge analytical

approach and process of understanding. The wet lab experiments supported by

soft algorithms find a way to resolve these scenarios. In the last decade, the

biological analytical approach has found tremendous shift in data generation and

analysis capacities. From sequencing of DNA and RNA to prediction of 3D

structure and function of protein, there are a wide array of soft tools to make the

job of exploring a system lot easier. This development eases our understanding

of gene networks, plasticity and pattern of gene expression at gene to

epigenomic level. In this book, we attempted to document selected areas of

biological system and their advances, which will be frontier areas.

Keywords

Databases · Epigenome · Gene networks · Omic tools · Plasticity · Signatures

1.1 Introduction

The biological research has seen rapid progress through the use of computational

tools for understanding physiological events. However, with the advent of next

generation sequencing, there has been an explosive generation of data at different
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levels of cellular organisation. A deeper understanding of protein expression

profiles further supported this phenomenon. This has brought the data generated

by biological systems into the domain of the big data analysis. The soft computing

and artificial intelligence have become a prerequisite for the field of biological

research to unfold system phenomenon. Bioinformatics tools have now become an

essential hand for every section of biological data not only for handling and

processing but also for validating the wet laboratory experiments. The omics era

actually has now started emerging out of its lag phase. The progress of every

laboratory is based on how intelligently they are harnessing the analytical tools

for shaping the log phase trend of their physiological understanding. Keeping all

these ingredients in the mind, this book opens up the current recipes of biological

data de-codification. It is an attempt to focus on a few key areas and define their

present status. The different areas challenge the readers to exploit a diversity of

tools for applications in biological systems.

1.2 Protein Structure Prediction and Interaction

From the protocol of protein assay to chromatography and finally to NMR, now time

has brought the reliability and rapidity in understanding the same information by in

silico protein structure and function prediction (Tikariha et al. 2016). Even for an

unknown protein, the implementation starts with the determination of its primary

sequence. There has been an intense shift in the simple prediction of the secondary and

tertiary structure of a protein from geometrical-based programming to new machine

learning algorithms. Spencer et al. (2015) have given a vivid detail on ab initio protein

secondary and tertiary prediction with the help of deep learning network. The concept

eliminates the need for large protein structure database with known predicted proteins.

This concept along with the incorporation of dihedral angle, torsion angle, solvent

accessible surface area, positions and interactions of hydrogen bonds data can make

the structure prediction a piece of cake (Heffernan et al. 2015). Even protein sequence

and PDB database are on the rise, which will add to our knowledge on protein folding.

This database can help in training the programs, which can help them in predicting the

folding pattern and hence proposing the structure of an unknown protein. Thus, to get a

vivid insight, one of the chapters gives an idea about the application of machine

learning advancement in protein structure prediction.

The prediction of protein 3D structure is followed by the challenge of unearthing

its interaction with other molecules, such as DNA and mRNA, or even with another

protein. This part of the study holds immense potential for application in cellular

pharmacology and drug discovery. Majorly there are three methods to study

protein-protein interactions (PPIs) such as (1) residue coupling, (2) prediction of

binding surface patch and (3) assembly prediction (Keskin et al. 2016). Based on

this information, dozens of tools to analyse interfacial changes and calculate

residues physicochemical changes have been developed. The database is also

being constructed where one can look for curated PPIs such as CORUM, HIPPIE,

IntAct, SPIKE, etc. Exploration of an interaction of peptide chain is also on the rise,

and there is a huge market build-up on using peptide as a therapeutic agent (Nevola

2 H. J. Purohit et al.



and Giralt 2015). Research avenues are also being built for modulation of PPI using

small inhibitory molecules (Arkin et al. 2014). Computational tools can modulate

the dynamics of protein structure and its behaviour in a particular solvent system.

Integration of this data with the thermodynamics of molecule interactions and

characteristics of amino acid residues involved in the interactions can simulate

the interactive behaviour of two protein molecules. Protein interactions with

smaller molecules can also assist in deciphering the signalling cascade; and so by

understanding this, one can precisely regulate/modulate the machinery inside a cell.

One can also detect crucial amino acid residue involved in PPI. An evolutionary

biologist can also seek for changes in protein-protein interactions, which can be

responsible for metabolic and phenotypic changes (Bartlett et al. 2016). Seeking

this past trend and huge market potential, this chapter aims to provide a deep insight

on PPIs.

Drug designing strategies are driven by the protein interactions with various

other molecules, in which the target locations are very specific and are with

minimum free energy levels. Data mining and drug discovery have been rising in

the field of pharmacology in recent years (Lavecchia 2015). Machine learning

systems mimic from nature’s own cellular system, where a molecule can play

multiple roles, and now this drives drug designing forward to poly-pharmacology

(Lavecchia and Cerchia 2016). In silico analyses are carried out in designing multi-

target drug relying on a huge database of ligands and protein 3D structure, docking

dynamics and pattern-based designing of the molecule. This not only ensures the

drug design but also its delivery to the site of action that is also a major concern for

its effectiveness. The whole effectiveness of drug relies on the intracellular trans-

porter system (Nigam 2015). Here algorithms on basis of nature of molecule,

transporter protein and interaction between them can predict how well the drug

can find its way into the cell and carry out their action. We have discussed the

potential of drug transporters system in one of the chapters.

1.3 Emerging Areas in Tool Development

With the advent of sequencing technologies, there has been a progressive rise in

computational tools (Kalia 2015; Koul et al. 2015; Yu et al. 2015; Ambardar et al.

2016; Koul and Kalia 2016; Kalia et al. 2017; Kumar et al. 2015, 2017; Meza-Lucas

et al. 2016). From pairing and assembling, the sequence reads to their annotation as

genes with different algorithms are becoming faster and accurate. In this, the

foremost approach is to design a robust multiple sequence alignment (MSA)

program. MSA is a key step for functional annotation, phylogenetic studies and a

necessity for comparative genomics and metagenomics (Pooja et al. 2015). Most of

the MSA tools such as CLUSTAL, MUSCLE, K-align and a lot more are based on

de novo assembly and pairwise alignment by tree construction. These programs are

good at handling a small set of sequences, but they become redundant while

handling thousands of dataset. For overcoming this deficiency, new tools have

been designed such as HAlign, a fast multiple similar DNA/RNA sequence

1 Current Scenario on Application of Computational Tools in Biological Systems 3



alignment (Zou et al. 2015), and PASTA, ultralarge MSA (Mirarab et al. 2015)

which can resolve this issue. Even tools like GUIDANCE2 are introduced to detect

unreliable alignment regions in MSA (Sela et al. 2015). The hardware driver

limitations are also being resolved, which can be seen in the development of

GPU named CUDA ClustalW v1.0, and these will accelerate the computation of

large datasets (Hung et al. 2015). We have dealt in detail the development in the

domain of MSA and its application in the sequence alignment.

Next-generation sequencing has brought the computational biology to a new

level. The databases for DNA, mRNA and proteins are growing geometrically. The

repositories such as NCBI, EMBL, IMG, MG-RAST, SILVA and RCSB PDB are

among the most exhaustively used databases. The Web has a large number of

repositories and analysis pipeline for each separate domain such as CRCDA for

cancer, Cas-Analyzer, Omics Pipe, etc. (Fisch et al. 2015; Thangam and Gopal

2015; Park et al. 2017). With NGS, the cost is going down, and there has been a

tremendous amount of metagenome data generation. It is thus demanding new tools

for accurate and reliable processing of this huge datasets. The attention has now

been laid on the interpretation of this data rather than functional and taxonomical

categorisation. Machine learning techniques, deep neural network generation and

highly sophisticated statistical analysis are being used to understand this data.

Integrated approach has been wired to connect all the analysis pipeline. A program-

ming language such as Pearl, Python, R and Ruby are extensively used for investi-

gation of NGS data. Nowadays, the Python and R have become two hands for

interpretation of complex biological system and aid in connecting new links

between the large and different datasets. The demands put regular pressure on

program developers for updating the algorithms; recently QIIME pipeline was

updated with the incorporation of PhyloToAST, which boosts its species-level

classification and gives more elaborative visual evaluation (Dabdoub et al. 2016).

Transcriptome analysis has even brought the sequencing and analysis of

miRNA, piRNA and IncRNAs possible, which is a big deal for disease diagnostic

especially in the case of cancer. Extraction of secondary data from sequenced and

annotated primary data is now becoming a remarkable strategy. Genome construc-

tion from metagenome is a new technique developed recently employing the

process of binning, coverage, reassembly and curation (Sangwan et al. 2016).

Tools like CheckM are devised to check the quality of reconstructed genomes

(Parks et al. 2015). Apart from the reconstruction of the genome, the scheme is

being designed to understand community-level talks, gene transfer and resistance

development (More et al. 2014; Kapley et al. 2015). Thus to make the reader aware

of this vast area, a chapter has been dedicated to bioinformatics tools for NGS data

analysis.

Genomic tools are not limited to sequence identification or characterisation but

can be implemented as pattern search algorithms to generate signatures, which can

be utilised as biomarkers for diagnostic purposes (Porwal et al. 2009; Bhushan et al.

2015). A genomic biomarker can be used as both prognostic and predictive bio-

marker. Due to its high sensitivity and high specificity, the medical industry is

looking for the discovery of such biomarker for every type of diseases (Kalia and

4 H. J. Purohit et al.



Kumar 2015; Kalia et al. 2015, 2016; Kekre et al. 2015; Kumar et al. 2016; Lee

et al. 2016; Puri et al. 2016). Cancer is one of the deadly diseases and hard to

diagnose at initial stages and opens a wide door for exploration of the genomic

marker. A whole bunch of biomarkers discovered till date for head and neck cancer

have been presented in a recent review (Kang et al. 2015). The promising nature of

biomarker application has provoked us to include a chapter on the use of genomic

biomarker in the case of oral cancer.

1.4 Gene Networks and Plasticity

Cells represent a collection of very well-coordinated and synchronised interactions

and movement of every molecule residing in it. This is due to inherited intelligence

cell carries for regulating expression of genes for every desirable event. Under-

standing this network of genes and how they regulate various machineries of cells

by modulating itself is a challengeable task. Exploration of gene network involves

the study of their expression pattern. The biological phenomenon evolved over a

period of time, with one gene, one expression and identified physiology to a now

collection of genes but even with the most sophisticated tools not completely

understood till date. Gene Expression Atlas, Gene Expression Commons,

CODEX and many more single gene expression databases are being created of

which BloodSpot is the recent one which provides the tree-based relationship

between different gene expression profiles present in the database (Bagger et al.

2016). As genes are differentially expressed in diverse conditions, it provides the

plasticity to the gene networking; the wide range of data need to be generated to

predict even an interaction of a single gene that behaves as a node in a network. A

database on gene plasticity named ImmuSort is already being released, which

provides an electric sorting system for immune cells (Wang et al. 2015). Thus

from different expression profiles of a single gene to linking its connection with the

expression profile of another gene requires a network-based analysis and a mam-

moth database.

Artificial neural networks are a set of models designed to classify and predict the

outcome from a provided data; hence they are widely used algorithms in gene

network prediction. Feedforward neural network, radial basis function network,

modular neural network and physical neural network are the general types of neural

network that are routinely applied in such analyses. Implying the data within a

given set of conditions, the network is designed to calculate the expression

behaviour for a set of genes. We have discussed the beneficial role of above

study in diagnostic prediction by the aid of gene expression profile and artificial

neural network.

The array of the genetic circuit in the cells can be grouped into various categories

and modules specialised to carry out a specific task. Carving out this module of

gene network could render the task easier for decoding the process associated with

it. We are mostly interested in a specific set of the gene network, which we can

modulate in a way that achieves a specific task such as understanding the response

1 Current Scenario on Application of Computational Tools in Biological Systems 5



of a signal cascade when osmotic stress is faced by the cell. Exploration of each

module can give an idea of complete genetic web collectively working in the cell.

Realising the core importance of this idea, we have added a chapter on soft

computing approaches to extract biologically significant gene network modules

that presents how through computational convergence one can study such network

module and function carried out by each module separately.

Not only understanding of gene network is essential but we should also know

how we can create a network. Mapping of a network relies on data used for its

creation which in our case would be gene expression profiles. This requires a series

of expression data of every single gene than stacking them upon one another in time

series or imposed variant conditions and in the last layering and connecting the

links between each gene involved in the network. Either the supervised or unsuper-

vised model can be used for creating a network. In a recent paper, authors describe

the use of both the approaches for the creation of gene regulatory network (Huynh-

Thu and Sanguinetti 2015). Single cell network synthesis toolkit has been used to

identify an interconnected network of 20 transcription factors in human blood cell

(Moignard et al. 2015). So to get acquainted about such emerging topic, we have

incorporated a chapter which deals with the construction of gene network.

1.5 Epigenome: Emerging Area

All the current techniques target the pattern of the four nucleotides, thereby

predicting its functions, but in the case of eukaryotes, this scenario changes. The

methylation pattern under the epigenetic tag governs which gene will get expressed

and which does not. Epigenomic research targets such molecule which can alter the

expression pattern of the genes in a chromosome. The epigenetic study has two core

areas – DNA methylation and histone modification. Methylation of DNA is usually

on CpG islands and follows a particular pattern used to deduce the expression

profile of gene under study. Techniques like methylation array detect DNA meth-

ylation, whereas ChIP sequencing determines a modification in histone. Both the

tools have helped in generating an epigenetic map of the human chromosome. The

epigenomic study is particularly interesting as it delivers the regulatory expression

channel of gene thereby influencing the phenotypic expression. The cross-links

through which epigenetic action is controlled by environmental factors are also a

great issue of interest. Lots of epigenome-wide-associated studies have linked diets,

smoking, stress, etc. to changes in genotypic and phenotypic variation in human

(Lee et al. 2015; Provençal and Binder 2015). Realising such rising trend in the area

of epigenomic, we have included a chapter on Module-Based Knowledge Discov-

ery for Multiple-Cytosine-Variant Methylation Profile.
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1.6 Expanding the Domain of Computational Statistical
Analysis

With the expansion of biological data, lots of statistical tools have been developed

to sort, group, analyse and predict the outcome from the data. Statistic combined

with appropriate programming language results in more analytical approach and

visually enhanced result. Along with the application of computational tools, various

modelling techniques are also being integrated to understand the pest population

dynamics (Whish et al. 2015; Gilioli et al. 2016). With so much focus on the

application of computational statistic in the field of biotechnology, we introduce

our reader to the domain of agriculture with such analysis. This chapter describes

the role of various computing tools and techniques based on background statistical

analysis for studying pest population dynamics.

1.7 Pattern Recognition/Barcoding/Diagnostics

Identification of species and determining its role in an environment are crucial step

in ecological discernment. DNA barcoding is one of the emerging genomic tools to

tackle this problem. Based on consensus pattern of a sequence, it aids in the

identification of species (Kalia and Kumar 2015; Kalia et al. 2015, 2016; Kekre

et al. 2015; Kumar et al. 2016; Lee and Rho 2016). DNA barcoding applies to all

domain of life for their classification. A great deal of DNA barcode application till

date has been broadly reviewed recently (Kress et al. 2015). Barcoding also allows

revealing the diversity pattern of flora and fauna thereby producing a species map

for niche/habitat (More and Purohit 2016; More et al. 2016).

The great nature of DNA barcoding is that it is applicable to every organism with

minor modification. The initial step in barcoding is deducing the signature sequence

in the species. After the identification, it can be used to tag every other species

which have an exact signature (Porwal et al. 2009; Kalia et al. 2011; Bhushan et al.

2013). Thus the nature and location of code vary from species to species and

organism to organism. The DNA barcode has a great role in conservative biology

as it can help in tracking the species of interest. To open up the reader more about

the application of DNA barcoding, we have discussed thoroughly the fish DNA

barcoding as a model. This chapter also covers up the various bioinformatics tools

and techniques deployed in generating a DNA barcode for a given species.

Earlier when DNA barcode was introduced, it was limited to eukaryotic

organisms due to high mutation rate in prokaryotes and absence of mitochondrial

or plastid DNA, which have rich consensus region. But now this scenario is

changing, and bacterial DNA barcode is being introduced in recent years along

with the introduction of meta-barcoding. Recent publications on marine benthic

meta-barcoding have already laid down this trend (Leray and Knowlton 2015). In

upcoming years we can expect the rise of meta-barcoding along with the

metagenomics. For providing a complete package of tools and software used in

bacteria DNA barcoding and analysis, reader can refer to a later chapter.
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Pattern- and network-based computational analyses are not only limited to the

microorganism or medical biology, but it has an expanded horizon in plant biology

too. Earlier it was concentrated to the regime of plant classical genetics and

breeding but gradually arose with plant genomics. The surge in plant genomics

can be seen with the recent introduction of PLAZA 3.0 which is a server assisting in

comparative plant genomics (Proost et al. 2015). Genomic analysis has already

been extended to the study of metabolite-based quantitative trait loci. Identification

of metabolites is one of the highlighted areas in plant metabolomics. Luo in 2015

discussed the genome-wide association studies based on metabolite. Not only

genetic trait but analysis of phenotypic trait in plant biology is a keen area. The

various repositories have been created to store phenotypic data for a selected plant

species, e.g. MaizeGDB, Ephesis databases, etc. This has laid down the

incorporation of microarray, metabolomics, sequencing and proteomics data in a

single platform for understanding the link between phenotypic expression, genetic

makeup and environmental factors. This has arisen the need for handling ample

amount of data synchronising it with metadata (Krajewski et al. 2015). Modelling

framework is also being applied in plant biology for better resolution of its cellular

event (Boudon et al. 2015). Observing a high trend in the application of computa-

tional tools in the subject of plant biology, a vivid description of the integration of

computational approach in plant biology and also its field application has been

discussed in this book.

With metadata, biological systems are challenging the scientific community with

its complexity. Covering different emerging disciplines in biology where computa-

tional approach is essential or playing an essential role has been discussed in this

book, which will surely give the reader a new paradigm in their analytical

processes.
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Abstract

Recent advances in scientific research point out that diagnostic prediction

represents a novel paradigm because of the decreased expense and the expanded

productivity of multi-omics technologies such as gene expression profiling. In

order to evaluate a mammoth amount of biomarkers produced by high-

throughput technologies, machine learning and predictive approaches such as

artificial neural network (ANN) algorithms have widely been utilized to assess

disease mechanisms and intervention outcomes. In this chapter, we first

illustrated ANN algorithms for establishing biomarkers in diagnostic prediction

studies. We then surveyed a variety of diagnostic prediction applications for

numerous diseases and treatments with consideration of ANN algorithms and

gene expression profiling. Finally, we outlined their limitations and future

directions. Future work in diagnostic prediction studies promises to lead to

innovative ideas related to disease prevention and drug responsiveness in light

of multi-omics technologies as well as machine learning and predictive

algorithms.
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2.1 Introduction

In this chapter, we briefly describe some key emerging diagnostic prediction studies

for various diseases and treatments of significance for public health with consider-

ation of gene expression profiles and machine learning algorithms such as artificial

neural network (ANN) models (Lin and Tsai 2011). This review is not intended as a

comprehensive survey of all possible diagnostics applications studied in the

literature.

First, we described machine learning and predictive algorithms such as ANN

models that have been widely used in the research community for pinpointing

biomarkers as well as for associating with diseases and drug responses in the

diagnostic prediction studies. Furthermore, we surveyed some potential biomarkers

that were investigated in the diagnostic prediction studies using gene expression

profiles and ANN algorithms and were reported to be linked with disease status or

drug efficacy. Moreover, we highlighted the limitations and future outlook regard-

ing the diagnostic prediction studies in terms of gene expression profiles as well as

machine learning and predictive algorithms. In future work, replication studies with

extensive and independent cohorts will be indispensable in order to establish the

characteristics of the potential biomarkers identified in the diagnostic prediction

studies in disease diagnosis as well as treatment response (Lin 2012; Lin and

Tsai 2012).

2.2 Machine Learning and Artificial Neural Networks

Machine learning and predictive methods contain computer algorithms which are

able to naturally perceive complicated patterns based on empirical data

(Kononenko 2001; Lane et al. 2012; Lin and Tsai 2016c). The objective of machine

learning and predictive algorithms is to facilitate computer algorithms to gain from

data of the past or present and then make decisions or predictions for unrecognized

forthcoming circumstances by utilizing that knowledge (Landset et al. 2015; Lin

and Tsai 2016c). In the general terms, the workflow (as shown in Fig. 2.1) for a

machine learning and predictive algorithm incorporates three phases including

construct the model from pattern inputs, appraise and refine the model, and then

establish the model into construction in prediction-making (Landset et al. 2015). In

other words, machine learning and predictive algorithms for classification

Data
Source

Training 
Set

Test Set

Model New
Data

Validate

Prediction

TuneTrain

Apply

Fig. 2.1 Machine learning workflow
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applications such as medical diagnosis or diagnostic prediction are procedures for

adopting the best assumption from a set of alternatives that are qualified for a set of

observations (Witten and Frank 2005). The strengths of machine learning and

predictive algorithms for classification, including nonlinearity, fault tolerance,

and real-time operation, make them suitable for complicated applications (Lane

et al. 2012).

ANN models, such as multilayer feedforward neural networks, can be frequently

utilized to solve complicated applications in classification and predictive modeling

due to the fact that ANN algorithms possess the benefits of fault tolerance, nonlin-

earity, integrality, and real-time operations (Lin et al. 2006; Kung and Hwang

1998). A multilayer feedforward neural network is one category of ANN algorithms

where networks between entities construct no directed cycles (Bishop 1995). In

other words, a loop or cycle does not exist in the network because the data only

relays in an onward order from the input entities, by means of the hidden entities

(if any), and then to the output entities.

Moreover, from an algorithmic point of view, the primary operation of this ANN

is separated into the learning and retrieving stages (Kung and Hwang 1998). In the

learning stage of this ANN, the back-propagation algorithm (Rumelhart et al. 1996)

is adopted for the learning scheme. Furthermore, in the retrieving stage, this ANN

repeats through all the panels to achieve the retrieval response at the output panel in

keeping with the inputs of test patterns. On the other hand, from a structural point of

view, this ANN is an iterative and spatial neural network that possesses numerous

panels of hidden neuron groups among the input and output neuron panels (Kung

and Hwang 1998).

The ANN models can be executed using favored machine learning tools such as

R (the R Project for Statistical Computing; http://www.r-project.org/) or the

Waikato Environment for Knowledge Analysis (WEKA) software (Witten and

Frank 2005). However, popular open-source machine learning tools including R

and WEKA are not originally constructed and implemented for large-scale data

(Landset et al. 2015). To effortlessly design and adopt for big data, there are

assorted machine learning tools, such as Mahout (http://mahout.apache.org/),

MLlib (https://spark.apache.org/mllib/), H2O (http://h2o.ai/), and SAMOA

(https://github.com/samoa-moa/samoa-moa), available to run in a distributed envi-

ronment (Lin and Tsai 2016c).

2.3 Gene Expression Profile

Noncoding RNAs, such as long noncoding RNAs and small noncoding RNAs, are

distinct from their complement messenger RNAs (mRNAs) because the sequence

of nucleotides in noncoding RNAs encodes no proteins (Nagano and Fraser 2011;

Lin and Tsai 2016a). While long noncoding RNAs represent transcripts with more

than 200 nucleotides in length, small noncoding RNAs, such as the microRNAs, are

smaller than 200 nucleotides in length.
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The microRNAs govern gene expression by regulating mRNA translation,

stability, and degradation (Dwivedi 2014; Lin and Tsai 2016a). The characteristics

of mRNAs, microRNAs, and long noncoding RNAs in examining disease patho-

genesis and in keeping track of response to treatment for human disease are

developing rapidly. Future work will be conducted to assess whether gene expres-

sion profiling including mRNAs, microRNAs, and long noncoding RNAs may be

established as potential biomarkers with respect to human disease and therapeutic

responses (Lin and Tsai 2016a).

2.4 Gene Expression Profile Studies with ANN

Table 2.1 summarizes the relevant diagnostic prediction studies by using gene

expression profile and ANN models. This is by no means a comprehensive survey

of all probable diagnostic prediction studies discovered so far. Nonetheless, a

growing body of studies has been investigated when scientists remain to pay

much attention to diagnostic prediction research.

2.4.1 Cancer

There were a variety of diagnostic prediction studies for cancer research using ANN

models and gene expression profiling. First, Pass et al. (2004) trained a three-layer

ANN model based on the expression value of differentially regulated genes and

derived a set of 27 genes that distinguishes good-risk and poor-risk surgically

Table 2.1 Diagnostic prediction studies of gene expression profiling for various diseases and

treatments of significance using artificial neural networks

Disease/treatment Results References

Malignant pleural

mesothelioma

Achieved 76% accuracy Pass et al. (2004)

Neuroblastoma Achieved 88% accuracy Wei et al. (2004)

Astrocytic brain tumors Identified an optimum set of

37 genes

Petalidis et al. (2008)

Breast cancer Reduced a 70-gene signature to

nine genes

Lancashire et al.

(2010)

Schizophrenia Achieved 87.9% accuracy Takahashi et al.

(2010)

Diffuse large B-cell lymphoma Achieved 93% accuracy Mehridehnavi and

Ziaei (2013)

Luminal A-like breast cancer Revealed ten microRNAs for

further analysis

McDermott et al.

(2014)

Childhood sarcomas Showed strong connection links on

certain genes

Tong et al. (2014)

Chemotherapy in non-small

cell lung cancer

Achieved 65.71% accuracy Chen et al. (2015)
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treated patients with malignant pleural mesothelioma. A rare and aggressive cancer

called malignant pleural mesothelioma usually evolves in the thin row of tissue

neighboring the lungs known as the pleura. Of the 27 genes revealed to be signifi-

cant, 18 have been intensely investigated in the literature, and few have been linked

with malignant pleural mesothelioma (Pass et al. 2004).

Secondly, Wei et al. (2004) utilized gene expression profiles from cDNA

microarrays to forecast the outcome and extract a minimal gene set in patients with

neuroblastoma by using ANN models. Neuroblastoma is the most common cancer in

childhood and in infancy. They suggested that the top 24 ANN-ranked clones, which

represented 19 unique genes as aminimal gene set, resulted in theminimal classification

error. Wei et al. (2004) also indicated that ANN models can predict additional patients

according to their survival status based on either all genes or in particular the 19 genes.

Thirdly, Petalidis et al. (2008) assessed whether molecular signatures can define

survival prognostic subclasses of astrocytic tumors by using gene expression data

from 65 highly annotated tumors and a simple ANN model in the form of a single-

layer perceptron. Astrocytic tumors are the most common type of cancer in the

brain. They analyzed the ANN model to optimize leave-one-out cross-validation

runs, which resulted in an optimum set of 37 genes. Petalidis et al. (2008) selected

two genes of special interest, PEA15 and ADM, for further analysis in their study.

In addition, Lancashire et al. (2010) leveraged a previously published dataset of

breast cancer and applied an ANN approach to identify an optimal gene expression

signature for predicting the outcome of patients with breast cancer. Lancashire et al.

(2010) found that only nine genes were needed to forecast metastatic spread with

sensitivity of 98% by utilizing an ANN algorithm implemented especially for the

optimal biomarker subgroups in gene expression data.

Moreover, Mehridehnavi and Ziaei (2013) utilized ANN models to find the most

significant genes and classify patients with diffuse large B-cell lymphoma, which is a

cancer of B cells, on the basis of their gene expression profiles. Diffuse large B-cell

lymphoma is a form of white blood cell responsible for generating antibodies.

Mehridehnavi and Ziaei (2013) used the signal-to-noise ratio as a major approach

to reduce the number of genes from 4026 to 2 most significant genes. By using two

most significant genes to train the ANN model, their results showed that the training

and testing errors were 0% and 7%, respectively (Mehridehnavi and Ziaei 2013).

Furthermore, based on a cDNA microarray dataset, Tong et al. (2014) utilized

ANN models to find the potential gene-gene interactions among previously deter-

mined biomarkers in children sarcomas, which are a rare kind of cancer arising

from transformed cells of mesenchymal origin. Their analysis revealed that seven

key genes including FCGRT, FNDC5, GATA2, HLA-DPB1, MT1L, OLFM1, and
TNNT1 had significant associations (Tong et al. 2014).

Finally, McDermott et al. (2014) employed ANN models and microarray

profiling to pinpoint circulating microRNAs that were expressed in a differential

manner among individuals with luminal A-like breast cancer in comparison to those

without luminal A-like breast cancer. They found 76 microRNAs with differential

expression in subjects with luminal A-like breast cancer and also identified

10 microRNAs for further analysis using ANN models (McDermott et al. 2014).
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2.4.2 Chemotherapy

The use of genetic information and other biomarkers has played a major role in

better predicting patients’ responses to targeted therapy. For example, adjuvant

chemotherapy for non-small cell lung cancer can be used after surgery to put an end

to recurrence or metastases. Unfortunately, not every patient is suitable for treat-

ment. Chen et al. (2015) aimed to construct prediction models to recognize who was

suitable for adjuvant chemotherapy in subjects with non-small cell lung cancer.

Their analysis showed that the best ANN model achieved 65.71% accuracy with

two genes such as DUSP6 and LCK.

2.4.3 Schizophrenia

Schizophrenia is a chronic and severe mental disorder that affects social behavior,

beliefs, and thinking for a person (Liou et al. 2012; Lin and Tsai 2016b). Takahashi

et al. (2010) used an ANN algorithm to assess whether the gene expression

signature in whole blood consists of sufficient information to segregate patients

with schizophrenia. They singled out 14 probes as predictors for differential

diagnosis of schizophrenia with the quality filtering and stepwise forward selection

methods. The ANN model was then constructed with the selected probes, and it

carried out 91.2% accuracy in the training data and 87.9% accuracy in the testing

data (Takahashi et al. 2010).

2.5 Perspectives

Several limitations exist with respect to the aforementioned diagnostic prediction

studies. Firstly, studies with limited sample size did not warrant well-defined results

(Lin and Lane 2015). Secondly, researchers often investigate all of the available

algorithms because the only sure way to find the very best algorithm is to try all of

them (Lin and Tsai 2016c; Lin and Lane 2017).

Besides ANNmodels, there are a variety of machine learning tools we can use to

analyze gene expression profiling data in diagnostic prediction studies. Some of the

best-known machine learning and predictive algorithms encompass naive Bayes

(Domingos and Pazzani 1997), C4.5 decision tree (Quinlan 1993), ANNs (Lin et al.

2006; Kung and Hwang 1998; Bishop 1995; Rumelhart et al. 1996), support vector

machine (SVM) (Vapnik 1995), k-means (Lloyd 1982), k-nearest neighbors (kNN)

(Altman 1992), and regression (Friedman et al. 2010; Zou and Hastie 2005). These

classifiers are usually adopted for comparison owing to the fact that these methods

possess a diversity of capacities with distinctively representational models, such as

probabilistic models for naive Bayes, decision tree models for the C4.5 algorithm,

and regression models for SVM (Hewett and Kijsanayothin 2008).

For instance, Table 2.2 summarizes the relevant diagnostic prediction studies by

using gene expression profile and a variety of machine learning models. In order to

18 E. Lin and S.-J. Tsai



predict breast cancer recurrence, Chou et al. (2013) employed gene expression

profiling of breast cancer survivability and three methods including logistic regres-

sion, decision tree, and ANN models. Their analysis indicated 21 genes closely

relevant to breast cancer recurrence (Chou et al. 2013). In addition, in order to

screen for the variations in gene expression between colorectal tumors and normal

mucosa tissues, Chu et al. (2014) employed four methods, including ANN, predic-

tion analysis of microarray, classification and regression trees (CART), and C5.0

algorithms. Colorectal cancer is a cancer that starts in the colon or rectum. Chu et al.

(2014) adopted a two-tier genetic screen to reduce the number of candidate signifi-

cant genes, and the ANN model achieved the best classification performance, with

an average 99% test accuracy. Moreover, based on gene expression data, Hu et al.

(2015) classified colon cancer subjects treated with elective standard oncological

resection into two groups such as relapse and no relapse by using ANN, Kohonen

neural network, and SVMmodels. The Kohonen neural network model achieved the

best classification performance, with an average 91% test accuracy (Hu et al. 2015).

In future work, a bioinformatics pipeline can be used to provide a thorough

evaluation and validate whether the findings are replicated in diagnostic prediction

studies. Figure 2.2 shows a bioinformatics pipeline for analyzing and visualizing

gene expression profiling data in diagnostic prediction studies. Additionally, we

could investigate potential biomarkers by using a custom data mining pipeline so

that genetic networks would be illustrated at the genome level.

Table 2.2 Diagnostic prediction studies of gene expression profiling for various diseases and

treatments of significance using a variety of machine learning algorithms

Disease/treatment Results References

Breast cancer Identified 21 most-associated genes Chou et al. (2013)

Colorectal tumors Achieved 99% accuracy Chu et al. (2014)

Colon cancer Achieved 91% accuracy Hu et al. (2015)

Classification

Bioinformatics
Analysis

Visualization Modeling

Data 
Annotation 

Clustering

Fig. 2.2 Bioinformatics tools for analyzing and visualizing the relationship between gene

expression data and human diseases
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Soft Computing Approaches to Extract
Biologically Significant Gene Network
Modules

3

Swarup Roy, Hazel Nicolette Manners, Monica Jha, Pietro H. Guzzi,
and Jugal K. Kalita

Abstract

A group of functionally related genes that take part in similar biological activities

constitutes a functional module. Genes collaborating in a common module might

induce similar pathological disease and share common genetic origins for the

associated disease phenotypes. Computationally isolating such functional

modules is useful in unveiling biological and cellular processes or molecular

basis of associated diseases. As a result detecting such functional modules is an

important and burning issue in the computational biology research.

Various techniques have been proposed for the last few decades to find

functional modules or target factor modules in gene regulation networks.

Biological modules are overlapping in nature where the same gene may take

part in multiple network modules. In addition, data used for inference or

detection of modules in silico are noisy in nature. Traditional hard computing

methods appear to be ineffective in handling uncertainty, impreciseness, or

fuzzy nature in the solutions. The soft computing paradigm is effective in

handling such issues. In this work, we discuss a few soft computing methods

for detecting regulatory modules and validate the effectiveness of the candidate

methods in the light of publicly available expression data with respect to various

statistical and topological validation measures.
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3.1 Introduction

In all living cells, biological processes occur as a result of a complex interplay

among macromolecules. Genes and their products such as proteins and noncoding

nucleic acids play a prominent role in biological processes (Brown and Botstein

1999). Consequently, the study of the set of interplays (or associations) among them

is an important area of research in bioinformatics and systems biology. The

exploration of such interactions is based on three main pillars: (1) a set of

technologies for data production, (2) a set of methodologies for data representation

and storage, and (3) a set of algorithms and models for knowledge extraction from

data and subsequent dissemination. The production of raw data is often performed

using microarray technologies (Heller. 2002) and more recently using next-

generation sequencing (NGS) techniques, such as RNA-Seq (Tu et al. 2005).

Such technologies enable the simultaneous investigation of the level of activity of

genes and noncoding fragments of the genome. Experiments may compare two

different conditions, e.g., healthy vs diseased cells, or a sequence times for the same

sample to perform a time series analysis. The result of such experiments is often

organized into a data matrix in which each element represents the value of the

expression of the ith gene in the jth condition or time. Therefore, data may be

analyzed using the clustering-based techniques to infer patterns of co-expression

among genes. Genes are co-expressed if they show a similar pattern of behavior under

different experimental conditions (i.e., different drug treatments or different time

points). The pattern of co-expressions is usually related to similar behaviors; thus, the

analysis of such patterns may reveal relations among genes that have a similar role.

Clustering of co-expressed genes is not sufficient to model interplay among

genes. Therefore, researchers have introduced formalisms based on graph theory to

represent such complex relationships. In co-expression graphs, nodes symbolize

genes, whereas edges (directed or undirected) are the symbolic representation of

biological association among the genes in terms of co-expression (Pandey et al.

2010) or regulation (i.e., positive or negative control) (Das 2009) (Fig. 3.1).

Many biological problems can be described as graph problems. For instance, an

important problem is the individuation of regulatory modules (Ravasz et al. 2002),

i.e., sets of genes that act collectively in a genome to perform a distinct biological

function. Regulatory modules are co-expressed, co-evolved, and regulated by the

same set of transcription factors to respond to different conditions. Transcription
factors (TFs) are proteins involved in the process of converting, or transcribing, DNA
into RNA. Some genes even play multiple roles and become members of more than

one module (Kohonen 1993, Zhang et al. 2010). Identifying regulatory modules is

vital to understand cellular activities in response to various external or internal stimuli.

In turn, it may help to uncover the disease mechanisms in a living organism.
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Computationally, module finding techniques aim to cluster biological

components that have similar functions. Module is a biological term for a cluster.

Research in this area has been going on for more than a decade. Hence, many

approaches have been proposed to identify such modules. Below, we present a brief

sketch of available methods. We emphasize mainly on soft computing methods that

have inherent ability to handle vagueness and uncertainty. Finally, we validate the

merit of the results produced by various candidate methods using several publicly

available expression datasets.

3.2 Computational Methods for Detecting Network Modules

Finding network modules from gene expression data basically involves two major

independent phases: network construction and application of suitable module

detection methods to find compact quasi-clique-like structures in the constructed

networks. The problem of network module finding can be framed as follows.

Fig. 3.1 Homo sapiens gene regulatory network reconstructed from the GDS825 (NCBI).

Labeled nodes are human genes. Directed arrow represents positive regulation, and a nondirected

edge (red) represents a negative relationship between the genes. The arrow points from the

regulator and their target
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Definition 1 (Network Module) Given a gene expression data matrix D of order
N � M where N is the number of genes and M is the number of samples or
conditions, a module is a group of genes sharing strong correlation or association
within a gene regulatory network derived from D.

A biological module is described as a collection of genes or their products which

might be related by means of one or greater genetic or cellular interactions;

however, characteristics are separable from those of other modules. These

interactions may be co-regulation, co-expression, or membership of a protein

complex or of a metabolic or signaling pathway. Genes which are regulated by

the same regulators tend to co-express or co-regulate and hence are grouped in the

same module or subnetwork. Modules can be understood as separate substructures

in a network. Some genes may belong to more than one module and have a fuzzy

nature as they are involved in more than one function in the organism forming

overlapping modules (Fig. 3.3).

The simplest representation of gene regulatory networks uses an undirected

graph (Roy et al. 2014), while more refined models use directed and weighted

edges to combine facts about the sort of biochemical association and its course. An

undirected graph represents co-expression over a sequence of gene expression

measurements. These are often referred to as gene association networks or gene

co-expression networks (Fig. 3.2). The directed edges in GRNs correspond to

causal influences between a pair of genes. Causal influences include regulation of

transcription through transcription elements (Fig. 3.1).

A majority of the detection methods use classical clustering techniques and their

variations (Mahanta et al. 2012). Some are based on hierarchical clustering

(Immermann and Huang, 2003), k-means clustering, and self-organizing maps

(Jobson 2012). A few algorithms based on graph theory or network techniques to

Fig. 3.2 A co-expression

network without any directed

edges. Nodes with the same

color constitute a functionally

similar group of genes having

high interconnectivity among

them. A co-expression

network is usually silent

about transcription factor

(TF) target relationships
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form modules have been proposed such as CLICK or based on minimum spanning

trees (MST) (Chanthaphan et al. 2009, Manners et al. 2016). However, module

detection methods integrating biological information such as gene ontology

(GO) along with gene expression data tend to perform better than traditional

clustering approaches (Sharan et al. 2003). Recent advances in biological research

revealed that some genes or proteins play multiple functional roles in a cell

depending on experimental conditions. For example, it has been observed that

yeast gene CMR1/YDL156W participates in many of the DNA metabolism pro-

cesses such as replication, repair, and transcription (Newman and Cooper 2010).

Out of 1628 proteins in the hand-curated yeast complex dataset, 207 proteins are

participating in more than one complex (Huang et al. 2009). The genes responsible

for such proteins participate in different functional modules or complexes. They

exhibit distinct overlapping structures. Conventional clustering techniques and

variants are not suitable for detecting overlapping modules. A good module detec-

tion algorithm should also be capable of extracting modules in presence of back-

ground noise using as little prior knowledge (Manners et al. 2016).

The soft computing paradigm is an effective alternative for handling uncertainty

or vagueness in module detection. Soft computing methods may be explored to

achieve effective outcomes.

3.3 Soft Computing Methods for Network Module Extraction

The soft computing paradigm uses a mix of various methods derived from mathe-

matics, machine learning, and meta-heuristic optimization. It mainly comprises of

fuzzy logic, rough set theory, artificial neural networks, and evolutionary

approaches. Hybridization is also used by combining merits of the different

methods in a mutually compatible way. Soft computing approaches are effective

97

6
2

3

8

10

5

12
14

17

19

18

22

21

20
24

23

16

15

11

13
4

1

Fig. 3.3 A diagrammatic representation of network modules extracted from a co-expression

network. Two distinct sets of genes grouped into two different modules are shown in red and

green colors. Yellow color genes or nodes are the overlapping members participating in two other

modules. Biologically such genes play both functions along with the other members of the two

modules

3 Soft Computing Approaches to Extract Biologically Significant Gene Network. . . 27



in handling computational problem involving impreciseness, uncertainty, and

vagueness. Biological data are usually noisy, incomplete, and imprecise in nature.

Traditional hard computing methods are not always effective in deriving biologi-

cally significant solutions. As an alternative, researchers use soft computing to

generate empirical results from the large biological data repositories.

In addition to traditional hard computing, soft computing methods can be

applied to find network modules. However, there have been only a few such

attempts. We discuss some soft computing module finding methods below.

3.3.1 Weighted Gene Co-expression Network Analysis (WGCNA)

WGCNA reconstructs co-expression networks using correlation as a measure of

similarity between a pair of genes. Unlike hard thresholding which hypothesizes

that an edge exists between a pair of genes if the similarity score is above a certain

threshold, it creates a weighted network using correlation coefficient as the weight

of the edge, also called soft thresholding. It then uses hierarchical clustering (Huang

et al. 2009) with a dynamic tree cut method to get the clusters or modules.

Traditional clustering creates clusters that are disjoint or exclusive and assigns

each gene exclusively to one particular module. WGCNA uses a fuzzy module

membership function to allow a single gene to participate in multiple modules. In

order to extract biologically significant modules, WGCNA uses a gene significance

function that assigns a nonnegative number to each gene. Higher the score of the

function, the more biologically relevant the genes are.

3.3.2 Fuzzy Network Module Extraction

An approach known as the fuzzy network module extraction approach for gene

expression records (FUMET) is proposed in Mahanta et al. (2014). This technique

uses what is called the NMRS similarity measure. Construction of the

co-expression network is performed using soft thresholding, where the edges

carry a weight equivalent to their NMRS similarity measure, creating a weighted

co-expression network. The genes may belong to more than one module and hence

the concept of fuzziness is useful. It uses topological overlap measure (TOM) to

calculate the overlap score between the genes. FUMET accepts a co-expression

network G, a membership threshold, and the number of modules as inputs, and it

extracts highly correlated network modules. The initial modules are formed with

one of the gene pairs in each of these modules. Then, for each module, the

memberships of all the genes which are not in the module are checked with the

following membership function. The membership value of gene di for class Ci is

computed as follows.
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fm Ci; dj
� � ¼

P
djεCi

Adji, j

min Cij j; degree dið Þð Þ ð3:1Þ

where, degree(di) is the number of nodes connected to dj in the co-expression

network and Adji.j is the weight of the edge corresponding to genes di and dj. For
a gene, if the membership function produces a value greater than the membership

threshold for a module, the gene is included in the class.

All the above methods are general in nature and have been shown to work with

any gene expression data. There are some efforts that have used to extract cancer

regulatory modules from the data. We discuss two of them below.

3.3.3 GA-RNN Hybrid Approach

Chiang and Chao (Chiang and Chao, 2007) use a genetic algorithm (GA) and a

recurrent neural network (RNN) to construct cancer regulatory modules. Both

microarray and sequence data of TF (transcription factor) binding sites are used

to train the RNN model. They can capture the architecture of real-world gene

network modules where the networks have feedback loops from the target genes

to TFs. They discover novel feed-forward relations in a regulatory network using

modified multilayer RNN architectures. They extract regulatory modules

containing known TF genes and their target regulated genes.

3.3.4 Multisource Integrative Framework

Wang et al. (2009) detect regulatory modules from the cancer cells by integrating

multiple sources of data combining expression profiles, gene ontology (GO),

protein-protein interaction, and protein-DNA interaction data. Gene expression

patterns are first grouped into biologically meaningful groups using fuzzy c-mean

clustering. The optimal numbers of clusters are determined using information

gleaned from GO categories of genes. Network motifs are then assigned to every

TF, detected from PPI and PDI data. Next, the connections among TF and gene

clusters are inferred by RNN.

Below, we discuss a method which is able to detect overlapping modules from

expression data using a minimum spanning tree. Interestingly, it does not use any

soft computing method to detect fuzzy clusters.

3.3.5 AutoSOME

AutoSOME detects fuzzy clusters or overlapping gene modules by combining

self-organizing maps (SOM) with ideas from graph theory. They use a three-step

process to extract the modules. Initially, randomly selected SOM lattice nodes
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are projected onto the planar SOM surface. Error surface is computed after training.

A density equalization method is applied to treat nodes with high errors as high

density. On the other hand, it forces the nodes far away from each other that are low

errors (within clusters) having low density. Subsequently, rescaled node

coordinates are used to construct a minimum spanning tree (MST). The MST

graph connects all nodes via edges with minimal total distance and without any

loops. p-Values of all the edges in the MST are computing using Monte Carlo

sampling. Finally, a fuzzy clustering matrix is constructed where a data item can be

a part of more of more than one fractional membership. AutoSOME identifies more

than 3400 upregulated genes with pluripotency.

A brief summarization of methods discussed above is presented in Table 3.1.

3.4 Assessment

To measure effectiveness, we use three different module finding techniques, Auto-

SOME, WGCNA, and FUMET. We use the original implementation of the first two

methods and implemented FUMET in Java. Due to unavailability of codes for the

other two methods used in cancer TF network extraction, we do not consider them

for our experimental evaluation.

3.4.1 Dataset

We use five different expression datasets for evaluating the module finding

methods. Fibroblast serum dataset from Homo sapiens is one such dataset. We

also use subset of a Rattus norvegicus (also known as rat) dataset related to the

Table 3.1 A summary of some network-based module finding methods

Sl

no. Algorithm

Type of

network

Soft computing

approaches

Implementation

source References

1. WGCNA Undirected Fuzzy R package:

WGCNA

Newman and

Cooper

(2010)

2. FUMET Undirected Fuzzy – Liu et al.

(2015)

3. Chang and

Chao

Directed Genetic algorithm,

recurrent neural

network

– Chiang and

Chao (2007)

4. Zhang et al. Directed Fuzzy c-means, GA,

recurrent neural

network

– Warde-

Farley et al.

(2010)

5. AutoSOME Undirected MST, SOM http://

jimcooperlab.

mcdb.ucsb.edu/

some

Langfelder

and Horvath

(2008)
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central nervous system (CNS). In addition, a subset of yeast cell cycle, yeast

sporulation, and house mouse (Mus musculus) expression profiles are also used

for experimentation. Table 3.2 contains description of the datasets, used for our

assessment.

3.4.2 Validation

The biological networks are divided into modules by various methods where genes

belonging to the same module are likely to perform similar tasks and share common

properties. However, some genes that are grouped as modules may be noise and

may contribute to the instability of the module. These may arise due to tuning of

parameters when the network is created. Hence, such spurious genes should be

detected as much as possible before validating the correctness of the module

structures based on known data or biological networks. We validate the significance

of the discovered modules and validate their architectural characteristics based on

topological analysis score in addition to looking at functional enrichment and

biological validation. Quite a few validation tools are available for evaluating the

biological merits of the modules inferred by different computational methods. A

few of them are listed in Table 3.3.

3.4.2.1 Functional Enrichment Analysis
For functional enrichment analysis of the extracted modules by different

techniques, we use DAVID and report the statistical significance values

(p-values) for the gene ontology terms linked with the genes or group of genes in

a module (28). p-Values test the statistical hypothesis of the observed genes

belonging to a module and measure false-positive rates. Before the test is carried

out, a threshold value is selected, known as the significance level of the test,

traditionally 5% or 1%. A low p-value indicates that the genes are biologically

Table 3.2 Brief description of expression datasets used for assessment

Sl

no. Dataset

No. of

genes

No. of time

points/conditions Source

1. Subset of yeast

cell cycle

387 17 http://faculty.washington.edu/

kayee/cluster

2. Yeast

sporulation

474 17 http://cmgm.stanford.edu/pbrown/

sporulation/index.html

3. Rat CNS 112 9 http://faculty.washington.edu/

kayee/cluster

4. Human

fibroblast serum

517 13 http://www.sciencemag.org/feature/

data/984559.shl

5. Subset of Mus
musculus

693 12 ncbi.nlm.nih.gov/gds-GDS958
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significant and belong to enriched functional categories. For the gene ontology

(GO) of the modules, the p-value is calculated as

p ¼
Xn

i¼x

A
i

� �
N � A
n� i

� �

N
n

� � ð3:2Þ

where n is the total quantity of genes in the module and A is the wide variety of

genes with a specific annotation. The p-value is described as the probability of

observing at the least x genes in the annotation of a module with n genes. For the

gene ontology (GO) of the modules, we measure p-values using the Web applica-

tion, namely, FuncAssociate 3.0 (Berriz et al. 2003).

3.4.2.2 Topological Validation
We also perform various topological analyses of the subnetworks for the individual

modules. Topological validation accesses the topology or structure of the extracted

modules based on known cellular pathways and processes. We use a Web applica-

tion called TopoGSA (Glaab et al. 2010) to compute topological properties for the

whole network. The network topologies produced by TopoGSA are as follows.

Degree of a Node The degree of a node is the average wide variety of interactions

incident on a particular node or gene. A high number interaction a gene has with

other genes in a module usually signifies that it serves as a central node in the

module or network. These genes play important roles in the functional composition

Table 3.3 Freely available gene module assessment and analysis tools

Tool Purpose Source Platform References

DAVID Gene enrichment,

KEGG pathway map,

etc.

https://david.

ncifcrf.gov/

Web

(online)

–

Genemania Functional enrichment

analysis

http://genemania.

org/

Web

(online)

Berriz et al.

(2003)

FuncAssociate

3.0

Functional enrichment

analysis

http://llama.mshri.

on.ca/

funcassociate

Web

(online)

Eden et al.

(2009)

Clean Functional enrichment

analysis

gorilla.cs.

technion.ac.il/

Web

(online)

Freudenberg

et al. (2009)

TopoGSA Gene module

enrichment analysis

http://

Clusteranalysis.

org

R

(offline)

Glaab et al.

(2010)
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of the module. A high degree is desired, meaning that a node has a lot of

interactions. A node with no interaction has zero degree.

Local Clustering Coefficient Local clustering coefficient evaluates the likelihood

that the neighbors of a hub are associated. If this probability is high, it means that

the neighboring genes interact with each other forming a strong network module.

The value of this coefficient can range from 0 to 1, with 1 being the most desired

value.

Shortest Path Length Shortest path length (SPL) is the average for all the

minimum number of edges needed to traverse between two nodes of the entire

network. The lower this length, the more strongly two nodes or genes interact with

each other. The lower the SPL value, the lesser the distance to other nodes and

hence the stronger is the interaction.

Node Betweenness Hub betweenness can be registered from the quantity of the

briefest ways between two hubs or qualities “a” and “b,” experiencing hub “c.” A

high node betweenness value signifies that the node acts as a bridge that helps the

other parts of the module or network to interact with each other. Such a node acts as

a central node. The higher the value of node betweenness, the more important is

the node.

Eigenvector Centrality The eigenvector centrality rating of a node relies upon on

the rating of its neighbors. A node or gene gets a higher rank when it is connected to

nodes that are important or have high degree and their functions contribute highly to

the network module it is a part of. A score of 1 is the best value when the

eigenvector is normalized.

3.4.2.3 Experimental Results
Some of the GO annotations with the lowest p-values exhibited by the methods are

selected at random and compared for the five different datasets given in Table 3.2.

We present the average enrichment scores of all the modules extracted by each

module in Fig. 3.4. Functional enrichment analysis reveals that AutoSOME obtains

lower average p-values compared to WGCNA and FUMET for all datasets except

dataset 3. FUMET performs better than the other two for dataset 3.

Topological validations from TopoGSA are shown in Table 3.4. Here, the term

uploaded gene set indicates the values obtained from the uploaded network, while

the row labeled 100 random simulations (mean) shows the range of values that are

correct that were retrieved from known pathways or networks that incorporate the

list of genes uploaded. From the results, it is evident that FUMET outperforms all

the other methods in deriving biologically true subnetworks participating in a

network module.
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3.5 Conclusion and Future Scope

Many approaches have been developed to detect modules from gene co-expression

networks. Some methods use approaches based on graph theory to partition the

graph into subgraphs that are highly interconnected. Other methods require

biological information to produce more meaningful modules or use more than

one graph clustering algorithm in order to refine the modules. Biological modules

are overlapping in nature. A subset of gene may participate in multiple modules and

perform different biological functions. Traditional methods based on concepts of

hard computing are not effective in detecting overlapping network modules. Con-

ventional clustering techniques and their variants are not suitable for nonexclusive

clustering that can detect overlapping structures. One of the important features of

clustering algorithm should also be able to detect clusters in the presence of

background noise. Module finding algorithm should be able to handle highly

connected and highly intersecting structures or even embedded structures that are

known to occur in most gene expression data.

Soft computing techniques such as fuzzy learning, rough set, and various

optimization techniques are potential alternatives that can handle the issues raised

above. However, very little work has been done to obtain biologically relevant

solutions to the network modules. Any future endeavor in applying soft computing

techniques in module extraction will be of great interest to the system biologists,

working toward unveiling cellular mechanism for biological activities including

diseases.
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A Hybridization of Artificial Bee Colony
with Swarming Approach of Bacterial
Foraging Optimization for Multiple
Sequence Alignment

4

R. Ranjani Rani and D. Ramyachitra

Abstract

A key and a primary phase for performing additional successive responsibilities

in bioinformatics such as critical residue identification, conserved motif

findings, phylogenetic analysis, predicting the secondary structure of protein,

protein function prediction, the classification of proteins, and much more can be

done by aligning multiple protein sequences termed as multiple sequence align-

ment (MSA). As a result of this, MSA expands as a vast active research field in

bioinformatics. Generally, MSA is the process of aligning three or more

sequences of DNA/nucleotides simultaneously. Nowadays the number of

sequences in databases is increasing expeditiously. Due to this, many methods

aroused drastically to implement the MSA problem within few years. Miserably

it is an NP-complete problem, still the biologically perfect alignment methods

are difficult to find. The objective of this chapter is to shed light on various recent

techniques used to solve MSA. And also, a hybridization of artificial bee colony

with swarming approach of bacterial foraging optimization (ABC-BFO) algo-

rithm has been proposed to solve the MSA problem with better objective values,

which leads to identify the biological features.
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4.1 Introduction

One among the significant approaches employed in computational biology and

bioinformatics is the alignment of biological sequences. Many tasks can be done

using the sequence alignment as a primary step. They aim to discover the structure,

function, and biological composition of organisms by using mathematics and

computer science.

The alignment of more than two DNA, RNA, or protein sequences of related

dimension is termed as multiple sequence alignment. It is mainly focused on

correlating the similarity among sequences and also recognizes the related homol-

ogous residues from the database (Purohit et al. 2003). Frequently it has been

employed to assess the 2D and 3D structure of protein, the prediction of functional

site, homology of sequence, phylogenetic analyses, protein motif and domain

similarity, polymerase chain reaction, etc. Often the unexpected patterns of DNA

or protein sequences are suspected due to their biological relevance. Repeating

patterns of any such sequences can be inspected in large databases (Raje et al.

2006). It is a problematic computational effort to evolve a precise multiple

sequence alignment for diverse protein sequences (Xu and Lei 2010). To solve

the MSA problem initially, the exact method known as dynamic programming is an

effective solution that can be resolved by separating a problem into overlapping

subproblems to detect an optimal alignment by comparing biological sequences. An

instance of the dynamic programming method is Needleman–Wunsch algorithm

which was utilized to align a pair of sequences. The drawback of this is to align only

a small number of amino acids (Feng et al. 1984). Nowadays, the MSA problem

grows considerably with their dimensions and quantity of sequences. The progres-

sive and iterative methods were introduced to overcome the drawbacks of the

dynamic programming method to solve the problem of aligning multiple sequences.

Although the progressive methods are effective and powerful, they do not assure

the optimum alignment because sequences are joined in an irregular direction in the

guide tree and cannot be altered (Phillips 2006; Thompson et al. 1999). Thus an

iterative method was established (Gotoh 1996) to bury the restrictions of the

progressive method to align, and later the preliminary alignment of the progressive

assembly of MSA is employed first and the iterative enrichment is accomplished.

Until the method does not take any additional improvement of alignments, this

process gets repeated. This chapter used the iterative method with stochastic

technique for aligning multiple sequences. The remaining sections of this chapter

are ordered as follows: Sect. 4.2 illustrates the numerous associated tasks for

solving MSA. Section 4.3 describes approaches of MSA; multi-objective-based

optimization and steps for the projected hybrid ABC-BFO method for MSA are also

explained. Section 4.4 investigates the experiments employed on diverse datasets

and compared the outcomes with existing approaches that results in multiple

sequence alignment. Section 4.5 displays the implementation and discussion of

MSA results. Finally, Sect. 4.6 discusses the conclusion and suggests for an

upcoming enrichment.
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4.2 Literature Review

Most of the aligners of protein sequence utilize iterative and progressive

approaches for alignment. Some of them are ClustalW – graphical user interface,

rendition of ClustalW is the Clustal-X, Match-Box, DIALIGN, T-Coffee, MUS-

CLE, M-Coffee, and Clustal Omega. And the modern formation of MSA integrates

the constraint-based approach into progressive methods especially COBALT

(Notredame 2002).

Initially, the alignment based on consistency approach will bind the information

that is restricted within the sections which constantly aligned between pairwise

alignments, and then it built an alignment of multiple sequences (Ebert and Brutlag

2006). Some common examples are MAFFT, ProbCons, Kalign, and Probalign

(Notredame 2002). Align-m is used to align conflicting sequences and yield the

outcomes in optimal alignment that integrates a nonprogressive local alignment

method (Walle et al. 2004).

A probabilistic method of aligning RNA, DNA, and protein sequences is accom-

plished using PRANK (Loytynoja and Goldman 2005), and it is projected for

aligning similar sequences. The GUI form of PRANK method is PRANKSTER.

To obtain numerous diverse alignment results of the same set of residues, the

consensus approach of alignment is accomplished to discover the optimal solution

like M-Coffee and MergeAlign (Collingridge and Kelly 2012). ClonAlign

employed a new iterative method (Layeb and Deneche 2007), while PicXAA

(Sahraeian and Yoon 2010) employed both consistency- and iterative-based

sequence alignment.

The profile Hidden Markov model (HMM) can incorporate the probabilistic

pattern of sequence profiles. Thus, rather than using typical profiles in iterative and

progressive sequence alignments, the HMM can be employed. Some of the

examples are MUMMALS, FSA, and MSAProbs (Notredame 2002). HAlign

(Zou et al. 2015) is a fast sequence alignment method based on center star strategy

for aligning RNA and DNA sequences. Two software tools are developed which

engaged trie trees method to speed up the center star MSA approach. Parallelism

was implemented using Hadoop platform to tackle the larger datasets which in

result turns to reduce the running time complexity.

Recently, the magnitude and dimension of multiple sequence alignment problem

have enlarged in enormous volume. A remarkable proficient approach termed as

stochastic optimization is used to handle the above restriction of MSA. The

outstanding methods of stochastic optimization are simulated annealing, genetic

algorithm, Gibbs sampling, and other evolutionary algorithms that are employed for

the purpose of solving the problem of MSA (Bucak and Uslan 2011). Various

optimization algorithm concepts for aligning multiple sequences are discussed

below.
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4.2.1 Genetic Algorithm (GA)

The genetic algorithm is an optimization approach which gets inspired by the

biological systems through evolution. Chromosomes is a set of string comprises

of a set of elements called genes which is the solution for the given problem which

holds the values for optimization variables. SAGA defined as sequence alignment

by genetic algorithm describes the approach for aligning multiple sequences using

genetic algorithm (Notredame and Higgins 1996). It utilizes 22 various parameters

for mutating or joining the alignment among the generations and is controlled by an

automatic scheduling system. It attains an optimal solution and performs better than

other methods like MSA and ClustalW. Also, it compared the results with known

reference sequences of tertiary structure. The method portrayed in SAGA has led to

noticeable attention toward the evolutionary computation of MSA.

Recently the more complex biological functions such as non-gaps percentage,

structural information, and conserved blocks findings are included as objectives for

MSA (Ortuno et al. 2013). The non-dominated sorting genetic algorithm is used

along with multi-objective algorithm, which outperforms other approaches such as

SAGA, ClustalW, MULTIALIGN, DIALIGN, etc. An innovative genetic algorithm

using multi-objective has been used for aligning multiple sequences (Kaya et al.

2016). Within a single iteration, a huge amount of trade-off alignments has been

achieved with contrary objective functions such as increasing the similarity value

and decreasing the alignment length. Many of the MSA solutions used by genetic

algorithm have intricate problem specifications and time-exhausting mutation

operators. Thus (Narimani et al. 2013) a novel technique of initialization of

population, straightforward mutation operator, and recombination operators are

used to align the multiple sequences and proved to achieve good accuracy and

also less computational complexity when compared to other existing methods. All

the methods using genetic algorithm are refined easily, but the drawing of genetic

operators and selection of parameter constraints is intricate which affects the

solution.

4.2.2 Particle Swarm Optimization (PSO)

The PSO algorithm was developed by Kennedy and Eberhart which is inspired by

the behavior of flock of birds migrating to any unknown destination. It is very

famous for its fast convergence of optimal solution and simple implementation with

few parameter selections. To undertake the MSA problem, a hybridization of PSO

algorithm is used to train Hidden Markov model to align the protein sequences

which yields better alignment results (Rasmussen and Krink 2003). Then a new

concept of chaotic optimization method is adopted for MSA using PSO algorithm.

The chaotic variables take the values between 0 and 1 where various particles are

dispersed consistently in the solution space. Also, the chaotic exploration and the

variety of population have been improved by using logistic mapping function (Lei

et al. 2009).
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A novel variant of PSO algorithm called random drift PSO is used along with

Hidden Markov model to train and solve the MSA problem (Sun et al. 2014). The

overall search capacity of the algorithm and also the performance of algorithm have

been increased by including the diversity control method and diversity-guided

search. A new fragmented protein sequence alignment is implemented by using

two-layer particle swarm optimization technique. This method splits the longer

datasets into number of fragments, and two-layer PSO algorithm is implemented to

each fragment which increased the diversity of particles and can deal with uncon-

strained optimization problems (Moustafa et al. 2016).

4.2.3 Artificial Bee Colony (ABC)

The MSA problem is solved by using ABC algorithm which is inspired by an

intellectual foraging behavior of honey bees (Lei et al. 2010). Still when using few

evolutionary algorithms for MSA, it finds get trapped by local optima. The preci-

sion of MSA is measured by using the sum-of-pairs, over other techniques by

determining the food source to the neighborhood. An improved method which

integrates the artificial bee colony and simulated annealing (ABC-SA) is projected

to avoid the local optimal sliding by discovering Metropolis acceptance eligibility

into the process of searching food. This made the method to direct toward the global

optimal result (Xu and Lei 2010).

A discrete ABC algorithm has been implemented (Aslan and Ozturk 2016) to

solve MSA by modifying the onlooker and employed bee phase which ends in a

good fine-tuned alignment. A hybridization of multi-objective for MSA using ABC

and Kalign2 (Largo et al. 2016) was done. The affine gap penalty, weighted sum-of-

pairs, and total column score are used to evaluate the stability of the approach. Due

to the running time consumption of alignment process for large sets of biological

data, a massively parallel MSA based on ABC algorithm is implemented on

supercomputer Blue Gene/P (Borovska et al. 2013) which is highly scalable in

nature.

4.2.4 Ant Colony Optimization (ACO)

The ACO was evolved (Dorigo and Blum 2005) by getting motivated by the

common behavior of ants which can locate the shortened route between their nest

shell and target food source. The ambiguous communication between the ants is

performed through a substance called pheromone, which the ants drop whenever

they travel from one place to another.

The multiple sequence alignment has also been implemented using ant colony

optimization algorithm (Moses and Johnson 2003) which is inspired by the way of

ants’ organization in search of food. They consume more time for aligning large

number of sequences. Thus, the ACO algorithm is integrated with divide and

conquer method to align the MSA (Chen et al. 2006). This method bisects the set
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of sequences vertically in a recursive manner using the ACO technique. This avoids

the local optima and reduces the execution time for aligning and achieves a quality

alignment. Later the integration of ACO with genetic algorithm is implemented for

multiple sequence alignment (Lee et al. 2008) by which the local search has been

incorporated using genetic algorithm and alignment is by ACO. So, this provides

much diversity of alignment results in avoidance of local optima. Instead of

considering an optimization problem of MSA (Guinand and Pigne 2007), a novel

idea of constructing and maintaining a structure in a set of biological sequences is

done using MSA. The structures are constructed by ant-based algorithm, and the

blocks are obtained as conserved motifs. This result is compared with the best-

known MSA tool ClustalW, and ant-based model algorithm outperforms the

ClustalW.

4.2.5 Bacterial Foraging Optimization (BFO)

The principle behind the bacterial foraging optimization includes the chemotaxis,

reproduction, and elimination dispersal, which is used in multiple sequence align-

ment problems which explores the space and leads to global optimization

(Gheraibia and Moussaoui 2011). A BFO algorithm has been integrated with

Tabu Search (TS-BFO) for discovering motifs in a sequence. It alters the BFO

algorithm by introducing the self-control multilength chemotactic step and Rao

metric mechanisms which produces optimal solutions (Shao and Chen 2009). A

multi-objective-based BFO method was employed for the MSA problem and

detected the conserved regions as a biological outcome with high accuracy (Rani

and Ramyachitra 2016).

4.2.6 Bat and Firefly Optimization

The bat algorithm was inspired by echolocation behavior of microbats with

fluctuating pulse rates of radiation and intensity. The firefly algorithm is a

landscape-stimulated, metaheuristic algorithm that gets its inspiration from the

common behavior of fireflies in the sky (Yang 2009, 2010). In previous works,

the Hidden Markov model is trained by using a new PSO variant. Now to get

optimal solution, the Hidden Markov model is trained by two various optimization

algorithms, namely, bat optimization and firefly optimization algorithms. Two

techniques, namely, random drift bat optimization and random drift firefly optimi-

zation algorithms with the diversity-guided search, have fine adjustments of

parameters in this technique and achieved an efficient solution with rate effective

method (Priyanka and Sathiyakumari 2015).
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4.2.7 Cuckoo Search

The cuckoo search is a new metaheuristic method which gets encouraged by the

cuckoo bird by laying eggs in the shells of host birds (Yang and Deb 2009). A

multiple sequence alignment can be solved by a novel quantum cuckoo search

technique (Kartous et al. 2014). It integrates global and local pairwise alignments in

a randomized progressive method and achieves a feasibility solution effectively.

Multiple sequence alignment has been achieved in a good score when compared to

ClustalW by implementing the hybridization of genetic algorithm and cuckoo

search algorithm (Srhan and Daoud 2013). The total column score has been

assessed, and this method result outperforms the ClustalW.

4.2.8 Frog Leap Algorithm

A shuffled frog leap algorithm was developed for solving the combinatorial opti-

mization problem (Eusuff et al. 2006). There considers being a cluster of frogs

hopping in marshland. With the mass numbers of water lilies present at distinct

locations, the frogs interact and jump one by one to seek the attention on discover-

ing the lily with the extreme quantity of nutrition. It was implemented for multi-

objective metaheuristic approach for multiple sequence alignment problems. The

hybrid multi-objective memetic metaheuristics for multiple sequence alignment

algorithm provide an efficient accuracy for low similarity sequences against

16 major MSA tools and proved to be effective (Largo et al. 2015). The motif

discovery problem has been addressed as a hybridization of multi-objective method

with shuffled frog leap algorithm (Alvarez et al. 2015).

4.2.9 Multiple Sequence Alignment Using Fuzzy Logic

Fuzzy logic is an outline of numerous-valued logic which is a superset of traditional

logic that has prolonged to manipulate the theory of incomplete truth. Lotfi Zadeh

introduced the phrase “fuzzy logic,” and it has been used in many fields from expert

systems to artificial intelligence. This logic accepts the uncertainty or errors in

subsequence matching. A prototype for a fuzzy assembler has been developed using

fuzzy logic for matching the subsequences approximately (Nasser et al. 2007). It is

created to work with low similarity sequences.

A fuzzy inference method is used along with quality information for DNA

alignment. An exact DNA alignment can be obtained for the lowest similarity

sequences by improving the traditional approaches using quality information.

Alignment scores are calculated using mapping score parameters which are

dynamically tuned by the fuzzy logic system. From the experimental results, it is

proved that the alignment using the fuzzy logic method yields better alignment

score compared to traditional methods (Kim et al. 2008).
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Multiple sequence alignment can be employed using fuzzy logic concept, and

the similarities of the sequences are computed depending on the fuzzy parameters.

Dynamic programming approach has been used to align sequences. The SinicView

tool has been used to judge performance measures. The results revealed that

approaches based on fuzzy logic give better matching alignment score (Gill and

Singh 2011a, b).

Gill and Singh (2011a, b) compared two different approaches such as Boolean

algebra and fuzzy logic for aligning multiple sequences. Final outcomes indicate

that the fuzzy logic method outperforms the Boolean method when the number and

length of sequences are large. When the dimension of protein sequences is less than

or equivalent to 600 bp, the Boolean approach is resourceful in nature.

Many tools contribute partial optimal solutions by concentrating only on one

specific biological feature for MSA which is not an effective way to find optimal

alignment. Thus, the multi-objective optimization concept evolved. A trade-off or

non-dominated solution has been created which encompasses a firm of

compromised solutions by communicating among these conflicting objectives.

The multi-objective optimization method does not deliver a solitary optimal solu-

tion (Chow et al. 2014). Recently, numerous tasks have been executed regarding

evolutionary algorithms depending on the multi-objectives (Abbasi et al. 2015;

Soto and Becerra 2014). NSGA-II, MO-SAStrE, MSAGMOGA, and MOMSA are

some multi-objective-based sequence alignment techniques (Notredame 2002). To

attain precise alignments, the integration of protein structural knowledge can be

acquired along with the protein sequence. For example, Ortuno et al. (2013)

developed MO-SAStrE, and Sullivan et al. (2004) developed 3DCoffee.

MSA is a method to analyze the biological sequences which carry out optimal

multiple sequence alignment beneath the performance measures such as sum-of-

pairs (SP) and total column score (TC). An assembly of similarity of protein

sequence, the penalty of a gap inserted, and the proportion of non-gap in protein

sequences are used as the multi-objectives to get a trade-off or non-dominated

optimal solution.

4.3 Methodology

The MSA problems are a more common form of distinctive alignment between

more than three sequences. Let the input sequence be seq1,seq2,. . .. . .. . . . . seqnwith
at least three sequences in quantity. The alphabet set can be denoted as Σ, and to

make equal length of sequences to align, the gap (“�”) is included. The MSA S is

determined as n dimensional character array against the alphabet where Σ
0 ¼ Σ [

{�}. When an input protein sequence is given, it stores as alignment array S that

consists of n rows, respectively, and every row of Ai is the alignment for sequence

seqi (Abbasi et al. 2015).
The objective of MSA is to align sequences of RNA, DNA, or amino acid as a

result of attaining optimal alignment outcomes. The similarity of sequences is

computed to the corresponding amino acids and penalties that are calculated for
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the existence of a gap or mismatched amino acids. The substitution matrix score is

the universally used scoring scheme to assess the amino acid similarity. A matrix

constructed for nucleotides is 4�4 and for amino acids 20�20 which signifies all

probable conversions among the DNA and proteins. PAM and BLOSUM are the

two frequently used matrices. The weak similarity of protein alignments can be

identified by calculating these matrix scores (Henikoff and Henikoff 1992).

4.3.1 Optimizing the Multi-objectives

The fitness score is 1:1 direct mapping of objectives (Gondro and Kinghorn 2007)

(the objective function’s values are straightly allocated as the fitness values of the

candidate alignment). This chapter includes three objectives to detect the optimal

solution for MSA, and the objectives are increase sequence similarity (S), decrease
penalty of gap (S), and increase percentage of non-gap (S).

4.3.1.1 Sequence Similarity
Primarily, the computation of the position weight matrix for the sequence align-

ment is produced from the outcome of aligned result. The domination score (dos) of

the foremost residues in each column is recognized as follows:

dos seqð Þ ¼ maxn f n; seqð Þf g, seq ¼ 1, 2, 3 . . . l ð4:1Þ
where f(n, seq) is the score of nucleotide or amino acid n on the column seq in the

position weight matrix against the existence of gaps, l is the dimension of the

alignment of sequence, and dos(seq) is the dominant score of the leading residue on

column seq.
The sequence similarity of the alignment S is determined as the moderate of the

dominant score of all columns in the position weight matrix. It is also conveyed as

follows:

Similarity Sð Þ ¼ Σ l
m¼1dos seqð Þ

l
ð4:2Þ

If the score of similarity is closer to 1, then the highest probability of the

candidate alignment S is revealed as the finest alignment (Kaya et al. 2014).

4.3.1.2 Penalty of a Gap
The aligning of related sections of residues into a good alignment can be done using

a fake inclusion and exclusion of an empty object into a sequence called gap. A gap

inserted in identical columns is nonacceptable which has no sense. Numerous

categories of gap penalty values are constant gap penalty, linear gap penalty,

convex gap penalty, affine gap penalty, and variable gap penalty. In this chapter,

the affine gap and the variable gap penalty are employed for MSA.
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Affine Gap Penalty
Affine gap penalty is used to score the insertions and deletions that penalize the gap

at one time for opening and then equivalently to its length. Gap opening and gap

extension are the two constraints employed in affine gap penalty (Altschul 1998).

The formulation of affine gap penalty in the pairwise alignment of m and n rows is

well-defined by

Gapst að Þ ¼ Gapopen þ Gapextend len� 1ð Þ, where len > 1 ð4:3Þ

Gapopen – rate of opening a gap

Gapextend – rate of expanding a gap

len – span of gap length

The goal of the affine gap is to cluster the gaps that diminish the penalty scores.

Variable Gap Penalty
The common procedure of an affine gap penalty used for MSA is not suitable. The

penalty value of a gap is determinant by using the affine scores as fixed and used

correspondingly in all spots. In variable gap penalty, the scores of the gap vary

according to the amino acids when employing a new position-specific gap penalty

to detect the optimal solution. ClustalW and MAFFT methods applied this kind of

penalty for the gap.

The foremost gap penalties are computed depending on the static scores fixed by

end users. Mainly, two frequently used penalties of the gap are presented.

The gap opening penalty (GO) is referred as the rate of opening a novel gap at

any dimension, and the rate of each single piece in a gap is indicated by gap

extension penalty (GE).

The penalty of opening a gap is recomputed depending on the following aspects:

(i) based on the matrix weight, (ii) based on the protein sequence similarity, and (iii)

based on the dimension of the protein sequences (Thompson et al. 1994; Hung et al.

2008):

GO ! GOþ log min A;Bð Þ½ �f g∗ cð Þ∗ dð Þ ð4:4Þ
where A and B are the distances of two sequences, c is the residue divergence

average score, and d is the scaling feature percent of similar identity.

The penalty of extending a gap is recomputed depending on features such as:

(i) Based on the variance in the distances of the sequences, and they are depicted as

GE ! GE∗ 1:0 þ jlogA=Bj½ � ð4:5Þ
where A and B are the distances of the two protein sequences and GE is the score of

extending a gap.
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(ii) Position-specific gap penalties.

(iii) Penalties of the lowered gap at prevailing gaps, and they are depicted by

Eq. (4.6) as

GOTable ! GOTable∗0:3∗ Nsð Þ ð4:6Þ
where Ns is the total quantity of sequences without a gap; GOTable is the table for

the penalty of a gap opening which documents the forfeit along the distance of

protein sequences i, for every couple of i and j protein sequences; and GETable is

the table for the penalty of gap extension.

(iv) Increased penalties of the gap close to standing gaps and they are depicted as

GOTable ! GOTable∗ 2þ 8� radius from thegapð Þ∗2½ �=8f g ð4:7Þ

(v) Diminished penalties of the gap in hydrophilic radius is depicted as

GOTable ! GOTable∗0:5 ð4:8Þ

(vi) Penalties for residue-specific is depicted as

GOTable ¼ GOTable∗T Sx½ � ð4:9Þ
where Sx is the value of amino acid situated on the xth location of sequence S in the
amino acid table.

Finally, the GO and GE are calculated based on Eqs. (4.6), (4.7), (4.8), and (4.9):

GO c; dð Þ ¼ GOTable cð Þ þ GOTable dð Þ ð4:10Þ
GE c; dð Þ ¼ GETable dð Þ ð4:11Þ

Depending on the sequences given as input, the variable gap penalty is injected

by the above aspects.

The combination of an optimization of objective functions is generally utilized

to convey the MSA problem. The hybridization of ABC and BFO is proposed to

find the MSA alignment and obtain accurate results (Fig. 4.1). Figure 4.5 shows the

graphical abstract of this work.
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4.3.2 Hybrid of ABC-BFO

Artificial bee colony is an efficient swarm optimization algorithm when compared

to other swarm intelligence methods such as ACO and PSO. It has very limited

control parameters to optimize, and it has a high universal search capacity and an

easy execution. Through the exploration of the solutions, simultaneously it is very

weak in exploitation of solutions. This happens because of ineffectiveness of the

local search of solution space. This in case gives an issue to get optimal solution in

few circumstances. The hybridization of ABC algorithm gives better results in all

types of problems.

On the divergent case, the bacterial foraging optimization has a slow conver-

gence of the solution, but it has a good capacity to achieve the global optimum

solution. The swarming approach of BFO technique makes the bacteria to assemble

into a group of clusters and travel in a concentric pattern with high density of

bacteria. By this, the bacteria which reached the best route of the food source must

let other bacteria to travel against the same direction. Thus, in turn can make other

bacteria to reach the destination more quickly and accurately (Li et al. 2015).

To improve the efficiency of the MSA solution, a hybrid of ABC and BFO is

implemented. The swarming approach of BFO is employed within the employed

bee phase and onlooker bee phase of the artificial bee colony method. The steps for

hybrid ABC-BFO algorithm are given (Figs. 4.2 and 4.3).

Fig. 4.1 Graphical representation of hybrid of ABC-BFO
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1.   Input the set of unaligned sequences of population of solutions i=1,2,3…Sn.

2.   Initialize the variables and randomize positions.
3.   while ((Iterations < MaximumCycle))
4.   *Employed BeesPhase*
5.   FOR(i=1:(Foodelement)) 
6.   create a new food target; 
7.   compute fitness value of the new food target; 
8.   Swarming approach; Greedy selection process; 
9.   end for : 
10. Calculate the probability Pi;
11. *Onlooker BeesPhase*
12. FOR(i=1:(Foodelement)) 
13. Parameter Pi is determined arbitrarily; 
14. Onlooker bees locate food sources depending on Pi; 
15. create a new food target; 
16. assess the fitness value of the new food target; 
17. Swarming approach; Greedy selection process;
18. end for 
19. *Scout BeePhase*
20. IF(any employed bee becomes scout bee)
21. Parameter Pi is determined arbitrarily; 
22. The scout bees locate food sources depending on Pi;
23. end if
24. Terminate the process only if there is a neglected solution and bacterial Chemotaic Nc is
      employed with population of Sn bacteria in multimodal plane for feasible solution in an
      iteration and Reproduce Nre,    
25. Reproduce the Nre, the bacteria which hold healthy solution and now bacteria will scatter 
      to new environment.  
26. estimate the distance dc as the bacteria will converge to the certain place as its final 
      cluster centers .otherwise, go to step 4
27. Memorize the best solution; 
28. Iteration=Iteration+1; 
29. end while

Fig. 4.2 Steps for hybrid ABC-BFO algorithm

1.  Initialize variables 
2.  Let v = 0; 
3.  While v < Ns 
4.  IF(the mutant solution is healthier than the current Solution) 
5.  Revise the solution by the healthier mutant solution;
6.  END IF
7.  Let v = v + 1;
8.  Else,
9.   let v = Ns.

Fig. 4.3 Steps for BFO

swarming approach
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4.4 Results

The proposed hybrid algorithm has been experimented to report the difficulties

stumble upon when aligning sequences by using benchmark BAliBASE datasets

(Bahr et al. 2001) and the PDB database. It has eminent standard sequences to

classify the merits and demerits of several alignment techniques to examine the

efficiency and accuracy of the algorithm. In addition, the proficiency of the pro-

posed (hybrid ABC-BFO) method has been verified as best by correlating with

various MSA methods, namely, GA, ABC, ACO, and PSO, and existing online

tools specifically Kalign, MUSCLE, Clustal Omega, and T-COFFEE. Here the

multi-objective optimization technique is employed for the MSA problem. The

maximization of SP and TCS scores directs to discover the best optimal solution.

The objectives, such as sequence similarity, the penalty of a gap, and the proportion

of non-gap, are also considered for optimal solution. The datasets used for this

chapter are displayed in Table 4.1.

The datasets are collected from the benchmark database named BAliBASE 3.0

and Protein Data Bank (PDB). The BAliBASE database contains manually

discriminated protein sequences specially created for the assessment and compari-

son of numerous MSA methods. The database is separated into five different

reference sets. Reference 1 consists of RV11 and RV12 subsets. RV11 has <25%

identity of sequences and RV12 has 20–40% identity of sequences. Reference 2 has

Table 4.1 Datasets used for this experimental work

Dataset

Classification

name

Total

sequence

number

Shortest

sequence

length

Longest

sequence

length

Alignment

length

3ZNG Transcription/
DNA

18 40 268 281

5JA1 Ligase 17 104 1295 1360

5AE6 Hydrolase 36 56 767 805

4ZHQ Structural
protein

4 132 451 474

4N9F Viral protein 15 20 311 327

4V4B Ribosome 26 119 842 884

1M9N Transferase
hydrolase

11 464 613 650

2TGT Hydrolase
zymogen

8 223 229 240

4X51 Cytokine 8 151 162 170

5JTW Immune
system

20 56 656 688

2YM9 Cell invasion 10 233 346 363

2VK9 Toxin 4 153 551 579

5GQH Hydrolase
inhibitor

17 99 1090 1144
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highly different orphan sequences. Reference 3 has subgroups with less than 25% of

the residue identity among the subgroups itself. Reference 4 has N-/C-terminal

sequences, and finally Reference 5 has inner insertions (Thompson et al. 2005).

The most generally exploited scoring measures for MSA are sum-of-pairs

(SP) and total column score (TCS). SP is represented as the quantity of precisely

aligned residues against the total quantity of amino acid pairs in resource alignment.

Study the instance of trial alignment with magnitude P*Q and a resource

alignment of magnitude P*Qr, where P is the total quantity of protein sequences

and Q and Qr are the sum of the quantity of columns in the trial and resource

alignment (Thompson et al. 1999). Here Aj1, Aj2. . . . . AjX, is the jth column in the

alignment; Vjab¼ 1 is defined for each pair of residues Aja and Ajb only if Aja and Ajb

are associated with one another in the resource alignment; else Vjab ¼ 0. The value

of SPj for the jth column will be the sum of Vjab for entire pairs of amino acids in

this column:

SPj ¼ ΣP
a¼1,a6¼bΣ

P
b¼1Vjab ð4:12Þ

Similarly, SPrj is the score SPj for the jth column in the resource alignment.

The SP score of the trial alignment is

SP ¼ ΣQ
j¼1SPj=ΣQr

j¼1SPrj ð4:13Þ

TCS is represented as the quantity of precisely associated columns against the

overall quantity of columns in the resource alignment.

Study the instance of trial alignment with magnitude P � Q and a resource

alignment of magnitude P � Qr, where P is the total quantity of sequences and

Q and Qr are the total quantity of columns in the trial and resource alignment. At

this time, we describe the value of Colj¼1 if every residue is aligned in the resource

alignment; otherwise Colj ¼ 0 (Thompson et al. 1999).

The TCS value of test alignment is

TCS ¼ ΣQ
j¼1Colj=Q ð4:14Þ

Universally, the size of the preliminary population used as per literature is

200 individuals. The end point of the algorithm is established, if the best result

provided in all generations persists to be similar for 100 following generations of

the algorithm or the greatest quantity of generations acquired. Depending on the

experimental results, the gap percentage initialization was adjusted. Among several

percentage values, it was identified that 5% of the gap offered improved outcomes,

and henceforth it was allocated.

In Table 4.2, the average outcomes for 5% of the gap score is shown. Here two

sets of empirical results were attained where the initial set is to exhibit the standards

of objective: sequence similarity, the penalty of a gap, and the proportion of

non-gap for six methods (GA, ACO, ABC, PSO, BFO, and the proposed hybrid
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Table 4.2 Comparisons of multi-objectives of BAliBASE 3.0 datasets using various algorithms

Comparisons of multi-objectives using gap penalty

Dataset Algorithms

Similarity Gap penalty

Non-gap percentage

(NGP)

Affine

gap

Variable

gap

Affine

gap

Variable

gap

3ZNG GA 0.6382 0.6721 2681 2691 65

ACO 0.6472 0.6835 2575 2601 67

ABC 0.6116 0.6892 2553 2481 62

PSO 0.6284 0.7183 2532 2476 64

BFO 0.7426 0.7335 2416 2264 68

ABC-BFO 0.7618 0.7694 2174 2083 72

5JA1 GA 0.1583 0.1754 11,982 11,679 22

ACO 0.1762 0.1893 11,539 11,539 31

ABC 0.2063 0.2317 11,072 11,284 34

PSO 0.2462 0.2653 11,001 11,174 35

BFO 0.2964 0.2381 10,976 10,783 40

ABC-BFO 0.3157 0.3471 10,357 10,289 55

5AE6 GA 0.2042 0.2163 9962 9987 36

ACO 0.2474 0.2281 9782 9698 36

ABC 0.2671 0.2759 9709 9629 49

PSO 0.2532 0.2809 9656 9602 58

BFO 0.2579 0.2881 9589 9610 69

ABC-BFO 0.2971 0.3182 9477 9481 75

4ZHQ GA 0.5952 0.6872 2923 2781 57

ACO 0.6289 0.6371 2871 2699 56

ABC 0.6419 0.6532 2791 2518 60

PSO 0.6587 0.6643 2801 2621 65

BFO 0.6687 0.6699 2819 2681 79

ABC-BFO 0.6701 0.6878 2687 2591 72

4N9F GA 0.6478 0.6592 2567 2481 62

ACO 0.6681 0.6956 2681 2571 60

ABC 0.6761 0.6853 2419 2431 66

PSO 0.6682 0.6911 2408 2418 67

BFO 0.6812 0.6928 2395 2342 64

ABC-BFO 0.6807 0.7041 2228 2298 68

4V4B GA 0.2571 0.2692 10,642 10,541 28

ACO 0.2781 0.2782 10,521 10,511 26

ABC 0.2861 0.2817 10,482 10,412 29

PSO 0.2892 0.2809 10,390 10,365 28

BFO 0.2961 0.3082 10,310 10,302 36

ABC-BFO 0.3071 0.3412 10,231 10,210 58

(continued)
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Table 4.2 (continued)

Comparisons of multi-objectives using gap penalty

Dataset Algorithms

Similarity Gap penalty

Non-gap percentage

(NGP)

Affine

gap

Variable

gap

Affine

gap

Variable

gap

1M9N GA 0.7843 0.8271 1073 1067 69

ACO 0.7968 0.8290 1058 1056 72

ABC 0.8189 0.8476 1067 1062 71

PSO 0.8352 0.8481 1052 1038 73

BFO 0.8482 0.8499 1019 1005 78

ABC-BFO 0.8742 0.8981 973 968 83

2TGT GA 0.8952 0.9271 390 376 80

ACO 0.8992 0.9341 387 365 85

ABC 0.9052 0.9549 368 352 87

PSO 0.9282 0.9599 356 342 87

BFO 0.9371 0.9596 372 349 88

ABC-BFO 0.9659 0.9745 321 310 90

4X51 GA 0.7952 0.8419 628 621 78

ACO 0.8173 0.8438 619 598 75

ABC 0.8379 0.8536 601 629 79

PSO 0.8472 0.8691 596 623 78

BFO 0.8567 0.8536 589 578 80

ABC-BFO 0.8686 0.8974 547 538 85

5JTW GA 0.3173 0.3372 8963 8165 32

ACO 0.3912 0.3892 8481 7936 39

ABC 0.4262 0.4572 7972 7892 43

PSO 0.4571 0.4601 7765 7698 54

BFO 0.4973 0.5082 7221 7681 65

ABC-BFO 0.5281 0.5629 6964 7018 76

2YM9 GA 0.4387 0.4672 2653 2573 72

ACO 0.5987 0.5193 2590 2382 74

ABC 0.5482 0.5481 2418 2397 72

PSO 0.5678 0.5289 2381 2316 75

BFO 0.5872 0.5732 2235 2214 78

ABC-BFO 0.6052 0.6391 2183 2093 84

2VK9 GA 0.5273 0.5863 6732 6482 53

ACO 0.5985 0.6128 6539 6322 58

ABC 0.6481 0.6372 6318 6281 60

PSO 0.6598 0.6538 6276 6189 63

BFO 0.6742 0.6981 6081 6023 67

ABC-BFO 0.6982 0.7091 5731 5719 74

(continued)
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ABC-BFO). And the final set is to estimate performance metrics such as SP and

TCS scores. The projected method and the remaining existing methods have been

implemented for 30 runs, and the average outcomes are demonstrated.

The graph representation of Table 4.2 has been displayed in Figs. 4.4, 4.5, and

4.6. Figure 4.4 shows the average comparison of similarity values with respect to

the gap penalty. Figure 4.5 depicts the average comparison of gap penalty values,

and finally Fig. 4.6 represents the average non-gap percentage values for the given

populations of dataset.

In Table 4.3, performance measures such as SP and TCS for BAliBASE datasets

are estimated for different algorithms and various tools. From those results, the

confirmation of high performance of hybrid ABC-BFO algorithm when compared

to other existing algorithms is displayed. Our algorithm works equally well against

other standard existing tools for MSA. The graph representation of the average

performance measures of BAliBASE datasets is displayed in Fig. 4.7.

Table 4.2 (continued)

Comparisons of multi-objectives using gap penalty

Dataset Algorithms

Similarity Gap penalty

Non-gap percentage

(NGP)

Affine

gap

Variable

gap

Affine

gap

Variable

gap

5GQH GA 0.1972 0.2153 10,432 10,328 24

ACO 0.2371 0.2461 10,382 10,271 25

ABC 0.2561 0.2567 10,251 10,187 35

PSO 0.2789 0.2861 10,178 10,091 50

BFO 0.2918 0.3171 10,981 10,013 57

ABC-BFO 0.3451 0.3221 10,003 9993 60
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Fig. 4.4 Comparison of average similarity values with respect to gap penalty
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4.4.1 Applications of MSA

Multiple sequence alignment is the primary tool in almost every application of

bioinformatics, such as homologous protein primers (Fredslund et al. 2005), struc-

ture prediction (Cuff and Barton 2000; Chu et al. 2006), domain identification,

conserved region identification (Hertz and Stormo 1999), protein function predic-

tion (Pierri et al. 2010), and phylogenetic tree analysis (Potter 2008). The phyloge-

netic trees are constructed using subunits of sequences, which is a stimulating

observation on the evolution of organisms (Lal et al. 2008, 2015).
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4.4.2 Statistical Analysis

The concluding phase produces the statistical significance of the proposed algo-

rithm which is estimated using nonparametric test, namely, Friedman rank test,

among every pair of techniques by utilizing a substantial confidence level of 5% (P-
score < 0.05) (Largo et al. 2016). Each entry in Table 4.4 consists of P-score
allocated to the difference between the pair of approaches using Friedman rank test.

The right upper edge of the matrix is attained from SP value, and the left lower edge

is attained from TCS value. From Table 4.4, it is detected that ABC-BFO attains

statistically noteworthy accuracy enhancement against all other well-known

techniques. The P-scores lower than 0.05 are determined as an extremely signifi-

cant method; contrarily larger than 0.05 are determined as an insignificant method.

4.5 Implementation and Discussion

Even now the computation of MSA with immense accuracy is a challenging task. In

this chapter, to solve the MSA problem, multi-objective-based hybridization of

ABC-BFO technique is employed. A remarkable enhancement in the alignment

accuracy of the ABC-BFO method over the other several well-known methods has

been proved. The objectives, namely, sequence similarity, the penalty of a gap, and

the proportion of non-gap, are also examined for optimal solution.

To achieve a few invaluable conclusions from the proposed method, a confident

level of statistical significance was measured. The application was deployed in

2.00 GHz Intel CPU with 1GB of memory and running in Windows 8.1. While

raising the number of iterations of execution, the sequence similarity value rises up,

and the penalty value of a gap declines progressively. Correspondingly, the
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alignment accuracy declined slowly, when the percentage of a gap rises; concur-

rently the quantity of gaps also increased.

Besides, the accuracy of multiple sequence alignment is entirely reliant on input

sequence characters, and also the performance alignment algorithm is dependent on

the features of the sequences to be associated. For instance, 5JA1 and 5GQH data

has a huge difference between the smallest and the largest length of the sequence

and also the total number of sequences are more, which leads to low similarity and

accuracy. Also, 2TGT dataset has less number of protein sequences, and difference

between the smallest and longest sequence is very low that stimulates to high

sequence similarity and accuracy. The accuracy results of the best prominent

methods are matched or fall behind that of the proposed method’s accuracy. The

algorithm was tested by 500 numbers of generations and observed that after in the

average of 370th generation, the value of pareto optimal solution was commenced.

In the experiment, the entire performance metrics were oscillated at the time of the

first six execution runs, and in later runs, reliability was recognized. The average

scores of the first 30 runs of the proposed algorithm were displayed in Tables 4.2

and 4.3. In particular, the algorithm gets eliminated when the best value of pareto

solution originated in each generation is persistent for 100 uninterrupted iterations

or when the entire number of iterations touched its end. Here the proposed algo-

rithm is the hybridization of the optimization algorithm which leads to the popula-

tion creation and reproduction. That takes more computation time to display the

result of non-dominated optimal solution.

4.6 Conclusion

The alignment of multiple biological sequences derives a resolution for examining

the sequence similarity, features, and structure and the protein function of a novel-

discovered sequence. There should be an intermittent improvement in alignment

techniques as they play a central role in the analysis of huge data contributed by

high-throughput experiments and next-generation sequencing. By this, the next

stage of protein structure prediction, function prediction, can be accomplished

which leads to the drug design which is important. The proposed algorithm delivers

a promising outcome that can explore the biological sequence with high perfor-

mance and efficiency of merging artificial bee colony and the idea of the swarming

approach of bacterial foraging optimization algorithm to solve MSA. The multi-

objective optimization approach is utilized to determine the MSA problem by

increasing the sequence similarity and the proportion of non-gap scores and

decreasing the penalty of a gap which directs to the non-dominated optimal

4 A Hybridization of Artificial Bee Colony with Swarming Approach. . . 61



solution. Compared to other existing algorithms, the hybridization of ABC-BFO

gets better results. To correlate the connotation of the proposed algorithm with

other prevailing methods, the statistical measure is also computed. In the future, this

method can be prolonged or merged with any alternative evolutionary algorithm to

discover the best optimal alignments. To identify the most outstanding outcomes of

multiple sequence alignment and also to acquire additional biological insights,

many diverse objectives may be announced. Also, by employing this method, 2D

and 3D structure of a given protein can also be predicted.
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Construction of Gene Networks Using
Expression Profiles 5
Harun Pirim

Abstract

Large biological data sets require powerful tools such as co-expression network

construction for detailed analysis. Analyzing the gene co-expression data of a

species using a clustering method is the crucial step in order to mine the relevant

information to identify the key genes or the groups (modules) of key genes. In

other words, clustering the expression data helps identify the genes co-expressed

significantly in the species of interest. Similarly expressed genes may have a

common function; they may be residing in the same pathway, regulatory and

signaling mechanisms, while their products form complexes. Clusters of highly

interacting genes can be identified by construction and analysis of co-expression

networks. Furthermore, each cluster may be summarized using eigengene or a

hub gene. Network analysis can relate clusters to each other or to external

experiment traits. The network may also be employed in the calculation of

cluster membership quality measures. By the application of graph mining

algorithms, tight clusters of co-expressed genes might be discovered leading to

finding out new gene functions, revealing biomarkers and disease-related genes.

The chapter reviews the state-of-the-art gene co-expression network construc-

tion studies and discusses the recent applications while explaining the network

concepts related to the gene co-expression network analysis.
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5.1 Introduction

Modeling is a perception of reality. Mathematical models give us insights about the

way nature is working. Graph theory has unique tools to capture interesting features

of genome-level interactions and associations. Network modeling emerges as a

fruitful field and a fundamental tool to represent the interactions between biological

molecules/agents/objects. Network representation of biological systems or systems

biology enables and guides discoveries for disease mechanisms effecting prognosis,

epidemics, cancer therapies, revealing complicated biological processes and diag-

nosis among many others. In a way, biological network construction triggers

insights on how genetic blueprints with environmental factors characterize a living

system (Wang and Huang 2014). Network models involve many parameters, and

fitting them to data is nontrivial (Filkov 2006). Genetic regulatory networks

research employs modeling often at multiple levels, statistical models being at

the most basic level for high-throughput data analysis (Bolouri 2014). The analysis

may predict the genetic or environmental impacts on cells as well as potential drug

targets (Bolouri 2014).

High-throughput data generation and sequencing as well as technological

advances (i.e., cloud computing) rapidly change the way computational biology is

performed and what biological insights it can deliver (Bolouri 2014). The post-

genome era brings the challenge of biological data analysis to help biologists in

their real-life experiments (Lee and Tzou 2009).

Since the technological advances in DNA sequencing that occurred at the end of

the twentieth century, quantitative skills have become essential to distill meaning

from the vast emerging and increasingly diverse data sets. Modern technological

developments in high-throughput data-producing technologies such as microarrays

and RNA sequencing enable generation of terabytes of data in a quite short time.

The type of data generated comprises levels regarding abundance of RNA, quanti-

fication of protein-protein interactions (PPI), and many other biological molecular

interactions. The generated data is embraced for statistical inference and computa-

tional analysis including low-level data processing and high-level algorithmic

analysis with computations and machine-learning techniques. Making use of the

data is a reverse engineering approach as illustrated in Fig. 5.1, adapted from Lee

and Tzou (2009). Gene expression microarrays measure interactive activities of

thousands of genes. The nodes of the co-expression matrix are gene products, and

the edges of the matrix represent the relationship between the products (usually

expressed by correlations). The rows of the matrix are gene products, while the

columns are the experiments/samples/tissues. The numeric values of the matrix are

the expression values of genes across the experiments. The experiments maybe

“control vs. treated” or time course.

To gain insight into both co-regulation of genes on the same pathway and

functional similarity between genes, researchers typically resort to clustering of

genomic data. Both co-regulation and functional similarity studies aim to reveal
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patterns hidden in gene expression data to help uncover putative functional

annotations and biological pathways. Many different approaches and methods

have been applied for clustering genomic data, an area which is at the focus of

diverse disciplines such as bioinformatics, statistics, and computer science.

Availability of the abundant biological data from microarrays, next-generation

sequencing (NGS), or similar technologies require efficient modelling and analysis

approaches to guide biological experiments and infer about biological processes.

Clustering is a high-level data analysis technique employed for grouping biological

objects exhibiting similar patterns under some conditions. It is also an important

research problem in both bioinformatics and medical research (Liu et al. 2009).

Similar objects might reveal important information regarding biological functions,

disease markers, and drug targets. In healthcare, clustering may help diagnosis,

prognosis, and treatment decisions (Liu et al. 2009). The way similarity between

objects is defined and the way the similarity is used result in a large number of

clustering algorithms developed and applied for clustering biological data. Most of

them are general purpose clustering algorithms such as k-means or hierarchical

clustering. These algorithms are biased toward a certain criterion. So, it is important

to figure out the circumstances that an algorithm outperforms the other one

(D’haeseleer 2005). Model-based statistic applications as in Wang and Zhu’s

(2008) work are assuming that biological data fit a statistical distribution. Self-

organizing maps (SOM) and meta-heuristics such as genetic algorithms are two

different categories of clustering algorithms developed by computer science com-

munity among others. These clustering approaches lack customization for specific

features of biological data on hand.

Fig. 5.1 Reverse engineering approach for co-expression network inference
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The best model for a biological network cannot be found due to the NP complete

nature of the problem (Janjic and Przulj 2012). Based on the fact, clustering models

used in biological networks are general such as clique finding (see Balasundaram

et al. 2005).

Genes are co-expressed under certain conditions, while they behave indepen-

dently under some conditions (Dharan and Nair 2009). Bi-clustering clusters rows

and columns of data sets, simultaneously grouping genes co-expressed under

certain conditions. Hence, bi-clustering deserves a special focus while developing

clustering approaches and heuristics. Developing clustering quality metrics is

essential as there is no best cluster validation index (Almeida et al. 2011).

5.2 Genetic Regulatory Networks

Genetic regulatory networks (GRNs) are sets of interactions between genes and

their product RNAs and proteins that determine the rate of RNA expression

(Bolouri 2014). Gene regulation has sequential processes involving transcription

and translation that control the gene expression. Expression triggers specific protein

production (Filkov 2006). Gene regularity networks hold biological interactions at

different molecular levels. Biomolecules such as RNA and transcription factors

(TF) may induce or suppress gene expression. The interactions may be physical

attachments directly (i.e., TF binding on a local sequence) or indirect effects of

genes on each other including some intermediates (Wang and Huang 2014). GRNs

can exhibit nonlinear behaviors, and they are composed of many components and

interactions requiring mathematical and computational approaches supported by

high-throughput technologies; integrative analysis of complementary data, making

use of public data sets; and computational modeling and analysis (Bolouri 2014).

Chai et al. (2014) present a review on computational approaches for gene regulatory

network construction including Boolean, Bayesian neural networks, and ordinary

differential equations. The direct and indirect relations of genes can be validated

either by biological experiments such as gene knockouts or computational analysis,

the latter one being cost-efficient. Computational analysis of co-expression

networks employs graph-theoretic approaches such as network decomposition

(graph partition), network statistics (connectivity, degrees distribution, clustering

coefficient, etc.), special network motif finding, and topological network inference

(i.e., scale-free networks). The way of network construction is chosen based on the

biological question and hypothesis, the available data attributes, and computational

background of the analyst. The co-expression network construction procedure is

shown in Fig. 5.2, adapted from Serin et al. (2016). The gene co-expression

networks are built using microarray data unless otherwise stated. RNA-seq data-

based co-expression network construction is not at its maturity level yet (Ballouz

et al. 2015). Ballouz et al. (2015) find a major difference between RNA-seq and

microarray co-expression network topologies in terms of overlaps between hub-like

genes from each network. They discuss the advantages and disadvantages of using

RNA-seq over microarrays. Microarrays are widely used since they are relatively
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cheap, and their analysis is highly standardized (Serin et al. 2016). Some of the

public microarray databases are GEO, ArrayExpress, and Genevestigator. Interest-

ingly, approximately one in four studies uses public data to address a biological

problem instead of generating new data (Rung and Brazma 2013). Co-expression

cannot predict the outcomes of perturbations since the relationships are not directed

(Yeunga et al. 2011). Other types of data are required to be able to define direction

of the relations. Time regulations data may provide such an information. A typical

microarray data is illustrated in Table 5.1.

In order to see the big picture of co-expression network construction and

analysis, a few common processes can be summarized (Bolouri 2014):

1. Obtaining a filtered data

2. Making use of network inference or guilt by association as in clustering

Biological Question
Experimental Design

Gene Co-Expression DataPublic
Database

New
Microarray

Assays

1
0.7 1
0.4 0.6 1
0.5 0.9 0.8 1

0
1 0
0 0 0
0 1 1 0

G1
G2
G3
G4

G1
G2
G3
G4

G1 G2 G3 G4

G1 G2 G3 G4

Correlation coefficients

Similarity matrix

Adjacency matrix

Thresholding

Co-expressionnetwork
and clustering

4 3

1 2 Clusters

Fig. 5.2 Co-expression network construction
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3. Enrichment analysis to see biological relevance of computational outputs

4. Extension of the model(s) integrating multiple data types such as mRNA,

miRNA data from RNA-req, TF DNA-binding data from ChIP-seq, and protein

interaction data from mass spectrometry

Ideally, network decomposition results in tight clusters/modules with dense intra-

cluster and sparse intercluster connections. Tight clusters are supposed to include

biologically relevant genes in terms of functions or residing in the same pathway.

The networks may be static or dynamic. Static networks rely on a similarity

measure between genes. Dynamic networks change over time giving a more

realistic picture of genetic changes. They forecast future states of a living organism.

As a matter of fact, dynamic networks require more samples making biological

experiments more expensive. Once the similarity (or distance) is defined, the

co-expression network is constructed using guilt by association logic meaning

genes with similar expression levels under different treatments have similar

functions, and they are potentially co-regulated (Wang and Huang 2014). In

construction of static networks, correlation values are used. Then the network is

called correlation-based co-expression network. The correlation may be Pearson,

rank-based ones, or some other distance measures such as Euclidean. Pearson

measure is a stronger indicator than rank-based correlations; however, it is less

resistant to outliers in the data. Kumari et al. (2012) compare different distance

measures on both simulated and real data sets. Mutual information (MI) is another

way of measuring of relationship for construction of co-expression networks. MI is

able to capture nonlinear relations in practice (Wang and Huang 2014). MI is more

expensive computationally. Partial correlation measure gives a way for conditional

correlations such that all genes may not have pairwise relationships. The networks

constructed with abovementioned measures are undirected. Bayesian networks are

used to construct casual, directed relationships between genes. Some other types of

data are required besides co-expression data to be able to define the directed

relationship. High-throughput data integration remains a challenging and

necessary task.

Table 5.1 A sample microarray data (Iyer et al. 1999)

Gene name OHR 15MIN 30MIN 1HR 2HR 4HR 6HR

ESTW95908 1 0.72 0.1 0.57 1.08 0.66 0.39

SID487537 ESTAA045003 1 1.58 1.05 1.15 1.22 0.54 0.73

SID486735 1 1.1 0.97 1 0.9 0.67 0.81

Genes – – – – – – –

Expression values

– – – – – – –

MAP kinase phosphatase-1 1 2.09 3.37 5.52 4.89 3.05 3.27

MAP kinase phosphatase-1 1 1.52 4.39 7.03 5.45 2.93 3.91

MAP kinase phosphatase-1 1 2.25 4.67 7.94 5.94 3.76 4.46
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5.3 Co-expression Networks

Networks constructed based on gene expression similarity are called gene

co-expression networks (Serin et al. 2016). They can be named association, corre-

lation, and influence networks (Fuller et al. 2011). Co-expression network analysis

requires selection of a similarity measure between genes and a clustering algorithm

to decompose the network into functional clusters/modules after a meaningful

experiment design. However, there exists clustering algorithms that do not require

a distance matrix as an input; rather they require the network itself (e.g., some

community structure finding algorithms). Then, the modules require biological

inference. Co-expression analysis is used for many species including yeast,

humans, plants, flies, mice, and worms. A lot of studies report that gene

co-expression networks exhibit a scale-free feature. The degree distribution of the

nodes and the hierarchical organization of an expression network are different from

other biological networks (Ruan et al. 2010). However, Ruan et al. (2010) report

that once the co-expression networks are constructed based on rank-based methods

compared to the value-based ones, they tend to have common topological properties

with other biological networks.

5.3.1 Identifying Genes with Key Roles

The genomic resources culminated in the release of the whole-genome sequence

database (Yin et al. 2008). For example, poplar is an ideal model plant system to

investigate both the spatial and the temporal arrangements of local and systemic

resistances against herbivores due to its size and longevity (Consortium 2007). One

computational way to identify the genes with key roles is microarray analysis of

poplar genome. Microarray data from some poplar experiments may be “control

vs. treatment” or “time course.” Gene expression data is extracted from

microarrays.

Analyzing the gene expression data of poplar using a clustering method is the

crucial step in order to mine the relevant information to identify key (hub) genes or

groups (modules) of key genes. In other words, clustering the expression data helps

identify the genes co-expressed significantly in poplar.

Co-expressed genes are likely to have similar functions. Hence, in case one of

the genes with an unknown function is grouped with genes with a known function

using a clustering method, it is probable that the gene has a similar function with the

other genes in the group. However, it is likely that a gene with an unknown function

is grouped with the genes whose functions are unknown as well. At this point, the

sequence of the gene is searched through a relevant database (e.g., JGI, AspenDB,

TIGR, TAIR ) holding sequence information of poplar and similar plants

(Arabidopsis thaliana for poplar). The sequence of the gene whose function is

unknown is searched in the database of the most sequence-similar species with an

idea that there may be homolog of the gene for which the database is queried. Using
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a BLAST algorithm is one of the most common ways of searching a gene sequence

through many databases.

As mentioned above, clustering is a reasonable start point to identify the genes

having key roles in the poplar genome. It can help focus the research on the genes

that have a high probability of importance (Yin et al. 2008). A researcher is usually

interested in finding the hub genes (the genes having many connections to other

genes) since the hub genes are thought to be the crucial genes. Usually, clustering

algorithms are employed to detect the hub genes.

For example, the floral induction is essential for poplar to have early-flowering

genotype. This is a start point for identifying the key genes in poplar (there may be

many different hub genes based on the biological experiment; here flowering

process is given as an example) since flowering is an inherent feature of a poplar.

Conducting exhaustive research on genotypes that are known to flower early is the

first computational step. Using mining tools like Chilibot (http://www.chilibot.net)

that searches through PubMed abstract database to find specific relationship

between proteins, genes, and keywords regarding the flowering of poplar is a

computational way. A list of genes obtained as an output of a clustering method

for poplar genome can be used as an input for Chilibot as well. The list of genes is

searched with different relationship criteria through PubMed abstracts. The pulled

results may give insights for the functions of the genes in the list, and one of these

genes may be the focus for various follow-up treatments (chemical, physical,

cultural) shown to be successful in other woody angiosperms as mentioned in the

Populus genome science plan 2004–2009 (http://web.ornl.gov/sci/ipgc/).

The second computational step to identify the key genes in poplar is identifying

the gene modules using an appropriate clustering approach. An appropriate cluster-

ing approach is bi-clustering which groups similarly expressed genes over some of

the samples. It clusters both rows (genes of poplar) and columns (conditions or

samples from various treatments on poplar genes) of a data matrix (gene expression

matrix of poplar) simultaneously (Mitra et al. 2009). Some of the justifications to

use bi-clustering for poplar microarray data are:

1. Poplar has thousands of genes which may not be relevant to the analysis a

researcher is interested, and even these genes may hide the contribution of the

relevant genes in the expression data of poplar.

2. Co-expressed poplar genes mostly behave independently under certain

conditions (Dharan and Nair 2009).

Based on the treatment used in the experiment for poplar, for instance time-

course samples collected and embedded to microarray chips, bi-clustering results

are evaluated focusing on the module in which a hypothetical key gene for poplar’s

flowering exists. This evaluation is realized in multiple ways: by comparing the

genes with homologs as mentioned above, designing further experiments for the

genes of the focused module from bi-clustering of poplar expression data, and

analyzing the network topology (microarray data can be inferred using network
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formalism) of expression data to infer about hub genes using the measures from

graph theory such as connectivity, number of neighbors, etc.

In conclusion, a typical work flow for identifying key genes in polar is:

1. Use Chilibot to have an idea about key role genes.

2. Bi-cluster microarray dataset from a poplar experiment.

3. Focus on the modules of clusters to identify the key role genes using databases

such as JGI, AspenDB, and GO, and use Chilibot for querying the genes of the

same module.

4. Use network topology to infer about hub genes which are thought to be the key

genes of poplar.

5.3.2 Construction of Large-Scale Regulatory Networks

Constructing large-scale regulatory networks to understand how a complete system

(i.e., human system) functions and interacts with environmental factors requires

unveiling regulatory mechanisms of each type of molecular elements (e.g., genes,

transcripts, TFs, microRNAs) and integration of all these mechanisms to be able to

see the big picture at system level as well as linking the dynamic regulatory

mechanisms of molecular elements with the environmental factors or stimuli they

are triggered.

Some of the environmental factors triggering gene regulation are temperature,

pressure, oxygen concentration in air, drinking water, nitrates, burns, and allergic

stress. Building a model to represent the complex nature of large-scale regulatory

system of human functions and interactions is the first step to construct the large-

scale regulatory network. This model should be able to integrate high-dimensional

data of different formats (expression data, real numbers; relevance data, binary;

qualitative data, high, low, average) to be able to make the best use of available

experimental biology information available. For example, Huttenhower et al.

(2009) state that a part of a complex regulatory system can be modeled as a

combination of regulatory modules including co-regulated genes, co-regulation

conditions, and regulatory motifs at sequence level. Linear methods are useful in

obtaining information about large-scale networks, whereas focusing on smaller

networks for functional information about genes, the probabilistic nature of

biological processes, should be taken into account making use of Bayesian

statistics.

In unicellular systems, regulation often occurs based on TF binding sites and

activation or repression of transcription (Huttenhower et al. 2009). By this assump-

tion microarray data are clustered, promoter sequences of genes in each cluster are

tested for enriched motifs, and the consensus sequences are matched with known

TF binding sites (Huttenhower et al. 2009). However, in multicellular organisms

such as humans, predicting regulatory modules from microarray gene expression

data is a very difficult problem where a clustering method and de novo motif

discovery from DNA sequences need to be combined (Huttenhower et al. 2009).
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In human genome, regulatory motifs on DNA sequences may be short, degenerate,

and present without an indication of function. In addition to the need of combining

clustering and motif discovery tasks, the way they are combined is also an impor-

tant step toward achieving a system-wide understanding of human functions. While

most existing approaches to regulatory module discovery are sequential in the sense

that motif finding follows clustering or they are approached as separate tasks, it is

reasonable to perform these tasks simultaneously as is (Huttenhower et al. 2009). In

other words, it is an integrative approach to cluster genes regarding both

co-expression and enrichment of regulatory motifs. Clustering algorithms scalable

to high-dimensional data sets and flexible to use data of different formats are

necessary for understanding human functions through constructing regulatory

networks. Regulation data, alternate splicing data, noncoding regulatory element

data, any kinds of experimental data (Huttenhower et al. 2009), metabolic network

data, signal transduction network data, protein-protein interaction data,

DNA-binding regulator data, temporal gene expression data, cellular population

harvested from different individuals (Margolin et al. 2006), etc. would be necessary

to accomplish constructing large-scale regulatory networks to understand how a

human system functions and interacts with environmental factors.

There are many approaches for forming regulatory networks such as Boolean

circuits and complicated nonlinear spatial models (Gustafsson et al. 2005). A

network formation based on just mRNA data would not represent the complete

picture of a network involving metabolites, proteins, etc. (Gustafsson et al. 2005).

For example, transcriptional data is used to construct a gene-to-gene regulatory

network where many physical molecular connections and some intermediate

products in regulatory cascades are hidden (Gustafsson et al. 2005).

Available approaches for constructing regulatory networks involve some

drawbacks: overfitting, reliance on nonrealistic network models, computational

complexity, and critical dependency on supporting data which is just available for

unicellular organisms (Margolin et al. 2006). Large gene expression data derived

from perturbations to unicellular organisms are not easily obtained for humans;

however, it is suggested that an equivalent dynamic content fullness could be

obtained using natural and experimentally generated phenotypic variations of a

given cell type like B cell (Margolin et al. 2006).

In conclusion, one of the work flows for constructing large-scale regulatory

network of humans is:

1. Obtain genome-wide data sets for different stress conditions from humans in

which B cells are used.

2. Assemble data sets for B cell expression profile.

3. Use complementary data (protein, metabolites, etc.) for a clustering algorithm

(GRAM (Joseph et al. 2003)).

4. Construct regulatory network based on the results of clustering with simplifica-

tion on edge weights (converting to binary network) using a measure of

association.
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5.4 Weighted Gene Co-expression Network Analysis (WGCNA)

WGCNA is a powerful framework/tool supported in R computing environment to

find groups of genes with similar expression profiles, summarize clusters using

cluster eigengene and intramodular hub gene, relating clusters to each other and to

external sample traits (by network eigengene), and calculate cluster membership

metrics (Fuller et al. 2011). WGCNA can be summarized in the following steps:

1. Construction of a co-expression network

2. Computing connectivity for each gene

3. Computing gene significance (please refer to the “network concepts” section)

4. Identifying clusters and cluster eigengenes

5. Finding cluster intramodular connectivity and genetic hubs

6. Relating cluster concepts to each other to identify disease-related genes and

clusters (Fuller et al. 2011)

Fuller et al. (2011) define differential expression and connectivity based analysis

(DWGCNA) that identifies genes and pathways based on both expression and

connectivity. They additionally define IWGCNA that uses correlation to compare

gene expression profiles, clinical traits, and genetic markers. Imprialou (2012) aims

to extend WGCNA to include RNA-seq data.

Tejera et al. (2013) analyze co-expression network for prioritization of genes in

preeclampsia. They use R packages to process microarrays. Affymetrix platform

raw data are preprocessed using mas5 and log2 transformation. Illumina platform

raw data are subject to batch correction, normalization, and log2 transformation.

The experimental data are obtained from Gene Expression Omnibus (GEO) includ-

ing normal (N) and preeclamptic pregnancies (PRE). Statistically different

expressed genes between N and PRE groups are considered for construction of

co-expression networks. The authors report 1146 such genes. The weighted gene

co-expression network analysis (WGCNA) package (Langfelder and Horvath 2008)

is used for the network construction. Song and Zhang (2015) developed a frame-

work for co-expression network analysis. The framework comprises controlling the

quality of co-expression similarities, construction of the network, and a clustering

approach. They criticize WGCNA enforcing the connectivity of network nodes in a

way to make the underlying network scale-free. They also mention drawbacks of

some other type of co-expression network analysis. While WGCNA uses soft

thresholds, the unweighted networks contain false-positive interactions since hard

thresholds are applied for the network construction. K-nearest neighbor networks

require a subjective criterion called connectedness. Some other methods such as

partial correlation-based co-expression network analysis are computationally

expensive. Also, the clustering methods within the mentioned network analysis

approaches make the process more problematical. For example, k-means algorithm
asks for the number of clusters as an input argument. Many graph mining

approaches lack multi-levels of cluster combinations existing together within a

single network (Song and Zhang 2015). Modularity maximization-clustering
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algorithms fail to detect network structures that involve both course-grained and

compact clusters. The authors use planar maximally filtered graph (PMFG) to

retrieve information from similarity matrices. They argue that the PMFG is an

ideal platform to construct co-expression network for the following reasons:

1. Hierarchy preservation using subgraphs generated by minimum spanning trees

2. A coherent cluster and a connected subgraph correspondence

3. Exhibition of clustering structures such as cliques

4. Presenting different network features in embedded networks such as scale-

freedom, small-world characteristic

The new framework is shown to be superior compared to Infomap, Walkstrap,

leading eigenvector clustering, and WGCNA. The framework is available as an R

package.

Yang et al. (2014) examine prognostic gene characteristics in four different

cancer co-expression networks. They report that the prognostic mRNA genes tend

not to be hub genes. However, they are enriched in modules. They construct the

network using Agilent microarray data employing WGCNA. Cogill and Wang

(2014) use WGCNA for co-expression network analysis of human IncRNAs and

cancer genes. They visualize the networks using VisANT software (Hu et al. 2013).

Liao et al. (2011) employ WGCNA to construct coding-noncoding co-expression

network. The experiments include 30–40 data sets with 9 or more samples. Each

data set is processed by expression variance ranks of genes to which 75 percentile is

retained. WGCNA package is used to implement Fisher’s asymptotic test. Gene

pairs with p-value less than or equal to 0.01 and Pearson correlation value ranked at
the top or the bottom 0.05 percentile are accepted as co-expressed. Jiang et al.

(2016) apply the WGCNA to construct the network inMycobacterium tuberculosis.
They determine the soft thresholding parameter to be five, and the algorithm

converts the correlation coefficients between genes into the adjacency coefficients.

Topological overlap matrix of dissimilarity is generated using the adjacency

coefficients. Then agglomerative hierarchical clustering is applied. Some other

assumptions made are average connectivity usage between different classes, a

gene module size being at least ten. The R Bioconductor limma package is used

to process the raw data. They summarize a typical workflow for the WGCNA as

follows:

1. Calculate the similarity matrix (S) values (Sij) indicating relations between gene

pairs (Sij) using Pearson’s correlation coefficient (cor(i,j)). The following rela-

tionship holds

Sij ¼ cor i; jð Þj j

2. Define exponential weighted value β such that the adjacency is

78 H. Pirim



aij ¼ Sij
�� ��β

3. Convert the adjacency matrix A ¼ [aij] into the topological overlap matrix

Ω ¼ [ωij]

ωij ¼ lij þ aij

min ki; kj
� �þ 1� aij

lij ¼
X
μ

aiμaμj ki ¼
X
μ

aiμ kj ¼
X
μ

ajμ

4. Build the hierarchical clustering tree using dissimilarity measure dω
ij ¼ 1� ωij.

Once the tree is cut at a level, the branches of the tree will represent the clusters

(modules).

5. Construct the co-expression network.

Ferrari et al. (2016) apply WGCNA on 101 individual non-neurodegenerative

disease microarray data sets to investigate co-expression profiles in the frontal and

temporal cortices for 12 genes. They suggest a shift in the study of a disease from

gene to pathology to gene to networks to pathways strategy. Similarly, Bettencourt

et al. (2015) use 101 neuropathologically normal individuals’ gene expression data

to analyze using WGCNA. Medina and Lubovac-Pilav (2016) apply WGCNA for

determining clusters and pathways enriched in functions regarding type 1 diabetes

(T1D). Public microarray data sets of 43 T1D and 24 control data sets are used. R

affy package is used for normalization of the raw data. They employ module

preservation statistics in the package. The statistic tests in a given module in the

healthy network (control data) are present in the disease network. They also make

use of betweenness centrality metric as a topological analysis. The betweenness

centrality values of the genes are computed after obtaining the modules from the

WGCNA. The measure reflects influence over the information transfer between

genes. The measure is calculated for both the disease and the healthy network.

Rodius et al. (2016) employ WGCNA and clustering with overlapping neighbor-

hood expansion (Nepusz et al. 2012) to analyze the dynamic heart regeneration

co-expression network in the zebrafish. Pre-processed microarray data are filtered

by an FDR method and variance. They indicate that the groups of transcriptionally

coordinated genes and the hub genes of the network mediate the regeneration steps.

Maschietto et al. (2015) apply WGCNA using 29 schizophrenia (SZP) and 30 con-

trol (CTS) brain tissue microarray data sets. They detect important clusters of

co-expressed genes. They apply the Wilcoxon rank sum test to identify differen-

tially expressed genes between SZP and CTS considering p-values less than 0.01.

Guo and Xing (2016) construct weighted gene co-expression networks using
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WGCNA. They apply RMA normalization correction in R affy package. Topologi-

cal characteristics including clustering coefficient and average shortest paths of

specific gene modules are calculated. The 12 modules with large clustering

coefficients and small average shortest paths possess small-world feature.

5.5 Other Gene Co-expression Network Construction
Applications

Zhao et al. (2016) analyze co-expression network of Down syndrome from

microarray data sets. The data sets are acquired from GEO database and

pre-processed by R Bioconductor oligo package. Microarray data sets are processed

through background correction, quantile normalization, and probe summarization.

R samr package is used to monitor differentially expressed genes. Zhang et al.

(2012) apply Quasi-Clique Merger (QCM) (Ou and Zhang 2007), a graph mining

algorithm to determine co-expression networks which are tightly connected from

microarray data sets. Their work flow includes computing Pearson correlation

coefficients for gene pairs of cancer data sets and normal tissue data sets. Then,

frequency tables using cancer and normal data sets for regarding each gene are

constructed. The QCM algorithm is used for mining and merging cancer and

normal networks. Lehtinen et al. (2015) utilize yeast co-expression networks before

and after being subject to stress to model the stress effect on mutational robustness.

Robustness is defined as the ability to maintain biological function when a pertur-

bation happens. The study suggests that the stress increased tolerance to loss of

function mutations and future perturbations based on the same or different stress

types. Interesting results of the study are that damage distribution is different in

scale-free and Erdos-Renyi (ER) graphs, essential gene removal causes greater

efficiency loss than removal of a nonessential gene, changes from stress are not

explained by degree distribution changes, and type of damage distribution has

functional consequences. The network generation and network operations are

executed using NetworkX package for Python. Ruan et al. (2010) present a robust

rank-based network construction method. They propose a parameter-free clustering

algorithm and a new reference network-based measure for validating the quality of

the partition. A Matlab implementation of their algorithm is available. Mao et al.

(2009) construct Arabidopsis gene co-expression network making use of 1094

microarrays. They cluster the network into modules using a graph mining algo-

rithm. They find out 382 hub genes forming a clique. Wei et al. (2015) utilize

microarrays to screen gene expression profiles in mice hearts, and they confirmed

their results with qPCR analysis. To construct network, they calculate Pearson

correlations. Network analysis includes computing degree centrality and detecting

k-cores subgraphs. Knott et al. (2010) introduce two algorithms to construct gene

networks: one is based on the sensitivity analysis that was a systematic perturbation

of nonlinear neural networks; the other one is a heuristic search approach based on

gene set stochastic sampling. Leal et al. (2014) show complex plant immune

responses based on construction and comparison of gene co-expression networks.
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They employ a multivariate approach based on principal component analysis. Jing

et al. (2010) present a hybrid approach for gene expression and gene ontology to

construct the gene network. They experimentally show that their method was faster

than Bayesian networks. Liang et al. (2014) construct gene network using Pearson

correlation coefficient gene expression similarity, visualizing expression data by

Cytoscape and identifying modular structures using a community structure finding

algorithm, Qcut (Ruan and Zhang 2008).

5.6 Determining the Thresholds and Clusters for
Co-expression Networks

There isn’t any natural way of determining a biologically relevant threshold

(Rubinov et al. 2009). The best threshold for converting a complete biological

weighted network to an unweighted binary one would emerge by reflecting the

relations among the genes on the threshold as much as possible. There are some

common ways used for threshold determining. One of them is using a threshold that

retains a percentage of strongest (highest weighted) edges on the network (Rubinov

et al. 2009; Schwarz et al. 2009). Another way of determining a threshold is based

on nodes’ connectivity (Bartolomei et al. 2006). The threshold is determined such

that nodes have a fixed number of connectivity or connectivity greater than a fixed

number. One other way is using a threshold corresponding to a significance level

based on Fisher’s correlation test (Yip and Horvath 2007).

Rubinov et al. (2009) apply thresholds to maintain from 10% to 30% of the

strongest edges. Removing too many edges may result in a disconnected graph.

Disconnected graph imposes limitations on calculating the path lengths (Rubinov

et al. 2009). Schwarz et al. (2009) threshold networks so that 2% of the strongest

edges retain in the unweighted network. Retaining more edges results in dense node

connections and loss of the topological uniqueness. On the other hand, retaining

fewer edges disconnects the network and suppresses the topological information

(Schwarz et al. 2009). They also report that they ran their clustering algorithm using

different threshold values for network edges. Values retaining the strongest 1–10%

edges resulted in similar cluster memberships independent from the exact value of

the threshold. For lower or higher fractions of edges, clusters split and merge,

respectively. Bartolomei et al. (2006) choose a threshold such that for an individual

graph, they obtain ten connections per node. They want to have a connected

network with “small-world” feature. Yip and Horvath (2007) use a threshold to

approximate a scale-free topology, corresponding to a significance level of Fisher’s

correlation test.

It is reasonable to determine a threshold based on the network topology we want.

If we have a prior information about the structure of a network, we can determine

the threshold value accordingly. For example, Bartolomei et al. (2006) mention that

networks of functional connectivity based upon recordings in animals show small-

world characteristics. Yip and Horvath (2007) use the threshold for the

co-expression network construction of yeast genes. Hence, using a threshold for

5 Construction of Gene Networks Using Expression Profiles 81



fixed connectivity may be reasonable for obtaining “small-world” feature while it

may not be suitable for obtaining a scale-free network. In other words it may work

for brain network; however, it may not be suitable for yeast co-expression network.

In a similar manner, using a threshold based on a significance value from a

statistical test may be suitable in some biological networks while it may not give

good results for the others. Using a threshold to retain a percentage of edges may

result in disconnected networks or densely connected networks which are the two

undesirable extremes. However, applying a range of edge fractions may help

finding the threshold suitable for the application on hand.

Some of the similarity matrix thresholding techniques are ad hoc methods,

permutation testing, linear regression, rank-based methods, homogeneity test, spec-

tral graph theory, information theoretic approaches, topological methods, and

machine-learning approaches (Gibson et al. 2013). Random matrix theory is one

of the thresholding techniques. The technique may be employed in testing the

robustness of the co-expression network subject to perturbations in the input.

Considering the mentioned aspects of determining threshold values above may

improve the quality of a clustering result and decrease the possibility of effecting a

clustering algorithm badly.

A gene co-expression network is very complex in terms of nodes and edges,

since nodes represent thousands of genes and edges refer to ten thousands of

relationships. A typical research question addresses the effect of a treatment at

genomic level or time-course genomic changes. The result of the treatment or the

time-course changes leads the researcher to focus on the significantly co-expressed

genes. The fact that the classes the genes belong to is usually unknown, requires an

unsupervised learning technique. Clustering, as an unsupervised learning tech-

nique, groups similar objects based on a cluster definition or a similarity metric.

A clustering approach aids the following arguments. One of the common

understanding is that a small subset of genes are involved in the cellular process

of interest, and a cellular process happens only in subset of samples (Jiang et al.

2004). Another argument is that the genes of the same pathway may be expressed or

suppressed simultaneously or sequentially upon receiving stimuli (Zhu et al. 2008).

That is, expressed genes have a closer relationship, and they are likely to appear in

the same cluster. Genes with similar expression profiles are more likely to regulate

each other or to be regulated by a parent gene (Mitra et al. 2009); that is an evidence

that clustering may help finding the genes of the same pathway as well. A powerful

clustering approach may reveal the relationships that exist in the expression data

(Ma and Chan 2009).

We cluster expression data to group the genes with similar expression patterns

(different clustering algorithms detect different patterns). Clusters are group of

genes supposed to have similar functions or be located in the same pathway or

interact with each other. It means that there is a similarity (similarity matrices are

constructed upon similarity; one of them is topological overlap matrix (Yip and

Horvath 2007) defining the similarity of two genes as the number of common

neighbors) or relationship between two genes of the same cluster.
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5.7 Network Concepts Useful in Co-expression Network
Construction

The concepts mentioned here are detailed in (Horvath 2011). Given an undirected

and unweighted network, connectivity (degree) of a node i (ki) is defined as the

number of nodes directly connected to node i. The connectivity is defined as the

summation of the connection weights between node i and the others in a weighted

network. It is formulated as:

ki ¼
X
j6¼i

Aij

where Aij is the adjacency between nodes i and j.
Scaled connectivity (Ki) is:

Ki ¼ ki
kmax

kmax can be at most n – 1 where n is number of nodes.

Biological networks are thought to have scale-free topology. The scale-free

topology assumes frequency distribution of node degrees which follows a power

law. In other words, a fraction P(k) of nodes with k connections with others in the

network is approximately

P kð Þek�γ

where γ is a positive real number.

Network heterogeneity is defined as variance of the connectivity. It is formulated

as ffiffiffiffiffiffiffiffiffiffiffiffiffi
var kð Þp

mean kð Þ
Maximum adjacency ratio of node i is

MARi ¼

P
j 6¼i

Aij

� �2
P
j 6¼i

Aij

The ratio is between 0 and 1. 1 implies deviance from a neutral relationship.

Network density is related with mean connectivity. It is defined as the mean

off-diagonal adjacency formulated as
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mean kð Þ
n� 1

The density shows overall affection among the nodes.

Network (degree) centralization is formulated as

max kð Þ
n

� density

Centralization value 1 gives a star topology, while the value 0 gives each node

the same connectivity.

Clustering coefficient is a measure for cliquishness. Clustering coefficient for

node i in an unweighted network is the proportion of triangles having node i among

all triangles: P
j 6¼i

P
k 6¼i, j

AijAjkAki

P
j6¼i

Aij

 !2

�P
j 6¼i

Aij

� �2
Mean clustering coefficient is an indicator for a module structure in a network.

Hub node significance is an association between connectivity and node signifi-

cance. A node significance (GSi) for node i based on p value can be defined as –

log (p valuei). Then, the hub node significance isP
i

GSiKiP
i

Kið Þ2

Hub genes have been shown to be essential for survival in yeast, while they are

not always critical in higher organisms (Fuller et al. 2011). Hubs may refer to genes

with a significant biological role or regulation activity (Mitra et al. 2013). Network

significance is defined as the average node significance of the nodes.

Topological overlap measure is a normalization of shared neighbors between

nodes i and j: X
l 6¼i, j

AilAjl þ Aij

min
X
l 6¼i

Ail � Aij;
X
l6¼j

Ajl � Aij

( )
þ 1

if i 6¼ j

1 if i ¼ j:

8>>>>><>>>>>:
Some of the network data analysis tasks include:
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1. Description of direct or indirect relationships between genes. Adjacency matrix

and shared neighbors are used.

2. Network statistics.

3. Module detection.

4. Measurement of different connectivity patterns between data sets.

5. Finding hub nodes. Hub nodes represent the modules.

6. Annotation of genes inside a module.

Horvath (2011) defines similar network concepts for intramodular analysis. He

also defines special concepts for a network where its nodes are modules and

formulations for comparison of two networks.

5.8 Conclusion

Biochemical methods of placing genes in pathways are not feasible to be applied on

candidate genes for which enormous amount of genetic information is generated

(Yeunga et al. 2011). The fact makes the network construction and inference

necessary for co-expression analysis. Abstract models involving less biological

detail are easier to be implemented on large-sized networks compared to concrete

models describing networks in more details and closer to biological facts (Lee and

Tzou 2009).

Bolouri (2014) lists some of the important available tools for GNRs analysis:

Bioconductor (http://bioconductor.org), Cytoscape (http://cytoscape.org/), Galaxy

(http://galaxyproject.org/), GenePattern (http://www.broadinstitute.org/cancer/soft

ware/genepattern), and GenomeSpace (http://www.genomespace.org/). For repro-

ducible research, data, code, and work flow, Synapse (https://www.synapse.org)

offers sharing facilities. GebeMania (http://genemania.org/) integrates different

data types such as co-expression and pathway data from distinct resources. For

biological inference there are many software and methods available. Some of them

are TargetMine (http://targetmine.nibio.go.jp/), GeneTrail (http://genetrail.bioinf.

uni- sb.de/), and David (http://david.abcc.ncifcrf.gov/). Serin et al. 2016 overview

available resources for co-expression network analysis.

As mentioned in Bolouri (2014), although high-throughput data sets are publicly

available, a variety of computational codes and software for biological data analysis

exist; the way and expertise to employ any combination of the available resources

are still ambiguous. Current gene co-expression models are too simplistic needing

updates. Integration of diverse computational biology aspects on different types of

data sets is essential.
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Abstract

The tremendous progress in next-generation sequencing (NGS) technology has

brought an avalanche of sequence-based data. This huge volume of data has

resulted in novel challenges for existing bioinformatics tools in terms of data

handling and subsequent analyses. Additionally, complexity of such data makes

the task of analysis of metagenomic datasets more complicated for available

bioinformatics pipelines. Here we are dealing with various bioinformatics tools,

available online for analysis of WGS-based metagenome datasets, and simulta-

neously comparing their analysis pipelines. In the last one decade, over a dozen

of such online tools/servers have been developed which are accessible via public

domain. IMG/M and MG-RAST are two of the most popular tools as per the

number of citations they received in peer-reviewed scientific journals till

December 2016. This chapter discusses and compares 11 online bioinformatics

tools detailing their sequence data handling, pipelines for annotation, sequence

clustering methods, user-friendly attributes, and feasibility of data repository.
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6.1 Introduction

First introduced in 1998, the concept of metagenomics has become an inevitable

tool in microbial ecology studies (Handelsman et al. 1998). Additionally cited as

environmental genomics, it involves the study of microbial community DNA

obtained from ecological niche. Thus, it differs with conventional genomics

wherein genome sequence data from pure culture or mono isolate is analysed to

explore characteristic attributes of respective microbe (Pal et al. 2015; Tikariha

et al. 2016). During initial phase, metagenomic studies mainly involved cloning of

small DNA sequences retrieved from the environment followed by microbial

diversity studies or functional expression screening (Handelsman et al. 1998).

The other approach involved extraction of community DNA followed by commu-

nity profiling with respect to taxonomic marker (16S rRNA gene) or any functional

gene (responsible for some biological activity) based on PCR-mediated methods

such as ARDRA, RFLP, etc. (Purohit et al. 2003; Dubey and Padmanabhan 2003;

Moharikar et al. 2003; Dafale et al. 2010; Sharma et al. 2012). Microbial population

dynamics would be studied by monitoring change in 16S rRNA gene profiles in any

environment (Moharikar et al. 2005). However, it cannot depict the complete

biodiversity and also may omit large number of microbial communities. Thus,

16S rRNA gene profile-based data alone cannot be relied upon to unravel the

microbial diversity. The emergence of next-generation sequencing (NGS)

technologies has enabled availability of huge sequence-based data conferring

great coverage with respect to taxonomic as well as functional community profiles

in any metagenomic analyses (Pandit et al. 2016; Kapley et al. 2015). High-

throughput sequence data at markedly decreased cost can be obtained by using NGS

platforms which have opened new avenues into sequencing data-dependent

metagenomic analyses in order to elucidate complete biodiversity (Thomas et al. 2012).

Generally there are two different metagenomic methods: (a) marker-gene

metagenomics and (b) whole-genome shotgun (WGS) metagenomics (Dudhagara

et al. 2015a). Figure 6.1 illustrates bioinformatics tools being developed in recent

times with respect to the above two mentioned metagenomic approaches. The first

approach refers to the use of marker genes [taxonomic markers involving 16S

rRNA (Ghelani et al. 2015), 18S rRNA, and ITS (Dudhagara et al. 2015b) and an

amplicon library data] to explore the microbial community profile for an environ-

mental sample (Carlos et al. 2012; Oulas et al. 2015; Gulhane et al. 2017).

However, the second approach has random nature and involves shotgun sequencing

which enables sufficient data coverage to determine the complete biodiversity

(Yadav et al. 2015; Puranik et al. 2016; Jadeja et al. 2014). This approach has

yielded new arsenal for exploring unique structural and functional features from

untapped microbial world. Presently, myriad of projects have already been

completed based on marker genes and shotgun metagenomic data, rendering depo-

sition of innumerable sequencing data to public domain. Subsequent to

metagenome sequencing, the preliminary aim is to process the huge sequence

data for annotation of structural and functional features of microbial community

present in the sample (Ounit et al. 2015). However, major technical issues still
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remain in metagenomic sequence analysis approaches corresponding to assembly

of raw metagenomic reads followed by annotation of the operational taxonomic

units (OTUs) (Behnam and Smith 2014). Additionally, owing to complex nature of

sequence data, it is difficult to perform statistical analyses of such metagenomes.

Besides, several offline and online tools/softwares are present for annotation of

metagenomic sequences employing homology with reference databases

(Dudhagara et al. 2015b).

6.2 Shotgun Metagenomics

Shotgun metagenomic sequencing allows researchers to comprehensively sample

all genes in all organisms present in a given environmental sample. In shotgun

sequencing, DNA is fragmented randomly into several small segments, which

subsequently are sequenced by employing the chain termination strategy to yield

small reads (Staden 1979; Sharma and Vakhlu 2014). Multiple cycles of this

fragmentation and sequencing steps are conducted to achieve numerous

overlapping reads for the target DNA. Eventually, by using computer programs,

the overlapping ends of various reads are conjoined into an uninterrupted contig.

With the advent of NGS, this approach enabled microbiologists to evaluate bacte-

rial diversity and determine the abundance of microbes in various environments

such as marine sediment, activated sludge, hot water spring sediment, saline desert,

etc. in less time and with reduced cost (Mason et al. 2014; Chao et al. 2013;

Fig. 6.1 The metagenomic tools available for sequence data analysis
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Mangrola et al. 2015; Pandit et al. 2014). Employing NGS techniques such as

454 pyrosequencing, Illumina systems, and ion torrent, shotgun metagenomic

approach has been exploited in studying microbial dynamics with respect to

population as well as functions (Kr€ober et al. 2009; Hasan et al. 2014). Keeping

similar pace of advancement, analytical bioinformatics tools have also advanced

with sequencing technologies which generate tremendous amount of

sequencing data.

In this chapter, we discuss the bioinformatics tools being developed in the last

decade and available online for WGS-based metagenome data analyses, detailing in

short for analysis pipeline of each tool (Fig. 6.1). Table 6.1 enlists these tools being

developed for shotgun metagenomic datasets, with some relevant information

indicating their impact on metagenomic field. This significance was accounted by

considering number of scientific citations they have obtained in course of time since

their inception. Figure 6.2 depicts the characteristic attributes of these online tools.

In order to evaluate and compare each of these tools, they have been discussed in

brief in chronological order.

6.2.1 CAMERA

Being introduced in 2007, the Community Cyber infrastructure for Advanced

Marine Microbial Ecology Research and Analysis (CAMERA) was one of the

first online bioinformatics tools for metagenome analyses. Basically it was meant

for studying microbial diversity of the ocean and its response to different environ-

mental habitats (Seshadri et al. 2007). After 2010, CAMERA elaborated its objec-

tive to allow analysis of all metagenomic datasets acquired from various

environments by discarding “marine” term from its previous abbreviation (Sun

et al. 2010). Moreover, the original webpage (http://camera.calit2.net) of CAM-

ERA Data Distribution Center (DDC) has also been moved to different destination

(http://data.imicrobe.us) which is governed by the iMicrobe Project. CAMERA was

the first online bioinformatics tool being developed as an eminent large-scale

database which analyses, shares, and collects metagenome sequences. It offered a

repository for huge sequence data obtained from Global Ocean Sampling (GOS)

expedition, supplemented with analytical pipelines to integrate metadata informa-

tion with sequence data to derive correlations between deciphered ecology. In order

to submit the data, users must register at iPlant cyberinfrastructure via Discovery

Environment (DE) web interface. Normally 100 GB virtual space is allotted to users

which on request can be extended to an additional 1 TB. The uploading of huge

datasets (>1.9 GB) can be accomplished by either of the two options: (1) Cyberduck

for users having Mac and Windows platforms or (2) iDrop Desktop (iCommands)

for users running LINUX. However, a simple URL can be used for upload of small

data files within the DE. CAMERA’s principle objective is to manage a huge,

unique data repository and essential bioinformatics tools in interest of overcoming

the novel hurdles of metagenome data analyses including complexity, heterogene-

ity, and truncated data. CAMERA database is comprised of environmental genomic
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and metagenomic sequence data, corresponding to environmental features,

processed search results, and bioinformatics tools to enable efficient cross analysis

among different datasets. It was meant to harbour a huge metagenome datasets from

Table 6.1 Major online bioinformatics tools for shotgun metagenomic data analysis

Tools Weblink

Inbuilt reference databases

and annotation pipeline Data storage

CAMERA (2007

-Now obsolete)

http://camera.

calit2.net/

FragGeneScan, KEGG,

COG,, TIGRfam, GO, Pfam,

MetaGene

128 projects and

2660 samples

MG-RAST (2008) http://

metagenomics.

anl.gov/

SEED subsystem, KEGG,

KO, NOG, COG, eggNOG,

M5RNA, TrEMBL, SEED,,

SwissProt, GenBank,

RefSeq, PATRIC

273,897

metagenomes

(127.09 Tbp),

21,886 registered

users,

IMG/M (2008) https://img.jgi.

doe.gov/cgi-

bin/m/main.cgi

KOG, KEGG, COG, KO,

TIGR, MetaCyc, GO, Pfam,

TIGRfam,

62,994 datasets

(Genomes +

Metagenomes)

METAREP (2010) http://jcvi.org/

metarep/

GO, NCBI Taxonomy NA

CoMet (2011) http://comet.

gobics.de/

Pfam, GO NA

METAVIR (2011) http://metavir-

meb.univ-

bpclermont.fr/

Pfam, RefSeq virus database 170 viral

metagenomic

dataset and

335 projects

MetaABC (2011) http://metaabc.

iis.sinica.edu.

tw/

Genome database from

NCBI

52 datasets

VIROME (2012) http://virome.

dbi.udel.edu/

SEED, COG, ACLAME,

GO, UniRef 100, KEGG,

MGOL

50 project,

258 libraries, total

proteins –

44,895,778

metaMicrobesOnline

(2013)

http://meta.

microbesonline.

org/

TIGRfam, COG, Pfam 155

metagenomes,

3527 microbial

genomes

MyTaxa (2014) http://enve-

omics.ce.

gatech.edu/

mytaxa/

Reference genomes from

NCBI

NA

EBI metagenomics

(2015)

https://www.

ebi.ac.uk/

metagenomics/

InterPro protein signature

database, Greengenes

database, RDP

784 projects,

72,945 datasets

MEGAN Community

Edition (CE) (2016)

https://github.

com/

danielhuson/

megan-ce

NCBI BLAST NA

NA stands for Not Applicable (Ref: Dudhagara et al. 2015a updated with data till December 2016)
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around the globe; but after 2011, it has been overlooked regularly and citations

dropped owing to technical difficulty in data uploading process and advent of more

user-friendly online tools like MG-RAST and IMG/M. Furthermore, it has been

integrated with QIIME so as to achieve quick online cloud computing which would

attract more number of users and confer orderliness to relevant analytical processes.

6.2.2 MG-RAST

Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) is an

easy-to-use open-source server for metagenomic data analyses (Meyer et al. 2008;

Overbeek et al. 2014; More et al. 2014). Introduced in 2007, it has been one of the

primary online bioinformatics tools which is still being used widely by researchers

(Meyer et al. 2008). A new version (version 4.0) is presently functional, which

unlike its preliminary versions is not completely dependent on SEED platform,

rather employs SEED subsystem (being favoured reference database) for taxo-

nomic and functional annotation of metagenome dataset. As compared to previous

versions, the current online platform allows much better scalability and rapid

computation attributes. Presently, MG-RAST harbours 273,897 metagenomes com-

prising 127.09 Tbp data, which have been accessed by 21,886 registered users

(As of Dec-2016). Apart from accessing the publicly available data on server,

registered users can upload personal metagenome sequence dataset in either of

the formats (FASTA, FASTQ, and SFF) supplemented with structured metadata

information. A multistep workflow processes the uploaded data including quality

Fig. 6.2 Comparative citation index of the metagenomic tools (for shotgun sequencing dataset)

retrieved from research papers published in peer-reviewed articles in December 2016. Year of

release of each tool is depicted in the bracket in the legend box. Citation for each tool was pursued

from Google Scholar
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control of sequences, automated annotation, and analysis. Figure 6.3 depicts

schematically workflow of data analysis in MG-RAST.

Briefly, after uploading data is preprocessed by employing SolexaQA (Cox et al.

2010) which curates low-quality regions from raw sequences. Subsequently,

dereplication, that is, removal of artificial duplicate reads (ADRs) from filtered

data, is performed by employing duplicate read inferred sequencing error estima-

tion (DRISEE) (Keegan et al. 2012). Further sequence data is screened against

model organism’s genome sequence data, comprising fly, mouse, cow, and human

in order to ensure homogeneity of microbial metagenomic data. The next step

involves annotation based on machine learning approach being employed by

FragGeneScan tool (Rho et al. 2010). In order to decrease the load on computa-

tional system for comparison of complete short read datasets, prior protein cluster-

ing is performed at 90% homology threshold employing UCLUST command from

QIIME, simultaneously retaining the relative abundances (Edgar 2010). Subse-

quently, one representative sequence (longest read) from every cluster is processed

for homology search by using BLAT algorithm followed by reconstructions of the

species content of the sample based on the similarity results.

For homology search MG-RAST utilizes a protein database referred to as M5NR

representing nonredundant integration of multiple databases: GenBank, SEED,

IMG, UniProt, KEGG, and eggNOGs (Wilke et al. 2012). At the same time, the

user is allowed to use either one of these listed reference databases individually.

After annotation abundance profiles can be retrieved from MG-RAST’s user inter-

face and subsequently subjected to various statistical analyses. Various analyses

can be performed on the server involving phylogenetic, metabolic, functional, and

comparative analyses of two or multiple metagenome datasets which can be

Fig. 6.3 Metagenome data analysis workflow in MG-RAST (Ref – MG-RAST manual Weblink –

http://metagenomics.anl.gov/)
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visualized via various diagrammatic illustrations such as pie chart, bar chart, heat

maps, etc. Additionally, MG-RAST allows the user to choose a reference database

for homology-based analyses. It enables the user to perform comparative analyses

with annotation data obtained from multiple reference databases. Furthermore, it

confers the choice to retrieve analysed data in multiple clustering forms which can

be downloaded in text format or exported as FASTA and QIIME files, which if

required can be used directly as input files in other analytical tools. Registered users

are allowed to keep their data publicly available on the server or make it private and

grant access to preferred colleagues with protected confidentiality. Thus, this tool

renders greater adaptability with respect to analysis, confidentiality, and sharing of

data. This is the reason for it being the most cited and highly employed bioinfor-

matics tool for metagenome analyses (Sun et al. 2015).

6.2.3 IMG/M

Integrated Microbial Genomes and Metagenomes (IMG/M) is another important

online server for repository and analysis of genome and metagenome sequence data

(Markowitz et al. 2008). Joint Genome Institute (JGI) of US Department of Energy

(DOE) maintains this project. The system store annotated datasets of (1) bacterial,

archaeal, viral, and eukaryotic genomes corresponding to cultivated microbes;

(2) single cell genomes (SCG) and genomes from metagenomes (GFM) pertinent

to uncultivable archaea, bacteria, and viruses; and (3) metagenomes from environ-

mental, host-associated, and engineered artificial microbiome samples. The data-

base of IMG/M is comprised of sequence data being created by DOE’s Joint

Genome Institute (JGI), uploaded by independent researchers, or fetched from

public domain. IMG/M allows users to perform annotation, integration, and com-

parative analyses of sequence data corresponding to genomic and metagenomic

studies. Moreover, it also permits for combined analyses for query sequence data

against sequence data (genomes and metagenomes) available in public domain

(Chen et al. 2016; Markowitz et al. 2012a). Sequence data and bioinformatics

tools are regularly upgraded at the server. As of July 2016, there are 11,004

(among them 5735 public) metagenome datasets from 544 (250 public)

metagenome studies with over 45.7 billion (35.9 billion public) protein-coding

genes in IMG. The use of IMG/M datasets and analytical tools is allowed for

registered users. After registration at the server, personal sequence data can be

uploaded online and be kept private for up to 2 years after which data is transferred

to the public domain. Additionally, downloading and analysis of sequence data is

also allowed via JGI’s portal for registered users.

After submission of new sequence data, JGI’s metagenome annotation system

first performs quality control, and then annotation is accomplished. The annotation

is performed with reference to multiple datasets at three levels: (1) phylogenetic

composition, (2) functional or metabolic potential of individual microbiomes, and
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(3) comparisons among microbiomes. The server supports these bioinformatics

analyses by employing consolidated datasets comprised of metagenomes and

microbial genomes from the IMG system (Markowitz et al. 2014). The output

data is provided in user-friendly multiple-cluster forms, which accelerate its appli-

cation for different metagenomic studies. Additionally, IMG/ M-HMP (Human

Microbiome Project; http://www.hmpdacc.org) have been established by IMG/M,

which renders different bioinformatics tools for the annotation of metagenome

datasets generated through HMP. The annotation is accomplished with reference

to public sequence database available through IMG (Markowitz et al. 2012b). IMG

has been proven extremely useful in a variety of research studies requiring high-

quality metagenomic assembly, such as the identification and genomic reconstruc-

tion of novel phylogenetic lineages, discovery of novel biosynthetic gene clusters,

identification of alternative genetic codes, uncovering gaps in amplicon-based

detection of microbial diversity, and discovery of novel viruses (Markowitz et al.

2012c). Owing to its comprehensive sequence data analyses and mining via explo-

ration of dataset, IMG/M has been attracting increasing number of researchers.

6.2.4 METAREP

Metagenomics Reports (METAREP) is an online tool for high-performance com-

parative metagenomic analysis. This bioinformatics tool is commonly used for

short sequence read assemblies, metagenome annotation, and comparative

metagenome analyses (Goll et al. 2010). In order to upload metagenome sequence

data, one has to be acquainted with fundamentals of computer programming and

some expertise to explore METAREP as an online software tool. In order to

perform comparative studies, multiple datasets can be analysed concurrently at

different functional and taxonomic levels of annotation. Furthermore, data down-

load option is also available wherein annotation files can be exported in form of

tab-delimited files for subsequent statistical analyses. METAREP also enables data

exploration via integrated taxonomic and functional levels in order to examine it

from different viewpoints and thus to handle big datasets conveniently. To perform

annotations of enormous metagenomic sequence datasets, the software incorporates

data-intensive algorithms by employing Solr/Lucene, R, and CAKEPHP. It has

been optimized to be user friendly and fast. This bioinformatics tool is being

constructed and perpetuated by the J.C. Venter Institute (JCVI). For improvement

of the tool, the users are allowed to recommend new analytical attributes to be

amended for particular objectives of their research interests. After last update in

METAREP showing enhanced performance with respect to data upload, clustering,

and annotation, it was shown to be effective in terms of comparative metagenomics.

Goll et al. employed the shotgun sequence data from HMP (http://www.hmpdacc.

org/) to demonstrate improvement in METAREP tool (Goll et al. 2012).
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6.2.5 CoMet

CoMet is another bioinformatics freeware available for comparative metagenome

analyses. Here, even user registration is not compulsory for sequence data upload. It

possesses good analysis workflow which enables quick and efficient analysis of

short sequences from metagenome sequence dataset (Lingner et al. 2011).

Metagenomic data generated from NGS platforms such as 454 and Ion Torrent

can be processed effectively by CoMet. In order to perform comparative

metagenomics, up to 20 metagenome datasets can be uploaded in FASTA format

in multiple files; alternatively multiple files can be zipped into single file which

enables faster data uploading. Sequence files ranging around 500 MB can be

submitted altogether for data processing through the convenient submission portal

of CoMet. This tool employs Pfam and the corresponding Gene Ontology

(GO) database for functional annotations of various metagenomes. It collates

ORF-finding and protein annotations to different Pfam domains with a comparative

statistical analysis, enabling an immediate outline of putative functional variations

among a group of metagenome datasets. The comparative analysis against refer-

ence database of CoMet comprising beyond 1,000 precomputed profiles allows a

quick determination of similar datasets and the access to respective metagenome

projects. The output includes downloadable text files, result in the form of pictures,

and a matrix of the statistical results.

6.2.6 METAVIR

METAVIR is a web server developed for annotation of raw or assembled viral

metagenomic sequences (Roux et al. 2011). METAVIR provides users a collection

of bioinformatics tools through proprietary platform for analysis of viral

metagenome data. After registering at server, the user can upload metagenome

sequence data as FASTA files. Moreover, big sequence files in compressed forms

such as zip, gzip, or tar.gz can also be uploaded in order to manage large datasets.

Subsequently, tool assesses the Virome composition by employing the GAAS tool

(Angly et al. 2009). The Virome sequences are analysed against RefSeq database of

viral genomes, followed by normalization of annotation results by genome length

which yields estimation of total viral particles for each viral clade in metagenomic

dataset. Newly an updated version, METAVIR 2, has been released that can be used

for extensive viral metagenome analyses (Roux et al. 2014).

This bioinformatics tool is worthwhile for mining viral ecology from

metagenome sequence data and performs comparative analyses with reference to

predetermined phylogenetic database of viral-specific genes. Diversity data can be

obtained with respect to rarefaction curves and multivariate analyses being

generated on k-mer signatures and BLAST-based comparisons. The analytical

results can be illustrated through various correlative and effective modes, including

tables, phylogenetic trees, recruitment plots, and maps. The assembled viral

genomes constituting thousands of larger contigs can be handled by METAVIR 2.
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Till October 2015, tool’s server possessed 335 Virome projects containing more

than 64 million sequences from different ecological niches. METAVIR presents

convenient data upload portal and allows comprehensive Virome data analyses

aided with data privacy, which are important attributes making it highly cited

Virome analysis pipeline.

6.2.7 MetaABC

MetaABC is a complete package for metagenomic data management, binning, and

clustering. It consolidates two methods of artefact removal ((1) 454 replicate filter

and (2) cdhit-454), five methods for taxonomic binning ((1) BLAST, (2) PhymmBL,

(3) MEGAN, (4) SOrt-ITEMS, and (5) DiScRIBinATE), and one approach each to

re-analyse unassigned reads and to control sampling biases via gene adjacency and

genome-length normalization, respectively (Su et al. 2011). MetaABC was devel-

oped in order to handle sequencing data generated using different technologies. The

database of this tool comprises around 50 analysed metagenomes. In order to

analyse personal dataset, 2–20 SFF, FASTA, or FASTQ files can be deposited

simultaneously. After sequence data submission, the results can be generated in

various forms involving tables, pie charts, and bar charts of abundance profiles.

Furthermore, a hierarchical clustering algorithm is incorporated in this tool for

comparative metagenomics. However, on the other hand, MetaABC also possesses

drawbacks with respect to inability to perform functional and metabolic profiling of

metagenomes. Furthermore, the options for data security are a limiting factor

followed by the absence of data-sharing attributes. Moreover, the tool cannot

handle big (>2 MB) sequence files. In order to analyse larger dataset, MetaABC

allows the use of a stand-alone platform.

6.2.8 VIROME

Viral Informatics Resource for Metagenome Exploration (VIROME) is an online

tool exclusively created for viral metagenome data analysis corresponding to

various environmental habitats. The annotation and classification of metagenomic

viral reads is performed via homology search in reference to both known and

environmental sequences (Wommack et al. 2012). A web-application interface

supports the sequence data upload to VIROME. After online form submission,

the user is notified via Email describing subsequent instructions related to upload of

sequence data. The tool allows various formats of sequence data files, comprising

FASTA, QUAL, FASTQ, and SFF. The analysis pipeline includes homology search

of metagenome sequence data with reference to MetagenomesOnline database

(MgOl), followed by graphical illustration and integration with different protein

metadata allowing interpretation of the output. The analysis pipeline of VIROME

comprises two back-to-back steps: (1) quality check of sequence data and analysis

in reference to UniVec database and (2) three concurrent steps including
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ORF-assignment by MetaGeneAnnotator, identification of known proteins, and

annotation of environmental protein against databases comprising MGOL and

UniRef 100. The quality check of sequences is accomplished by Ergatis which is

a management system for analyses pipeline. The output of sequence data curation

and BLAST homology search steps are saved in an in-built database called MySQL.

Subsequently, the interface between the MySQL database and the VIROME web

page is mediated by one server called Adobe ColdFusion. The output from

VIROME can be downloaded for subsequent use as input data for multivariate

statistical analyses using different analytical tools. However, VIROME also holds

one main drawback which is the length of time required to perform analysis. It takes

usually several weeks to months for even a small-sized metagenome dataset.

6.2.9 metaMicrobesOnline

metaMicrobesOnline database is another free online bioinformatics tool and can be

accessed at http://meta.MicrobesOnline.org. It allows phylogenetic analysis of gene

sequence data from microbial genomes and metagenomes (Chivian et al. 2013).

Notably, metaMicrobesOnline execute neither assembly of contigs nor gene

annotations, emphasizing rather on phylogeny-based tree analysis for gene

sequences. Thus, users have the options to choose a suitable method for read

assembly and gene annotations congruous to private data. Majority of

metagenomes being deposited to metaMicrobesOnline are the ones which have

been annotated from other online tools such as IMG/M or MG-RAST. However,

any user can load their sequence data files which should be compatible with the tool

(e.g. sequence file in FASTA format for contigs and gene coordinates of respective

contigs in tab-delimited format). In order to achieve trustworthy position in gene

phylogenetic trees, the tool specifically offers analysis of only those public

metagenome datasets having longer contigs (typically above 500 bp) possessing

higher chances of comprising complete genes. The analysis starts with loading of

sequence data and corresponding annotations into the metaMicrobesOnline analy-

sis pipeline. Subsequently, genes are translated into protein sequences and scanned

by employing HMMER3 (Eddy 2011) in reference to canonical gene and protein

families such as COG (Tatusov et al. 2001), Pfam (Finn et al. 2013), and

TIGRFAMs (Selengut et al. 2007). The alignment outputs obtained by HMMER3

search are employed to assign the metagenomic reads to multiple sequence align-

ment corresponding to all gene families. Subsequently the curated multiple

sequence alignments are subjected to construct phylogenetic trees for each gene/

domain family using FastTree-2 (Price et al. 2010). The analysis outcomes are

presented via bioinformatics tools such as genome browser based on phylogenetic

tree and a similar tree-based domain browser. Thus, one can analyse the multiple

genomes and browse genes associated with different functions. With

metaMicrobesOnline users are allowed to choose most suitable analysis pipeline

for their dataset, including read assembly, gene annotations, and phylogeny of

genes. metaMicrobesOnline comprises a protected database of 155 metagenomes
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encompassing 123 datasets from different environmental niches and another

32 corresponding to different hosts. After July 2010, it was merged with the

MicrobesOnline web application (http://www.microbesonline.org), which houses

thousands of genome datasets corresponding to all the three domains of life (Dehal

et al. 2010). However, this tool is not being used and cited regularly owing to

inconsistent updates and the limitation with requirement of longer contig reads

leading to limited submission of new metagenomes.

6.2.10 MyTaxa

MyTaxa is a recent bioinformatics tool based on homology search for classification of

metagenomic and genomic sequences with high precision (Luo et al. 2014). It utilizes

each gene corresponding to every unidentified sequence as classifiers, measuring all

genes depending on its recomputed classifying potential for described taxonomic level

and prevalence of HGT (horizontal gene transfer). This tool is especially relevant for

classification of unidentified genomic and metagenomic datasets. An indexed database

is the key component of MyTaxa which is available for free and can be downloaded

from MyTaxa’s webpage. This database includes guidelines for the gene clusters being

exploited during online analysis for taxonomic classification. In order to attain high

precision and specificity for taxonomic annotations, the database is frequently updated

by integrating extra reference genes being accessible from newly identified genomes or

ongoing sequencing projects. MyTaxa is flexible for analysis of bigger sequence data

additionally harmonious with newly developed efficient algorithms in addition to

homology search. For online analysis with MyTaxa, pipeline starts with upload of two

files: (1) a regular GFF file comprising of annotated genes from query sequences and

(2) an output file in tabular format corresponding to homology search of the annotated

gene sequences in reference to the ones that are being employed to establish the index of

gene weights. MyTaxa employs a distinctive classification approach which is dependent

on the genome-aggregate average amino acid identity (AAI) phenomenon to ascertain

the confidence in uniqueness of sequences depicting the unclassified taxa. This classifi-

cation scheme supports MyTaxa for being an appropriate tool to find out the level of

uniqueness of uncharacterized metagenomic reads. Nonetheless, since there is lack of

reference sequences of distant species from public database, the annotation of species

(the last taxa in hierarchy) is a difficult work for the tool. Furthermore, the efficiency is

hindered due to incompetency to undertake the functional or metabolic profiling of

query datasets. Additionally, a main hurdle for new users to operate the tool is the

necessity of metagenomic protein file obtained after BLASTx translation. However, if

restricted to classification task, this tool has been shown to perform annotation of at least

5% more sequences than any other tool. When tested with simulated and genuine

metagenome data of heterogeneous read length ranging from 100–2000 bp, it revealed

that �10% of the assembled read data corresponding to human gut metagenomes

constitute unique species with no sequenced representatives. Thus, MyTaxa can be a

useful tool in microbial diversity studies and offer further penetration through highly

intricate microbial world.
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6.2.11 EBI Metagenomics

Introduced in 2011 by EMBL-EBI, EBI Metagenomics is the first platform in

Europe for taxonomic, functional, and comparative metagenomic analyses (Hunter

et al. 2014). It encompasses QIIME originated algorithms for data analysis, storage,

and sharing of metagenomes. To start the analysis, users must register on web

server to submit raw sequence data that can be kept private till 2 years, and the

sequences are deposited with distinctive accession numbers in the European Nucle-

otide Archive (ENA). Deposited datasets and corresponding metadata abide by the

Genomic Standards Consortium (GSC) and Minimum Information about any

(X) Sequence (MIxS) for verification, making it available for the scientific commu-

nity. Furthermore, by virtue of ENA’s Webin tool or ISAcreator, this online tool is

compatible with raw sequences yielded from any NGS platforms. The analysis

pipeline includes preprocessing of sequence data involving trimming and quality

checks to eliminate sequencing artefacts and organize the data. Subsequently, the

processed data is analysed by rRNAselector and QIIME for taxonomic identifica-

tion and functional annotation via consolidated protein database called

InterProScan. EBI Metagenomics is an efficient tool for the processing and analysis

of both shotgun and marker-gene metagenome datasets. Although basically it is

centred on shotgun metagenomes, rRNA data can be retrieved and analysed from

shotgun metagenomic datasets via rRNASelector, making this tool suitable for

marker-gene metagenomics. The analysis outputs are simply available from the

EBI Metagenomics web interface and thus can be downloaded in various formats

suitable with subsequent analyses employing online or stand-alone tools. EBI

Metagenomics also allows a quick comparative taxonomic and functional profiling

of metadata allowing exploration of novel features among different metagenomes.

By virtue of numerous merits presented by EBI Metagenomics, in recent years it

has been a favourite bioinformatics platform among new researchers. EBI

Metagenomics regularly updates the data processing and analysis pipeline comply-

ing with emergence of new analysis and visualization tools. Presently, it ventures to

develop a common platform for NGS computational pipelines.

6.2.12 MEGAN Community Edition

Community Edition (CE) is another freeware bioinformatics tool and an extension

of widely used microbial diversity analysis tool MEGAN for accelerating the

taxonomic and functional analyses of huge microbiome datasets (Huson et al.

2016). The input file for MEGAN CE is called RMA (a compressed, indexed file

format) including sequence reads, alignments, and annotations (taxonomic and

functional both) for a given sample. Such file can be generated interactively using

MEGAN CE, as well as by employing command line tool termed blast2rma,

yielding RMA file on server for subsequent analyses. Alternatively, if DIAMOND

(new alignment tool) is exerted for computing alignments, another command line

tool termed Meganizer is utilized to accomplish taxonomic and functional binning
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of the reads (Buchfink et al. 2015). The output is then adjoined with the file along

with supplementary indices needed for coherent sequence accessibility through

taxonomic or functional annotations. These meganized diamond files can directly

be analysed via MEGAN CE instead of additional data processing. As compared to

previous versions of MEGAN (Huson et al. 2011) necessitating presence of files

(undergoing analysis) on the computer, MEGAN CE offers flexibility by

harbouring new program called MeganServer which can store and allow access to

RMA and meganized diamond files for analysis via online mode. Thus, MEGAN

CE presents an efficacious pipeline for the analysis of shotgun metagenome dataset

by integrating with DIAMOND (a new high-throughput DNA-to-protein alignment

tool) and by offering a new platform MeganServer that allows access to analysed

metagenome files on the server. This system can facilitate the analysis of huge data

comprising of hundreds of metagenomes and billions of sequences through single

server in quick time.

Any computational analysis of metagenomic data has two main goals of deter-

mining the taxonomy and functional capacity of microbial community at respective

environmental niche. Like previous versions, MEGAN CE also implements binning

at taxonomic level by attributing reads to nodes from NCBI taxonomy by

employing the LCA algorithm (Huson et al. 2007). For the binning of reads with

respect to functions, MEGAN CE utilizes various classification systems –

(1) InterPro2GO analyser which classifies InterPro families (Mitchell et al. 2014)

by using a metagenome GO-slim (Hunter et al. 2014), (2) SEED analyser exploiting

the phenomenon of subsystems and functional roles (Overbeek et al. 2014), and

(3) eggNOG viewer on eggNOG platform which is the extension of COGs (Powell

et al. 2012). Additionally, MEGAN CE also employs legendary KEGG viewer, by

retrieving the files from KEGG in 2011 (Kanehisa and Goto 2000). After

annotations, user can perform principal coordinate analysis (PCoA) and cluster

analysis by using various diversity indices in addition to standard alpha diversity

index. This tool offers a gene-centric method to read assembly data. The reads

assigned to any given taxonomic or functional level can be assembled and retrieved

as contigs, without any substantial calculations or supplementary tools.

6.3 Conclusion

With advanced NGS platforms, structural and functional microbial dynamics is a

common practice in any ecological studies. Moreover, the comparative analyses of

multiple metagenomic datasets rapidly expanded the area of microbial diversity

studies. For extensive exploration of ecosystems, unique bioinformatics tools,

pipelines, and postulates are needed for analysis, data repository, output

illustrations, and sharing of massive dataset. Therefore, any single bioinformatics

tool would not be sufficient for performing full-fledged metagenome analyses.

Development in sequencing platforms yielding longer-read length, new bioinfor-

matics tools for precise assembly, and annotation of bigger datasets are the

expected advancement in the forthcoming metagenomic research projects in the
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coming years. This book chapter has illustrated a précis of some of the existing

metagenome analysis tools for data obtained from whole-genome shotgun sequenc-

ing approach. The way some of the leading online software tools have evolved after

their inception, their newer versions with more advanced analysis pipelines and

user-friendly platforms are also anticipated in the coming years. This chapter may

confer an understanding to budding research scholars to select the most suitable

bioinformatics tools available in public domain.
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Protein-protein Interactions: Basics,
Characteristics, and Predictions 7
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Abstract

Most of the cellular processes involve protein-protein interactions (PPIs). It

therefore necessitates obtaining the detailed information about the amino acid

residues involved in PPIs. Available are the different PPI determining experi-

mental techniques. These experimental methods, though very accurate, are time

consuming, labor intensive, and very expensive. To solve the aforementioned

problems, different labs developed different bioinformatic protocols to build

different number of bioinformatic software tools to predict PPIs. The bioinfor-

matic algorithms are used for prediction of three-dimensional structures of

proteins as well as protein complexes. Nowadays, different machine learning

algorithms are employed for the purpose of prediction of PPIs. The computa-

tional structure prediction methods involve homology modeling, threading, and

ab initio modeling. These methods have nearly 75%–80% overall accuracies.

The other most widely used method is molecular docking which is used to

generate the three-dimensional conformations of protein complexes. The

docking methods can broadly be categorized as rigid body docking and flexible

docking. In this chapter, the different aspects of computational modeling and

docking strategies will be covered. The basic terminologies will be revisited.

The chapter will aim at providing a firsthand guide on protein interaction

prediction methods.
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7.1 Introduction

In the biological systems, almost all of the biochemical reactions are the outcomes

of different forms of protein-protein interactions (PPIs). Proteins bind to themselves

as well as with other biomolecules like nucleic acids, organic or inorganic

cofactors, and so on (Creighton 1992; Branden and Tooze 2008; Whiteford 2005;

Park and Cochran 2009; Kessel and Ben-Tal 2010; Lesk 2010; Tropp 2011; Kurian

et al. 2012; Nelson and Cox 2012; Walsh 2002). It is also a well-established fact

that PPI dysfunctions may lead to different disease situations (Erickson 1978; Cox

et al. 2006; Greene and McEvanely 2009; Bourin et al. 2012; Meyer and Jaspers

2015; Twigg et al. 2015). Thus, the ideas about PPIs are becoming important day by

day, and it has therefore become essential to biologists to have a good understand-

ing of PPIs. There are numerous PPI detecting experimental as well as computa-

tional approaches developed by different laboratories. The experimental tools to

study PPIs include X-ray crystallography, nuclear magnetic resonance imaging,

electron microscopy, microarray analysis, co-immunoprecipitation techniques, etc.

The aforementioned experimental tools would produce accurate results, but the

main problem with them is the time. These experimental techniques are lengthy

processes. Besides that, these techniques are labor intensive and very costly. In

order to solve these problems, a number of computational algorithms have been

developed. The computational PPI prediction techniques can be classified as:

(a) Techniques to build the three-dimensional structures of protein and protein

complexes

(b) Techniques to build protein-docking methodologies

Nowadays, different machine learning tools are constantly being used for devel-

opment of protein-docking algorithms. The basic principle behind such docking

techniques is to build a training model on the basis of a gold-standard training

dataset which contains a list of positive and negative examples. The machine

learning algorithms would build a model on the basis of which new examples may

be classified as PPI or non-PPI. The computational PPI identification technologies

have various degrees of accuracies. These computational tools though not as accu-

rate as the experimental tools come up with fairly good predictive models of PPIs

(Erickson 1978; Ausubel 1987; Phizicky and Fields 1995; Bollag et al. 1996; Rigaut

et al. 1999; Puig et al. 2001; Golemis 2002; Piehler 2005; Kerppola 2008; Braun and

Gingras 2012; Rao et al. 2014). The computational approaches may, therefore, be

considered to be the start point of PPI prediction methodologies (Sims and Wander

2002; Bader et al. 2003; Hermjakob et al. 2004; Peri et al. 2004; Puente and López-

Otı́n 2004; Woessner 2004; Chatr-Aryamontri et al. 2007; Shoemaker and

Panchenko 2007; Breitkreutz et al. 2008; Skrabanek et al. 2008; van der Hoorn

2008; Tuncbag et al. 2009; Li et al. 2010; Theofilatos et al. 2011; Kohei 2012). The

present chapter is aimed to give firsthand knowledge of different computational PPI

prediction methodologies. However, before going into the technical details of the

PPI prediction methods, the basic definitions need to be revisited.
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7.2 Basic Definitions

PPI Interface PPI interface is the area between the two protein chains. If the

amino acid compositions of the two protein chains are the same, the interface is

called homomeric interface; otherwise, it is termed as heteromeric interface. The

PPI interface has the following characteristics:

• Surface area of interface: For heterodimeric proteins, the surface area is gener-

ally around 600Å2. For a homodimers it is even larger than that.

• Shape of the PPI interface: It is known that the PPI interface is nearly flat. A PPI

interface has two separate zones, viz., the core which is buried in the interface

and the rim which is solvent accessible.

• Composition of amino acids at the PPI interface: It is known that the PPI

interface has an abundance of aromatic amino acid residues and Arg. However,

Cys is not generally found at the PPI interfaces.

• Secondary structural distribution at the PPI interface: It is known that a PPI

interface is made up of beta sheet regions (Bogan and Thorn 1998; Faisal et al.

1999; Sheinerman et al. 2000; Schreiber 2002; Nooren and Thornton 2003;

Nooren 2003; Ofran and Rost 2003a; Bahadur et al. 2004; Keskin et al. 2005;

Shenoy and Jayaram 2010).

7.2.1 Classification of PPI Interface

The PPIs can broadly be classified into several different classes based on the nature

of the interacting partners, the stability of the PPI complexes, the life-span of the

interactions between the protein partners, and the nature of the PPI interface

between the proteins.

• Nature of interacting protein partners: If the interacting protein partners have the

same amino acid compositions, they form homo-oligomers, with structural

symmetry. On the other hand, nonidentical protein partners form hetero-

oligomers. Hemoglobin is a homo-tetramer and a protease-anti-protease com-

plex is a heteromer.

• Stability of interacting protein complexes: If the individual protein partners

forming the PPI complex cannot exist in free state and are stable only in

multi-meric association, they are called obligate oligomers (homo-obligomers

and/or hetero-obligomers), like the Arc repressor dimer where dimerization is

essential for DNA binding. On the other hand, when the protein partners can

exist in free states on their own, they are called non-obligate partners like

antigen-antibody complex.

• Lifetime of PPI: When an association between the protein partners is highly

stable and needs external agencies to break them, they are called permanent
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complexes. Hetero-trimeric G protein (Gα, Gβγ, and GDP) forms this type of

PPI. In contrast, the interacting partners of sperm lysin, a homodimer, exist in a

dynamic equilibrium consisting of association and dissociation of oligomeric

forms. This type of PPI is named as transient complex.

• Nature of the interaction interface: When the individual protein partners in a PPI

use the same interacting interface to join each other, they are called isologous

complexes. On the other hand, in heterologous assembly, the individual protein

partners in a PPI complex use different interfaces to form PPI without any closed

symmetry (Bogan and Thorn 1998; Faisal et al. 1999; Sheinerman et al. 2000;

Schreiber 2002; Nooren and Thornton 2003; Nooren 2003; Ofran and Rost

2003a, b; Bahadur et al. 2004; Keskin et al. 2005; Shenoy and Jayaram 2010).

7.3 Mechanism of PPI

The first and foremost important criterion for protein-protein interactions is the

proximity of the protein partners so that they can interact with each other. However,

most of the interactions between protein partners are non-covalent interactions with

the only exception of covalent disulfide linkages between the cysteine amino acid

residues of the interacting partner proteins. Among the non-covalent interactions,

the most important one found in PPIs is the hydrogen bonding between the polar

atoms in the interacting protein partners. The hydrogen bonding between

interacting proteins would involve both the main and side chain atoms of the

different amino acid residues in the interacting protein partners. The second most

important non-covalent interaction leading to the formation of PPIs is the formation

of ion pair. The ion-pair formation occurs mainly between the side chain atoms of

an acidic amino acid with that of the basic amino acid in the interacting protein

partners. The other important non-covalent interactions involve:

(a) Stacking interactions—between the side chains of the non-polar hydrophobic

amino acids in proteins

(b) Cation-pi interactions—between the side chains of the aromatic side amino

acid residues like Phe, Tyr, and Trp with the positively charged side chains of

basic amino acid residues like Lys and Arg. However, the different protein

complexes have different binding interactions (Bogan and Thorn 1998; Faisal

et al. 1999; Sheinerman et al. 2000; Schreiber 2002; Nooren and Thornton

2003; Nooren 2003; Ofran and Rost 2003a, b; Bahadur et al. 2004; Keskin

et al. 2005; Shenoy and Jayaram 2010).

7.4 Machine Learning and Its Applications in PPI Prediction

Machine Learning (Gallet et al. 2000; Pawson and Nash 2000; Neuvirth et al.

2004; Bradford et al. 2006; Li et al. 2006; Wang et al. 2006; Kushwaha and Shakya

2010; Choong et al. 2013; You et al. 2013; Zahiri et al. 2013; Cukuroglu et al. 2014;
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Kobzar et al. 2014; Lage 2014; Lua et al. 2014; Murakami and Mizuguchi 2014):

The topic machine learning is a part of computer science. It is derived from pattern

recognition. The machine learning algorithms deduce solutions of a problem based

on the development of a training model obtained from example inputs. Machine

learning can be used to solve various classes of problems like classifications,

regressions, clustering, etc. The machine learning techniques can be of the follow-

ing types:

• Decision tree learning: This is a learning method that uses a treelike architecture

which acts as the model for prediction purposes. The new examples are mapped

into respective categories with the help of the decision tree. The method is

employed in random forest-based classifiers.

• Association rule learning: This is a learning method which extracts some

information from input.

• Artificial neural network (ANN): This learning method is inspired by the

biological networks of nerve cells, i.e., the neurons. These are the data modeling

tools which are based on nonlinear statistics. These methods are used to analyze

the so-called complicated relationship problems between inputs and outputs to

decipher a suitable rule to find the solution of the given problem.

• Deep learning: This is an extension of ANN. The method tries to mimic the

human brain processes by incorporating several hidden layers in the

existing ANN.

• Support vector machines (SVMs): This is a supervised machine learning tech-

nique. This technique builds a hyperplane to separate the known input data

points into different classes. The new data point is then mapped onto the

newly generated rule obtained from the hyperplane.

• Bayesian networks: This is a probabilistic method, and it presents a set of

variables random in nature and how they are interrelated. A Bayesian network

may be used to infer the relationship between diseases and symptoms.

• Genetic algorithm (GA): This method is a method mimicking the process of

natural selection. This method generates the methods such as mutation, cross-

over, etc. to generate new population to find a good solution.

The various machine learning techniques are constantly being used nowadays for

the prediction of PPIs. The machine learning tools are mainly used for the classifi-

cation purposes. In such cases, the input data are used to train a classifier to

distinguish between positive (amino acid residues involved in PPIs) and negative

(amino acid residues noninvolved in PPIs) examples. The most popular machine

learning techniques used for such purposes are the use of classifiers based on

random forest and support vector machines. The random forest-based classifiers

generally produce results based on domain compositions of interacting and

non-interacting protein partners. In other words, such classifiers are trained on

information extracted from the domain compositions of interacting and

non-interacting protein partners. Given an input of the information of an unknown
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protein, such classifiers would come up with some likelihood of the amino acids

residues in the input protein to be involved in PPIs or not.

The SVM-based predictors would function in a somewhat different way.

SVM-based predictors are trained with suitable positive and negative examples.

During training, the predictor would create a hyperplane to discriminate between

the positive and negative examples. For an input protein, the SVM-based classifier

would measure the distances of the amino acid residues from the hyperplane and

would thereby come up with some probability values of the amino acid being

classified as belonging to PPI or non-PPI class.

However, all the machine learning methods are heavily dependent on the

accuracies of training dataset. All the aforementioned tools would generate some

features from the training data. The features are needed to discriminate between the

positive and negative examples. The resulting classifiers from the machine learning

tools would depend on nature of the features. A good feature having a good class

discriminating ability would create a better classifier. However, in biological

system, it is not always possible to have a good negative example. It cannot be

generalized that the amino acid in a protein which is found to be not involved in PPI

in one example would do so in all the other protein complexes.

7.5 Conclusion

Identification of amino acid residues involved in PPIs is a very daunting task. As

previously mentioned, PPIs exist in all the biochemical reactions. The most impor-

tant among them is the protease-antiprotease interactions. The abundance of protein

sequence information instigated the scientists to come up with protein interaction

prediction methodologies that use the protein sequence information only. It is also a

well-established fact that sequence is more conserved than structure. So, similar

sequences mean similar structures. However, this assumption fails below a

sequence similarity level of 30%. So, the sequence-based PPI prediction methods

have very low accuracy levels. On the other hand, methods based on protein

structures are fairly accurate, but the drawback is there are a very less number of

good protein-protein complex structures that are available. Nonetheless, the bioin-

formatic tools may come up with a firsthand knowledge of PPIs for which experi-

mentation is not yet possible.
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The tandem affinity purification (TAP) method: a general procedure of protein complex

purification. Methods 24:218–229. https://doi.org/10.1006/meth.2001.1183

Rao VS, Srinivas K, Sujini GN, Kumar GN (2014) Protein-protein interaction detection: methods

and analysis. Int J Proteomics. https://doi.org/10.1155/2014/147648

Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Séraphin B (1999) A generic protein
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Abstract

Structural biology is a challenging scientific discipline that aims to uncover the

topologies and shapes of biomolecules and macromolecules—that is, DNA,

RNA, and proteins. Proteins are large macromolecules consisting of more than

one chain of amino acids joined together in a linear chain by peptide bonds.

Proteins are required in organisms; they help in all biological processes of cells.

They catalyze biochemical reactions (enzymes), carry out key roles in cellular

processes, and act as structural constituents, catalysis agents, signaling

molecules, and molecular machines of every biological system. They are respon-

sible for immune responses, can store molecules (e.g., casein and ovalbumin

store amino acids), and are even responsible for cell mechanics (e.g., actin and

myosin). The structure prediction of proteins is a difficult task with basic

problems in computational biology, structural science, and structural biology.

The complex structure of protein prediction has four different levels: (1) -

one-dimensional (1D) prediction of different structural features and linear

chain of amino acids; (2) two-dimensional (2D) prediction of spatial

arrangements between amino acids; (3) three-dimensional (3D) (tertiary) struc-

tural features prediction of a protein; and (4) four-dimensional (4D) (quaternary)

structure prediction of multicomplex proteins. Researchers have recently used

most of the various data mining methods, different scripting-based tools, and

machine learning tools for structure prediction of a protein. In this chapter, we

provide a comprehensive overview of proteins structure and use different data

mining machine learning algorithms for protein structure prediction.
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8.1 Introduction

8.1.1 Proteins

Proteins are the basic and essential components of living organisms and represent

the major class of biomolecules in living things. Proteins play a significant role in

all cellular processes and functions of the cell. They provide structural and infra-

structure support to hold a creature together. They act as enzymes to make chemical

reactions that are essential for life. Proteins also act as switches to control gene

expression and as sensors that are involved in taste and smell. They are effectors to

make muscles move, act as detectors that make people differentiate self from

nonself, and cause immune responses. Some proteins have a globular form of

structure because of the assumption of a globe-like shape in a natural water

environment. The non-globular proteins are a special class of proteins, represented

as globular proteins that depend on shape and interaction with cell membranes.

8.1.2 Primary Structure

Proteins are linear chains of polymers consisting of amino acids. There are

20 amino acids, called small molecules, which are synthesized naturally in

organisms. An amino acid consists of an amino group (NH2), a carboxyl group

(COOH), and a hydrogen atom attached to a central (α) carbon. It has a variable side
chain (R) group, which is attached to the central (α) carbon. The R group

distinguishes one amino acid from another. Amino acids may create bonds between

each other through the reaction of carboxyl and amino groups. Such a bond formed

between amino acids is called a peptide bond. Peptide bonds hold the amino acid

together and form the protein structure. The different parts of the original amino

acids in the protein are known as residue. This kind of linear polypeptide chain of

amino acids forms the primary structure of proteins.

8.1.3 Secondary Structure

Local conformations of a linear polypeptide chain of amino acids refer to secondary

structures which appear repeatedly in the protein’s secondary structure. There are

different characteristics that are involved in secondary structure responsible for the

3D form of local regions. The α-helix and β-sheets are two types of major

dominated conformations found in linear chain polypeptides. There are certain
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regularities occurring in local structures and these identify hydrogen bonds among

the various residues of amino acids.

An α-helix is a rigid, rod-like structure and represents screw-shaped

conformations, whereas in a β-sheet there are many parallel strands of residues

known as β-pleated. In regular secondary structures there are loose, flexible loops

and tight turns showing more consistent elements of secondary structures. There are

also random loops and coils included in conformations that are not associated The

conformations which do not belong with a methodical structural feature of a

secondary structure are referred to as random loops or coils. These can be divided

into three different classes –α-helixes, coils, and β-sheets. The sequence annotation
for each individual residue represents the secondary structure of the protein. The

method used for annotations of secondary structure is covered by the Dictionary of

Secondary Structure of Proteins (DSSP) (Kabsch and Sander 1983). The resultant

classes of DSSP are H, G, I, E, B, T, S, and C (the letter is actually a “none”

assignment represented by white space). Moreover, SSP, a basic and simple version

of DSSP and associated with DSSPHEC, is widely used for initial categorization to

alpha-helix (H), beta-strand (E), or coil (C). In SSP, a simplified version of DSSP,

say DSSPHEC, is typically adopted, and covers and maps each of the eight initial

categories to DSSPHEC, related to DSSP in a look-up table. The most significant

correspondence is mentioned below:

DSSP H G I E B T S C.

DSSPHEC H H H E E C C C.

8.1.4 Tertiary Structure

Proteins fold up and form the 3D structure known as the tertiary (3D) structure of a

protein. This refers to unique 3D conformations that globular proteins assume as a

consequence of the interactions between the side chains in their primary structure.

Peptide bonds hold the amino acids in the protein structure, shows two degrees of

rotational freedom, φ and ψ angles. The folding (shape) of protein can be

summarized as an order of φ/ψ angles, using Cartesian coordinates, of the middle

backbone atom (the alpha carbon, written Cα), or using other representational

schemes. The atoms are found in specific positions in folded protein known as

the tertiary structure.

8.1.5 Quaternary Structure

It is a combination of multiple chains that appears in larger complexes. Interactions

between or among the atoms of protein chains occur jointly by non-covalent

interaction. Examples include van der Waals interactions, hydrogen bonding,

ionic bonding interactions, and disulfide bonding.
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Pioneering and experimental research in structural and computational biology,

the main objective of structure prediction, refers to the prediction of secondary and

tertiary structures using experimental primary sequences or structures of proteins.

This is concerned with identifying primary and complex quaternary structures.

A cell consists of different type of proteins and protein complexes, and these

interact with each other and neighboring molecules such as DNA, RNA,

metabolites which carry different kinds of cellular and biological processes and

functions such as enzymatic reactions and catalysis, coordinated motion, immune

protection, transport and storage, mechanical support, transmission of nerve

impulses, and inhibition of growth and differentiation (Laskowski et al. 2003).

Many biochemical experiments are being carried out (Kendrew et al. 1960; Perutz

et al. 1960; Travers 1989; Bjorkman and Parham 1990) to determine the native

structures of proteins responsible for the key functions of proteins. Therefore,

elucidating a native structure of proteins to understand its function plays major

roles in many scientific disciplines such as pharmaceutical, biological, biotechno-

logical and medical sciences. The experimental methods being used to derive

protein structures include X-ray crystallography (Bragg 1975) and nuclear mag-

netic resonance (NMR) spectroscopy (Wuthrich 1986; Baldwin et al. 1991). Fol-

lowing the two major protein structures of myoglobin and hemoglobin being

determined using X-ray crystallography (Kendrew et al. 1960; Perutz et al. 1960)

experimental techniques, the number of proteins with known structures has been

speedily enhanced.

At present the Protein Data Bank (PDB) contains details of approximately

125,000 proteins with determined structures (Berman et al. 2000). The available

diverse and abundant structures of proteins in the PDB provide invaluable informa-

tion on exactly how proteins fold into their typical tertiary structure and the

prediction of protein structure from its sequence (Chandonia and Brenner 2006).

After many precursor techniques and experiments (Sanger and Thompson 1953;

Kendrew et al. 1960; Perutz et al. 1960; Anfinsen 1973), it has been shown that the

native structure of a protein can be derived or predicted by its amino acid sequence;

protein structure prediction from linear sequences has become a difficult challenge

and a major task in structural biology.

In genomics, certain methods such as high throughput DNA and protein

sequencing have been used to predict or determine protein structure. As the

knowledge of protein sequences is increasing exponentially through experiments,

experimental determinations of native structures of proteins are still time consum-

ing, labor intensive, expensive, and most of the time impossible to predict. Thus,

protein structure prediction from linear sequencing of amino acids is becoming

increasingly indispensable and useful. Current structure prediction software is

becoming a useful tool to show occurrences in existent molecular and cell biology

(Petrey and Honig 2005) and also has significant applications in medical biotech-

nology, pharmaceutical research, biotechnology, and general medical research

tasks such as drug discovery and molecule lead design (Jacobson and Sali 2004)

(Fig. 8.1).
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Here we have tried to focus on the contributions of machine learning approaches

in multilevel protein structure prediction from 1D to 4D (Rost and Chasman 2003;

Baldi and Brunak 2001). If we try to predict 1D structure using machine learning

techniques we must predict the secondary structural features (Rost and Sander

1993a,b; Jones 1999b; Pollastri et al. 2002b) and relative solvent accessibility

(Rost and Sander 1994; Pollastri et al. 2002a) of every residue along the 1D protein

sequence (Fig. 8.2). When the 2D structure prediction takes place, this focuses on

predicting the spatial arrangements among or between residues, such as distance,

contact map prediction (Fariselli et al. 2001; Pollastri and Baldi 2002), and disulfide

bond prediction (Fariselli and Casadio 2004; Vullo and Frasconi 2003; Baldi et al.

2005) (Fig. 8.3). A significant and unique feature of 2D representations is that they

are independent of translations of protein and can rotate in any direction, therefore

being independent of any frame of coordinates, which could be seen only in the 3D

level. Tertiary (3D) structure prediction focuses on predicting the 3D coordinates

for all residues present or all atoms in a 3D space of a protein. However, the main

aim is to predict tertiary (3D) structure, for which1D and 2D structure predictions

are frequently used as input, and therefore 1D and 2D predictions are of great

interest to biologists as important steps toward tertiary structure prediction

Fig. 8.1 Overall strategy for machine learning protein structures. Example of 1SCJ (subtilisin-

propeptide complex) protein. The first stage predicts structural features including secondary

structure, contacts, and relative solvent accessibility. The second stage predicts the topology of

the protein, using the primary sequence and the structural features. The coarse topology is

represented as a cartoon providing the relative proximity of secondary structure elements, such

as alpha helices and beta-strands. The high-resolution topology is represented by the contact map

between the residues of the protein. The final stage is the prediction of the actual 3D coordinates of

all residues and atoms in the structure
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Fig. 8.3 Two-dimensional protein structure prediction. Example depicts a predicted 2D contact

map with an 8 Å cutoff. The protein sequence is aligned along the sides of the contact map both

horizontally and vertically. Each dot represents a predicted contact, that is, a residue pair whose

spatial distance is below 8 Å. For instance, the red dotted linesmark a predicted contact associated

with the pair (D, T)

Input: One dimensional protein sequence  

Output: Structural feature of one dimensional protein 

Fig. 8.2 One-dimensional protein structure prediction. Example elected of 1D structure predic-

tion where the input primary sequence of amino acid is “translated” into an output sequence of

secondary structure assignments for each amino acid (C¼ coil; H¼ helix; E¼ beeta sheet

[extended sheet])
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(Fig. 8.4). Quaternary (4D) structure prediction is aimed at structures and

complexes consisting of multiform folded protein chains (Fig. 8.5).

8.2 Computational Approach for Protein Structure Prediction

The deciphering of protein structures is very important in many disciplines of

biological sciences and is extremely difficult and challenging, having occupied

many researchers for many years. Researchers have tried to achieve significant

advancement in computationally solving protein structures for many years. The

prediction of 1D structure can be achieved by various paths – methods which rely

on amino acid preferences, methods that exploit similar cases, and methods that

rely purely on generalizations derived via machine learning.

Two-dimensional structure prediction can be subdivided into methods that

exploit co-evolution observed for neighboring residues and machine learning

methods. Three-dimensional – also called tertiary – structure conformation is

uniquely determined from amino acid sequence. There is no existing computer

algorithm that can accurately map a sequence to tertiary structure; we must rely on

experimental techniques, primarily X-ray crystallography, to determine tertiary

structure. Advancement in 3D structure investigation is being achieved with

GTEFARSEGASALASVNPLKTTVEEALSRGWSVKSGTGTEDATKKEVPLGVAADANKLGTIALKPDPADGTADITLTF

1-Dimension Structure
Prediction

2-Dimension Structure
Prediction

3-D Structure
Prediction

Fig. 8.4 Three-dimensional protein structure prediction. Three-dimensional structure predictors

often combine information from the primary sequence and the predicted 1D and 2D structures to

produce 3D structure predictions
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many tools, some machine learning programs, neural networks, support vector

machines, etc. In addition to classification methods, HMMs are important methods

among the machine learning techniques for fold recognition. Earlier HMM

approaches, include SAM and HMMer, built an Hiden Markov model (HMM) for

a query with its homologous sequences and later used this HMM to score sequences

with known structures in the PDB using the Viterbi algorithm, an example of

dynamic programming methods. Quaternary structure prediction is very close to

achieving 1D, 2D, and 3D structure predictions. If we see an example of protein

interaction sites that can be predicted by 1D, the outcome in docking phases, the

conformation search space would be reduced very drastically. As this is a problem

in 4D prediction, the size of conformation space should be sampled, which is

greater in 3D prediction cases, and therefore improving binding sites prediction is

a significant and essential step to resolve bottleneck problems. There are certain

methods used, such as HMMs, support vector machines, and neural networks, to

predict binding site prediction.

In this chapter we have tried to address several methods, primarily unsupervised,

and three supervised machine learning methods, including neural network, support

vector machines, and HMM methods for 1D to 3D and quaternary structure 4D

prediction problems. We have tried to stress the application of the mentioned

prediction methods for globular proteins prediction, which is approximately 75%

of the distinctive proteome, for which many methods have been found. We have

also tried to stress some of the applications for membrane structure prediction,

which has less training data in this class.

The first method (Baldi et al. 2002; Pollastr et al. 2002) introduces a novel class of

graphical model architectures along with their allied implementations in terms of

recurrent neural network architectures. The 1D structures have been introduced to

address sequence analysis issues, specifically prediction of structural features of

proteins, such as protein secondary structure (Baldi et al. 1999). The main

Chain A
Chain B

Chain A Chain B

Complex Prediction

Fig. 8.5 Four-dimensional protein structure prediction. Four-dimensional prediction derived by

docking individual protein chains to create a protein complex
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contribution generalizes 1D to 2D, leading to further generalization both to higher

dimensions, not necessarily spatial, data structures. Therefore, at this point we tried in

the first step (Fig. 8.1) to analyze the 1D style of the structural design and to introduce

key generalizations in the second step. Subsequently, the second class of approach

(Frasconi and Vullo 2002) involved the learning task that involves predicting a

scoring function allied with a hypothetical contact map for supervising a graph search

algorithm. For this, recursive neural networks have been stretched to manage undi-

rected (and possibly cyclic) graphs. This was accomplished by taking a lead of the

appropriate property of protein contact maps, where vertices are distinctively

organized (e.g., from the protein’s N- to C-terminus). Instead of getting into the

complexity of protein structure prediction, it is enough that the prediction of contact

maps is possibly the utmost challenging and important step in the overall approach.

Discussion can be in terms of processing architectures with inputs and outputs. As

with this strategy, the reader can use or practice similar concepts to create parallel

architectures based on inputs only, outputs only (e.g., HMMs), or even no inputs and

no outputs (e.g., Markov chains).

8.3 Machine Learning Methods for Protein Structure
Prediction

The most important aspect and major task in structural biology is 3D structure

prediction from 1D linear protein sequences. Our main goal is to determine the

spatial arrangements (shape or fold) that a given protein sequence adopts. The

major problems are further divided by specific conditions as to whether the amino

acid sequence adopts a new fold or carries a similar existing fold in some other

databases. Fold recognition prediction is possible if any sequence query is analo-

gous with known structures (Bourne and Weissig 2003). If the two sequences are

similar and share evolutionary ancestry, they are called homologous. This kind of

information or sequence similarity of protein sequences can help to build or predict

the protein query sequence by choosing the known homologue sequence as a

template. This method is known as comparative modeling.

In some cases, if we do not have a homologous template structure for the given

query sequence, we can try to build the protein tertiary structure from scratch. Such

methods are called ab initio methods. Ab initio approaches are based on

physiochemical principles or statistical machinery which could help to simulate

protein folding. The fundamental feature of ab initio approaches is to try to predict

protein structure without referring to any specific template protein sequence with

known structure. In the case of fold prediction, it is not necessary that we always

have good sequence similarity to known structures, but the template with structural

features may exist for a given sequence. Here, if the target structure is available, the

template can be identified against the entire structure database. Therefore, it is not

necessary that template and target query should be homologous. These two cases

represent fold prediction (homologous) and fold prediction (analogous) problems

during the critical assessment of protein structure prediction (CASP) competition.
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The evaluation of 1D to 3D structure prediction is being examined in critical

assessment techniques for the protein structure prediction (CASP) (Moult et al. 2007)

and 4D structure predictionmethods are evaluated in critical assessment of techniques

for protein interaction (CAPRI) (Wodak 2007). To date, knowledge-based methods

have been most successful in the structure prediction areas. A knowledge-based

method refers to retrieving knowledge from known and available protein structures

and inferring about new proteins for which structures are unavailable. Machine

learning methods (Baldi and Brunak 2001) represent a specific class of tools which

are used in all kinds of protein structure prediction. Here, we explain the 1D, 2D, 3D,

and 4D structure prediction using a machine learning approach, and also try to address

the advancement and application of machine learning methods. We focus on some of

the methods such as unsupervised clustering and supervised machine learning,

including support vector machines, neural networks, and HMMs for 1D, 2D, 3D,

and 4D structure prediction problems. We also briefly try to deliver the knowledge

and explain some applications processes and techniques for structure prediction of

membrane proteins.

8.3.1 Machine Learning Methods for 1D Structure Prediction

In many proteins, the general observation made regarding 1D prediction, which

corresponds to structural feature problems, includes solvent accessibility predic-

tion, binding site prediction, secondary structure prediction, disordered region

prediction, protein domain boundary prediction, functional site prediction, and

transmembrane helix prediction (Cheng et al. 2005; Bryson et al. 2007). Problems

found during 1D predictions are protein primary sequences which are used as input

and outcome leads to predicted features of sequence for each amino acid in the

sequence (Fig. 8.2). The main aim of the map is to predict structural features using

primary protein sequences of amino acids, mostly the 1D prediction problem seen

to classify each of the amino acid involves in protein sequences. In the past, the

protein secondary structure prediction was seen to be most studied in the develop-

ment of protein structure prediction processes and techniques (Rost and Sander

1993a, b; Chou and Fasman 1978; Baldi et al. 1999). Here, we have mainly tried to

focus on prediction of globular proteins of secondary structure using machine

learning methods. Similarly, the techniques mentioned have been used for other

1D prediction issues. In the early phase, the structure prediction methods (Chou and

Fasman 1978) were available for extracting statistically significant correlation

between the consecutive amino acids present in protein sequences and secondary

structure classification.

This statistical correlation method for amino acids present in protein sequences

and structural features of proteins used a certain amount information to give an

accuracy of about 50%. With recent advancement in structure prediction, with most

progress in strong pattern recognition and nonlinear function fitting techniques, new

techniques and methods have being used for structure prediction study. In the late

1980s, for the first time, the feed forward neural networks method was applied to
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secondary structure prediction and the accuracy of structure prediction increased by

60–70% (Qian and Sejnowski 1988). It was observed that machine learning

methods were successfully introduced on a large scale to resolve difficult issues

in bioinformatics. In bioinformatics history a third significant breakthrough was

observed whereby higher accuracy in structure prediction could be achieved using a

richer input, which can be determined from a multiple sequence alignment to its

homologues. The fact is that protein secondary structure is more conserved com-

pared to primary sequence from the same protein family, evolved from the same

ancestor with different amino acid sequences but usually sustaining the same

secondary structure (Crawford et al. 1987; Barton et al. 1991), and this was the

first combination using a neural network with multiple sequence alignment that

improved secondary structure features accuracy by as much as 70–74%. In this

method, instead of encoding each amino acid with a sparse binary vector of length

20 containing a single 1-bit present at a different position for each different amino

acid, the empirical probabilities (i.e., normalized frequencies) of the 20 amino acids

appearing in the corresponding column of the multiple sequence alignment are

used. The positional frequency vector, called the profile of the family at the

corresponding position, captures evolutionary information related to the structural

properties of the protein family. Under this method, profiles can be created easily

and allow one to leverage information contained in the sequence database, for

example, SWISSPROT (Bairoch et al. 2005), which is a huge database, and then

the PDB.

The profile has been used in all kinds of perception-based protein structure

prediction techniques, and it has been refined. For example, PSI-PRED (Jones

1999b) uses PSI-BLAST (Altschul et al. 1997) for deriving new profiles using

position specific scoring matrices for subsequent improvement of secondary struc-

ture prediction. It is necessary to improve the accuracy of secondary structure

prediction for this new algorithm (Baldi et al. 1999). Pollastri et al. was inspired

by probabilistic graphical models which helps sophisticated neural network models

to improve the accuracy of structure prediction by adding information which

elongates beyond the limited size window the input of traditional feed forward neural

networks. Hundreds of huge neural network ensembles also have been used (Pollastri

and McLysaght 2005). To date, the available technologies and databases have

improved structure prediction, helping to reach an accuracy of about 78–80%. In

addition, hybrid methods (Cheng et al. 2005; Bondugula and Xu 2007) combine

neural network methods, and approaches with homology searches also play a crucial

role in secondary structure prediction. As we know, homologous proteins are those

usually derived from the same ancestor and they are used to refer to participating

structural and functional characteristics. Any protein showing homology with the

query protein sequence is likely to share similar features and structure (Berman et al.

2000). Moreover, the existing statistical machine learning techniques such as neural

networks and support vector machines (SVMs) help to optimize the accuracy of

secondary structure prediction and 1D features of globular protein prediction (Ward

et al. 2003).
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Machine learning methods (e.g., neural networks and HMMs) have been used

to predict 1D features of membrane proteins, which include location specific

regions of alpha-helical or beta-strand and localization of intracellular or extra-

cellular fragments of the loop regions (Randall et al. 2008). In structure prediction,

the 1D prediction methods have progressed well in the last three decades, but there

is still much scope to develop prediction methods and increase the accuracy of

these methods. There are several methods with significant roles in structure predic-

tion that need to improve. For instance, the accuracy of secondary structure

prediction is 8% below the limit of 88% (Rost and Chasman 2003). However, the

prediction of protein domain boundaries (Cheng et al. 2006a; Bryson et al. 2007)

and disordered regions (Obradovic et al. 2005; Cheng et al. 2005) are at a prelimi-

nary level of expansion, although already showing favorable results. There are a

few developments from algorithmic improvements; for example, ensemble and

meta learning methods (bagging and boosting) (Freund 1990) have been used to

combine classifiers in the improvement of structure accuracy. On the other hand, we

need new and up-to-date sources of biological information for structure prediction

improvements, such as gene structure information, including alternative splicing

sites, to help domain boundary prediction.

8.3.2 Machine Learning Methods for 2D Structure Prediction

Two-dimension structure prediction mainly refers to the prediction of protein

contact maps (Olmea and Valencia 1997; Baldi and Pollastri 2002). A protein

contact map (Fig. 8.3) is represented by a matrix M which shows a matrix such

as M [i,j] which is either 1 (one) or 0 (zero). This depends on the Euclidean distance

between two amino acids at linear positions i and j, which is more than a threshold

value (e.g., 8 Å) or not. The range between two amino acids, for example, the

corresponding backbone carbon atoms, can be measured. Similarly, using second-

ary structure elements, a coarser contact map could be determined in an identical

manner. The appropriate contact maps could be determined by considering all the

atoms present in every amino acid. As we mentioned, the contact map uniformly

corresponds to rotations and translations. For any standard contact map, the

corresponding 3D structure can be modified or reconstructed using several

algorithms and methods (Aszodi et al. 1995; Skolnick et al. 1997). As we know,

any contact map is essential for representation of a 3D structure, and contact map

prediction is a more challenging and difficult task compared to predicting the

corresponding 3D structure of a protein. Contact maps could be useful to infer

folding rates in a particular protein (Plaxco et al. 1998; Punta and Rost 2005). There

are several methods of machine learning with applications, including neural

networks (Fariselli et al. 2001; Baldi and Pollastri 2003; Shackelford and Karplus

2007), self-organizing maps (MacCallum 2004), and support vector machines for

contact map prediction. The appropriate feed forward and support vector machine

approaches try to predict around two amino acids, whether they are in contact or

not, and this can be seen in binary classification problems. Every individual place in

132 P. Kumar et al.



a window around an amino acid usually relates to a vector containing 20 numbers

corresponding to the 20 profile probabilities, as in the 1D prediction problem.

A suitable 1D knowledge can be leveraged, including predicted secondary

structures and their relative accessibility of each of the amino acids. As the 1D

prediction method refers to local window approaches it does not take any

exterior effect from the window. To resolve this issue, a 2D recursive neural

network architecture principle may be useful for the complete sequence

to determine each prediction created to rectify contact map prediction. In the

updated CASP (Moult et al. 2007), there are three methods – neural networks

(Shackelford and Karplus 2007), 2D recursive neural networks (Cheng et al.

2005), and support vector machines – to obtain the best authentic results

(Izarzugaza et al. 2007). Although progress has been seen in the last few years,

the contact map still remains a very challenging and unsolved problem. The

observed accuracy and precision of contact prediction is around 28%. However,

this percentage sounds quite low, although the accuracy is good enough in compar-

ison to that predicted by different ab initio 3D structure prediction methods. In 3D

structure prediction, the predicted contact maps could be helpful for structure

prediction problems, and even a small fraction of a correctly predicted contact

map may be used to build an accurate protein topology (Wu and Zhang 2008).

In residue contact maps it is important that we pay more attention specifically to

contact predictions: beta-strand pairing prediction (Cheng et al. 2005) and disulfide

bond prediction (Fariselli et al. 1999; Vullo and Frasconi 2004). Disulfide bonds are

covalent bonds that can form between cysteine amino acid residues. These disulfide

bonds are significant and play a key role in stabilizing proteins, especially small

proteins. The prediction of disulfide bonds forming between any two cysteine

residues in a protein can be made if such disulfide bonds exist. Two effective methods

– neural networks and support vector machines – are used to predict disulfide bonds.

The accuracy and precision are much better (50%) after applying these two methods.

Likewise, the prediction can be made with any two amino acids in two different beta-

strands or not in the same beta sheet. Generally, two beta residues form a hydrogen

bond between them in the protein, helping to stabilize the corresponding beta sheet.

The major requirement is imposed by constraints with hydrogen bonding, the strin-

gency in beta sheet containing 41%, which is quite a lot higher than the generic

contacts in contact maps. In other 2D prediction tasks, such as beta sheet parings

prediction, two methods –feed forward methods and recursive methods – have been

widely used for the appropriate beta sheet parings prediction. To date, the most

successful method is a 2D recursive neural network method, which usually takes

inputs as a grid of beta residues (Cheng et al. 2005), concurrently using graph

matching algorithms which help to predict pairings at strand, sheet, and residue,

levels.

The above-mentioned applied methods have also been used to predict globular

proteins for 2D prediction, these methods helping to making predictions of contacts

in transmembrane beta-barrel proteins. The transmembrane helix prediction is used

to reconstruct 3D structures with appropriate accuracy (Randall et al. 2008).

Two-dimensional prediction is used as input to improve 3D structure prediction;
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this requires improvement in 2D prediction accuracy. For 1D prediction, successful

improvements may come by improvements in machine learning methods or by

adding illuminating features in the inputs; for example, reciprocal selective infor-

mation has been identified as an impactful feature for 2D structure prediction

(Shackelford and Karplus 2007). On the other hand, if we focus on reconstruction

of 3D structures, several methods and optimization algorithms exist, and these can

play a crucial role in reconstructing 3D structures from contact maps using Monte

Carlo methods (Vassura et al. 2008) and experimentally adding contacts into

protein structure predictions (Rohl and Baker 2004) or determining protein

structures using NMR methods. However, these methods could not reproduce

reliable 3D structures from irregular contact maps predicted from the information

existing in primary structures alone (Vendruscolo et al. 1997; Vassura et al. 2008).

Thus, there are demands and a need to develop 3D construction algorithms that can

ignore the noise existing in predicted contact maps.

8.3.3 Machine Learning Methods for 3D Structure Prediction

Machine learning approaches are being used in different aspects of 3D structure

predictions, such as fold recognition, model generation, and model evaluation. Fold

recognition has as its main objective the determination of a protein, with known

features of available structure, presumably homologous to the unknown structure of

a query protein. There is always a need to have essential steps to find homologous

structural features for most successive template-based 3D protein structure predic-

tion methods. Neural network methods were first used to complete this challenge in

combination with threading (Jones 1999a). Recently, researchers proposed a

generalized machine learning approach to enrich two important factors, sensitivity

and specificity, of fold recognition using homology between query and protein

sequences (Cheng et al. 2006a). However, the earlier implemented support vector

machines determined the folds, and it is feasible that this could help to elongate

other methods of supervised learning. In the classification, HMM is a significant

technique which plays a crucial role in fold recognition. Recently, HMM

techniques (SAM and HMMer) (Eddy 1998) have been used to build a Markov

model for a query sequence with its homologue sequence and this model has been

used to score sequences with available structures in the PDB by Viterbi algorithm,

for example, dynamic programming methods. This could be an example of profile-

sequence alignment. Very recently the profile methods have been considered to be a

more significant improvement in the sensitivity of fold recognition in comparison to

profile-sequence and sequence-sequence methods (Soeding 2005). The profile-

profile method is used in the HMM version from earlier times. This model is used

to align a query with the available and known HMMs from the template library.

Such a type of profile-profile alignment is computed using standard dynamic

programming methods.

Optimization techniques include conjugate gradient descent and are being glob-

ally used in statistical machine learning techniques, which are also important
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techniques for 3D protein structure generation and sampling. Conjugate gradient

descent methods are used in neural network and tool (modeler) development for 3D

structures prediction, and are widely used in comparative modeling (Sali and

Blundell 1993). The lattice Monte Carlo sampling method is used in model genera-

tion techniques such as ab initio structure modeling (Zhang and Skolnick 2004),

and the globally known ab initio fragment assembly tool Rosetta, which is based on

simulated annealing sampling techniques. The machine learning methods used very

frequently for model generation to select and evaluate protein models and ab initio

structure prediction methods use mostly clustering techniques to choose the appro-

priate models (Zhang et al. 2004a).

These types of techniques generate a huge population of candidate models and

then try to arrange themselves among them based on structure homology into

different clusters using means clustering and other algorithms of clustering. The

elements described from different clusters show as centroid and then are proposed

as potential 3D structures. Usually a centroid is found as a most confident prediction

among the largest clusters and this centroid could possibly be closer to the native

structure of protein. Further additions to clustering supervised learning methods can

be applied directly to the RMSD between the model and native structure of protein

(Wallner and Elofsson 2007), support vector machines being used to rank protein

models (Qiu et al. 2007).

One major challenge is that current methods used in the chapter cannot select the

best model with the lowest RMSD. The model quality could be evaluated between

predicted scores and real quality scores for poor models and is still a little low,

which means some poor models may have obtained good predicted scores

(Cozzetto et al. 2007). In addition, the significant statistical confidence score should

be designated to determine quality scores for significant model usage and analysis.

There is a demand for additional machine learning approaches and techniques to

enhance the quality score and resolve the major challenging problems.

8.3.4 Machine Learning Methods for 4D Structure Prediction

Protein docking is a method for predicting complex protein structure, that is, 4D

structure (Fig. 8.5) containing multiple protein chains. The main objective of 4D

structure (Fig. 8.5) prediction is to predict the complex structure of proteins

consisting of multiple protein chains (Aloy et al. 1998; Gray et al. 2003). As with

3D structure prediction, 4D structure prediction uses energy functions to reduce the

problem of confirmation sampling. Three-dimensional grid Fourier transformation

methods (Katchalski-Katzir et al. 1992) use small subunits of protein to dock

together. RosettaDock uses a simulated annealing method with some adjustment

for 4D problem in the same way as Rosetta for 3D structure prediction (Gray et al.

2003). More broadly, some methods are being used which lead to adapting 3D

techniques to 4D issues, such as clustering methods used for both cluster docking

confirmation and to select the centroid of clusters to generate an outcome of the

predictions (Lorenzen and Zhang 2007).
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Four-dimensional prediction is very similar and close to 1D, 2D, and 3D

predictions; for instance, 1D predictors can easily predict protein interaction sites

(Zhou and Qin 2007) and the search space for the docking phase could be drasti-

cally changed. Therefore, one of the major problems of 4D prediction is that the

size of the confirmation space is simplified, which improves interface (site) predic-

tion. Neural networks, HMMs, and SVM techniques for the prediction of protein

interface use few features of 3D structures of protein subunits (Zhou and Shan

2001). Experimentally, in some cases 3D, structures themselves are currently not

available, and hence further methods may be developed which can predict

interactions from protein sequences alone.

Conformational changes are the biggest bottlenecks in protein docking, making

processes even more complex and not easily handled by current techniques (Wodak

and Mendez 2004). In protein binding, every protein may undergo substantial or

high scale conformational changes rather than little changes, leading to complexity

and limitations of current methods. Machine learning methods have been developed

to identify several regions, such as flexible hinges, which facilitate major

modifications to determine overall complex structures of proteins. However, for

these problems the training data are somewhat less, and may not be sufficient to

rectify the problems. Finally, machine learning methods show advancement and

reliability for accessing the quality of 4D models and the confidence score.

8.4 Conclusion

As discussed above, machine learning methods and approaches have been used

globally in protein structure predictions and have significantly contributed to the

transformation of amino acid sequence information into structural features. An

attempt has been made to provide a glimpse of the approaches and methods of

machine learning in structural biology.

Machine learning methods have played a key role in structure prediction over the

past few decades and still play an important and significant role in 1D to 4D

structure predictions, as well as many structural feature predictions. Machine

learning approaches have been applied to many structural feature prediction

problems, for instance predicting protein solubility (Smialowski et al. 2007),

protein stability (Cheng et al. 2006c), protein signal peptides, protein cellular

localization (Emanuelsson et al. 2007), protein post-translation modification sites,

such as phosphorylation sites (Blom et al. 1999), and protein epitopes (Andersen

et al. 2006; Sweredoski and Baldi 2009). We have tried to cover some of the

important approaches and application of machine learning methods to structure

predictions and structural features of proteins. A general query asked by students is

which method or approach of machine learning is good enough for a given

problem? When we look at opinion for this question, it turns out that this is not a

fundamental question as it may first seem It is really a challenging question for the

researcher and computer scientist to answer.
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In upcoming future trends, the machine learning approach has a significant role

in structure prediction. The emergence of available training sets coupled with the

existing gap between the number of sequences and available structures remains a

powerful challenge for further development. In addition, machine learning methods

are relatively fast in comparison to other methods. The observation has been made

that machine learning methods usually take most time in the learning phase, which

is possible to conduct offline. In “production” mode, feed forward neural networks

may predict faster. We are aware that accuracy and speed are important features of

any structural feature predictions, these features and considerations are likely

remain important, and there are challenges and the scope to generate growth or

emergence in this area.
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185:422–427. https://www.ncbi.nlm.nih.gov/pubmed/18990802

Laskowski RA,Watson JD, Thornton JM (2003) From protein structure to biochemical function? J

Struct Funct Genom 4:167–177. https://doi.org/10.1023/a:1026127927612

Lorenzen S, Zhang Y (2007) Identification of near-native structures by clustering protein docking

conformations. Proteins 68:187–194. https://doi.org/10.1002/prot.21442

MacCallum R (2004) Striped sheets and protein contact prediction. Bioinformatics 20:i224–i231.

https://doi.org/10.1093/bioinformatics/bth913

Moult J, Fidelis K, Kryshtafovych A, Rost B, Hubbard T, Tramontano A (2007) Critical assess-

ment methods of protein structure prediction-Round VII. Proteins 29:179–187. https://doi.org/

10.1002/prot.24452

Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK (2005) Exploiting heterogeneous

sequence properties improves prediction of protein disorder. Proteins 61:176–182. https://doi.

org/10.1002/prot.20735

Olmea O, Valencia A (1997) Improving contact predictions by the combination of correlated

mutations and other sources of sequence information. Fold Des 2:s25–s32. https://doi.org/10.

1016/S1359-0278(97)00060-6

8 Machine Learning Framework: Predicting Protein Structural Features 139

https://doi.org/10.1002/(SICI)1097-0134(19990815)36:33.0.CO;2-D
https://doi.org/10.1002/(SICI)1097-0134(19990815)36:33.0.CO;2-D
https://doi.org/10.1002/(SICI)1097-0134(19990815)36:33.0.CO;2-D
https://doi.org/10.1002/(SICI)1097-0134(19990815)36:33.0.CO;2-D
https://doi.org/10.1093/bioinformatics/17.10.957
https://doi.org/10.1093/protein/14.11.835
https://doi.org/10.1093/protein/14.11.835
https://doi.org/10.1109/MCTE.2002.1175038
https://doi.org/10.1109/MCTE.2002.1175038
https://doi.org/10.1006/inco.1995.1136
https://doi.org/10.1016/S0022-2836(03)00670-3
https://doi.org/10.1016/S0022-2836(03)00670-3
https://doi.org/10.1002/prot.21637
https://doi.org/10.1016/s0065-7743(04)39020-2
https://doi.org/10.1006/jmbi.1999.2583
https://doi.org/10.1006/jmbi.1999.3091
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1002/bip.360221211
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC48623/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC48623/
https://doi.org/https://www.ncbi.nlm.nih.gov/pubmed/18990802
https://doi.org/10.1023/a:1026127927612
https://doi.org/10.1002/prot.21442
https://doi.org/10.1093/bioinformatics/bth913
https://doi.org/10.1002/prot.24452
https://doi.org/10.1002/prot.24452
https://doi.org/10.1002/prot.20735
https://doi.org/10.1002/prot.20735
https://doi.org/10.1016/S1359-0278(97)00060-6
https://doi.org/10.1016/S1359-0278(97)00060-6


Perutz MF, Rossmann MG, Cullis AF, Muirhead G, Will G, North AT (1960) Structure of

haemoglobin: a three-dimensional fourier synthesis at 5.5�Å resolution, obtained by X-ray
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Drug Transporters as Therapeutic Targets:
Computational Models, Challenges,
and Future Perspective
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Abstract

Tissue level expression, mutation, and substrate specificity of the transporter

proteins have been widely accepted for their usefulness in drug disposition and

efficacy. Many transporters play a significant role in normal human physiology

as well as in disease conditions. Association of these properties, with systemic

plasma concentration of the drug, is the leading reason for adverse drug reactions

and drug resistance. The identification and validation of transporter proteins in

experiments and their atomic resolution for characterization of structural-

functional relationship is a costly, time-consuming, and more tedious process.

However, predictive in silico tools claimed well for accurately accessing the

pharmacokinetics, pharmacodynamics properties in early drug discovery stage.

But the huge amount of data requires the development of reliable computational

techniques and databases for the identification and/or prediction of membrane

transport proteins as well as their ligands has become essential. Here, we review
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the available datasets and the computational methods, which put forth more

insights for better understanding of human drug transporter proteins.

Keywords

Transporter · Inhibitor · Drug · Database · ADMET, ligand prediction

9.1 Introduction

The transporters (proteins) are the foremost determinants of regulating the in-/

outflow of molecules through the plasma membrane and thus controlling the

pharmacokinetics behavior of various drugs. The concentration of drug at various

sites of action is another crucial element for its desirable as well as undesirable

effect. Their plasma level is dependent on the different transporter proteins

expressed in various tissues or organs. The importance of drug transporter proteins

in pharmacokinetics and the associated absorption, distribution, metabolism, excre-

tion, and toxicity (ADMET) properties are well described in literature (Saier 1998,

2000; Saier et al. 2014). For example, metformin a substrate of organic cation

transporters OCTs (Fig. 9.1a), when co-administrated with another drug cimetidine

(an inhibitor of OCTs), increased the concentration of metformin (Fig. 9.1d)

(Viereck et al. 2014).

According to Food and Drug Administration (FDA) guideline, each investiga-

tional drug should be evaluated in vitro for their function as P-glycoprotein (P-gp/

BCRP) substrate/inhibitor. Furthermore, expression of drug transporter proteins

from bacteria to mammals indicates its immense value in each domain of life

(Saier 1998). Previous studies suggested that eukaryotes have more number of

transporters as compared to prokaryotes (Quentin and Fichant 2000; Ren and

Paulsen 2005). In view of its significance, various classification schemes have

been adopted to understand their function and distribution (Saier 2000; Saier

et al. 2014). In 2012, Viereck et al. conducted a comparative study on different

classification schemes adopted so far and recognized different pitfall in a classifi-

cation system (Viereck et al. 2014). Although the importance of drug transporter

proteins in other species/organism can not be ignored, but it’s difficult to cover all

these in comprehensive ways. Overall, several key questions associated with drug

development need to be addressed such as clinically relevant drug transporters and

a protocol for validation of drug transport interactions. Therefore in this chapter, we

will summarize the database of human drug transporter proteins and their ligands as

well as computational models developed so far (Fig. 9.2).
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9.2 Database of Human Drug Transporter Proteins

In previous studies, a number of databases have been developed for a different

purpose that provides information on transporter proteins (Fig. 9.2). The complete

drug transporter proteins could be represented by two major families, namely,

ATP-binding cassette (ABC) and solute carrier (SLC) family (Zhao et al. 2011).

Additionally, ABC transporters play a crucial role in bioavailability and toxicity of

drugs (DeGorter et al. 2012; Hee Choi and Yu 2014; Szakács et al. 2008). Recently,

Lin et al. have reported that SLC transporters are the important therapeutic targets

by playing a major role in regulating the physiological process by controlling the

cellular uptake of molecules (César-Razquin et al. 2015; Lin et al. 2015). Therefore,

we mainly focused on these two transporter families. The first database specifically

designed for human ABC transporters proteins (http://nutrigene.4t.com/humanabc.

html) provides information of 49 protein sequences (Quentin and Fichant 2000).

Along with basic information like gene/protein sequence, this database also has

information on the disease associated with a mutation in a particular transporter

A B

C D

Fig. 9.1 Transport of molecule in the kidney through drug transporter protein. The black color

depicts as black, transporter protein; blue, a substrate; and red, inhibitor. (a) High-level expression
of transporter protein, (b) mutated transporter protein, (c) poorly expressed transporter protein, (d)
transporter protein bound with inhibitors
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protein. Similarly, SLC table (http://www.bioparadigms.org/slc/) has about 400 sol-

ute carrier genes which are further categorized into 52 subfamilies along with their

tissue level expression and associated diseases gathered from the literature.

Later on, a common database of transporter proteins (TransportDB http://www.

membranetransport.org/) was developed which enclosed the transporter protein

information for 365 organisms, of which human transporter proteins were classified

into four classes: (a) ATP-dependent, (b) ion channels, (c) secondary transporters,

and (d) unclassified (Ren et al. 2007). The 53 ABC genes belonged to

ATP-dependent category and ~250 genes belonged to SLC family, the majority

of which were secondary transporters. This database provides the information of

tissue in which these genes are expressed. This database also integrates a tool,

TransAAP, for whole genome-based annotation of transporter proteins. However,

the major limitation of this tool is its applicability on prokaryotic genomes only.

Based on the functional and phylogenetic relationship, another database TCDB

(transporter classification database http://www.tcdb.org/) has been developed for

classification of transporter proteins. This database was extensively used for various

analysis and predictions (Saier et al. 2014). This database has a record of ~10,000

proteins of which 1555 protein belongs to human transporter proteins. At present, it

encapsulates the information of 48/454 genes that belongs to ABC/SLC family,

respectively. The advantage of this database involves the integration of protein

analysis tools such as transmembrane segment prediction and hydropathy/

amphipathicity prediction.

Human metabolome database (http://www.hmdb.ca/), a database of human

metabolites, was developed for accessing the information like spectral data,

bio-fluid concentration, and location of metabolites (Wishart et al. 2013). Although,
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this database is primarily designed for human metabolites, yet we also extracted the

information of about 12 ABC and 58 SLC genes (Wishart et al. 2013). In 2014, a

guide to pharmacology holding the information about drugs and various targets has

been developed. This web service (http://www.guidetopharmacology.org/)

supports approximately 500 human transporter proteins which are comprised of

42 ABC, 206 SLC, and 204 others transporter proteins (Alexander et al. 2013).

Similarly, DrugBank v4.0 (http://www.drugbank.ca/) has information on about

18 ABC and 84 SLC genes that are involved in the transport of various drugs

(Law et al. 2014). As shown in Fig. 9.2, UCSF-FDA (http://bts.ucsf.edu/

fdatransportal) transport database has been developed for storing the information

of almost 30 drug transporter proteins along with their clinically relevant drug

interactions (Ye et al. 2014). Recently, a human transporter protein-specific data-

base HumanTDB (http://htd.cbi.pku.edu.cn) has been developed that contains

information of a total of 1555 proteins of which 48 belong to ABC and 454 belong

to SLC transporter families, respectively (Ye et al. 2014).

9.3 Ligand Database of Transporter Proteins

With the advent of high-throughput chemical screening technology, a huge amount

of chemical activity data is produced and stored in different databases. The

PubChem BioAssay is a large repository of high-throughput chemical screening

data coming from various sources and research labs (Table 9.1). Our search found

that at present, it holds the BioAssay information of 50 human transporter proteins

of which only four belong to ABC family (Wang et al. 2012). Similarly, ChEMBL

is another database having chemical activity data of small molecules. Although, in

ChEMBL and PubChem BioAssay, some overlapping chemical data is also present,

yet a major difference in both is that the ChEMBL database also has information

from previous literature studies (Zhao et al. 2011). This database covers a total of

87 human transporter proteins with more than 12,000 ligands for ABC family and

~1400 for SLC family (Table 9.1). Similarly, the IUPHAR has only ~200 ligands

targeted by 77 transporter proteins (Alexander et al. 2013). The updated version of

DrugBank4.0 holds about ~650 approved drugs that act as substrate, inhibitor, or

inducer for 117 transporter proteins (Law et al. 2014). As shown in Table 9.1,

human metabolome database covers more than 1200 ABC and 15,000 SLC

metabolites that are interacting with 70 transporter proteins (Wishart et al. 2013).

TSDB is a database of transporter protein substrates that captures information for

105 ABC and 96 SLC substrates, respectively (Zhao et al. 2011). Recently, Mak

and colleagues created a database of human drug transporter ligands collected from

previous studies. Presently, this database has information for 6 ABC and 14 SLC

transporter protein small molecules. It also represents a unique resource for ~3500

unique compounds with a different mechanism of action such as substrate/inhibitor/

modulator, etc. Besides that, it also includes information for non-substrate and

non-inhibitor molecules that would be useful for developing robust prediction
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models. In addition to this, it also compiled the ligand molecules for a CYP450

enzyme that plays important role in drug metabolism.

9.4 Computational Model for Prediction of Transporter
Proteins

In the current scenario, the application of next-generation sequencing (NGS) is

being widely used for sequencing the new or previously unknown organisms. A

huge amount of data generated from sequencing projects is required to be annotated

and functionally characterized. With a view of its importance, a number of compu-

tational tools have been developed for predicting the transporter proteins and their

families (Table 9.2). In 2008, a nearest-neighbor (NN) based method has been

developed to predict the family of transporter proteins (Table 9.2). This method

used the dataset of ~3800 proteins and showed 72.3% accuracy on independent

datasets (Li et al. 2008). In 2010–2011, two models were developed for prediction

of a subfamily of transporter proteins based on the position-specific scoring matrix

(PSSM) and biochemical properties (Chen et al. 2011b; Li et al. 2009; Ou et al.

2010). The radial basis function-based network model identified hydrophobic

residues (Leu, Ile, and Lys) in electrochemical transporter proteins, Glutamic acid

(Glu) in active transporters, and Aspartic acid (Asp) in channel transporter proteins.

The only limitation of the above-mentioned model is its ability to assign the new

transporter protein to either of these three classes: (a) active transporters,

(b) electrochemical, or (c) channels/pores. In 2009, a support vector machine

(SVM)- and hidden Markov model (HMM)-based two-phase classification model

with ~81% accuracy was developed to predict the transporter proteins (Li et al.

2009). Gromiha et al. developed another model to predict the functional residue in

membrane proteins (Gromiha et al. 2009). This method is useful for identification

of critical residue whose change results in loss of function of that particular protein.

A classification model based on physicochemical properties was also developed to

predict transporter proteins with 65% accuracy (Table 9.2). In 2014, Mishra et al.

developed a tool TrSSP (Transporter Substrate Specificity Prediction) for predic-

tion of transporter proteins and their substrate specificities (Mishra et al. 2014). The

model developed in this study is able to discriminate the transporter proteins into

Table 9.1 Databases for ligands of transporter proteins in literature

Name Target covered (ABC + SLC) ABC SLC Total

PubChem BioAssay 50 (4 + 46) – – –

ChEMBL 87 (10 + 75) 12,466 1402 13,868

DrugBank 117 (18 + 84) 246 406 652

HMDB 84 (12 + 58) 1229 15,169 16,604

IUPHAR (2 + 75) 2 197 199

TSDB (19 + 128) 105 96 201

Metrabase (6 + 14) 2572 2254 4826
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seven classes (amino acid transporters, anion transporters, cation transporters,

electron transporters, protein/mRNA transporters, sugar transporters, and other

transporters) based on their substrate specificity. The models developed so far

were not species specific. To answer this problem, Huang et al. developed a method

for prediction of human transporter proteins with an accuracy of ~84% on the

independent dataset (Huang et al. 2014). This model used the AAindex database for

computation of physicochemical properties of proteins and used it as input for

support vector machine (SVM) based classification. The only limitation of the

model is its inability to categorize the predicted protein to their respective family

or class (Table 9.2).

Table 9.2 Computational methods developed for the prediction of transporter proteins and their

families

Name Methodology Dataset

Performance

(%) Reference

Transporter family prediction Nearest neighbor TS-

3899

72.3% 2008

TransportTP (http://bioinfo3.

noble.org/transporter)

HMM and SVM – 81.8% 2009

Functional residue prediction Evolutionary

features

– – 2009

Transporters, their class, family

prediction (http://rbf.bioinfo.tw

$ sachen/tcrbf.html)

PSSM and

biochemical

properties

TS-693 Transporter,

76%

Class, 73%

Family, 69%

2010

Transporter family prediction

(http://rbf.bioinfo.tw/~sachen/

ttrbf.html)

PSSM and

biochemical

properties

TS-651 ET, 90.1%

Protein/

mRNA,

80.1%

Ion

transporters,

70.3%

Others,

82.3%

2011

Transporters, their class,

subclass prediction (http://www.

juit.ac.in/attachments/tppred/

Home.html)

Physiochemical

properties

TS-

5359

NTS-

2907

65% 2012

Human transporter protein

prediction

Physiochemical

properties

HTS-

728

NHTS-

4258

~86% 2014

TrSSP (http://bioinfo.noble.org/

TrSSP/)

PSSM,

physiochemical

and biochemical

properties

TS-900

NTS-

660

76.69% 2014
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9.5 Computational Models for Transporter Proteins Ligand
Prediction

In the past, numerous reviews have been published summarizing the machine

learning and structure-based models for drug transporter proteins (Chen et al.

2012; Montanari and Ecker 2015; Tao et al. 2015). In this study, we are only

describing the methods that were not reported before (Table 9.3). Besides that, we

also compiled a comprehensive list of in silico models developed so far (Table 9.3).

In 2013, Tan et al. developed an inhibitor prediction model for P-glycoprotein. The

SVM-based linear model by using only three descriptors predicted the overall

accuracy of 86.8% on an independent dataset. Furthermore, the docking-based

model also showed 82.3% accuracy on the test set. Analysis of molecular properties

and structural properties of the binding site identified aromaticity, molecular

volume, and lipophilicity as important determinants of P-gp inhibitors.

For solute carrier (SLC) protein family, Karlgren et al. compiled a list of

65 OATP1B1 inhibitors from in vitro screening. This dataset comprised of 98 train-

ing and 48 test set molecules used for computational modeling. Examination of

molecular properties showed that a high value of molecular size, polarity, and logP

was favored in inhibitors, while a high value of shape descriptor (MSD) was

responsible for the non-inhibitory action. Based on these descriptors, OPLS-DA-

based single component-based model leads to an overall accuracy of 87% on the

test set (Table 9.4). In the same year, authors also reported another in silico model

for OATP1B1, OATB1B3, and OATP2B1 hepatic transporters. A multivariate PLS

models predicted overall accuracies of 79%, 92%, and 75% for OATP1B1,

OATP1B3, and OATP2B1 on test sets, respectively (Table 9.4). In addition to

common features such as lipophilicity and polar surface area, a high count of

hydrogen bond donor (HBD) was found to be important for OATP1B3 inhibitors

than non-inhibitors. Similarly, high polarity was found to be the main characteristic

of OATP1B1/OATP1B3 inhibitor, with a small influence on OATP2B1 inhibitor.

Recently, You et al. compiled a dataset of 284 compounds to predict the binder

among the four representative hepatic importers (OATP1B1, OATP1B3, OAT2,

and OCT1). Support vector machine (SVM)-based algorithm is able to differentiate

binder from non-binder with 76.38%, 77.72%, 84.31%, 84.21%, and 76.38%

accuracies for OCT1, OATP1B1, OATP1B3, and OAT2, respectively (Table 9.4).

Analysis of descriptors revealed the importance of hydrophobicity, H-bonding, and

charged molecules common among all the four hepatic importers. However, logD,

acidity, and basicity were found to be specific for OATP1B1, OATP1B3, and

OCT1, respectively. The major pitfall of the model is its incapability of predicting

the action of molecules like as a substrate, inhibitor, or inducer.

In 2014, Garg et al. compiled a dataset of BCRP substrate from previous studies,

comprising a total of 234 compounds. Their prediction approach was based on

greedy stepwise algorithm and SVM for descriptors selection and model building.

The final SVM-based model was based on eight molecular descriptors that resulted

in 65% accuracy on the test set. The specificity of molecules was further studied by

docking the selected substrate into the binding site of BCRP protein, and it was
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observed that His457 and Arg465 are involved in specificity (Table 9.3). Ding and

colleagues also developed a regression-based model using 135 BCRP inhibitors

collected from previous studies. A pharmacophore model was developed based on

22 selected molecules whose IC50 values varied from 4 logarithmic unit and the

prediction value was used for SVM model development. The final PhE-/SVM-

based model showed Q2 of 0.75–0.89 on the test set and 0.72–0.91 on outlier

dataset. A high correlation value R2 of 0.83 on HIV protease inhibitors also

shows the applicability of the model.

Recently, Welch et al. built a computational algorithm for the prediction of

inhibitors against multiple drug-resistant protein 4 (MRP4) and bile salt export

pump (BSEP). The Bayesian-based classification model showed accuracies of

83.8% and 87% on test dataset for MRP4 and BSEP, respectively (Table 9.3).

The pharmacophore model based on nine inhibitors from each class showed the

importance of hydrophobicity and H-bond acceptor in inhibitor prediction. The

importance of same descriptors for two transporters partially explains the affinity of

various drugs for both proteins. Analysis of dataset also revealed that higher logP

value positively contributes in inhibitory activity of compounds.

However, the major challenge in the field of drug transporter modeling is the

molecular basis for the poly-specificity. To overcome this issue, Thai et al. devel-

oped a counter-propagation neural network (CPG-NN) based multi-label classifica-

tion system. In this study, 223 compounds were used to develop three models

(SION, SIO, SIN) in order to classify specific “true” P-gp inhibitors, and three

other models (CPBN, CPB1, CPN) were developed in order to distinguish between

CYP3A, P-gp inhibitors, and co-inhibitors of these proteins. The overall accuracies

of SIN, SIO, and SION model on diverse independent test set were 82%, 65%, and

55%, respectively.

In 2015, Steeg and colleagues screened 640 FDA drugs for their inhibitory

action on OATP1B1, OATP1B1*15, and OATP1B3 (Table 9.4). Based on more

than 60% inhibition cutoff value, 8%, 7%, and 1% drugs were found to act as

inhibitors for OATP1B1, OATP1B1*15, and OATP1B3, respectively. In vitro

screening also showed that all OATP1B3 inhibitors also inhibited OATP1B1 but

not vice versa. Due to a low number of OATP1B3 inhibitors, only OATB1B1 and

OATB1B1*15 inhibitors were selected for computational modeling. The Bayesian-

based model showed the overall performance of 80% on the test set. Analyses of

molecular properties of compounds described the function of mol. wt., logP,

molecular surface area, rotatable bond, and ring count for inhibiting the

OATP1B1 transporter. However, positively charged alkylamine group showed

negative contribution on the binding. This might be due to the absence of

counteracting negatively charged amino acids in OATP1B1 transporter.
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9.6 Genomic Alteration in Drug Resistance and Diseases

Drug transporter proteins act as gatekeeper for influx/efflux of molecules; therefore,

any kind of genomic alterations like single nucleotide polymorphisms (SNPs),

indels, expression, etc. has been associated with various kinds of diseases (César-

Razquin et al. 2015; Honjo et al. 2002; Kim et al. 2002; Mizuarai et al. 2004). As

evident from Table 9.5, transporter proteins have been implicated in a number of

neurological disorders such as Alzheimer disease, Huntington disease, schizophre-

nia, Parkinson disease, etc. (Ashraf et al. 2012; Dean et al. 2001; Hediger et al.

2013). These kinds of alterations have a major impact on drug efficacy and its

potency. For example, the overexpression of ABC family of protein and the

underexpression of SLC family of protein were found to be associated with drug

resistance particularly in cancer (Table 9.6). Likewise, single nucleotide polymor-

phism (SNP) either may lead to change in the promoter region, non-synonymous

mutation, or may lead to stop codon. These type of changes cause variation in the

structure of proteins or might result in loss of function of the protein

Table 9.5 Association of transporter proteins in various diseases

Gene Disease Gene Disease

SLC1 ALS, AD, schizophrenia SLC2 Early-onset nephropathy

SLC6 Depression, addiction, aggression,

PTSD, anxiety, OCD, ADHD,

Autism

SLC13 Nephrolithiasis, GA1, CD

SLC17 Gout, schizophrenia, ALS, AD, HD SLC26 Chondrodysplasias, chloride

diarrhea, oxalate urolithiasis,

gastric hypochlorhydria, distal

renal tubular acidosis, male

infertility

SLC30 Transient neonatal zinc deficiency SLC52 MADD, Brown-Vialetto-Van

Laere syndrome

ABCA Tangier disease T1, HDL

deficiency, Stargardt disease-1,

age-related macular degeneration,

and retinitis pigmentosa

ABCB AS, type 2 diabetes, celiac disease,

lethal neonatal syndrome, X-linked

sideroblastic anemia with ataxia

ABCC MDR, Dubin-Johnson syndrome,

congenital bilateral aplasia of the

vas deferens, type 2 diabetes,

paroxysmal kinesigenic

choreoathetosis, cystic fibrosis,

pseudoxanthoma elasticum

ABCD ALD, Zellweger syndrome

ABCG Sitosterolemia

ALS amyotrophic lateral sclerosis, AD Alzheimer disease, PTSD post-traumatic stress disorder,

OCD obsessive compulsive disorder, ADHD attention deficit hyperactivity disorder, GA1 glutaric

aciduria type 1, CD Canavan disease, HD Huntington disease, MADD multiple acyl-CoA dehy-

drogenase deficiency, HDL Familial high-density lipoprotein deficiency, MDR multidrug resis-

tance, AS ankylosing spondylitis
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(Table 9.7). Thus, this might ultimately lead to various kinds of diseases and/or

disorders, including drug resistance.

9.7 Conclusion and Future Perspectives

In the past, significant efforts have been done to compile the computational

framework of transporter proteins (Guo et al. 2003; Kruh et al. 2007; Okabe et al.

2008). However, the major attention was paid to a single family of proteins such as

ABC and SLC. These two transporters ideally represent the human transportome.

Albeit, there is limited information reported till date. It is clear from Table 9.1 that

different databases have different numbers of human transporter proteins. Till date,

HumanTDB is the updated database with a maximum number of transporter

proteins available (Ye et al. 2014). With the advancement of curated dataset,

qualitative and quantitative accessibility of biological data, along with the signifi-

cant progress of structural biology, we can explore our understanding of the

molecular basis of ligand-transporter interactions. Furthermore, to determine how

transporters may affect variation in drug response, drug levels, and their endoge-

nous role as drug transporters, it is also interesting to have a comparative analysis of

these transporters with and without drugs. Since, the genetic variants in transporters

at genome-wide level significance have been shown to impact the risk for various

human diseases, such as cancers, diabetes, and cardiovascular disease (César-

Razquin et al. 2015). Therefore, there is an urgent need to analyze these datasets

and search for novel transporter proteins by developing a unified computational

model.

We also highlighted that now a lot of datasets are available for active ligand

against human transporter proteins. But one must have to check the redundancy and

authenticity of the dataset, and in the future, availability of such dataset can help in

the advancement of better models for predictions. Indeed, another serious issue

pointed out here is the availability of a reliable and comprehensive database for

substrate and inhibitors of transporters. As previously reported that most of the

models developed were based on similar compounds, thus this kind of new addi-

tional information will be helpful in developing the global prediction models and in

Table 9.7 Role of SNP in transporters proteins with possible outcomes

Gene SNP Action Reference

ABCC1 2965G>A Substrate affinity decreases Cascorbi (2006)

ABCC1 2012G>T Doxorubicin-induced cardiomyopathy

ABCC2 24C>T Decrease expression

ABCC2 2366C>T Decrease expression

ABCC2 4348G>A Decrease expression

ABCG2 376C>T Loss of function

ABCG2 421C>A Decrease expression
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the identification of key structural features, thereby playing role in structural-

functional relationship. We entirely supported the Matsson et al. (2013) report

that rather than developing the individual model, more emphasis has to be given

towards integrating the protein and ligand chemistry for developing more robust

models. This review summarizes the knowledge on different databases, small

molecules (ligands and/or substrates), and computational tools for qualitative and

quantitative analysis, along with the chemoinformatics methods, for understanding

the structural-functional relationship and molecular recognition of transporter

proteins at the microscopic level. The more attention will be focused on the

endogenous role of drug transporters at atomic level resolution. In comparison to

available online databases, a little progress has been observed on the availability of

prediction methods. Therefore, it is an important and urgent task to develop

prediction methods that would be helpful in advancing drug discovery projects

and will also contribute to the comprehensive understanding of their mechanism

and function at an atomic level resolution for therapeutic intervention.
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Cabrera MA, González I, Fernández C, Navarro C, Bermejo M (2006) A topological substructural

approach for the prediction of P-glycoprotein substrates. J Pharm Sci 95:589–606. https://doi.

org/10.1002/jps.20449

Cascorbi I (2006) Role of pharmacogenetics of ATP-binding cassette transporters in the pharma-

cokinetics of drugs. Pharmacol Ther 112:457–473. https://doi.org/10.1016/j.pharmthera.2006.

04.009

César-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, Reithmeier RA,

Hepworth D, Hediger MA, Edwards AM, Superti-Furga G (2015) A call for systematic

research on solute carriers. Cell 162:478–487. https://doi.org/10.1016/j.cell.2015.07.022

Chen L, Li Y, Zhao Q, Peng H, Hou T (2011a) ADME evaluation in drug discovery. 10.

Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian

classification techniques. Mol Pharm 8:889–900. https://doi.org/10.1021/mp100465q

Chen S-A, Y-Y O, Lee T-Y, Gromiha MM (2011b) Prediction of transporter targets using efficient

RBF networks with PSSM profiles and biochemical properties. Bioinformatics 27:2062–2067.

https://doi.org/10.1093/bioinformatics/btr340

Chen L, Li Y, Yu H, Zhang L, Hou T (2012) Computational models for predicting substrates or

inhibitors of P-glycoprotein. Drug Discov Today 17:343–351. https://doi.org/10.1016/j.drudis.

2011.11.003

Cianchetta G, Singleton RW, Zhang M, Wildgoose M, Giesing D, Fravolini A, Cruciani G, Vaz RJ

(2005) A pharmacophore hypothesis for P-glycoprotein substrate recognition using GRIND-

based 3D-QSAR. J Med Chem 48:2927–2935. https://doi.org/10.1021/jm0491851

Crivori P, Reinach B, Pezzetta D, Poggesi I (2006) Computational models for identifying potential

P-glycoprotein substrates and inhibitors. Mol Pharm 3:33–44. https://doi.org/10.1021/

mp050071a

De Cerqueira Lima P, Golbraikh A, Oloff S, Xiao Y, Tropsha A (2006) Combinatorial QSAR

modeling of P-glycoprotein substrates. J Chem Inf Model 46:1245–1254. https://doi.org/10.

1021/ci0504317

Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter

superfamily. Genome Res 11:1156–1166. https://doi.org/10.1101/gr.184901

DeGorter MK, Xia CQ, Yang JJ, Kim RB (2012) Drug transporters in drug efficacy and toxicity.

Annu Rev Pharmacol Toxicol 52:249–273. https://doi.org/10.1146/annurev-pharmtox-

010611-134529

Demel MA, Kraemer O, Ettmayer P, Haaksma E, Ecker GF (2010) Ensemble rule-based classifi-

cation of substrates of the human ABC-transporter ABCB1 using simple physicochemical

descriptors. Mol Inform 29:233–242. https://doi.org/10.1002/minf.200900079

Ding Y-L, Shih Y-H, Tsai F-Y, Leong MK (2014) In silico prediction of inhibition of promiscuous

breast cancer resistance protein (BCRP/ABCG2). PLoS One 9:e90689. https://doi.org/10.

1371/journal.pone.0090689

9 Drug Transporters as Therapeutic Targets: Computational Models, Challenges. . . 163

https://doi.org/10.1111/bph.12444
https://doi.org/10.1021/jm048982w
https://doi.org/10.1021/jm101421d
https://doi.org/10.1002/jps.20449
https://doi.org/10.1002/jps.20449
https://doi.org/10.1016/j.pharmthera.2006.04.009
https://doi.org/10.1016/j.pharmthera.2006.04.009
https://doi.org/10.1016/j.cell.2015.07.022
https://doi.org/10.1021/mp100465q
https://doi.org/10.1093/bioinformatics/btr340
https://doi.org/10.1016/j.drudis.2011.11.003
https://doi.org/10.1016/j.drudis.2011.11.003
https://doi.org/10.1021/jm0491851
https://doi.org/10.1021/mp050071a
https://doi.org/10.1021/mp050071a
https://doi.org/10.1021/ci0504317
https://doi.org/10.1021/ci0504317
https://doi.org/10.1101/gr.184901
https://doi.org/10.1146/annurev-pharmtox-010611-134529
https://doi.org/10.1146/annurev-pharmtox-010611-134529
https://doi.org/10.1002/minf.200900079
https://doi.org/10.1371/journal.pone.0090689
https://doi.org/10.1371/journal.pone.0090689


Dong Z, Zhong Z, Yang L, Wang S, Gong Z (2014) MicroRNA-31 inhibits cisplatin-induced

apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. Cancer

Lett 343:249–257. https://doi.org/10.1016/j.canlet.2013.09.034

Ekins S (2002) Application of three-dimensional quantitative structure-activity relationships of

P-glycoprotein inhibitors and substrates. Mol Pharmacol 61:974–981. https://doi.org/10.1124/

mol.61.5.974

Gantner ME, Emiliano M, Ianni D, Ruiz ME, Talevi A, Bruno-blanch LE (2013) Development of

conformation independent computational models for the early recognition of breast cancer

resistance protein substrates. Biomed Res Int. https://doi.org/10.1155/2013/863592

Garg P, Dhakne R, Belekar V (2014) Role of breast cancer resistance protein (BCRP) as active

efflux transporter on blood-brain barrier (BBB) permeability. Mol Divers 19:163–172. https://

doi.org/10.1007/s11030-014-9562-2

Gombar VK, Polli JW, Humphreys JE, Wring SA, Serabjit-Singh CS (2004) Predicting

P-glycoprotein substrates by a quantitative structure-activity relationship model. J Pharm Sci

93:957–968. https://doi.org/10.1002/jps.20035

Gromiha MM, Yabuki Y, Suresh MX, Thangakani AM, Suwa M, Fukui K (2009) TMFunction:

database for functional residues in membrane proteins. Nucleic Acids Res 37:D201–D204.

https://doi.org/10.1093/nar/gkn672

Guo Y, Kotova E, Chen Z-S, Lee K, Hopper-Borge E, Belinsky MG, Kruh GD (2003) MRP8,

ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance

factor for fluoropyrimidines 20,30-dideoxycytidine and 90-(20-phosphonylmethoxyethyl)ade-

nine. J Biol Chem 278:29509–29514. https://doi.org/10.1074/jbc.M304059200

Hammann F, Gutmann H, Jecklin U, Maunz A, Helma C, Drewe J (2009) Development of decision

tree models for substrates, inhibitors, and inducers of P-glycoprotein. Curr Drug Metab

10:339–346. https://doi.org/10.2174/138920009788499021

Hauswald S, Duque-Afonso J, Wagner MM, Schertl FM, Lübbert M, Peschel C, Keller U, Licht T

(2009) Histone deacetylase inhibitors induce a very broad, pleiotropic anticancer drug resis-

tance phenotype in acute myeloid leukemia cells by modulation of multiple ABC transporter

genes. Clin Cancer Res 15:3705–3715. https://doi.org/10.1158/1078-0432.CCR-08-2048

Hazai E, Hazai I, Ragueneau-Majlessi I, Chung SP, Bikadi Z, Mao Q (2013) Predicting substrates

of the human breast cancer resistance protein using a support vector machine method. BMC

Bioinformatics 14:130. https://doi.org/10.1186/1471-2105-14-130
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Module-Based Knowledge Discovery
for Multiple-Cytosine-Variant Methylation
Profile
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Saurav Mallik and Ujjwal Maulik

Abstract

Methylation-based study is currently a popular ongoing research topic. The

researchers generally use 5-methylcytosine (5-mC) samples for their study

since this category of samples is the highest stable methylation cytosine variant,

and the impact of 5-mC methylation on different diseases is known to the

common people. But, through recent studies, it has been observed that other

cytosine variants (e.g., 5-hmC) have also high impact on those diseases. There-

fore, in this chapter, we firstly demonstrate the abovementioned different cyto-

sine variants. In the second part of the chapter, we describe a framework of

identifying co-methylated gene modules on a methylation profile having multi-

ple cytosine variants (viz., 5-hmC and 5-mC samples). For this, at first we

determine significant genes using statistical method. Thereafter, weighted topo-

logical overlap matrix (weighted TOM) measure and average linkage method

are applied, consecutively on the resultant significant genes. Then dynamic tree

cut method with color thresholding is utilized, and co-methylated gene modules

are identified from it. The resultant gene modules are then validated biologically

by KEGG pathway and gene ontology analyses. Moreover, regulatory transcrip-

tion factors (TFs) and targeter miRNAs connected with the genes belonging to

the different modules are found, and further biological validation has been

carried out on them. Finally, other related module-based and correlation-based

popular computation methodologies and applications are also shortly

demonstrated.
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10.1 Introduction

Methylation-based study is a latest popular research domain. DNA methylation at

fifth position of cytosine (i.e., 5-methylcytosine or 5-mC) is one of the epigenetic

factors (Wu et al. 2012; Tan and Shi 2012; Mallik et al. 2013, 2014, 2015). DNA

methylation generally reduces the expression level of gene, and hence it plays a key

role for silencing of the gene (Tan and Shi 2012; Mallik et al. 2013, 2015; Bhadra et

al. 2013). It is observed that the researchers generally use 5-methylcytosine

(5-mC)-related samples for their study since this category of samples is the highest

stable methylation cytosine variant, and the impact of 5-mC methylation on differ-

ent diseases is known to the common people. But, through recent studies, it has

been observed that other cytosine variants (e.g., 5-hmC) have also high impact on

those diseases. Therefore, in this chapter, we firstly describe the relation between

gene expression and methylation and then demonstrate fundamental information

about different cytosine variants.

A gene regulatory network (i.e., GRN) is a group of different regulators (viz.,

RNAs, DNAs, proteins, and their corresponding complexes) that link with each

other and with other biomolecules in the cell in order to control over the gene

expression levels of genes and proteins. In system biology, it is known that the

proteins and their transcripts (i.e., genes) carry out cellular processes in the back-

ground of some modules, whereas a gene module is a cluster/group of some tightly

interconnected genes in the network (Hartwell et al. 1999). The gene module

detection in the network is a significant task for deep understanding of the architec-

ture of the whole network. Notably, co-expression (Bhattacharyya and

Bandyopadhyay 2009) is a useful term in gene module identification.

Co-expression between genes signifies that these expression profiles can together

rise and drop in between a subrange of time series rather than complete time series.

In a similar fashion, co-methylation states that the methylation profiles of these

genes might rise and fall simultaneously in between a subrange of time series rather

than the complete time series.

The second half of this chapter deals with the framework of determining

co-methylated gene modules on a methylation profile having multiple cytosine

variants (viz., 5-mC and 5-hmC samples) or equivalent other microarray profile

having two groups, experimental/diseased and normal/control. For this regard, we

firstly identify differentially 5-hmC methylated (significant) genes using statistical

method. Weighted topological overlap matrix (weighted TOM) measure (Ravasz

et al. 2002) is then applied on the significant genes. The corresponding dissimilarity

values are calculated from the resultant TOM values. Thereafter, average linkage

method is then utilized on these significant genes using the dissimilarity values, and
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we get corresponding dendrogram of the cluster analysis. Dynamic tree cut method

(Langfelder et al. 2007) with color thresholding is then applied for identifying

co-methylated gene modules. The resultant gene modules are then validated bio-

logically through KEGG pathway and gene ontology analyses. The transcription

factors (TFs), which can regulate the genes belonging to the different gene modules,

are accumulated. The miRNAs, which can target the genes belonging to the

different gene modules, are collected. Thereafter, the top five transcription factors

that connect with the highest number of resultant modules and highest number of

genes from the different modules are determined. Subsequently, the top five

miRNAs, which associate with the highest number of resultant modules and highest

number of genes from the different modules, are identified. Finally, these top five

TFs/miRNAs are validated through literature search in order to find the diseased-

related TFs/miRNAs among them.

Furthermore, other related module-based and correlation-based popular compu-

tation methodologies and applications are shortly demonstrated year by year.

Finally, conclusion of this chapter is provided at the end.

10.2 Relation Between Gene Expression and DNA Methylation

DNAmethylation (Wagner et al. 2014) is an epigenetic factor which occurs through

the inclusion of a methyl group (i.e., CH3) to the fifth place of cytosine pyrimidine

ring or sixth nitrogen place of adenine purine ring in the genomic DNA. Methyla-

tion generally decreases the regulatory function of the genes. It has been observed

that when the presence of methylation is taken place near the place of transcription

start site (TSS) in a gene (i.e., for the case of promoter methylation) (Kass et al.

1997), then the relationship between the gene expression and methylation becomes

inverse. Otherwise (i.e., for the case of elevated gene body methylation) (Jones

1999), the relationship between them is heterogeneous. Notably, methylation of

CpG dinucleotides has an essential role in the inactivation of X chromosome (Payer

and Lee 2008), imprinting of genes (Li et al. 1993), and transcriptional inactivation

of the foreign DNA elements, whereas aberrant DNA methylation causes many

categories of cancer (Baylin et al. 1998).

Methylation is extremely variable over the cell types with different sites. It falls

into two major types: (1) those which have inverse correlation in between DNA

methylation and chromatin accessibility and (2) those that are with the constitu-

tive DNA hypomethylation as well as variable chromatin accessibility (Thurman

et al. 2012). Furthermore, according to Cedar and Bergman (Cedar and Bergman

2009), histone modification and DNA methylation have different associations

from the starting time of the embryonic development. For example, when DNA

methylation is involved in active promoters, then the hypothesized functions of

the DNA methylation prevent tri-methylation of the histone 3 lysine 4 (viz.,

H3K4me3), whereas in other time H3K4me3 blocks DNA methylation

(Hashimshony et al. 2003).
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Notably, according to the literature, many integrated analyses that include gene

expression and methylation data together have been performed. Mallik et al. carry

out such integrative analysis for identifying gene markers that have inverse rela-

tionship between their expression level and methylation level (Mallik et al. 2013,

2015; Mallik and Maulik 2015). Thereafter, another integrative study has been

performed using intrinsically disordered proteins and differentially expressed and

methylated genes (Mallik et al. 2016).

10.3 Fundamental Description About Multiple Cytosine
Variants

The most popular DNA methylation methodology is the inclusion of the methyl

group in the fifth carbon place of the cytosine ring that results in the formation of

5-methylcytosine (viz., 5-mC). This methyl group hampers transcription. 5-mC

generally takes place within CpG dinucleotide motifs, although non-CpG methyla-

tion is recognized in the embryonic stem cells (Ramsahoye et al. 2000).

Except DNA methylation, another important process is DNA demethylation

(i.e., the elimination of a methyl group). The demethylation is required in order

to do epigenetic reprogramming of genes. It is directly associated with characteri-

zation of several important diseases like tumor progression. Demethylation of DNA

might be either active or passive or integration of the both.

The passive demethylation of DNA generally occurs on newly synthesized DNA

strands through DNA (cytosine-5)-methyltransferase 1 (i.e., DNMT1) (Latham

et al. 2008) at the period of replication rounds. Active DNA demethylation basically

exists by the elimination of 5-methylcytosine through the sequential updating of

cytosine bases which is converted by ten-eleven translocation (i.e., TET) enzyme-

mediated oxidation.

TET family of 5-mC hydroxylases consists of TET methylcytosine dioxygenase

1 (viz., TET1), TET methylcytosine dioxygenase 2 (i.e., TET2), and TET

methylcytosine dioxygenase 3 (viz., TET3). These three proteins might raise

DNA demethylation through binding into the CpG regions for stopping the unde-

sirable methyltransferase action of DNA and through transforming the 5-mC to the

5-hydroxymethylcytosine (5-hmC), the 5-hmC to the 5-formylcytosine (5-fC), and

the 5-fC to the 5-carboxylcytosine (5-caC) via hydroxylase activity (Fig. 10.1).

TET1 protein involves in transcriptional activation and repression, and TET2

protein associates with tumor suppression, whereas TET3 protein is connected

with DNA methylation reprogramming procedures.

5-hydroxymethylcytosine (i.e., 5-hmC) is basically a modification of DNA

methylation which is created through the enzymatic oxidation of the 5-mC made

by the TET family of the iron-based dioxygenases (Tahiliani et al. 2009). 5-hmC

was discovered in the T-even bacteriophage (Wyatt and Cohen (1953)). It was later

found in the vertebrate brain as well as several other tissues (Kriaucionis and Heintz

2009). 5-hmC is mostly identified in some mammalian tissues like mouse Purkinje

cells and granule neurons (Kriaucionis and Heintz 2009). Besides that, the 5-hmC is
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identified in the embryonic stem cells of mouse. By recent studies (about 2009), the

presence of the 5-hmC in the mouse embryonic stem (ES) cells and mammalian

brain cells is found. 5-hmC is identified in zygotes of bovines, mice, and rabbits.

5-hmC is accumulated for paternal pronucleus concurring with decreasing of 5mC.

However, according to several evidences, it has been observed that 5-hmC mainly

takes place within promoter regions of gene, and it is connected with the transcrip-

tionally activated genes. 5-hmC also plays a key role in chromatin remodeling,

DNA demethylation, and brain-related gene regulation. Additionally, it is espe-

cially important to determine the hydroxymethylation status in human tissues/cells

with and without disease if 5-hmC could be proven to have a relation between

cancer and the DNA demethylation procedure.

Through recent studies, some more cytosine variants have been discovered.

5-formylcytosine (5-fC) is one of them. It is created when TET enzymes work on

5-hmC (Ito et al. 2011; He et al. 2011). Further oxidation of the variant 5-fC by the

TET enzyme will create another variant 5-carboxylcytosine (i.e., 5-caC) (Ito et al.

2011; He et al. 2011). Hence, oxidation of the 5-mC via several DNA methylation

variants illustrates a procedure of the DNA demethylation of which associated

pathway acts throughout the development and the programming related to the

germ cell. The 5-fC is found in the major mouse organs and the mouse

embryonic stem (ES) cells (Ito et al. 2011), whereas the 5-caC is identified in

mouse embryonic stem (ES) cells (Ito et al. 2011). However, the 5-caC is extracted

from the genomic DNA through the help of the thymine DNA glycosylase (TDG),

which transforms that cytosine variant into its (previous) unchanged state.

Besides that, 3-methylcytosine (3-mC) is the other methylation variant, but it is

not involved in the oxidative pathway of TET family proteins. 3-mC is produced

through the automatic exposure of nitrogen-three base of the cytosine to the

endogenous S-adenosyl methionine. The 3-mC is mutative. It has been recreated

either via dealkylation through human homologues of E. coli AlkB protein or via

base excision repair in humans. If cells lose ALKBH3, level of 3-mC increases as

well as cell proliferation decreases (Dango et al. 2011).

Fig. 10.1 Transformation from 5-methylcytosine (viz., 5-mC) to other cytosine variants
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The major biological significance of 5-mC is recognized as major epigenetic

change in gene expression as well as phenotype. For example, DNA

hypomethylation happened by deficiency of methyl due to various environmental

impacts. Thus, it can be stated as a molecular marker in various biological processes

like cancer. The measurement on 5-mC content (or global methylation) in diseased

cells might provide significant clue for detection of the corresponding disease.

Additionally, the identification of 5-fC in different cells/tissues might be utilized

as a marker for specifying active DNA demethylation.

10.4 Module-Based Knowledge Extraction
for Methylation Data

In this section, we demonstrate the method of detecting significant gene modules

from the gene regulatory network using a well-known connectivity measure (viz.,

weighted topological overlap matrix) for a multiple-cytosine-variant methylation

dataset. The step-by-step description is provided in the following.

10.4.1 Identification of Statistically Significant Genes

First of all, remember that there might be multiple gene probes for several genes in

methylation dataset. In that case, there are several methods to eliminate redundant

probes of each gene and keep only a single probe for each gene. For this, at first the

median absolute deviation (MAD) of the raw methylation values over all samples

for each probe of each gene is computed. Only the probe of the gene of which MAD

value is maximum is chosen. The remaining probes of the gene are discarded from

the methylation dataset. This process is repeated for the other genes belonging to

the methylation dataset. Now, each gene of the dataset consists of only a single

probe.

The methylation data is thereafter normalized gene-wise since normalization

transforms the data from various scales into a common scale. For this purpose,

several normalization techniques are available, viz., min-max, zero-mean, median,

sigmoid, statistical column normalization, etc. (Bolstad et al. 2003;

Bandyopadhyay et al. 2013). Now, after normalization, normality test is required

to apply on each gene-wise data for determining whether the data follows a normal

(Gaussian) distribution or not for each population/group. The well-known normal-

ity tests are Jarque-Bera test (Thadewald and Buning 2007), Lilliefors test (Razali

and Wah 2011), Anderson-Darling test (Razali and Wah 2011), and Shapiro-Wilk

test (Razali and Wah 2011).

After normality test, a parametric test can be applied on the data of the gene that

follows normal distribution. Related popular parametric tests are two-sample t-test

(Sreekumar and Jose 2008; Bandyopadhyay et al. 2013), ANOVA-1 (Sreekumar

and Jose 2008; Bandyopadhyay et al. 2013), etc. Similarly, a nonparametric test

might be utilized on the data of the gene which does not follow normal distribution.
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Popular nonparametric tests for this regard are SAM (significance analysis of

microarray) (Tusher et al. 2001; Bandyopadhyay et al. 2013), Limma (linear

models for microarray data) (Smyth 2004; Bandyopadhyay et al. 2013), permuted

t-test (Anderson 2001; Bandyopadhyay et al. 2013), etc. Notably, for using any

statistical test, one cytosine variant (e.g., 5-hmC samples) is utilized as experimen-

tal samples, whereas another cytosine variant (e.g., 5-mC samples) is considered as

control samples for the corresponding multiple-cytosine-variant methylation

dataset.

For each gene of the dataset, individual statistical test is applied. Each statistical

test provides a t-value from which corresponding p-value is computed using

cumulative distribution function (cdf). The genes of which p-values are less than

0.05 are called as statistically significant (i.e., differentially 5-hmC methylated)

genes. The significant (nonredundant) genes are then ranked with respect to their

p-values in ascending order.

10.4.2 Computing Co-methylation and Identifying Gene Modules

For measuring the correlation in terms of methylation values, Pearson’s correlation

score is utilized between pairwise genes belonging to the set of significant (nonre-

dundant) genes. Thereafter, a well-known connectivity measure, namely, weighted

topological overlap matrix (viz., weighted TOM) (Ravasz et al. 2002), is applied on

the above pairwise genes where above calculated Pearson’s correlation scores are

considered here as the weighted values for the corresponding adjacency matrix. The

corresponding dissimilarity value for each gene is then calculated for each resultant

weighted TOM value (similarity value). Average linkage clustering technique is

thereafter applied on the genes using the resultant dissimilarity scores. The

corresponding dendrogram of the resultant clusters is recognized. Dynamic tree

cut (Langfelder et al. 2007) is then performed on the dendrogram through color

thresholding methodology, and as a result, co-methylated gene modules are

detected.

10.4.3 Trimolecular Network Analysis and Biological Validation

After finding co-methylated gene modules, KEGG pathway and gene ontology

analyses should be carried out individually on the genes belonging to each resulting

module in order to validate the modules. For KEGG pathway and gene ontology

(GO) analyses, several online databases are available such as DAVID (Huang et al.

2008), Enrichr (Chen et al. 2013), GSEA (Gene Set Enrichment Analysis)

(Subramanian et al. 2005), etc. The pathways or the GO terms of which

corresponding p-values are less than the traditional cutoff 0.05 are considered as

statistically significant (enriched) KEGG pathways or GO terms. The significant

pathways and GO terms are identified for each module. The modules can be ranked

according to maximum number of participating genes belonging to each module.
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Besides that, trimolecular network can be formed. For this regard, transcription

factors (TFs) which regulate the genes belonging to the each module are deter-

mined. For accumulating TFs, there are available several online databases like

TRANSFAC (Wingender et al. 1996), ITFP (Zheng et al. 2008), JASPAR (Sandelin

et al. 2004), etc. Similarly, miRNAs that target the genes belonging to each module

are found. For collecting miRNAs, some online databases are available such as

miRWalk (Dweep et al. 2011), miRTarBase (Chou et al. 2016), PITA (Kertesz et al.

2007), DIANA-microT (Maragkakis et al. 2011), miRanda (John et al. 2004),

RNAhybrid (Kruger and Rehmsmeier 2006), PicTar (Krek et al. 2005), TargetScan

(Lewis et al. 2003), miRNA_Targets (Kumar et al. 2012), etc.

Thereafter, a TF-miRNA-gene network can be built, and further network analy-

sis for each participating biomolecule (e.g., gene, miRNA, and TF) can be

performed. In the network analysis, various topological measures can be utilized

in different prospects. These measures are degree centrality (Freeman 1977; Ozgur

et al. 2008), betweenness centrality (Freeman 1977; Ozgur et al. 2008), k-coreness

centrality (Batagelj and Zavernik 2011), closeness centrality (Freeman 1979; Ozgur

et al. 2008), subgraph centrality (Estrada and Rodrguez-Velzquez 2005), clustering

coefficient-based centrality (Barrat and Weigt 2000; Newman 2003), weighted

clustering coefficient-based centrality (Barrat et al. 2004), eigenvector centrality

(Bonacich and Lloyd 2001; Mallik and Maulik 2015), etc.

In addition, the top five regulator TFs, which are connected to the highest number

of gene modules and highest number of participating genes from the different

modules, are determined. Similarly, top five targeter miRNAs, which are linked

with the highest number of gene modules and highest number of genes from the

different modules, are identified. Finally, the top resulting TFs/miRNAs are validated

through literature search for understanding how many of these TFs/miRNAs have a

strong connection with the corresponding disease. Notably, the whole framework of

gene module-based knowledge discovery is provided in Fig. 10.2.

The above-described methodology is not only valid for multiple-cytosine-vari-

ant methylation dataset, but it is also useful for any microarray dataset like gene

expression dataset having two populations/groups (viz., one group consisting of

only experimental/diseased samples and another group having only control/normal

samples).

10.5 Other Module Discovery and Correlation-Based
Approaches

According to the literature, there are different other related methodologies in

different perspectives except the above-described integrative method. Among

these, some are computational methodologies, whereas others are application-

based studies.

In the first category (i.e., in the case of computational methodologies), several

techniques are already developed. For example, Shen et al. have proposed a new

method, namely, “ELDA” (eigengene-based linear discriminant analysis), in which
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a modified rotated spectral decomposition (SpD) approach is applied in order to

determine the hub genes that are connected to the most important eigenvectors

(Shen et al. 2006). In the year 2007, Langfelder and Horvath have developed an

eigengene network-based computational work that signifies the associations

between the co-expression modules (Langfelder and Horvath 2007). Thereafter,

in 2008, Langfelder and Horvath made a new popular tool “WCGNA” for weighted

correlation network analysis that is applicable for finding co-expression for gene

expression data as well as retrieving co-methylation from methylation data

(Langfelder and Horvath 2008). Bandyopadhyay and Bhattacharyya have proposed

a novel similarity measure, namely, “BioSim,” in which the resulting correlation

values lie in between “�1” and “+1” (Bandyopadhyay and Bhattacharyya 2011) for

gene expression data. Here, “�1,” “0,” and “+1” stand for negative correlation,

independency, and positive correlation, respectively. Thereafter, Gevaert et al. have

produced a new algorithm, namely, “AMARETTO,” that is prepared for determin-

ing cancer driver genes as well as gene modules through integrating different omics

data across cancer and normal tissues/samples (Gevaert et al. 2013). In the same

year (i.e., 2013), two new related techniques are proposed. One of these is devel-

oped by Saas et al. Here, a novel methodology is introduced for analyzing com-

bined dataset across the multi-omics levels in order to assess their biological

prospects simultaneously. A model-dependent Bayesian approach is here included

in order to infer interpretable term probabilities in a module-based framework (Sass

et al. 2013). Second technique is developed by Bhattacharyya et al. in which a novel

integrative measure is proposed through integrating several co-expression networks

that might be important for determining the dependency between co-expression and

functional similarity (Bhattacharyya et al. 2013). In 2015, an integrative network-

oriented methodology is developed through combining information from miRNA

expression, gene expression, DNA methylation, and somatic mutation data (Hamed

et al. 2015). Table 10.1 provides a list of the above-elaborated module/correlation-

based computational methodologies year by year.

In the second category, some important module and correlation-based

applications/studies are included. For example, Liu et al. provide a correlation-

based approach between pairwise genes belonging to the same (validated) yeast

protein complex (Liu et al. 2009). Van Eijk et al. perform a study (1) to create link

between methylation and expression levels, (2) to find relation between

co-methylation modules and co-expression modules, and (3) to analyze the associa-

tion between the genetic markers, expression, and methylation (Van Eijk et al. 2012).

Bhattacharyya carries out a new analysis on co-expression toggling of the miRNAs in

the brain of Alzheimer patients (Bhattacharyya and Bandyopadhyay 2009). The

hypothesis regarding this is that the differential co-expression might recognize the

changing patterns in different phenotypes (Bhattacharyya 2012a, b). Again in 2013,

Bhattacharyya and Bandyopadhyay have proposed a new computational study

indicating the crucial role of the white matter (WM) in the early stage of Alzheimer’s

disease progression (Bhattacharyya and Bandyopadhyay 2013). Another related work

regarding miRNA, methylation and Alzheimer’s disease is performed by Roy and

Bhattacharyya (Roy and Bhattacharyya 2016). In 2014, Aqil et al. perform first
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Table 10.1 Some important module-based and correlation-based different methodologies for

biological datasets

Name of algorithms or title of the

works Short description regarding the work References

ELDA An eigengene-based linear

discriminant analysis (ELDA) for

the gene identification in the basis of

a multivariate framework. Here, a

modified rotated spectral

decomposition (SpD) method is

utilized for determining the hub

genes which is related to the most

important eigenvectors

Shen et al.

(2006)

“Eigengene networks for studying

the relationships between

co-expression modules”

A new computational (eigengene

network-based) methodology

signifying the associations between

the resultant co-expression modules

Langfelder and

Horvath (2007)

WGCNA A novel tool for the weighted

correlation network-based analysis

(i.e., co-expression/co-methylation

network-based analysis of the gene

expression/methylation dataset

Langfelder and

Horvath (2008)

BioSim A novel similarity measure

assuming values in between �1 and

+1 as negative and positive

dependencies, respectively, whereas

0 for independency

Bandyopadhyay

and

Bhattacharyya

(2011)

AMARETTO An algorithm for determining cancer

driver genes as well as gene modules

through integrating different omics

data across cancer and normal

tissues/samples

Gevaert et al.

(2013)

“A modular framework for gene set

analysis integrating multilevel

omics data”

A novel methodology for analyzing

combined dataset across multi-

omics levels in order to assess their

biological prospects simultaneously.

Here, a model-based Bayesian

technique is included in order to

infer interpretable term probabilities

in a module-based framework

Sass et al. (2013)

“A new approach for combining

knowledge from multiple

coexpression networks of

microRNAs”

A novel integrative measure through

integrating several co-expression

networks which might be important

for determining the dependency

between co-expression and

functional similarity

Bhattacharyya

et al. (2013)

(continued)
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miRnome study between U937 cells expressing HIV-1 Nef-EYFP samples (i.e.,

experimental samples) and U937 cells expressing EYFP samples (i.e., control

samples) for novel wet laboratory-made cellular and exosomal miRNA datasets

(Aqil et al. 2014). From the miRnome analysis, several miRNAs are determined

which are selectively secreted into Nef exosomes. Some miRNAs are also recognized

that are retained selectively in the Nef-expressing cells. Aqil et al. carry out a new

transcriptomic analysis as well as network analysis of the human monocytic cells that

express HIV-1 Nef protein and the corresponding exosomes in 2015 (Aqil et al.

2015). Here, some mRNAs that are retained in the Nef-expressing cells, but whose

targeting miRNAs are exported out in the exosomes, are identified. Additionally,

some mRNAs that are preferentially secreted in exosomes, but whose targeting

miRNAs are retained in Nef-expressing monocytes, are found. Table 10.2 provides

the list of the above-elaborated module/correlation-based applications year by year.

10.6 Conclusion

Nowadays, the study of methylation is highly appreciable in disease discovery or

characterization. Generally, impact of 5-mC methylation on different diseases is

known to the common people. But, through recent studies, it has been observed that

other less stable cytosine variants (e.g., 5-hmC) have also high impact on those

diseases. Therefore, in this chapter, multiple cytosine variants (5-mC, 5-hmC, etc.)

are firstly described. Then the framework of module-based knowledge discovery

for the multiple-cytosine-variant-based methylation dataset or other equivalent

Table 10.1 (continued)

Name of algorithms or title of the

works Short description regarding the work References

“Identifying epigenetic biomarkers

using maximal relevance and

minimal redundancy-based feature

selection for multi-omics data”

A novel framework of epigenetic

marker discovery through integral

study of mutual information-based

feature selection, data distribution,

and statistical hypothesis test for

multi-omics data

Mallik et al.

(2017)

“Integrating multiple data sources

for combinatorial marker

discovery: A study in

tumorigenesis”

A novel method of identifying

combinatorial markers depending

upon the intrinsic relationship

between the expression and

methylation for the multi-omics data

Bandyopadhyay

and Mallik

(2016)

“Integrative network-based

approach identifies key genetic

elements in breast invasive

carcinoma”

An integrative network-oriented

methodology through combining

information from the miRNA

expression, DNA methylation, gene

expression, and somatic mutation

datasets

Hamed et al.

(2015)
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Table 10.2 Some important module-based and correlation-based several applications/studies for

biological datasets

Name of algorithms or title of the

articles

Short description regarding the

work References

“Patterns of co-expression for

protein complexes by size in

Saccharomyces cerevisiae”

Computation correlation-based

approach between pairwise genes

belonging to the same (validated)

yeast protein complex

Liu et al. (2009)

“Genetic analysis of DNA

methylation and gene expression

levels in whole blood of healthy

human subjects”

A study (1) to create link between

expression and methylation levels,

(2) to find relation between

co-expression modules and

co-methylation modules, and (3) to

analyze the association between

genetic markers, expression, and

methylation

Van Eijk et al.

(2012)

“Co-expression toggling of

microRNAs in Alzheimer’s brain”

Differential co-expression might

recognize the changing patterns in

different phenotypes

Bhattacharyya

(2012a, b)

“Studying the differential

co-expression of microRNAs

reveals significant role of white

matter in early Alzheimer’s

progression”

A new computational study

indicating the crucial role of white

matter in early stage of Alzheimer’s

disease progression

Bhattacharyya

and

Bandyopadhyay

(2013)

“The HIV Nef protein modulates

cellular and exosomal miRNA

profiles in human monocytic cells”

First-time miRnome study in both

HIV Nef-expressing monocytes and

their exosomes. Some miRNAs are

determined which are selectively

secreted into Nef exosomes. Also

some miRNAs are recognized that

are selectively retained in

Nef-expressing cells

Aqil et al. (2014)

“Transcriptomic analysis of

mRNAs in human monocytic cells

expressing the HIV-1 Nef protein

and their exosomes”

A new transcriptomic as well as

network analyses of human

monocytic cells expressing the

HIV-1 Nef protein and the

corresponding exosomes. Some

mRNAs that are retained in

Nef-expressing cells, but whose

targeting miRNAs are exported out

in the exosomes, are identified.

Additionally, some mRNAs that are

preferentially secreted in exosomes,

but whose targeting miRNAs are

retained in Nef-expressing

monocytes, are found

Aqil et al. (2015)

10 Module-Based Knowledge Discovery for Multiple-Cytosine-Variant Methylation. . . 181



microarray dataset having two populations (one for 5-hmC samples and other for

5-mC samples) is demonstrated. From the above method, some co-methylated gene

modules can be obtained which are validated by KEGG pathway and gene ontology

analyses. Additionally, transcription factors (TFs), which can regulate the genes

belonging to the different gene modules, are accumulated, whereas the miRNAs

that can target the genes of the modules are identified. Thereafter, TF-miRNA-gene

network has been formed, and further network analyses have been performed. At

the end, the other related works are also described as much as possible.

10.7 Opinion

Methylation-based study is a current popular ongoing research topic. The effect of

5-methylcytosine (5-mC) methylation is already known to all researchers. Cur-

rently, it is observed that other less stable cytosine variants (e.g., 5-hmC) have also

high impact on different diseases especially brain-related diseases. Thus, in this

chapter, a framework of the module-based knowledge discovery for the multiple-

cytosine-variant-based methylation dataset having two populations (one for 5-hmC

samples and other for 5-mC samples) is described. We expect that this framework

will enlighten a new direction in disease discovery.
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Abstract

Agriculture is the backbone of Indian economy. The crop loss has been

estimated around US$ 36 billion in India in post-green revolution era. The

rationale for crop loss is due to damage from pests, diseases and weeds. Big

data have been generated every day in agriculture especially in integrated pest

management. Pest control strategy is a serious concern in crop production.

Robust model in pest prediction is needed to take up the pest control measures

beforehand to avoid yield loss. Data preprocessing is an important aspect to

derive reliable results for decision-making process in integrated pest manage-

ment. Pest population dynamics in different crop ecosystem is due to biotic and

abiotic factors, and they have innate adaptive capacity with the environment.

There is a gap in selection of suitable data preprocessing techniques in agricul-

tural domain. Several soft computing techniques are available, but the usage of

these techniques in agricultural field is at minimum level. Hence, the panorama

of various soft computing data preprocessing techniques in this field is essential

to develop robust models and decision support systems in crop-pest advisory

system.
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11.1 Introduction

The world population increases day by day and it reaches 10 billion by 2050 (Singh

2005). The additional population of 4.3 billion by 2050 will be living in developing

countries, which is roughly three-fourths of the global population. Accordingly the

food demand is likely to double by 2025 in comparison with present production.

Therefore, it is important to produce enough food to feed everyone adequately, and

hence, agriculture plays a role on it. Agriculture is the backbone of Indian economy,

and India ranks second in the world in farm production (Limbore and Khillare

2015). The crop loss has been estimated around US$ 36 billion in India in post-

green revolution era (Dhaliwal et al. 2015).There are various factors responsible for

the low productivity of crops, of which damage from insect pests, diseases and

weeds are accountable for the huge losses on major agricultural crops (Singh 2005;

Kumar and Parikh 1998). Insect problems have been increased due to the unprece-

dented increase in area during last four decades. The pest damage varies largely

from one crop to the other on different seasons (Trivedi et al. 2005), and the pest

control strategy in crop production is a serious concern. Therefore, there is a need to

develop robust pest prediction models for emerging pests by considering (i) reliable

data on pest population for long periods at definite time intervals, (ii) weather

records, (iii) crop phenology and (iv) relative abundance of natural enemies

(Trivedi et al. 2005). Pest populations like all animal populations are influenced

by various abiotic and biotic factors due to their innate capacity to adapt to the

environments (Singh 2005; Southwood 1977).

An expert system is developed for the pest and disease management to assist the

coffee industry board of Jamaica (Mansingh et al. 2007). Several expert systems

developed in Indian agriculture for crop protection like Pesticide Advisor, Expert

System for Pest and Disease on Different Field Crops in India (ESPDDFCI), Indian

Cotton Insect Pest Management (ICOTIPM), and Expert System for Management

of Malformation Disease of Mango (ESMMDM) are classified as crop specific,

crop nonspecific, disease specific and disease nonspecific (Chakraborty and

Chakrabarti 2008).The pest population dynamics have been studied by using

several methods like artificial neural networks and statistical analysis like correla-

tion analysis and linear regression, but the data mining techniques help to extract

more hidden knowledge for the pest prediction (Pratheepa et al. 2016). Robust

models are necessary to derive accurate decisions for forewarning the farmers to

implement the timely pest management so that crop loss can be reduced. The

generic pest dynamics model is built up with five steps: (i) data collection,

(ii) data preprocessing, (iii) model development/analytical models, (iv) report gen-

eration and (v) decision-making. Among all steps, data preprocessing is very

important since pest surveillance data comprises many data types and huge amount

as well. The data could be generated from different sources like India Meteorologi-

cal Department (IMD) and from the farmer’s fields. IMD gives weather prediction

in the form of AGROMET bulletins, and pest surveillance data from farmer’s fields

contains (i) crop phenology, (ii) natural enemy population, (iii) pest damage level

and (iv) biology of the pest. The schematic diagram for pest prediction model
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consists of the modules, data collection from different sources, data preprocessing,

model for data analysis and recommendations to agri-clinics and farmers

(Fig. 11.1).

11.2 Data Set

The data set for the pest Helicoverpa armigera (Hübner) occurrence was acquired
from the All India Coordinated Cotton Improvement Project (AICCIP), and the

experiment was conducted at the Regional Agricultural Research Station

(16�0.210N/77�0.340E), Raichur, Karnataka, on non-Bt cotton NCS-145 variety in

unsprayed condition (Table 11.1).

The pest incidence was recorded in weekly basis throughout the crop season.

The mean value of pest incidence was combined with the mean value of previous

week abiotic factors like maximum temperature (MaxT) and minimum temperature

(MinT), morning relative humidity (RH1), evening relative humidity (RH2), rain-

fall (RF) and number of rainy days in a week (RFD) and with biotic factors like

spiders (NE1) and Chrysoperla carnea sillemi (NE2) (Henry et al. 2010). The

season and crop stage of cotton crop are also included in the data set. The selection

of variables for generic pest prediction model is important for model accuracy

(Table 11.2).
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Fig. 11.1 Block diagram of pest prediction model
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11.3 Data Preprocessing Technique for the Dependent
Variable

The value of ‘Y’ will be determined when it is of any type either ‘nominal’ or

‘continuous’. In linear models like regression, the values of target variable can be in

the form of ‘continuous’ numerical values. But for non-linear models like logistic

regression, inductive models similar to rule learners, Bayesian networks and deci-

sion tree method use nominal or categorical values in the target variable. These

values are quantitatively mentioned as present/absent, low/medium/high, yes/no,

severe/very severe, etc. In pest prediction data set, to quantify the dependent

variable which is pest incidence (PI) in a scientific way, it is necessary to look

into economic threshold levels (ETL) for major pests on important agricultural

crops. ETL is an index in integrated pest management (IPM) to make decisions for

pest control measures. ETL indicates the intensity of pest population or extent of

crop damage in which the cost of control measure is more than the value of the crop

(Higley and Boethel 1994). Several rules have been framed for important insect

pests on prime agricultural crops in different locations of India (Dhaliwal and Arora

1996). Hence, if the user likes to carry out non-linear models for pest prediction, it

is necessary to follow the ETL rules for pest level classification. The appropriate

class labels for pest incidence like low/medium/high can be assigned based on the

index ETL.

Table 11.2 Selection of variables for generic pest prediction model

Variables/

attributes Explanation of the variable Type of the variable

Pest incidence

(PI) or ‘Y’

Response variable/outcome/dependent

variable

Continuous

Crop stage Observation taken when the cotton crop is on

different stages

Nominal

Season Observation taken on that season Nominal

RFD Number of rainy days in a week Continuous or nominal

Value ranges from 0 to 7

Biotic

NE1 No. of spiders per plant (natural enemy –

predator)

Continuous (numerical

data type)

NE2 No. of Chrysoperla zastrowi sillemi (natural

enemy – predator)

Abiotic Continuous (numerical

data type)MaxT Maximum temperature

MinT Minimum temperature

RF Rainfall

RH1 Morning relative humidity

RH2 Evening relative humidity
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11.4 Data Preprocessing Techniques for Independent Variables

The raw data collected from different sources for the study generally will be

incomplete, contain noises and sometimes inconsistent. Preprocessing of the data

is needed to avoid erroneous results. The important steps in data preprocessing are

(i) cleaning the data, (ii) integration of the data, (iii) transformation of the data,

(iv) reduction of the data and (v) discretization of the data.

11.4.1 Data Cleaning

Data cleaning involves handling of missing values and outliers. Missing values in

the data set can be smoothened by filling of mean, mode or median values. The

missing value can be replaced with global constant or with most probable value

derived from Bayesian inference or EM (expectation-maximization) algorithm.

Outliers can be identified and removed in the data set by using clustering, curve-

fitting and hypothesis testing. Sometimes, duplicate records or inconsistent records

can be deleted to converge into solution.

11.4.2 Data Integration

Data integration is required to integrate multiple databases or files related with

same aspect. Import/export facilities can be used to transfer the files from one

database software to another. The most compatible file formats used are .csv files

(comma delimited), .xml files, .csv (tab delimited), .xls file, .json file, etc. These

files are in the worksheet form and can be easily imported into databases like

My-SQL, Maria-db, Mongo-db, etc.

11.4.3 Data Transformation

Data transformation is required for normalizing the data so that the model is not

influenced by high or low values and falls into small specified range. It is important

in artificial neural network (ANN) models. In ANN models, normalization

techniques are used for scaling the variables between 0 and 1 to proportionate

with the boundary of the activation functions present in the output layer (Minns and

Hall 1996; Obach et al. 2001). There are several normalization techniques avail-

able, and few of them are given below:

(a) Min-max normalization

(b) Zero-mean normalization

(c) Normalization by decimal scaling
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11.4.3.1 Min-Max Normalization
The formula for min-max normalization is given in Eq. (11.1).

Vi
0 ¼ vi �MinA

MaxA �MinA
new MaxA � new MinAð Þ þ new MinA ð11:1Þ

MinA and MaxA denote minimum and maximum values in the input array ‘A’,
and ‘Vi’ denotes the input value in the ith instance. ‘new_MaxA’ and ‘new_MinA’

are 1 and 0 since the mapping of original values is being to the range between 0 and

1. Min-max normalization helps to maintain the relationships among the original

data values.

11.4.3.2 Zero-Mean (Z-Score) Normalization
The formula for zero-mean or z-score normalization is given in Eq. (11.2).

Z ¼ x� μ

σ
ð11:2Þ

where ‘x’ is a value in an array, ‘μ’ refers to the mean of the array and ‘σ’ refers to
the standard deviation of the array. The attribute array has been normalized on the

basis of mean and standard deviation of that array. When the situation of more

outliers arises, this method is suitable to derive more appropriate results.

11.4.3.3 Normalization by Decimal Scaling
Decimal scaling is the method which provides the range between�1 and 1 (Sanjaya

and Prasanta 2015). The formula for this technique is given in Eq. (11.3).

vi ¼ v

10j
ð11:3Þ

where vi is the scale values, ‘V’ is a value in an array in ith instance and j is the

smallest integer as Max (|vi|) < 1.

11.4.4 Data Reduction

11.4.4.1 Division of Data for Training Set and Testing Set in ANN
Models

In pest management programme, the study of population dynamics of target pest is

necessary due to the different roles of each pest on different crops in different

agroecological regions. Most of the pest prediction models are not in use, or the

prediction goes wrong due to the role of pest dynamics based on several factors.

Training a model is important to make the prediction correctly or accurately. The

data set taken for training set is important especially in pest prediction models.

There are several standard methods for partitioning of data set for training and

testing phases. The proportion of dividing training set and testing set may be 1:1,
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2:1, 3:1, etc. (Utans and Moody 1991; Efron and Tibshirani 1995) for cross

validation. In ecological models leave-one-out cross validation method was used

(Brosse et al. 2001; Guegan et al. 1998). Generally, in agriculture for prediction of

crop yield or pest and disease incidences, the past years of data have been consid-

ered for training set to train the model, and the validation will be done in the

forthcoming year. But, in case of classification models for pest prediction, the data set

for training set is to be considered as per the target class values. This method is called

soft splitting, and in this method, there is a possibility of overlapping the data set, and

the net forewarning output will have better accuracy than the regular methods (Zhang

and Govindaraju 2000; Shrestha and Solomatine 2006; Wu et al. 2008).

When data set contains too many attributes, data reduction helps to reduce the

volume of data but produces the similar analytical results. Dimensionality reduction

refers to the removal of the unimportant attributes. There are direct and indirect

methods available in data reduction. In direct method, sampling techniques are

used. The aim of the direct method is to choose a required attributes or features set

which is adequate for data mining. Aggregation or summarizing the attribute values

helps to minimize the number of attributes in the experimental data.

11.4.4.2 Sampling Techniques
Sampling techniques are used for selecting the representative subset data from the

whole data set. These techniques are based on probability and also not based on

probability. The probability or direct sampling method contains (i) random sam-

pling, (ii) systematic sampling and (iii) stratified sampling. Random sampling can

be used when there is very large population. Systematic sampling can be used when

the given population is logically homogenous. In this method, the sample size has to

be decided and then arrange the elements of the population in some order and select

the samples at regular intervals from the list. In stratified sampling, the sampling

population has been divided into groups based on criteria to be measured. The

divided groups are called as strata and the single group is called as stratum. Then

random sampling can be carried out for each group. This sampling method is

suitable when the population is heterogeneous and can be split into homogeneous

groups to arrive accurate results.

Indirect sampling method contains (i) cluster sampling and (ii) generalized

weight share method (GWSM). In cluster sampling, the data has been divided

into different groups based on the similarity, and these groups are called as clusters.

Random sample can be selected from each cluster for further analysis. GWSM

method is useful for finding the probability from the rare populations from the

known groups, and it is based on weight values (Pierre 2007). In cluster sampling,

the cluster itself is a sampling unit, and in stratified sampling, the elements in each

strata are considered for analysis.

11.4.4.3 Statistical Methods
Variable or feature selection is an important task in prediction models. It is used for

the selection of best subsets in predictor variables so that redundant variables can be

avoided which gives clarity in results and reduce the time in computation. There are
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several statistical methods like principal component analysis (PCA), artificial

neural networks (ANN) based PCA methods, rough set theory, regression analysis,

step forward selection, step backward elimination and heuristic methods available

for feature selection in modelling.

11.4.4.4 Data Discretization for Numerical Attributes
Data discretization techniques are required to transform the numerical values into

nominal or categorical values since some of the classification algorithms in data

mining techniques accepts only the categorical values instead of the numerical

values. Data discretization is part of data reduction technique and helps to improve

the accuracy by reducing the noise or non-linearity in the predictive models. In pest

prediction models, data discretization is required for abiotic factors/variables like

maximum temperature (MaxT), minimum temperature (MinT), rainfall (RF), num-

ber of rainy days in a week, sunshine hours, morning relative humidity, evening

relative humidity, wind speed, evaporation, etc. for decision tree analysis, rule

induction approach, etc. Data discretization can be done by using binning methods,

and in that there are two types, one is supervised and another one is unsupervised. In

the supervised binning, the model refers target or class variable while transforming

the values of numerical variables into categorical values, but in unsupervised

binning method, transformation of numerical variables into categorical

counterparts takes place without referring the target or class variable.

Unsupervised Binning Methods
(i) Equal-width binning

(ii) Equal-frequency binning

(iii) Max-diff method

Equal-Width Binning

In equal-width binning, the algorithm partitions the data in ‘k’ intervals, and each

interval has the same size. Let ‘k’ be the number of bins required and the width of

bin is calculated as

W ¼ max�minð Þ=k
where ‘max’ and ‘min’ refers to maximum and minimum values in an array. The

bin range starts from the ‘min’ value and the bin boundaries are min + w, min + 2w,

min + 3w, . . ., min + (k�1)w, min + kw + or max+. Here, the bin size is equal but

the number of elements in each bin will be unequal. In a numeric array, the

minimum value can be considered as zero, and the same procedure can be followed

instead of taking ‘min’ value in an array. In that case, sometimes, there will not be

any elements in some of the bins or intervals.

Equal-Frequency Binning Method

In equal-frequency binning method, the algorithm divides the data into ‘k’ groups

where each group contains approximately same number of elements.
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The steps involved in equal-frequency method for assigning label as A1, A2, etc.

for the attribute MinT are given below:

(i) For M ¼ 1 to TOTA // TOTA denotes total number of attributes to be

categorized.

(ii) Input total number of bins needed and denoted as ‘K’.

(iii) NB ¼ N/K // ‘N’ indicates total number of tuples; NB is bin frequency.

(iv) Sort in ascending order for all the attributes to be categorized.

(v) S ¼ 1.

(vi) For I ¼ 1 to K.

(vii) For J ¼ S to NB // Fixing the bin boundary.

(viii) MinT[J] ¼ strcat(‘A’ + str(I)) // Assigning label as A1, A2, etc.

(ix) Next J.

(x) S ¼ NB + 1.

(xi) NB ¼ I*NB.

(xii) Next I.

(xiii) T1 ¼ K * NB.

(xiv) T2 ¼ N – T1.

(xv) K1 ¼ K + 1.

(xvi) FOR I ¼ T1 + 1 to T2.

(xvii) MinT[I] ¼ strcat(‘A’ + str(K1)).

(xviii) NEXT I.

(xix) NEXT M.

The histogram for the total records of 103 by using equal-frequency binning method

for the user input number of bins to be created for 5 creates 5 bins (A1,A2, . . ., A5)
of each contains 20 records, and for the remaining 3 records, 6th bin (A6) will be

created. But the user can modify the algorithm in such a way that the last bin label

(A5) may be assigned to the remaining records (Fig. 11.2).

The example for abiotic factor minimum temperature (MinT) array has been

divided into 5 bins my using equal-frequency binning method, and the minimum

and maximum value of MinT are 9 �C and 23 �C (Table 11.3).

Max-Diff Method

The data array has to be sorted in ascending order, and the bin boundaries have been

defined at the points where the adjoining values have the maximum difference. If

the requirement is ‘n’ bins, n-1 maximum difference values have to be considered

and n-1 cut points to be given in an array. The example of an array with three cut

points will contain four bins by using max-diff method (Fig. 11.3).

The example for abiotic factor minimum temperature (MinT) array has been

divided into five bins by using max-diff method containing four cut points

(Table 11.4), and there was no repetition of range values in bins as in equal-

frequency binning method (Table 11.3).
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11.4.4.5 Selection of Binning Method
In pest prediction data set, while considering the numerical continuous attributes for

abiotic factors and for the natural enemy population, the best way for determining

the number of bins ‘n’ is by considering the histogram. Bin optimization techniques

can be used for the more accurate results.
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1-20 21-40 41-60 61-80 81-100 101-103
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A4

A5

?

No. of records 

Fig. 11.2 Histogram of equal-frequency binning method

Table 11.3 Bin range

values of MinT by using

equal-frequency binning

method

Bin label Range values

A1 9–15.17

A2 15.8–17.4

A3 17.5–19.5

A4 19.6–20.7

A5 20.7–23

9, 12.9, 13.6, 13.6, 14, 14.6, 15.1, 16.4, 17.5, 18, 19.6, 20, 20.9, 21.8, 23

Maximum difference  12.9-9, 16.4-15.1, 19.6-18 

Fig. 11.3 Explanation of max-diff method

Table 11.4 Bin range

values of ‘MinT’ by using

max-diff binning method

Bin label Range values

A1 9

A2 12.9

A3 13.6–14

A4 14.6–22.3

A5 23
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Supervised Binning Method

Entropy-Based Binning

In information theory, entropy is called as expected information for uncertainty or

choice of a variable based on probability (Shannon 1948). The equation for the

calculation of entropy E is given in Eq. (11.4).

Entropy Eð Þ ¼ �
Xm

i¼1

Pilog2 Pið Þ ð11:4Þ

where ‘m’ denotes the number of classifier. This is a split approach, and binning is

to be done with target variable which is pest incidence (PI) in pest prediction model.

The maximum gain value for the corresponding ‘n’ intervals or bins will be

considered. In this case, the target variable PI is to be considered as numerical

continuous values rather than the categorical values like high, medium, low, etc.

11.5 Conclusion

Good data preparation is an important key to produce valid and reliable models.

Research findings are based on the data, and hence the appropriate preprocessing

techniques have to be applied to make the data more valid. Many preprocessing

techniques have been developed nevertheless vital area of research on agricultural

data for the development of robust pest prediction models. Pest prediction models

help the farmers in forewarning the pest attack so that control measures can be

applied in advance so that crop production may be increased.
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Abstract

Oral cancer is one of the most common malignancies worldwide with aggressive

behavior. Despite the advancements in preventive measures, diagnosis, and

management of oral cancer, the 5-year survival rate has been low. For the last

few decades, basic and advanced molecular techniques have been used to

understand the molecular process involved in transformation of normal oral

epithelium into cancer. Accumulation of genetic changes due to extrinsic or

intrinsic factors results in the initiation, progression, and recurrence of oral

cancer. However, the recent focus has shifted to understanding the tumor

microenvironment and cancer stem cells. The common genetic alterations

include mutations, amplifications, silencing, and epigenetic changes. This

review elaborates the transcriptional biomarkers which are expressed in the

process of carcinogenesis. The use of molecular techniques for detection of

these biomarkers can aid in early diagnosis and better prognosis. Brief

descriptions of relevant computational techniques are given, and databases are

indicated.
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12.1 Introduction

Oral cancer (OC), a malignancy that arises from the oral cavity, is recognized as a

subtype of head and neck cancer (HNC) (Chang et al. 2013). Ninety percent of them

are oral squamous cell carcinomas (OSCC) (Feller and Lemmer 2012) which

originate from the epithelial lining of the oral cavity. OSCC is the sixth most

common cancer with high mortality and morbidity (Macey et al. 2015; Rashid

and Warnakulasuriya 2015) due to its invasive growth pattern, lymph node metas-

tasis, and high recurrence rate (Yong-Deok et al. 2015). It is one of the common

malignancies noted in males worldwide (Ferlay et al. 2015). A similar scenario has

been observed in India; it is a common malignancy in males and the third most

common in females (M:F ¼ 1.5:1) due to indulgence in high-risk habits (Cancer

and Consortium 2013). Individuals in the fifth decade of life are the most affected.

The probability of OSCC development increases with the duration of exposure to

risk factors and age-related mutagenic and epigenetic changes (Feller and Lemmer

2012).

12.1.1 Risk Factors

The etiology of OSCC is multifactorial. Tobacco, alcohol, betel nut, betel quid,

genetic factors, infection with high-risk viruses like Epstein-Barr virus (EBV) and

human papillomavirus (HPV), and diet deficient in fresh fruits and vegetables are

a few to list (Scully 2011; Polz-Gruszka et al. 2015). The chief risk factors in

many countries include tobacco, smoking, and alcohol. However, types and forms

of tobacco consumption vary across the world. In the Indian subcontinent,

smokeless tobacco, betel quid, and betel nut are most commonly used (Scully

2011). The ingredients of the common etiological agents, carcinogen, and their

role are listed in Table 12.1. Moreover, many studies have observed that tobacco

and alcohol cause DNA damage and reduce its efficiency to repair (Zedan et al.

2015). The carcinogenic effect of tobacco, betel quid, and areca nut depends upon

the dose, duration, periodicity of use, or the combined use of two or more agents

(Petti 2009).

12.1.2 Lesional Site and Size

OSCC can arise at any anatomical site in the mouth (Feller and Lemmer 2012). In

the Western countries, the tongue (20%–40%), lips, and floor of the mouth (15%–

20%) are common sites, while the retromolar area, gingivae, palate, labial, and

buccal mucosa are less commonly affected (Bagan et al. 2010). In the Indian

subcontinent, the most affected oral site is the buccal mucosa (52.74%) followed

by the lateral border of the tongue (23.17%). The less affected sites include the floor

of the mouth (6.09%), palate (5.79), lips (5.48%), retromolar trigone (2.43%), and

gingiva (0.3%) (Syam sundar et al. 2012). The clinical presentation of OSCC is
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varied. They are either preceded by oral potentially malignant disorders like a white

lesion, mixed white and red lesion, and a red lesion or may present as a swelling,

growth, an irregular necrotic ulcer, ulceroproliferative lesion, or an enlarged cervi-

cal lymph node (Markopoulos 2012; Feller and Lemmer 2012).

12.1.3 Diagnosis

The early detection of OC is important to increase the survival rate. Conventional

oral examination (COE) is the standard method for screening the oral cavity.

Suspected lesions are often biopsied and confirmed by histopathological examina-

tion as it is the gold standard for diagnosis (Masthan et al. 2012).

Some of the noninvasive techniques developed for early OC detection include

ViziLite Plus, salivary diagnostic methods, oral brush biopsy kits, multispectral

optical imaging systems, VELscope, etc. (Shah et al. 2011). Although useful for

routine screening, confirmation has to be done by biopsy (Macey et al. 2015).

Approximately 70% of OCs exhibit an advanced stage diagnosis due to a long

asymptomatic period, similar to inflammatory diseases (Yong-Deok et al. 2015).

About 21% of head and neck cancers which were reported as negative at the

surgical margins under the microscope turned to be positive in highly sensitive

molecular techniques like PCR. Hence, it is suggested that the advanced molecular

Table 12.1 Risk factors and their role in carcinogenesis

Risk

factors Ingredients Carcinogens Role in carcinogenesis

Betel

quid

Mixture of areca nut, slaked

lime, and catechu, wrapped

in a betel leaf

Arecoline Arecoline induces epigenetic

changes (Lin et al. 2011)

MNPN Causes genetic damage and

tumorigenic activity

(Prokopczyk et al. 1991)

ROS Causes oxidative DNA damage

(Waris and Ahsan 2006)

Tobacco Dried tobacco leaves NNN, NNK Receptor mediated tumor

growth due DNA mutation and

adduction (Xue et al. 2014)

Areca

nut

Dried seeds of the areca

palm

Arecoline Arecoline induces epigenetic

changes (Lin et al. 2011)

MNPN Genetic damage and

tumorigenic activity

(Prokopczyk et al. 1991)

Alcohol Saturated carbon atom with

functional hydroxyl group

Acetaldehyde-

metabolic

product of

alcohol

Acetaldehyde binds to DNA

and forms carcinogenic adduct

(Seitz and Stickel 2010).

3-(methylnitrosamino) propionitrile (MNPN); NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-

butanone; NNN, N0-nitrosonornicotine; ROS, reactive oxygen species
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techniques can assist in early diagnosis and prevention, more so in high-risk

individuals to improve the prognosis in OC (Brennan et al. 1995).

Molecular techniques capture the genetic changes at an early stage that are not

detected under the microscope (Brennan et al. 1995). Genomic techniques can

measure the majority of mRNA, proteins, metabolites, protein-protein interactions,

genetic mutations, amplifications, epigenetic changes, and microRNAs. It can be

accessed by PCR, microarray (Macgregor and Squire 2002), RNA-seq, exome

sequencing, and whole-genome sequencing (Meldrum et al. 2011). These

techniques could be beneficial to detect early diagnostic biomarkers.

Proteomic analysis is equally important in understanding the physiologic status

of the cell. Recent studies have used 2D gel electrophoresis, Western blotting, and

LC-MS/MS for OC salivary protein biomarker detection (Hu et al. 2010).

Immunohistochemistry (IHC) is a widely used technique to identify the specific

proteins overexpressed in certain cancers (Duraiyan et al. 2012). Garewal et al.

(2014) employed IHC to evaluate Bcl-2 and MIB-1 as a protein biomarker for

OSCC. A detailed list of diagnostic methods and their merits is collated in

Table 12.2.

Table 12.2 Diagnostic aids with merits in detection of oral precancer and cancer

Diagnostic method Merits

Routine method

Vital staining Determines the suspected site and margins of the lesions (Shah

et al. 2011)

Oral brush biopsy Easy, noninvasive, and painless (Shah et al. 2011)

Histopathology Reliable and inexpensive (Shah et al. 2011)

Liquid-based cytology

(LBC)

Simple and sensitive technique (Sigurdsson 2013)

Laser-induced fluorescence

(LIF)

Simple, sensitive technique, and noninvasive (Wei et al. 2013)

Immunohistochemistry

(IHC)

Sensitive and specific (Duraiyan et al. 2012)

Molecular technique

Polymerase chain reaction

(PCR)

Detects genetic alteration and molecular markers (Macgregor

and Squire 2002)

Microarray technology Parallel nucleic acid quantification (Macgregor and Squire 2002)

Next-generation

sequencing (NGS)

Detects genetic and epigenetic changes (Meldrum et al. 2011)

In situ hybridization (ISH) Study of cell development, human gene mapping, and

cytogenetics (Lichter et al. 1988)

Optical techniques/imaging technique

Optical coherence

tomography (OCT)

Yields in situ imaging, without the excision of specimen (Lee

et al. 2012b)

Flow cytometry Detects DNA aneuploidy and loss of heterozygosity (Adan et al.

2016)
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12.1.4 Survival

The 5-year survival rate of OSCC is 50%, which has remained unchanged since the

last few decades, despite advancements in the treatment modalities (surgery,

radiation, and chemotherapy) (Shah et al. 2011). An 80% recurrence-free 5-year

survival has been observed in stage I OSCC; however, it is reduced to 20% for stage

IV cancer (Shin et al. 2010). Survival is not often related to age, gender, socioeco-

nomic status, or habits (Feller and Lemmer 2012), but it is significantly related to

early detection and prevention of cancer (Shin et al. 2010). Improving early

diagnosis is one of the best ways to increase the survival rate, improve the quality

of life, and reduce health-care costs (Shah et al. 2011).

12.2 Carcinogenesis

Carcinogenesis is a complicated, multistep process that alters normal cellular

physiology quantitatively and qualitatively (Wong and Todd 1996; Khan et al.

2012). Repeated exposure of the oral mucosa to carcinogenic insult could result in

accumulation of genetic alterations and development of premalignant and malig-

nant changes (Slaughter et al. 1953). A eukaryotic cell has genetic material (genes)

composed of deoxyribonucleic acid (DNA), incorporated in the form of a chromo-

some, located in the nucleus. The DNA sequence is responsible for the formation of

proteins (Albarts et al. 1994). Altered DNA sequence due to mutations,

polymorphisms, etc. can result in the formation of abnormal proteins which disrupt

normal cellular functions (Fig. 12.1).

The epithelial cells are constantly renewing cells, wherein the rate of production

of new cells and loss of old cells is regulated to be constant. This process is

maintained by two mechanisms: proliferation and apoptosis. Tumor suppressor

genes, oncogenes, and growth factors control this critical balance between apopto-

sis and proliferation. Any imbalance in this process can lead to cancer (Bertram

2000; Khan et al. 2012).

Normal cell 

Mutated genes

Mutagenic agents,
Inherited factors,
Viruses, Chemicals, 
or Radiation

Altered gene expression

Altered Protein  expression

Diagnostic 
Prognostic 
therapeutic 
biomarker

Uncontrolled 
Proliferation 

Escaped 
apoptosis

Altered 
Metabolite

Increased
angiogenesis

Diagnostic 
Biomarkers

Fig. 12.1 Schematic

representation of steps in

carcinogenesis
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Cancer is the accumulation of genetic and epigenetic changes caused by the

mutation of cancer-related genes, such as tumor suppressor genes or oncogenes, as

well as genes involved in cell cycle control, cell adhesion, apoptosis, DNA repair,

and angiogenesis (Macgregor and Squire 2002).

12.2.1 Cell Proliferation

Proliferation is an important cellular process in carcinogenesis. It has a crucial role

in the normal process of the cell cycle. Uncontrolled cell proliferation leads to the

development of many different types of carcinoma (Ramires et al. 1997). Prolifera-

tion abnormalities can be evaluated using molecular techniques like IHC

(Stankiewicz et al. 2009). Ki67 is a nuclear protein, which is most commonly

used as a proliferative marker. Its expression is seen in all active phases of the

cell cycle (G1, S, G2, and M phases) but is absent in G0 phase. Ki67 could be a very

helpful biomarker in OSCC, to detect the aggressiveness of the tumor and prognosis

(Tumuluri et al. 2002; Kurokawa et al. 2005).

In precancerous lesions, there is an increased expression of TGF-α when com-

pared to EGFR in the proliferative pool of the oral epithelium. This suggests that an

initial upregulation of TGF-α was likely to have a paracrine effect on the adjacent

nonproliferative cells, thereby increasing the expression of the cell surface receptor,

EGFR (Mendes 2012).

12.2.2 Apoptosis

Apoptosis is a strongly regulated physiologic cellular mechanism. This is a

programmed process of elimination of useless, mutated, or harmful cells (Sen

1992). Apoptosis can be initiated by intrinsic or extrinsic cellular pathways.

Tumor cells escape this process by an increased resistance and survival (Manning

and Patierno 1996). Apoptosis is controlled by many anti-apoptotic (Bcl-2, Bcl-XL)

and pro-apoptotic (Bax, Bak) regulators. P53 is one of the more frequently studied

apoptotic biomarkers (Wilson et al. 2001).

12.3 Invasion and Metastasis

The propensity for invasion into foreign tissues and metastatic activity at a distant

location is a distinct characteristic of a cancer cell. The invading cells reach the

blood/lymphatic vessels and can spread to other organs in the body resulting in

metastasis. Metastasis is a complicated process involving sequential steps and

multiple factors (Khan et al. 2012). Invasion and increased cell motility are the

first step in metastasis (Thiery 2002). It starts with the degradation of extracellular

matrix (ECM) and basement membrane (BM). The matrix metalloproteinases

(MMPs) are of the protease family; they degrade ECM and BM in several
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conditions including cellular development, tissue repair, tumor invasion, and

metastasis (Shah et al. 2011). OSCC is highly invasive and metastatic in nature.

There is a correlation between higher expression of MMP-2 and MMP-9 with

poorer prognosis in OSCC (Singh et al. 2010).

Many studies have shown that epithelial-mesenchymal transition (EMT) is

responsible for malignant tumor cell migration and may play a key role in tumor

invasion and metastasis (Zhou et al. 2015). It has been assumed that metastasis may

be connected with EMT. Areca nut exposure causes increased vimentin expression,

which has an important role in EMT through PI3K/AKT pathway (Lee et al. 2012a).

Similarly, cadherins, key molecules in EMT, play a major role in the maintenance

of cell-cell adhesion of normal cells and are responsible for epithelial integrity

(Thiery 2002). Integrins are protein molecules that maintain the tissue integrity and

regulate cell proliferation, differentiation, and migration (Thomas and Speight

2001). The overexpression of cyclin D1 protein is significantly related to tumor

cell differentiation, stage, and lymph node metastasis (Jones and Walker 1997).

12.4 Tumor Microenvironment

The tumor microenvironment (TME) is the environment in which the tumor exists;

it is composed of cancerous cells, adjacent blood vessels and epithelial cells,

immune cells, and surrounding matrix (Curry et al. 2014). Its dynamic function is

to fulfill tumor cell requirements to survive and grow (Bellone et al. 2013).

12.4.1 Angiogenesis

Angiogenesis (formation of new blood vessels) is one of the most important

hallmarks of cancer development. Increased blood supply is an important require-

ment for tumor growth and metastasis (Hanahan and Weinberg 2000).

Vascular endothelial growth factor (VEGF) is a well-known agent which boosts

angiogenesis. Analysis of VEGF gene in OSCC revealed an overexpression of

mitogen that is related to tumor size (Christopoulos et al. 2011).

12.4.2 Hypoxia

Hypoxia is associated with increased invasion and metastasis in several cancers. In

tumor tissue, the hypoxic condition is responsible for increased angiogenesis with

the rapid development of new blood vessels. These rapidly synthesized blood

vessels have an insufficient blood supply. Hypoxia is harmful to both normal

cells and cancer cells; however, molecular changes during carcinogenesis support

the cancerous cells to survive and proliferate in a hypoxic condition. Therefore,

hypoxic tumor growth could result in an aggressive malignancy (Nagaraj et al.

2004).
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Hypoxia-inducible factor-1α (HIF-1α) is a significant factor for those tumor

cells which are under hypoxia. HIF-1α accelerates the transcription of many

hypoxic genes which are involved in angiogenesis, glucose metabolism, oxygen

supply, and invasion and prevention of apoptosis (Gronroos et al. 2014).

12.4.3 Lipid Metabolism

Lipids are important biomolecules required for maintenance of various biological

functions such as DNA stabilization and cell proliferation in both normal and

neoplastic cells (Mehta et al. 2014). Rapidly dividing cells in a malignant condition

require more amount of lipid. Increased requirement of lipids is fulfilled either

through exogenous uptake (cholesterol in the proliferating tissues and in blood

compartments) or by lipogenesis (endogenous lipid synthesis) (Beloribi-Djefaflia

et al. 2016). Lipid biomolecule synthesis by activation of lipogenesis, especially

endogenous fatty acid synthesis, is an important occurrence in the metabolic

transformation of normal cells to neoplastic tumor cells (Menendez and Lupu

2007). Stearoyl-CoA desaturase (SCD) is a key enzyme for fatty acid metabolism;

fatty acid is the building block of lipid. In many cancer studies, SCD was consid-

ered to be the key factor in cancer development (Ariel 2011).

12.5 Epigenetic Changes

Along with genetic changes, epigenetic changes also play a critical role in carcino-

genesis. Epigenetic changes refer to any heritable genetic modification without

changing DNA sequence, mediated through mechanisms like methylation, acetyla-

tion, or phosphorylation, which results in dysregulation of gene expression in a

number of different ways (Egger et al. 2004). Recent studies suggest that

hypermethylation, acetylation (Arif et al. 2010), and phosphorylation (Kaneko

et al. 2016) play an important role in carcinogenesis (Egger G.et al., 2004).

Hypermethylation, a frequent event in carcinogenesis, induces functional silencing

of genes like p16, E-cadherin (Asokan et al. 2014), and phosphatase and tensin

homolog (PTEN) (Sushma et al. 2016). These genes could be useful biomarkers for

diagnostic purpose.

12.6 Cancer Stem Cells

Most cancers contain a subpopulation of cells which have the potential for self-

renewal, differentiation, tumor invasion, metastasis, and disease recurrence called

cancer stem cells (CSC). These cancer stem cells activate resistance mechanisms,

like EMT, resistance to hypoxia and induction of angiogenesis, and resistance to

immune escape by a reduction in tumor-specific antigens while increasing

cytokines and growth factors (Albini et al. 2015). CSC research could be a useful
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tool for basic understanding of intrinsic and extrinsic features of the OC (Patil et al.

2013). Chen et al. (2013) have shown that CSC markers like CD44, CD133, side

population cells, Bmi-1, c-Met, and ALDH1 have a positive correlation with tumor

invasiveness and metastases.

12.7 Biomarkers

Hulka and colleagues defined biomarker as a cellular, biochemical, or molecular

alteration that is measurable in biological media such as human tissues, cells, or

fluids (Hulka and Wilcosky 1988). Biomarkers could be used for understanding the

cause of malignancy, diagnosis, progression, treatment of disease, and prognosis

(Mayeux 2004).They have the ability to disclose genetic and molecular changes

involved in the process of oral carcinogenesis, hence helpful in the management of

oral carcinomas (Shah and Kaur 2014).

There are different types of biomarkers, which can be categorized as nucleic acid

(gene, microRNA, noncoding RNA), protein (enzyme, receptor), antibodies, and

peptides. They could be a panel of altered genes, proteins, metabolites, etc. (Henry

and Hayes 2012).

List of the biomarkers is given in Table 12.3.

12.8 Oncogenes and Tumor Suppressor Genes

Identifying genetic changes is the first step of cancer development mechanism

research (Yamamoto et al. 2015). The genetic alterations in the cancer cells are

of two categories: (i) gain of function by dominant damage in proto-oncogene and

(ii) loss of function by recessive damage in tumor suppressor genes (Khan et al.

2012).

12.8.1 Oncogenes

Proto-oncogenes regulate the cell growth and differentiation. Precise regulation of

these genes maintains the normal behavior of cells. During carcinogenesis, proto-

oncogenes get altered by mechanisms like point mutations, gene amplification, and

gene overexpression and become oncogenes. These abnormal genes encode

modified proteins and affect the normal regulatory mechanisms (Saranath et al.

1991). Oncogenes are responsible for initiation and progression of oral neoplasia

(Field 1992); many of these genes are associated with oral carcinogenesis (Wong

and Todd 1996).

Various studies observed abnormal expression in members of gene families like

myc, ras (H-ras, K-ras, N-ras), int-2, hst, bcl, and PRAD-1 as well as in epidermal

growth factor receptor (EGFR)/c-erb 1 that are considered as contributors to OC

development (Wong and Todd 1996).
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Table 12.3 Biomarker: expression and role in cancer

Author Biomarker Expression Role in cancer

DNA

Sushma et al.

(2016)

P16 Proliferation biomarker

Promotor

methylation

Helpful for diagnosis

Sushma et al.

(2016)

PTEN Proliferation biomarker

Promotor

methylation

Rowley et al.

(1998) and Hsieh

et al. (2001)

P53 Tumor suppression and apoptosis

Gronroos et al.

(2014)

HIF-1α Transcriptional regulator in

response to hypoxia

Cancer and

Consortium

(2013)

FAT4 Cell proliferation

mRNA

Li et al. (2004)

and Panta and

Venna (2014)

Spermidine

N1-acetyltransferase

(SAT)

Catabolism of polyamines

St John et al.

(2004) and Li

et al. (2004)

Interleukin 8 (IL8) Angiogenesis, cell cycle arrest, and

cell adhesion

Li et al. (2004)

and Panta and

Venna (2014)

IL-1β Important cytokine for

inflammatory response

St John et al.

(2004)

IL6 Inflammatory cytokine, promotes

tumor progression

Li et al. (2004) DUSP Important role in MAPK pathway

Li et al. (2004) OAZ1 Intracellular polyamine levels

regulator which maintains cell

growth and proliferation

Protein

Chen et al.

(2014)

CD44 Tumor growth and metastasis

Christopoulos

et al. (2011)

VEGF Increased angiogenesis

Shpitzer et al.

(2009)

Ki67 Proliferation and cell cycle

accelerationcyclinD1

Mmp9 Metastasis

Harshani et al.

(2014)

Glut-1 Hypoxia

microRNAs

Tiwari et al.

(2014)

miR-125a Increased cell proliferation and

decreased apoptosis

Panta and Venna

(2014)

miR-200a Tumor suppression and early

metastasis

(continued)
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However, the incidence of H-ras mutation in Indian OSCC (35%) is higher

(Saranath et al. 1991) than that seen in Western Europe and the USA (5%). This

may be due to the prevalent use of tobacco in the Indian population. Tobacco could

be a possible reason for ras gene family mutation in the corresponding populations

(Khan et al. 2012). List of proto-oncogenes is given in Table 12.4.

12.8.2 Tumor Suppressor Genes

Tumor suppressor genes (TSG) are regulators of fundamental cellular processes

like cell division, DNA repair, and apoptosis. Genetic changes in TSG inactivate

Table 12.3 (continued)

Author Biomarker Expression Role in cancer

Hung et al.

(2014)

miR31 Hypoxia pathway regulator

Decreased

Increased

Table 12.4 Proto-oncogenes: role in normal cellular function and in cancer

Proto-

oncogenes Function Altered function References

K-ras Signal-transducing and cell cycle

regulatory protein

Activates signaling pathway

in advanced stage of OSCC

Al-Rawi

et al. (2014)

Tumor development

H-ras Regulation of cell growth,

transduction of mitogenic cell

signaling from the surface of the

cell to the nucleus

Uncontrolled proliferation,

survival, and apoptosis

Saranath

et al. (1991),

Deo MG

(1991)

BCL2 Regulator of anti-apoptotic

mechanism

Promotes prolonged cell

survival

Teni et al.

(2002)

EGFR Transmembrane protein Uncontrolled cell

proliferation and survival

Massano

et al. (2006)

c-myc Crucial role in cell growth

control, differentiation, and

apoptosis

Uncontrolled proliferation,

survival, and apoptosis

Krishna

et al. (2015)

Cyclin D1 Cell cycle regulation Regional nodal metastases

and advanced tumor stage

Scully et al.

(2000) and

Miyamoto

et al. (2003)

Cyclin A DNA synthesis Advanced tumor stage,

larger tumor volume, lymph

node metastases and

recurrence

Chen et al.

(2003)G2 phase to M phase progression
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them. These genes are frequently inhibited by point mutations, deletions, and gene

rearrangements (Shah et al. 2015). P53 is a well-documented tumor suppressor

gene. One of the most common genetic alterations in different types of human

cancers is alteration of p53 gene (Scully et al. 2000). List of tumor suppressor genes

is given in Table 12.5.

12.9 Bioinformatics Resources for Transcriptional Biomarker
Research

Cancer bioinformatics is the new field which is a combination of bioinformatics,

mathematics, information technology, and medical informatics (Wu et al. 2012).

Genomic techniques produce a huge amount of cancer-related molecular data.

Therefore, the role of computers is crucial for the structured organization of data

and understanding of molecular knowledge (Luscombe et al. 2001). Finding gene

expression changes between cancerous and normal specimens at different stages of

cancer could be useful in identifying specific genetic signatures for diagnostic,

Table 12.5 Tumor suppressor genes: role in normal cellular function and in cancer

Tumor

suppressor

genes Function Changes References

P53 Transcription factor;

regulates cell cycle and

apoptosis, controls genome

integrity and DNA repair

Uncontrolled proliferation of

abnormal cells Tumor

progression

Levine

et al.

(2004)

E-cadherin

(epithelial

cadherin)

Transmembrane

glycoprotein, maintains cell

polarity, and normal tissue

structure

Lymph node metastasis Chaw et al.

(2012)

Adenomatous

polyposis coli

(APC)

Controls cytoplasmic

β-catenin concentration

Invasion and metastasis Chaw et al.

(2012)

Phosphatase

and tensin

homolog

(PTEN)

Stimulates apoptosis by

inhibiting PI3K-PKB/Akt

signaling pathway activity

Silencing of signal

transduction from membrane

growth factor receptors

(EGFR, HER-2, IGFR)

through the AKT pathway

Sushma

et al.

(2016)

p16/cyclin-

dependent

kinase inhibitor

2A (CDKN2A)

Cell cycle regulatory

protein; inhibits the activity

of cyclinD6 and prevents Rb

phosphorylation

Uncontrolled cell

proliferation

Pande

et al.

(1998)

Retinoblastoma

(Rb)

Controls transition to

S-phase by regulating

transcription factor E2F

activity, regulation of

cellular proliferation

Uncontrolled cell

proliferation

Pande

et al.

(1998)
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therapeutic, and prognostic information (Kihara et al. 2006). Gene transcription is a

dynamic process, allowing cells to adapt rapidly to the external, environmental, or

physiological changes affecting organs, target tissues, or cells. Therefore, identifi-

cation of biomarkers that describe a given physiological status, a disease, an

exposure to a carcinogen, or other exogenous stimuli is possible with gene expres-

sion profiling (Riedmaier et al. 2012).

12.9.1 Methods for Transcriptome Analysis

Microarrays and high-throughput RNA sequencing, along with the development of

computational tools, could be useful for biomarker identification (Riedmaier et al.

2012). These techniques allow expression profiling of huge number of genes in a

given biological sample in a single experiment. Data analysis tools for microarray

and RNA-seq, as well as related databases of OC, are detailed.

12.9.1.1 Microarray
Microarray is a powerful genomics tool, designed to capture the expression of

thousands of genes in cells. A microarray is defined as a collection of probes

arranged in an array attached to the solid surface. These specially designed probes

bind to specific nucleic acids corresponding to a particular gene through the

hybridization process (Jaluria et al. 2007). Microarray results in an image for

each sample. Softwares are used to analyze images and to obtain the intensity at

each spot, followed by data normalization, differential gene expression, and gene

annotation. Free and commercial softwares are available for this purpose (Mehta

and Rani 2011).

Bioconductor (http://www.bioconductor.org) is an open development initiative

for computational biology. Its main focus is to provide a platform to the end user for

expression analysis. Packages like affy and limma (linear models for microarray

analysis) are available for raw data normalization and statistical analysis of

Affymetrix and Agilent data, respectively. Three packages can be used for differ-

entially expressed gene identification, i.e., multtest, genefilter, and edd. This is

followed by genomic annotation of differentially expressed (DE) genes from

databases such as GenBank, the Gene Ontology (GO) Consortium, LocusLink,

UniGene, and the UCSC Human Genome Project. They can be accessed using

packages like Annotate and AnnBuilder (Dudoit et al. 2003). However, program-

ming skills and command-line interface are vital for using this computer language,

which could be difficult for many biologists. Hence user-friendly graphical user

interface (GUI)-based tools and software were developed (Xia et al. 2005). They

are collected together in Table 12.6.
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Table 12.6 Microarray and RNA-seq tools for data analysis

Software Specification Website/reference

Microarray

Spotfinder Microarray images analysis https://omictools.com/spotfinder-

tool

MultiExperiment

Viewer (Mev)

Clustering, visualization,

classification, and statistical

analysis of normalized data files.

Accepts several input file formats

(.mev, .tav, .txt, .gpr)

http://mev.tm4.org/#/welcome

GeneSpring GX Commercial software used for

microarray data analysis and

visualization

http://genespring-support.com/

user/register

ArrayAssist Tool for processing and

visualization of expression data. It

has strong support for the

Affymetrix platform

http://www.biocompare.com/

Product-Reviews/40281-

ArrayAssist-Advanced-Software-

From-Stratagene/

WebArray It is a web platform for analysis of

two-color Affymetrix microarray

data

http://www.webarraydb.org/

webarray/index.html

DAVID Functional gene annotation of

genes

http://david.abcc.ncifcrf.gov/

Gene Ontology The Gene Ontology Project

provides a controlled vocabulary to

describe gene and gene product

attributes in any organism

http://www.geneontology.org/

RNA-seq

FastQC Raw data preprocessing http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/

HTQC Raw data preprocessing Yang et al. (2013)

FLEXBAR Read trimming Dodt et al. (2012)

FASTX-Toolkit Read trimming from: http://hannonlab.cshl.edu/

fastx_toolkit/

Bowtie Unspliced read aligner Langmead et al. (2009)

TopHat Spliced read aligner Trapnell et al. (2009)

Call variants

Detect gene fusions

MapSplice Spliced read aligner Wang et al. (2010)

Cufflinks Reference-based transcriptome

assembly and isoform-level

expression quantification

Trapnell et al. (2009)

Scripture Reference-based transcriptome

assembly

Guttman et al. (2010)

Trinity Reference-independent

transcriptome assembly

Grabberr MG (2011)

Trans-ABySS Reference-independent

transcriptome assembly

Robertson et al. (2010)

ALEXA-seq Gene-level expression

quantification

Griffith et al. (2010)

(continued)
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12.9.1.2 RNA-Seq
RNA-seq is a powerful tool for analyzing changes across the entire transcriptome

during cancer development. This technique is capable of detecting a wide range of

transcripts compared to microarrays. RNA-seq reveals information about distinct

transcript isoforms and their abundance and can be used to detect mutations in more

abundantly expressed transcripts and to analyze allele-specific expression. Alto-

gether, this technology provides a detailed genomic characterization that was

previously not possible (Trapnell et al. 2009; Ozsolak and Milos 2011).

RNA-seq experiment starts with the extraction of RNA from biological samples

followed by quality check and cDNA library preparation. All fragments in cDNA

library are parallely sequenced using high-throughput sequencing technology

(Riedmaier et al. 2012). It yields a massive amount of raw sequencing reads

(Trapnell et al. 2009). Analysis of this data is a complex process comprising of

multiple steps. There is no single best pipeline; however, it is dependent upon

experimental design, the organism being studied, and the research goals. The

routine RNA-seq workflow consists of preprocessing of raw data, mapping, quanti-

fication of expressed genes, differential expression analysis, and gene annotation

(Dai et al. 2010; Conesa et al. 2016).

12.9.2 Databases

The completion of the Human Genome Project and the development of large-scale

molecular techniques have led to a massive accumulation of biological data. As a

result, biological databases have been developed for the systematic organization of

fast-growing data. It allows the users to access existing information and to submit

the new entries produced (Zou et al. 2015).

12.9.2.1 OrCGDB
Oral cancer gene database (OrCGDB) is a collection of tumor-related genes,

available at http://www.tumor-gene.org/Oral/oral.html. At present, this database

has 300 genes. The user can search for oral cancer-specific genes in this database

(Levine and Steffen 2001).

Table 12.6 (continued)

Software Specification Website/reference

edgeR Gene-level differential expression Robinson et al. (2010)

DESeq Gene-level differential expression Anders and Huber (2010)

SAMseq Isoform-level differential

expression

Li and Tibshirani (2013)

Cuffdiff Isoform-level differential

expression

Trapnell et al. (2009)
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12.9.2.2 OCDB
Oral Cancer Database (OCDB) is user friendly and is freely available at http://

www.actrec.gov.in/OCDB/index.htm that provides information and external links

for genes involved in oral cancer. It also furnishes information about 374 genes

involved in oral cancer, interactions between them, and their role in oral cancer

along with clinical relevance. This database can be queried by keyword search that

will give the gene name and chromosomal region. Hence, it can act as a complete

web resource (Gadewal and Zingde 2011).

12.9.2.3 HNOCDB
Head and neck and oral cancer database (HNOCDB) is a repository of information

for genes and miRNAs involved in the head and neck/oral cancer. This information

is linked to chromosomal map. Information about causes of oncogenic activation,

genetic mutation, and chromosomal localization of the gene/miRNA is also avail-

able in this database (http://gyanxet.com/hno.html). Other databases for getting

OC-related information are mentioned in Table 12.7.

12.10 Perspectives

Early diagnosis of oral cancer remains a challenge in spite of technical

advancements. The 5-year survival rate following treatment for oral cancer is still

low with the current treatment protocols. Molecular methods offer promise in

Table 12.7 List of database

Database Database details Website

OMIM Collection of human genes and genetic

disorders

https://www.omim.

org/

Gene Expression

Omnibus (GEO)

Collection of functional genomics

experimental data

https://www.ncbi.

nlm.nih.gov/geo/

ArrayExpress Collection of functional genomics

experimental data

https://www.ebi.ac.

uk/arrayexpress/

KEGG pathway Collection of manually drawn pathway maps

representing molecular interaction and reaction

networks knowledge

http://www.genome.

jp/kegg/pathway.

html

Gene Ontology Collection of structured ontologies http://www.

geneontology.org/

The Cancer Genome

Atlas

Database of cancer genomic data https://

cancergenome.nih.

gov/

International Cancer

Genome Consortium

A comprehensive description of genomic,

transcriptomic, and epigenomic changes in

50 different tumor types and/or subtypes

including oral cancer

http://icgc.org/

Sequence Read

Archive (SRA)

Sequencing data from high-throughput

sequencing platforms

https://www.ncbi.

nlm.nih.gov/sra
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improving this scenario. If the stage and behavior of the disease can be correctly

gauged with the help of biomarkers, targeted therapy and personalized treatment

can improve the treatment outcome. Therefore, knowledge of recent advancements

and their judicious use is recommended for improved cancer care.
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Abstract

DNA barcoding is a modern and extensively used molecular-based recognition

method that aims to categorize biological specimens and to affiliate them to a

given species. Newly, the progress of next-generation sequencing technology

has become growingly important in the bacterial taxonomy analysis, sequence

classification, and species recognition. This chapter describes the major 16S

rRNA gene sequence databases and tools available for DNA barcoding studies.

Here we reviewed bioinformatics, tools and methods are summarized that can

support researchers who accurately prepare a database query to be capable of

retrieving the most proper information required for their area of research. The

aim of the present work is to draw outline of the current scenario of bacterial

DNA barcoding with respect to bacterial sequence classification and species

identification.
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13.1 Introduction

16S ribosomal RNA is a part of the 30S small subunit of the prokaryotic ribosome.

Sequencing the ribosomal RNA gene (rRNA) is the technique of option for nucleo-

tide sequence-based bacterial identification to estimate microbial diversity. The

function of the 16S rRNA gene over time has not changed, suggesting it has a more

accurate means for the study of the evolutionary analysis (Janda and Abbott 2007).

Bioinformatics is playing an important role in the analysis of DNA barcoding data

using various tools and databases. Different methods have been implemented to

deal with DNA barcoding data along with similarity-based methods. Recent studies

suggest that alignment-free and Bayesian algorithms are used for taxonomic classi-

fication method for 16S rRNA gene sequence analysis (Gao et al. 2017; Lu et al.

2017) and has proposed pattern-based signature approach for taxa classification in

Bacteria and plants (More and Purohit 2016; More et al. 2016). The procedure of

DNA barcoding primarily includes the accessible data collection of the existing

databases, and several databases have been available in recent years. The NCBI

Taxonomy offers easy access to the Entrez search engine for users to find all the

information about a particular taxon, from the species level up to genus, family,

order, and higher levels of the hierarchy. The NCBI Taxonomy database (http://

www.ncbi.nlm.nih.gov/taxonomy) was designed to provide nomenclature and iden-

tification of the taxonomic origin (Federhen 2012). On another side, recent

advances in sequencing technologies have significantly improved our understand-

ing of microbial diversity (Fadrosh et al. 2014). A quick fall in sequencing cost per

nucleotide has enabled to generate a huge amount of data, and researcher has

deposited into the various public databases. The accurate identification of species

is depending upon the error-free unambiguous and overall quality of nucleotide

sequences available in public databases. There are evidences available that many

sequences are deposited with poor quality (Heikens 2005). Therefore, it is impor-

tant to refer good-quality non-redundant database for DNA barcoding study. In this

survey, we are discussing about the useful databases and methods for DNA

barcoding.

13.2 16S rRNA Sequence Databases

Researchers can deposit and access 16S rRNA sequences in a number of public and

commercial depositaries. The very popular public database of the National Center

for Biotechnology Information (NCBI) is the GenBank database (Wheeler et al.

2007), which is having multiple record information of sequence (Clayton et al.

1995). It has many redundant sequence records. For DNA barcoding purpose, many

database available, which are having quality-checked entries. There are three major

databases, mainly Ribosomal Database Project (RDP) (Cole et al. 2005, 2014),

SILVA (Quast et al. 2013), and Greengenes (DeSantis et al. 2006), which possibly
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comprise the high-quality datasets that have been designed for bacterial classifica-

tion by using 16S rRNA gene sequence as shown in Table 13.1.

13.2.1 Ribosomal Database Project (RDP) Database

The Ribosomal Database Project (RDP) designed to analysed rRNA gene

sequences of Bacteria. It includes the 3,356,809 16S rRNA and 125,525 fungal

28S rRNA sequences. RDP is a versatile database with a large number of functions

and annotation tools for a wide range of analyses for Bacteria. RDP is the rRNA

gene sequence database of Michigan State University (MSU) and offers a relevant

information along with appropriate tools for sequence analysis. It has many useful

tools and related links to supporting data (Wang et al. 2007; Cole et al. 2014). Some

of them are listed below:

1. Hierarchy Browser: With this page, the user can download 16s rDNA sequences

with various filters such as strain, source, size, quality, and taxonomy. It is

available at https://rdp.cme.msu.edu/hierarchy/hb_intro.jsp.

2. RDP Classifier (Wang et al. 2007): This is a rapid tool for sequence classification

using the naı̈ve Bayesian algorithm. The user can submit 16S rRNA or ITS sequence

and get taxonomic affiliation against RDP or UNITE database. RDP Classifier takes

input in the form of the FASTA, GenBank, or EMBL format and searches against

target training database to get respective taxonomy of query sequence. At present,

the user can submit 100,000 sequences at a time to perform the analysis. This tool

can be obtained at https://rdp.cme.msu.edu/classifier/classifier.jsp.

3. RDP Pipeline: RDP’s Pipeline offers the handling of vast rRNA arrangement

libraries, which contain paired- and single-end sequences obtained through high-

throughput sequencing techniques. This pipeline performs assembly of

sequences, quality trimming, and taxonomic classification. The output of this

tool can be used for different statistical software packages. It is available at

http://pyro.cme.msu.edu/.

Table 13.1 The major online 16S ribosomal RNA (rRNA) sequence databases

Sr.

no. Database URL References

1 Ribosomal Database Project

(RDP II)

http://rdp.cme.msu.edu/ Cole et al. (2005)

2 SILVA http://www.arb-silva.de Quast et al. (2013)

3 Greengenes http://greengenes.lbl.gov DeSantis et al.

(2006)

4 EzTaxon http://eztaxon-e.

ezbiocloud.net/

Chun et al. (2014)

5 BIBI http://pbil.univ-lyon1.fr/

bibi/

Devulder et al.

(2003)
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4. ProbeMatch: This tool can be used for searching best-fit sequences to query

probe in the RDP’s database. It is available at https://rdp.cme.msu.edu/

probematch/search.jsp.

5. FunGene: This tool offers an interactive front end of sequence search results for

those concerned about specific gene family (Fish et al. 2013). It is very useful for

functional genomics and related studies. It is available at http://fungene.cme.msu.

edu/.

13.2.2 SILVA Database

SILVA database offers detailed, quality-checked, and recently restructured entries

of aligned ribosomal RNA (rRNA) sequences (large subunit (23S/28S, LSU) and

small (16S/18S, SSU)) for Archaea, Bacteria, and Eukarya (Quast et al. 2013). All

16S rRNA sequences were downloaded from SILVA database version

(SSURef_NR99_115_tax_silva) located at https://www.arb-silva.de/. SILVA data-

base is a high-quality ribosomal RNA database for the retrieval of the 16S rRNA

sequences of the culturable microorganisms. The importance of the database is that

it provides the reference datasets of high-quality, full-length sequences capable of

in-depth phylogenetic analysis and probe design (Pruesse et al. 2012). SSU Parc

and LSU Parc are a small subunit rRNA database, which comprises all aligned

entries with an alignment identity score equal and above 50 and 40, respectively.

13.2.3 Greengenes Database

Greengenes (DeSantis et al. 2006) is a chimera-checked 16S rRNA gene database

which is famous for 16S rRNA sequence collection. Greengenes is the publicly

available database (http://greengenes.lbl.gov/cgi-bin/nph-index.cgi.) that provides

access of 16S rRNA gene sequences and downloading sequence entries, similarity

search using BLAST, and probing. It also offers tools for probes, microarray data,

and annotation of sequences. It has the following various tools to analyze 16S

rRNA gene sequences:

1. Trim (http://greengenes.lbl.gov/cgi-bin/nph-trim_fasta_by_qual.cgi): This tool

can be used for trim input fast sequences based on their quality scores.

2. Export (http://greengenes.lbl.gov/cgi-bin/nph-export_records.cgi): User can

input a list of NCBI accession numbers separated by spaces/tabs/newlines.

Also, the user can apply filters like minimum nucleotide count and maximum

non-ACGT character count; sequences must have a prokMSAname assigned,

and sequences must have a chimera test result.

3. SimRank (http://greengenes.lbl.gov/cgi-bin/nph-compare_choices.cgi): This is

a sequence search tool that is useful for similarity searching by comparison of

k-mers against Greengenes sequences. The user can perform a search for a batch

of aligned sequences.
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13.3 Approaches Used for DNA Barcoding

In Bacteria, current methods to identify unknown taxa sequences frequently depend

on algorithm recall and precision, and many identification methods do not offer a

degree of confidence for all the taxa. In silico predictions showed that precise

taxonomic identification is highly reliant on 16S rRNA sequence quality, sequenc-

ing technology, and computational algorithm (Golob et al. 2017; Ramiro-Garcia

et al. 2016; Edgar 2016; Chen et al. 2013, 2016). So far, methodological papers

available on DNA barcoding have typically focused on the three types of

approaches that are utilized for the taxonomic identification using 16S rRNA

sequences: composition-based (word-based), similarity-based, and phylogenetic-

based approaches as shown in Table 13.2. First is a composition-based method,

which is based on oligonucleotide features that can be considered in primary

sequence data and shows a direct association from the sequences (e.g., k-mer

frequencies and Markov models). Second, similarity-based (alignment or homol-

ogy) methods rely on a sequence similarity with reference library sequences.

Similarity-based approach primarily utilized pairwise or multiple alignments to

assign the taxonomic nodes of query 16S rRNA sequences (e.g., BLAST and

Table 13.2 Overview of the 16S rRNA sequence mining tools and their characteristics

Methods Program

Algorithm

used Interface URL References

Composition-

based

(alignment-

free)

RDP naı̈ve

Bayesian

classifier

Supervised Command

line/Web-

based

http://rdp.cme.

msu.edu/

Wang

et al.

(2007)

k-means/

Knn

Supervised Command

line

http://www.

mothur.org/wiki/

Classify.seqs

Similarity-

based

(alignment-

based)

MEGAN BLAST GUI http://ab.inf.uni-

tuebingen.de/

software/megan/

Huson

et al.

(2007)

SILVA

Incremental

Aligner

(SINA)

MSA Web-

based/

command

line

http://www.arb-

silva.de/aligner/

Pruesse

et al.

(2012)

MG-RAST BLAST Web-

based

http://

metagenomics.

anl.gov/

Meyer

et al.

(2008)

MARTA BLAST Command

line

http://bergelson.

uchicago.edu/

software/marta

Horton

et al.

(2010)

TUIT BLAST Web-

based

http://

sourceforge.net/

projects/tuit

Tuzhikov

et al.

(2014)

Phylogeny-

based

Greengenes

(NAST,

SimRank)

Other Web-

based

command

http://greengenes.

lbl.gov/cgi-bin/

nph-classify.cgi

DeSantis

et al.

(2006)
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MSA). Third is the phylogenetic methods, in which defined query best “fits” in the

phylogeny by applying an evolutionary algorithm to the close relative sequences on

a phylogenetic tree; and the method uses the following algorithms: neighbor joining

(NJ), Bayesian methods, and maximum likelihood (ML) (Munch et al. 2008).

13.3.1 Similarity-Based Methods

There are many types of approaches reported to deal with 16S rRNA sequences.

BLAST hosted by NCBI is the most common for similarity search (homology)

against reference databases (nucleotides and proteins). However, the BLAST does

not automatically offer an exact taxonomic identification for the user query

sequence. In fact, BLAST examinations give an extensive list of homolog hits

and need to describe the taxonomy of the query at the deepest taxonomic rank

possible. In order to obtain taxonomic node of query sequence, generally the

researcher does the BLAST homology search and then performs multiple sequence

alignment (MSA) using tools like ClustalW (Thompson et al. 1994), MEGA7

(Kumar et al. 2016), T-Coffee (Notredame et al. 2000), etc. followed by the use

of phylogenetic methods such as neighbor joining, parsimony, Bayesian (Munch

et al. 2008), and nearest neighbor to detect taxonomic nodes using phylogeny

packages like PHYLIP (Felsenstein 2002). However, this approach has certain

limitations such as difficult to align in large sequence sets and computational task

processing time (Mohammed et al. 2011).

In the literature, many factors have been mentioned that accounts for the

misleading identification, such as a partial alignment process; since no close

homologs are available in the database which can be used as a reference (Chu

et al. 2006), Van Velzen et al. (2012) have introduced the performance of methods

including Fitch and Margoliash, neighbor joining, parsimony, and nearest neighbor.

They mainly utilize algorithms and databases that also require domain knowledge

and computational time to perform the analysis. However, MSA approach has

certain limitations such as difficult to align in large sequence datasets and

processing time (Cameron et al. 2006; Nielsen and Matz 2006). Recently,

alignment-based efficient method SINA (SILVA Incremental Aligner) has been

proposed for taxonomic classification, which utilizes a blend of k-mer searching

and partial order alignment (POA) to keep very great alignment accuracy. It has

implemented an option to categorize sequences with the least common ancestor

(LCA) method. SINA can accurately align hundred thousand of sequences on the

basis of reference of curated SEED alignment. In the analysis, the first step requires

the aligner to define the next associated sequences by an optimized suffix tree server

(Quast et al. 2013). Another Greengenes classifier correctly aligned query sequence

with the prokMSA to discover near neighbors using SimRank, and then sequence

deviation from near neighbors will be considered using the DNAML selection of

DNADIST (PHYLIP package) (DeSantis et al. 2006). Alignment-based programs,

like MEGAN (MEtaGenome ANalyzer) (Huson et al. 2007) and MG-RAST (the

Metagenomics RAST) (Meyer et al. 2008), compare 16S rRNA sequences against

230 R. P. More and H. J. Purohit



sequences in public databases (e.g., NCBI nr database, RDP, or SILVA) using

BLASTn and then allocate them according to their most recent common ancestor

(LCA) algorithm such as of source organisms. Basically, the similarity-based

(BLASTn) identification assumed to obtain alignment strategy between the query

and reference sequences. On the other hand, MG-RAST automatic annotation

server has been included in the databases such as Greengenes, RDP II, and

European ribosomal RNA as the reference information to perform 16s rRNA

classification of sequences. In the case of TUIT (Taxonomic Unit Identification

Tool), it relies on standard BLAST results and a taxonomic database search engine

for effective taxonomic identification of nucleotide sequences (Tuzhikov et al. 2014).

Similarly, the MARTA tool is utilized on NCBI BLAST software and taxonomy

database with different inbuilt parameter options to predict taxonomic ranks (phylum

to genus) of the query sequence (Horton et al. 2010). Also, DNA QR Code Web

Server is developed to identify plant species by using BLAST (Liu et al. 2012).

13.3.2 Composition-Based Methods

Recently, methods using sequence composition-based features are widely used in

the analysis. Perticularly, k-mer frequencies have commonly been utilized since

they carry phylogenetic information (Liu et al. 2013; Fan et al. 2014; Raje et al.

2010) which showed that k-mers in terms of pentanucleotide frequencies were

highly significant within and between bacterial sequences. Supervised

composition-based methods need a reference library sequences with identified

taxonomic source. It referred the reference information to find out sequence

features of each taxonomic rank during a training stage. Accordingly, the trained

classifier is applied to detect the taxa of nucleotide string of unknown source

(Bazinet and Cummings 2012).

The RDP II Classifier has implemented a naı̈ve Bayesian algorithm that reaches

its level of efficacy by using a library of known bacterial 16S rRNA gene sequences

and algorithm that does not need sequence alignment scheming. It gives the

taxonomic assignment for a query sequence with a bootstrap confidence score for

each taxonomic rank according to the taxonomic hierarchy. It is based on Bayes’

theorem by observing overall probability of k-mer (8 bp) composition in sequence,

and it is faster than the BLAST-based methods (Porter et al. 2014). Recently, it has

been proposed that the RDP Classifier (i.e., naı̈ve Bayesian) is one of the most

efficient tools to classify 16S rRNA sequences (Lan et al. 2012). There is another

well-known similar classifier based on a k-nearest neighbor (k-NN) algorithm that

uses a character-matching scheme that determines the percentage of heptamer

frequencies between a query and members of a database of sequences (Cole et al.

2005). Both RDP and k-NN classifiers can offer the facility to select RDP or SILVA

database as their reference for taxonomic identification.

Recent studies have pointed out that RDP Classifier usually results in higher

prediction accuracy in most 16S rRNA sequence dataset with optimal sensitivity

and specificity (Porter et al. 2014). Even though the RDP Classifier is usually
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considered superior, other computational approaches, such as similarity-based

approaches, have shown a comparable level of accuracy detection rate (Liu et al.

2008). Also, the RDP training library sequences comprise only a limited number of

well-categorized sequences at different taxonomic levels. Databases from the

NCBI, on the other hand, are regularly updated and contain the latest deposited

sequence information. There is a chance a BLAST search against databases can

give additional information that somehow detects sequences that RDP Classifier

failed to classify; thus, these two approaches are complementary to each other and

have their own strength and limitations (Tuzhikov et al. 2014).

This can be summarized as composition- and similarity-based methods can

proficiently and with higher accuracy detect specimens as mentioned in

Table 13.3 (Chan and Ragan 2013). There are however many challenges are still

to be addressed for accurate analyses that are needed for DNA barcoding including

the specificity of identification as well as the efficiency and scalability of computa-

tional methods. Although multiple sequence alignment is routinely referred by

researchers, it is observed that MSA has computationally time-consuming proce-

dure with large number of sequences. Hence, it is one of the possible limitations of

MSA. Therefore, alignment-free methods have been focused by researchers to

overcome the boundaries of alignment-based methods (Van Velzen et al. 2012;

Kuksa and Pavlovic 2009). The composition vector (CV) method comes under the

alignment-free method, which utilized the frequencies of nucleotide or amino acid

patterns to signify sequence identity and showed good results in comparative

Table 13.3 Comparison of key features between multiple sequence alignment and alignment-

free approaches

S. N. Multiple sequence alignment Alignment-free methods

1 Assumes contiguity (with gaps) of

homologous regions

Does not assume contiguity of

homologous regions

2 Based on all possible pairwise

comparisons of whole sequences;

computationally expensive

Based on occurrences of subsequences,

computationally inexpensive, can be

memory- intensive

3 Well-established and well-studied

approach in phylogenomics

Application in phylogenomics limited;

requires further testing for robustness and

scalability

4 More dependent on substitution/

evolutionary models

Less dependent on substitution/

evolutionary models

5 More sensitive to stochastic sequence

variation, recombination, lateral genetic

transfer, rate heterogeneity, and

sequences of varied lengths

Less sensitive to stochastic sequence

variation, recombination, lateral genetic

transfer, rate heterogeneity, and sequences

of varied lengths

6 Best practice uses inference algorithms

with complexity at least O(n2); less time-

efficient

Inference algorithms typically O(n2) or

less; more time-efficient

7 Heuristic solutions; statistical

significance of how alignment scores

relate to homology is difficult to assess

Exact solutions; statistical significance of

the sequence distances (and degree of

similarity) can be readily assessed
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genomics of prokaryotes (Liu et al. 2013; Chan et al. 2010). Composition-based

method is comprised of three main steps: first is a fixed integer k, to count the

number of overlapping k-mers in one nucleotide sequence and create a vector based

on calculated frequency or probability of k-mers. Usually, the difference among

two k-mer frequency vectors is used to calculate the distances among two taxa

based on distances among all taxa (Yu et al. 2013).

The generation of signatures based on k-mer frequencies by utilizing nucleotide

sequences (Bacteria or plant) can offer valued indications to taxonomic affiliation

(More and Purohit 2016; More et al. 2016). On a similar line, the TETRA program

has been reported for microorganism identification based on comparative

tetranucleotide frequency analysis (Teeling et al. 2004). Moreover, it referred to

pre-computed tetranucleotide usage patterns for 166 prokaryote genomes as a

reference dataset, indicating that k-mer frequencies play an important role for

genome discrimination. Sequence classification based on CV analysis could have

other applications in DNA barcoding purpose. The determination of oligonucleo-

tide frequencies of DNA fragments would facilitate easy classification of taxon-

specific motifs that can be used as taxon-specific motifs for taxon classification

(Summerbell et al. 2005). It was reported that classification of the large dsDNA

viruses on the basis of the molecular composition vector method is reliable than

with those based on the conventional analysis (Yu et al. 2010). Qi et al. (2004)

reported the composition vector (CV) method for the whole-genome-based pro-

karyotic phylogeny analysis. Due to its achievement toward sequence analysis,

quite a few more approaches have been developed along this direction.

The CV method comprises of the following four features: (i) construct the

frequency vectors based on different oligonucleotide frequencies from sequences;

(ii) for each species sequence, compute signal-to-noise ratio; (iii) calculate the

distance between every pair of composition vectors; and (iv) build the phylogenetic

trees based on the distance matrix (Chan et al. 2010). A combination of both

phylogeny-based and composition-based methods—Metagenome Composition

Vector (MetaCV)—for recognition and taxonomic origin of sequenced environ-

mental reads has been recently described (Liu et al. 2013). On similar lines, Chu

et al. (2009) confirmed that the analysis of composite vector based on COI, 18S, and

16S rRNA sequences is a trustworthy clustering approach for DNA barcoding

purpose. Interestingly, the capability of unaligned rRNA gene sequences as DNA

barcodes using composition vectors was tested on datasets from Archaea to

tetrapods at taxonomic ranks (class to species); this has indicated that clustering

without alignment is always reliable with the phylogenetic trees created by con-

ventional methods (Chu et al. 2006). Moreover, the use of such k-mer composition

vector signatures could provide as a taxon-specific signature (Qi et al. 2004). Our

earlier study by Raje et al. (2010) reported that tetra- and pentanucleotide features

in self-organizing maps (SOM) could discriminate the 16S rRNA sequence with

more than 90% accuracy. They have also demonstrated that five most closely

associated bacterial genera could be differentiated using the dimer nucleotide

frequencies of 16S rRNA genes and suggested the use of k-mer features for creating

signatures in the bacterial taxonomy identification process. To decrease the
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computational task processing time of the similarity search tool like BLAST step,

the analysis can be limited to a specific signature (Segata et al. 2012) or marker (Liu

et al. 2011) genes. One of the major advantages of this composition-based approach

is their capability to rapidly provide accurate taxonomy identification of a large

number of query sequences without doing conventional methods mainly BLAST

(Altschul et al. 1990), MSA, and phylogeny (Swoford 2002). Therefore, we believe

that the CV approach-based regular expression can also sidestep the problems

associated with sequence alignment in analyzing large datasets of 16S rRNA.

13.3.3 Gene-Specific Signature (i.e., Regular Expression)-Based
Method

Gene-specific signature method deals with taxonomic classification of

microorganisms using regular expression (signature), which comprises of discrimi-

nating patterns from 16S rRNA marker genes. In the present context, a pattern or

motif (e.g., GCCCA) is a term represented by a subsequence that is highly

conserved in nucleotide region within an entire sequence.

The term “regular expression” (now commonly abbreviated to “RegExp” or

even “RE”) simply refers to a set of patterns that follows the rules of syntax mainly

the distance between two consecutive patterns. A regular expression is comprised

of pattern and word boundary that can be searched against a fragment of text.

Detection of regular expression against a fragment of text either succeeds or fails. In

other words, any pattern (e.g., set of nucleotides) in a regular expression requires a

corresponding pattern in the given string (Schwartz et al. 1997).

Here is an example of signature (i.e., regular expression), considered as a DNA

barcode that is specific to 16S rRNA gene.

Example: GCCSR\w{19,63}AKHAKGG\w{117,150}BRGCWWAMTWC\w

{372,408}GDVWHTYHHD\w{92,170}HSWWRWD\w{60,141}RKWWKD\w

{15,80}SYYYHTDWK

• Where GCCSR pattern considers degeneracy that could be presented as one of

the following ways: GCCCA, GCCCG, GCCGA, or GCCGG due to S(C/G) and

R (A/G) base-pair IUPAC code scheme.

• \w represents the word characters.

• {x,y}—in notation x represented as minimum base-pair boundary and y as

maximum base-pair boundary between the two consecutive patterns.

• All patterns are represented in regular expression as per IUPAC code system.

To demonstrate signature as a DNA barcode concept, the pattern-based gene

signature is depicted in Fig. 13.1 by referring 16S rRNA sequence of

Alicyclobacillus acidiphilus TA-67 [Ribosomal Database Project (RDP) Accession

No. AB076660]. The pattern-based gene-specific signature possesses two important

characteristics: first, it is a unique combination of taxa-specific nucleotide patterns

and, second, the separating distance between consecutive patterns. These
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characteristics collectively provide an identity to particular taxa. The conceptual

signature as a DNA barcode is represented in Fig. 13.1 for Bacilli class using

Alicyclobacillus acidiphilus TA-67 as a representative sequence.

The signature subsequence of 925 base pairs (bp) was obtained from a total of

1542 bp. It spans a region from 281 bp to 1205 bp, having unique discriminating

patterns at 281, 348, 497, 897, 1071, 1177, and 1197 start positions. All these

patterns, their sizes, and the separating distance between consecutive patterns are

shown in Table 13.4. The region span of signature at each taxonomic level (class to

species) could be different from each other. Table 13.4 showed the minimum and

maximum distance between two patterns and the overall span of signature at each

taxon.

In previous study, it was demonstrated that based on 16S rRNA gene, the set of

features (k-mers refer to a specific n-tuple of nucleic acid) discriminate particular

organisms with higher precision (Raje et al. 2010). This is helpful in data mining

research area taxa-specific (different taxonomic level, class to species) features

which could be recognized with respect to their frequencies and applicable to

develop regular expressions as shown in Fig. 13.2. In case of class, signature

holds highly variable C1 to C5 patterns with certain fix distance between two

consecutive patterns, and both characteristics are responsible for discrimination at

class level. In order level, O4 and O5 patterns are discriminated from other classes,

Fig. 13.1 The signature as a DNA barcode for sample sequence of Alicyclobacillus acidiphilus
TA-67 [RDP Accession No. AB076660]. The dotted blue line represents the signature region

covered as DNA barcode by comprising patterns 1 to 7 in regular expression
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and O3, O4, and O5 patterns are responsible for order-level discrimination in the

same class. The logical patterns of discrimination are considered at family and

genus level. Patterns related to typical biological motifs may be likely to raise due

to the statistical nature of large sequence datasets. In other words, motifs with

strength similar to real discriminating motifs begin to occur by chance (Zia and

Moses 2012). On similar line, it reported the use of pattern-based DNA barcodes in

16S rRNA gene, 26 base pair (bp) for phyla Firmicutes, and 12 bp for

Bacteriodetes, which is a rapid method for taxonomy identification (Armougom

and Raoult 2008). Conceptually, it is globally accepted that unique oligonucleotide

frequencies exist in marker gene that make them generally discriminated from other

sequences. However, to our knowledge, there is no methodical study that explores

the use of patterns (oligonucleotide frequencies) with ordered distance arrangement

to generate signature-based approach to assign the taxonomy to unknown sequence.

13.4 Perspectives

DNA barcoding is widely used worldwide. The present chapter covers tools and

databases to bacterial DNA barcoding. Research on 16S rRNA gene sequences is

yet very limited, and still, it is in early stages. So, DNA barcoding research has to

Table 13.4 Summary of nuclutide patterns participated into the molocular signature

Pattern

no. Pattern Size

Position Distance between consecutive

patternsStart End

Pattern 1 GCCSR 5 281 285 64

Pattern 2 AKHAKGG 7 348 354 142

Pattern 3 BRGCWWAMTWC 11 497 507 390

Pattern 4 GDVWHTYHHD 10 897 903 168

Pattern 5 HSWWRWD 7 1071 1077 100

Pattern 6 RKWWKD 6 1177 1182 15

Pattern 7 SYYYHTDWK 9 1197 1205

Fig. 13.2 The schematic representation of signatures according to the taxonomic hierarchical

level (from class to genus)

236 R. P. More and H. J. Purohit



progress for future studies. Bacterial DNA barcoding will be valuable for recogni-

tion of bacterial species. Using the available resources, the detection of unspecified

or unidentified bacterial sequences will be easier to classify in respective taxonomy

in the future. So, these types of database and tools are needful for the DNA

barcoding studies to classify bacterial sequences with high precision.
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Abstract

A paradigm shift took place with the advent of molecular taxonomy, which is a

combinatorial approach utilizing both computational and molecular biology.

DNA barcoding is a reliable, cost-effective method that uses the cytochrome

c oxidase I (COI) mitochondrial gene to recognize animal species. This gene has

a short subsequence 658 bp region that is used for species discrimination. The

availability of amplification standard operation protocols and sequence

databases for barcoding enables the use of COI sequences for studying taxo-

nomic aspects, particularly in phylogeny, phylogeography, and population

genetics studies. The overall process of DNA barcoding in fish is widely

performed under the umbrella of molecular and computational methods. In

this chapter, we report the current status of fish DNA. barcoding with respect

to the databases and software tools available in the public domain.
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14.1 Introduction

Bioinformatics has emerged into a fully fledged multidisciplinary field that

integrates statistics and informatics for the analysis of biological data. Due to the

advancement in next-generation sequencing (NGS) technology, there has been a

dramatic growth in studies of fish genomics (Kumar and Kocour 2017). Public

databases now host a catalogue of complete genomes of biological species (mainly

fish), which contain protein sequences, protein three-dimensional structures, meta-

bolic pathways, and biodiversity-related information (Vera-Escalona et al. 2017;

Adrian-Kalchhauser et al. 2017). Bioinformatics is helping to solve biological

problems using software and databases in areas such as functional genomics,

bimolecular structure, proteome analysis, taxonomy, and pesticide molecule design

(Cambiaghi et al. 2016).

Our earth harbors approximately 8.7 million species, of which around 2.2

million are marine (Mora et al. 2011). IUCN Red List version 2016–3 estimates

that the number of described fish species is 33,400. The challenging part was to

identify and classify this many species. Earlier methods employed to identify

species relied mainly on morphology, protein electrophoresis, and chromatography

(Yilmaz et al. 2007; Strauss and Bond 1990; Viswanathan and Pillai 1956). The

barcoding technique is effectively utilized in fisheries and has been used to identify

recently radiated megadiverse fauna from neotropical areas. The mitochondrial

gene encoding cytochrome c oxidase subunit I (COI) is used as a marker in

phylogeny, phylogeography, and population genetics studies (Pereira et al. 2012;

Sbordoni 2010). It has been used for systematic study of native freshwater fish, to

monitor the geographic distribution of species (Hubert et al. 2008), and to monitor

threatened shark species (Velez-zuazo et al. 2015). These applications facilitate

authentication of commercially important species and thereby enhance transpar-

ency and fair trade in the domestic fisheries market (Cawthorn et al. 2012). Recent

developments include meta-barcoding, in which DNA released by organisms into

the environment (eDNA) via cells, excreta, gametes, and decaying materials can

effectively be used for species identification. A study conducted in the English Lake

District described fish communities in large lakes, both quantitatively and qualita-

tively (Hanfling et al. 2016). The DNA meta-barcoding approach is considered a

next-generation tool for biodiversity monitoring in aquatic ecosystems (Valentini

et al. 2016). Mini-barcode primer pairs of length 127–314 bp were developed for

authentication of fish food products (Shokralla et al. 2015).

In 2004, an international initiative by the Consortium for the Barcode of Life

(CBOL) was taken to make DNA barcoding a standard method or tool for
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identification of species (http://www.barcodeoflife.org/content/about/what-cbol)

(Group et al. 2009). The Barcode of Life Data System (BOLD) is the central

informatics platform for DNA barcoding (ibol.org). The Fish Barcode of Life

(FISH-BOL) and Shark Barcode of Life (Shark-BOL) initiatives are two important

fish barcoding projects at the global level. In India, the Fish Barcode Information

System (FBIS), a DNA barcode database on fish, was developed by the National

Bureau of Fish Genetic Resources (NBFGR). The overall process of DNA

barcoding in fish exploits both molecular and computational methods. A unique

region of the specimen is considered as a barcoding marker. In the case of fish, the

marker is the gene encoding cytochrome c oxidase I (COI) (Hebert et al. 2003).
The general strategy of barcoding involves DNA extraction from the specimen,

amplification of a unique marker region using the polymerase chain reaction (PCR),

and sequencing. Computational aspects such as editing and aligning sequences is

carried out using software such as BOLD v 3.0 (Pereira et al. 2012), TaxI (Steinke

et al. 2005), MEGA (Kumar et al. 2008), MEGA 5.05 (Landi et al. 2014),

CodonCode Aligner 3.7.1.1(Shokralla et al. 2015), and GENIOUS PRO 5.4.2,

(Henriques et al. 2015). Results are later submitted to GenBank or BOLD

databases. Hence, once sequencing is completed, the computational aspect plays

a key role not only in identification but also in addressing questions related to

evolution, diversity (Shen et al. 2016), and taxonomy (Hebert and Gregory 2005).

14.2 Molecular and Computational Approaches for Fish DNA
Barcoding

The tissue sample collected from the fish specimen is subjected to DNA extraction.

PCR amplifies the target COI gene using a universal primer cocktail (Ivanova et al.

2007). Sequencing of amplified PCR products by BigDye Terminator v.3.1 Cycle

Sequencing Kit (Cawthorn et al. 2012) gives both forward and reverse strand

sequences. Subsequent important steps are editing, alignment, and sequence

submission.

A full-length sequence is made up of aligned reverse and forward strand

sequences for all samples of a species (http://mail.nbfgr.res.in/fbis/protocol.php).

All the aligned sequences are translated into amino acids to approve the efficiency

of the sequence and to identify the presence of nuclear DNA pseudogenes,

insertions, deletions, or stop codons (Shen et al. 2016). Edited sequences are placed

into the BLAST tool of the National Center for Biotechnology Information (NCBI)

to obtain the nearest similar sequence matches and are later submitted to GenBank

or BOLD. (http://mail.nbfgr.res.in/fbis/protocol.php). Available editing packages

are DNASTAR multiple packages (Chen et al. 2015), Sequencer 4.8 (Gene Codes)

(Velez-zuazo et al. 2015), GAP 4 (Shirak et al. 2016; Baxevanis and Ouellette

2004), MEGA version 4.1 (Costa et al. 2012), and MEGA 5.05 (Landi et al. 2014).

Useful software packages, alignment tools, databases, and web pages pertaining to

barcoding and other related analysis are listed in Tables 14.1, 14.2.
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Sequence alignment is a method for finding commonality and conserved

sequence regions between two or more sequences using a statistical algorithm. It

is an important step in identifying the functional, structural, and evolutionary roles

of a molecular sequence. A number of sequence alignment packages are available,

among which BLAST (Altschul et al. 1990; Madden 2013), MUSCLE (Henriques

et al. 2015), CLUSTULX 2.0 (Chen et al. 2015), ClustalW (Velez-zuazo et al.

2015), SeqScape v. 2.1.1 (Applied Biosystems. Inc.) (Zhang and Hanner 2012),

BOLD v.3.0 (Pereira et al. 2012), and CodonCode Aligner v 3.7.1.1 (CodonCode

Corp., Dedham, MA, USA) (Shokralla et al. 2015) are routinely used.

The usefulness of DNA barcode data in deciphering the phylogenetic relation-

ship between and within species is well studied and involves a series of steps such

as alignment, determination of substitution model, and tree building. The latter

includes either distance-based tree building or character-based tree building. The

distance-based method utilizes the distance between two aligned sequences to

generate phylogenetic trees, whereas character-based methods use the composition

of oligonucleotide frequencies (e.g., di-, tri-, tera-, penta-, hexa-, heptanucleotides)

in the sequences (Baxevanis and Ouellette 2004; Higgs and Manchester 2001). The

most commonly employed distance-based methods are neighbor-joining (Saitou

and Nei 1987), the Fitch–Margoliash method, the unweighted pair group method

with arithmetic mean (UPGMA), and minimum evolution (ME). Maximum parsi-

mony (MP) and maximum likelihood (ML) are two major character-based methods

Table 14.1 Fish DNA barcoding databases

Database for barcoding Website

BOLD http://www.boldsystems.org/

FBIS http://mail.nbfgr.res.in/fbis/protocol.php

FISH-BOL http://www.fishbol.org/

iBOL http://www.barcodeoflife.org/

NCBI GenBank https://www.ncbi.nlm.nih.gov/genbank/barcode/

Table 14.2 Software used for DNA barcoding

Software Type Website

BioEdit Alignment www.mbio.ncsu.edu/bioedit/bioedit.html

MUSCLE Alignment www.ebi.ac.uk/Tools/msa/muscle/

CLUSTULW2 Alignment www.ebi.ac.uk/Tools/msa/clustalw2/

GENEIOUS Alignment www.geneious.com/

CLC

Genomics

Alignment https://www.qiagenbioinformatics.com/products/clc-

genomics-workbench/

PHYLIP Phylogenetic evolution.genetics.washington.edu/phylip.html

MrBayes Phylogenetic mrbayes.sourceforge.net/

DNASTAR Alignment/

phylogenetic

https://www.dnastar.com/

MEGA Alignment/

phylogenetic

www.megasoftware.net/
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used for phylogentics (Felsenstein 1981). In addition, Bayesian analysis has been

proposed for phylogeny (Huelsenbeck and Ronquist 2001). Tests for evaluating

constructed trees include the skewness test, permutation test, and bootstrapping,

which can be parametric or nonparametric, and the likelihood ratio test . Software

packages for phylogenetic analysis include PHYLIP, PAUP, PUZZLE,

FastDNAml, MACCLADE, and MOLPHY, along with internet-accessible phylo-

genetic software such as WEBPHYLIP, PhyloBLAST, BLAST 2, and Orthologue

Search Server (Baxevanis and Ouellette 2004).

Noncoding internal transcribed spacer genes have also been suggested as candi-

date barcodes, along with the COI gene for animal and plant DNA barcoding (Gao

et al. 2017; Yang et al. 2017). Two new approaches (DV-RBF and FJ-RBF) have

been used to align the noncoding regions for DNA barcoding and showed 100%

success rate in identifying marine fish species. (Zhang et al. 2012). On other hand,

alignment-free methods such as normalized compression distance (NCD) and

information-based distance (IBD) have been utilized for taxonomic analysis of

barcode sequences (La Rosa et al. 2013). Taxonomic classification methods are

mainly categorized into (1) tree-based approaches, (2) composition-based

approaches, (3) similarity-based approaches, and (4) hybrids. These methods

required reference databases to predict the taxonomy (Tanabe and Toju 2013).

In a recent study, similarity-based methods such as nearest-neighbor, centric

auto-k-NN (NN Cauto), and query-centric auto-k-NN (Q Cauto) were proposed for

barcoding studies (Tanabe and Toju 2013). A method of string kernel-based

sequence analysis of barcode data sets was proposed that considerably improves

species identification accuracy compared with traditional approaches (Kuksa and

Pavlovic 2007). The few sequence identification methods that use pairwise align-

ment (e.g., BLAST) are not able to discriminate species that have highly similar

sequences, because only very few base pairs are different between the sequences.

To address this issue, alignment-free methods (e.g., BRONX) were developed to

identify species sequences (Little 2011). BRONX detects short subsequence

regions and matching regions in reference sequences. Based on these regions, the

algorithm generates a score without use of multiple sequence alignment to identify

sequences at the genus level (Little 2011).

14.3 Public Domain Databases

Recent progress in next-generation sequencing (NGS) platforms has led to

advancement of the discipline of bioinformatics for the annotation of genome

data. Public databases contain huge amounts of accessible data on whole genome

sequences, which have improved research in applied fish science. There are some

very popular primary, secondary, and specialized databases available from BOLD,

FISH-BOL, GenBank, and FBIS.
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14.3.1 Barcode of Life Data System

The Barcode of Life Data System (BOLD) (http://www.barcodinglife.org)

facilitates a detailed collection of specimens deposited by researchers from differ-

ent barcoding studies. This database holds three main categories of information.

The first category is basic information on the specimen and sequence entries. The

second maintains quality assurance and manages barcode data with all related

information. The third category facilitates a detailed catalogue of specimen data

entries from geographically different researchers. A user can store specimen infor-

mation in the following sections:

• Species name

• Voucher data, institution storing, and catalogue number

• Collection record, which includes collector name, location with GPS

coordinates, and data of collection

• Identifier of the specimen

• COI sequence with minimum 500 bp

• PCR primers referred for amplicon capture of trace files

BOLD is an informatics workbench used for collection, storing, scrutiny, and

publication of DNA barcode entries and is freely accessible. It involves more than

65,000 lines of combined code written in Java, C++, and PHP. To gain formal

barcode status, certain criteria must be satisfied, including species name, voucher

data, and collection record. BOLD employs many tools to identify data anomalies

or low-quality records. All acquiesced sequences are translated into amino acids

and are matched against a hidden Markov model (HMM) of COI protein to confirm

that they essentially originate from the COI sequence. Later sequences are checked

for stop codons, and also against a small set of possible contaminants. If any errors

are detected, the submitter is informed and the sequence is flagged. After providing

a trace file, BOLD further determines a PHRED score for each nucleotide position

and a mean value for the full sequence based on these results. Next, it manages each

sequence entry into one of four classes: failed (no sequence), low quality (mean

PHRED < 30), medium quality (mean PHRED ¼ 30–40), and high quality (mean

PHRED > 40). The data stored in BOLD can be readily exported in FASTA format

for use in other analytical packages. BOLD provides an examination utility that

permits users to determine sequence coverage for a specific taxonomic or geo-

graphic region. It includes an integrated analytic system (MAS), which provides

data analysis tools such as the taxon identification (ID) tree. Unknown sequences

are identified by pasting their sequence record into the input box on the ID form.

Core data element records in BOLD consist of a specimen page and a sequence

page. Barcodes in the search archives are grouped into two categories. Species are

considered with three representatives and maximum divergence of 2%, A HMM

method is used to align the query sequence with archive sequences. The HMM

method is faster than BLAST because of its efficient data processing capability.

246 R. C. Mane et al.

http://www.barcodinglife.org


BOLD detects species if the query sequence displays a close match with at least

<1% divergence against the archive sequences (Ratnasingham and Hebert 2007).

14.3.2 Fish Barcode of Life Campaign and Fish Barcode Information
System

The campaign FISH-BOL was started in 2004 with the aim of generating tools for

identifying all types of fish species. Its primary goal was to gather barcodes for all

of the world’s fish. FISH-BOL comprises sequences, geographical information, and

images for examined specimens, thereby creating a valuable public resource.

Information organized and analyzed through the BOLD database is later delivered

via a data feed to the FISH-BOL web portal. This depository utilizes taxonomic

information resulting from FishBase and maintains a catalogue of fish (Ward et al.

2008). The International Nucleotide Sequence Database Collaboration (INSDC)

archives DNA sequences from the FISH-BOL campaign and annotates each

sequence with the key word “barcode” when it meets the barcode data standards.

It requires the bidirectionally sequenced 50-end of the COI gene sequence, valid

species name, details concerning voucher specimens, coordinates of the collection

locality, collection date, collecter, and identifier. Also required are a list of the

primers used to generate reference sequences and archiving of the underlying

electropherogram trace files in a publically accessible NCBI trace archive. All

this information is useful for using barcodes in molecular diagnostics applications.

BOLD provides an online workbench to FISH-BOL (Ward et al. 2008).

The FBIS web-based tool is designed for the fish of India. The database has a

total of 2334 COI gene sequences belong to 472 aquatic species. It works both as a

local DNA barcode library and as an analysis system and contains valuable data

regarding the phenotype, distribution, and IUCN Red List status of fish (Nagpure

et al. 2012). This database enables saving and extracting data in an easy way with

simple steps. A user can submit species sequences through a submission protocol.

Species identification is performed using similarity search programs; it finds

homologues with almost 99% similarity to the query sequence, which accurately

assigns the species (Nagpure et al. 2012).

14.3.3 NCBI GenBank

GenBank is a comprehensive database that contains nucleotide sequences for more

than 250,000 species (Benson et al. 2013). NCBI offers an online/offline sequence

submission platform to deposit sets of barcode sequences to the GenBank database.

Along with the barcode data, the submission platform collects other annotations

such as specimen voucher, geographical information, sample collection date,

primer data, and raw files to help recognize the sequence’s source organism and

to maintain the accuracy of the sequence. The GenBank file structure format is easy

to understand for users. It contains sequence data along with the accession numbers
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and gene names, taxonomy, references to published literature, and other meaningful

information. The GenBank format comprises the locus, definition, accession,

keywords, source, reference, and features fields for the gene. The user can down-

load the FASTA format nucleotide or amino acid sequence from the FASTA link

given on files or send to menu option (https://www.ncbi.nlm.nih.gov/genbank/

barcode/). It is important to give the publication details related to barcodes and

sequences in FASTA format with reverse and forward primers. Protein sequence

submission is optional.

14.4 DNA Barcoding Repositories and Their Associated Tools

It is difficult to preserve the data integrity, interoperability, and utility of informa-

tion generated relating to the “what”, “where”, and “when” of biodiversity data.

Furthermore, DNA barcoding and other biodiversity information systems must

maintain data standards so that appropriate metadata is efficiently included. Three

main organizations (the International Barcode of Life Project (iBOL), CBOL, and

BOLD), promote barcoding research with the aim of generating reference barcodes

(Group et al. 2009; Ratnasingham and Hebert 2007). These organisations are

focused toward development of barcoding as a universal standard and offer an

online workbench for collection, management, analysis, and use of DNA barcodes.

iBOL (http://ibol.org) has network of collaborators from about 150 countries,

includes more than 190,000 marine species, and has identified 6000 potentially new

species (flowering plants, ants, birds, butterflies, ants, mammals, bees, fish, and

fungi). It has collections in the form of ecosystems such as rain forests, kelp forests,

poles, seas, and coral reefs. CBOL generated the BOLD system as a catalogue of

living beings and has collections covering more than 790,000 sequences,

conforming to more than 67,000 correctly called “species.” The BOLD database

entries contain barcode sequences and specimen information such as images,

morphology, collection date, and geographical site. To provide practical utility

for BOLD data, the mobile-based software DNA Barcoding Assistant efficiently

maintains metadata for the gathering and management of specimen data for BOLD

and other biodiversity information databases.

The DNA Barcoding Assistant (http://www.dnabarcodingassistant.org/) enables

users to store and retrieve data such as provisional user-allocated taxonomic

classification, geospatial data, digital images, and collection event information for

specimens found in the field. Another web-based data-processing system tool,

BioBarcode (http://www.asianbarcode.org), focuses on the collection of Asiatic

organisms and encompasses about 11,300 specimen entries (Lim et al. 2009). On

similar lines, a field information management system (FIMS) has been developed

that provides information associated with tissues, collecting events, and specimens

(Deck et al. 2012). Similarly, the Quick Response (QR) barcode system could be

efficiently implemented to identify and track samples, together with relevant
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information such as site details, time of collection, and taxonomic identity

(Diazgranados and Funk 2013). These indicate that continuous progress is being

made in DNA barcoding.
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Microbes and Mountains: The Mid-Domain
Effect on Mt. Fuji, Japan 15
Dharmesh Singh

Abstract

Dispersal of biodiversity – a major cause of variation – leads to speciation,

extinction, and dispersal. The most prominent and well-researched pattern in

biogeography is the ubiquitous elevational gradient. Most studies have focused

on macroorganisms. However, with but the advent of molecular biology tools

such as the next-generation sequencing (NGS), these studies incorporate

microorganisms into their horizon. The basic objective is to understand and

broaden our perspective for other significant microbial groups and their ecology.

Keywords

Microbial community · Archaea · Evolution · Diversity · Biogeography

15.1 Introduction

Biogeography studies the dispersal of biodiversity over space and time with a goal

to understand factors that are directly responsible for causing variation in diversity,

such as speciation, extinction, and dispersal (Brown and Lomolino 2005).

Questions like how and why the species varies geographically have been actively

motivating biogeographical research over the past many decades. The most promi-

nent and well-researched pattern in biogeography after the latitudinal gradient is the

ubiquitous elevational gradient. Also, properties like having many biological

replicates, ease to carry out controlled experiments, and the absence of covarying

variables like area, climate, and history along elevational gradients perhaps make

them more suitable for studying the underlying causes of spatial variation in
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biodiversity. Although most of these elevational studies have focused on

macroorganisms but with the advent of the next-generation sequencing (NGS) in

the last decades, these studies have now started to incorporate microorganisms into

their horizon.

What constitutes a microorganism? Generally, the term represents bacteria and

archaeal domain members, as well as the microscopic candidates from domain

Eukarya such as some fungi and protists. Why there’s a need to study their

biogeography? Although they are perhaps the most abundant (Whitman et al.

1998) and diverse (Torsvik et al. 2002; Venter et al. 2004) organisms on Earth,

their distribution and the factors controlling their distribution at all scales are still

poorly understood. They practically inhabit all environments and can be found in

soil, sediments, water (marine and aquatic), air, gastrointestinal tracts, geysers, and

even deep underground and high up in the atmosphere. Especially bacteria and

archaea have important roles in biogeochemical cycles by which an element or a

compound cycles through abiotic (lithosphere, atmosphere, and hydrosphere) and

biotic (biosphere) components of Earth. C, H, N, O, S, and P are the main

constituents for all organic macromolecules (Schlesinger 1997), and out of these,

the first five elements’ biological fluxes are largely catalyzed under thermodynami-

cally constrained redox reactions by prokaryotic drivers (Falkowski et al. 2008).

Even after such importance, only a few studies have tried to study microbial

elevational gradients (Bryant et al. 2008; Fierer et al. 2011; Wang et al. 2012; Singh

et al. 2014). Elevational gradients for microbes in general, relative to latitudinal

gradients, have a varied range of benefits, which makes them a useful tool in

understanding the fundamental basis of diversity gradients. I) Unlike two replicates

of latitudinal gradients, there are unlimited replicates available for elevational

diversity gradients – fundamentally each mountain or mountain range is a replicate,

and each mountain range can be covered repetitively in many transects. This helps

us to examine the generality of elevational diversity gradients, to check whether

species occurring along the gradient originated from the same regional species pool

and shared similar evolutionary history or vice versa. II) Latitudinal studies for

eukaryotes generally cover a given taxon in a particular mountain range which

could be overcome in the case of prokaryotic elevational study, where due to NGS

technologies, we can study a whole domain like bacteria or a functional group like

ammonia-oxidizing archaea, at once in a single study. III) It is comparatively much

more feasible to perform controlled experiments along elevational gradients. IV)

Data collection is easier along elevational gradients. V) A lot of the fundamental

factors (like area, history, climate, etc.) that might shape the community covary on a

latitudinal gradient that do not behave so along elevational gradients (Korner 2007).

Because of these reasons, elevational gradients are now being seen as prized tools to

expose the mechanisms that shape both the biodiversity patterns and ecosystem

functioning (Fukami and Wardle 2005; Nogues-Bravo et al. 2008).

Given that there are only a few elevational studies to date on microbes, it

becomes vital to review and summarize their results into a well-documented result

which might help us in understanding and broadening our perspective for other

significant microbial groups and their ecology. Especially studies from mountain
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systems with comparatively uniform geology and simpler climatic gradients like

Mt. Fuji are promising in terms of identifying the factors which delimit the

prokaryotic community composition and diversity.

This chapter discusses the microbial diversity patterns observed in the Mt. Fuji,

central Japan which has a temperate climate populated by temperate mixed decidu-

ous forest at lower elevations and subalpine/alpine vegetation at higher elevations.

In brief, the following points will be discussed throughout the chapter.

1. Dominant microbial phyla in Mt. Fuji soil and which compositional variations

are observed with elevation?

2. Variation in microbial diversity along Mt. Fuji elevational gradient and which

environmental variables control the overall community?

3. Finally, what underlying mechanisms predict soil microbial community

structure?

15.2 Mt. Fuji

Mt. Fuji, the highest peak in Japan, is a stratovolcano cone covered by a fairly

uniform basaltic composition that started to grow about 8000–11,000 years ago.

Hoei crater, on the east slope of the Fuji mountain, saw the most recent volcanic

eruption in 1707 with uniform ash deposition on the east side of the mountain across

the coastal plain [http://www.bousai.go.jp/fujisan-kyougikai/(in Japanese)]. The

sampling sites discussed in this chapter are far from this side of the mountain,

and hence, any part of transects discussed here hasn’t been affected by this recent

volcanic activity. Human disturbance in the forest (almost 300 years old) below the

tree line is almost negligible as the vegetation and wildlife of Mt. Fuji are sheltered

as a national park. Soil sampling for the archaeal and bacterial samples discussed in

this chapter spans from 1000 masl, at the base of the mountain, to the 3760 masl

summit point, whereas for the ectomycorrhizal fungi (EM fungi), sampling was

limited just below the tree line ranging from 1100 masl to 2250 masl.

Vegetation on Mt. Fuji could be broadly distributed into temperate mixed

deciduous forest starting at 700 masl to around 1600 masl and into subalpine forest

ranging from 1600 masl to 2500 masl. Above 2500 masl, a prominent decrease in

tree species richness can be seen with the emergence of an alpine zone composed of

scattered shrubs. Alpine zone finally gives way to a no vascular plant zone, with

only a sparse cover of lichens and moss (Ohsawa 1984). Temperate mixed decidu-

ous forests on Mt. Fuji are composed mainly of Fagus crenata, Quercus crispula,
and various Acer species. Subalpine forest belt is dominated by Abies veitchii,
Tsuga diversifolia, Larix leptolepis, and Betula ermanii. Alpine zone is populated
by shrubs such as Polygonum cuspidatum, Salix reinii, and Alnus maximowiczii
(Ohsawa 1984).
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15.3 Microbial Community on Mt. Fuji

To study the archaeal/bacterial community, the 16S rRNA gene (V1–V3 region)

and, for EM fungal community, ITS regions (ITS1, 5.8S, ITS2) were used (Singh

et al. 2012a, b; Miyamoto et al. 2014). To study the community, DNA is generally

isolated from the processed samples and amplified using target specific primers,

which are then collected and purified before being sequenced using NGS

techniques. Sequencing yields a huge amount of data which is generally processed

using online bioinformatics platforms like Mothur, QIIME, and UPARSE or against

in-house software, which then processes the data into a comprehensible format to

be understood by the scientific community. This process also takes help of several

freely online available curated databases like SILVA, Greengenes, RDP, and/or

EzTaxon for alignment and classification purposes.

15.4 Microbial Community Composition on Mt. Fuji

In general, a unimodal pattern could be seen for all three group of organisms

discussed below with distinctive differences (Fig. 15.1).

15.4.1 Bacteria

For Mt. Fuji bacterial population, rarefaction curve (�97% sequence identity)

reveals samples from the mid-elevations as the richest ones while never appearing

to reach an asymptote, whereas the samples from the summit and base appear to be

least diverse.

Proteobacteria (38.5%) and Acidobacteria (20.6%) are the two most abundant

phyla on Mt. Fuji, followed by Actinobacteria (11.7%), Chloroflexi (5.2%), and

Bacteroidetes (5.1%) (Fig. 15.2). Alphaproteobacteria (18.5%) is in similar abun-

dance with the second most abundant phylum Acidobacteria (20.6%). Afipia
sp. from Alphaproteobacteria is the most abundant species (2.19%), present across

the Mt. Fuji

15.4.2 Archaea

Lack of asymptotes in the rarefaction curve for archaea suggests that a considerable

aspect of archaeal diversity still rests un-sampled. Only two archaeal phyla could be

found on Mt. Fuji – Thaumarchaeota dominating with 96.4% reads and lagging

behind is Euryarchaeota with around 3.9% of total reads (Fig. 15.3). A single OTU

or operational taxonomic unit (Nitrososphaerales (soil cluster I.1b)) emerges as the

most abundant OTU across the entire site, accounting for 46.5% of total reads.
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15.4.3 EM Fungi

EM fungi are present throughout the elevational gradient (present in 197/200 soil

core) samples, taken before the tree line (2250 masl). A rarefaction curves drawn

for observed richness did not reach an asymptote for any of the sites, revealing that

much EM fungal diversity remains un-sampled.

Fig. 15.2 Taxonomic breakdown of bacteria on Mt. Fuji

Fig. 15.1 A general unimodal pattern observed for richness/diversity on Mt. Fuji for bacteria,

archaea, and EM fungi. Observed maxima for the bacterial richness/diversity is comparatively

higher than archaea and EM fungi. The figure also depicts the vegetation observed at different

elevations of Mt. Fuji
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The EM fungal community on Mt. Fuji mostly belongs to Basidiomycetes
(96.77%) with Ascomycetes (3.226%) playing a much smaller role. The most

abundant lineages recorded are Tomentella-Thelephora (18.4%), followed by

Cortinarius (16.4%), Sebacina (10.55%), Russula-Lactarius (10.02%), and Inocybe
(8.97%) (Fig. 15.4). 24.2% of species occur in two or more sites with Piloderma
fallax and Sebacina sp. prevailing in three sites (1550–2250m). The site just below

the tree line (2250 masl) and the base site (1100 masl) does not have any common

species among them. The number of shared species among adjacent site pairs is

significantly higher than among nonadjacent site pairs (P<0.001, χ2-test).

15.5 Elevational Patterns on Mt. Fuji and Climatic Variables

Bacterial diversity plotted against elevation follows a “unimodal pattern” with

maxima at around 2500 masl. Again, richness shows a similar trend with minimum

richness in samples from the summit which contains only about 79% of the OTUs

present at the 2500 masl (richness maxima) (Fig. 15.5). Proteobacteria and

Bacteroidetes follow a unimodal distribution (P< 0.05), while Acidobacteria
shows a remarkable decrease in richness/diversity with elevation. The most abun-

dant OTU from the genus Afipia is found throughout the elevational gradient with

maxima at mid-elevations. Elevation only, among all of the edaphic variables,

significantly correlates (P< 0.05) with both richness (R2¼ 0.33) and diversity

(Shannon index, R2¼ 0.18). Principal coordinate analysis or PCoA (unweighted

UniFrac distance) for the total community shows significant variability among

different elevation’s bacterial community and high affinity within samples taken

from the same elevational zones.

Like bacteria, elevation significantly controls archaeal community diversity and

richness (Fig. 15.5). A unimodal pattern with a diversity/richness “peak” at around

Fig. 15.3 Taxonomic breakdown of archaea on Mt. Fuji
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1500 masl can be seen. Around 79% of the total OTUs are present at 1500 masl with

least richness at 3000 masl, just above the tree line. Thaumarchael richness/diver-

sity, when plotted against elevation, reveals the same unimodal pattern as observed

for the whole community. For the total archaeal population on Mt. Fuji (unweighted

UniFrac index/Bray-Curtis similarity), elevation was able to explain >38% of the

total variability [MRM (multiple regression on matrices) results]. Reiterating these

results, a nonmetric multidimensional scaling (NMDS) plot on Bray-Curtis simi-

larity index matrix shows a community separation according to elevation with

samples belonging to similar elevational sites harboring related communities.

The EM fungal richness also follows a unimodal pattern, with maxima at

1550 masl (Fig. 15.6). Observed fungal richness does not show any significant

Fig. 15.4 Taxonomic breakdown of EM fungi (left, phylum; right class) on Mt. Fuji

Fig. 15.5 Effect of elevation on richness (left) and diversity (right) for the bacterial (above row)

and archaeal communities (below row)
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correlation with climate or soil factors (P>0.1) but correlated with elevation

(F1,2¼14.2, R2¼0.82, P¼0.063), precipitation (F1,2¼103.6, R2¼0.97, P¼0.009),

soil C/N (F1,2¼69.9, R2¼0.96, P¼0.014), and richness of host genera (F1,2¼19.0, R
2¼0.86, P¼0.049).

Higher elevations, starting from 2250 masl, are associated with higher relative

occurrence (relative occurrence ¼ number of cores with the presence of a given

lineage/total number of soil cores containing EM-colonized roots) of lineages

Cortinarius [18.7% (2250 masl), 20.8% (1900 masl), 7.6% (1550 masl), and

6.9% (1100 masl), respectively] and Russula-Lactarius (24.2%, 20.0%, 6.9%, and

15.4%). Lower-elevation sites show a higher relative occurrence of lineages

Sebacina (2.3%, 2.0%, 11.5%, and 12.8%) and Inocybe (2.7%, 2.3%, 7.6%, and

8.5%). However, the relative occurrence of lineage Tomentella-Thelephora (5.0%,

14.6%, 18.0%, and 16.0%) shows a unimodal pattern, with maxima at 1550 masl.

Relative occurrence of all these lineages mentioned above significantly varied

between sites (P<0.002, Fisher’s exact test). NMDS plot (Bray-Curtis distance)

reveals a distribution of EM fungi on Mt. Fuji guided mostly by site and host.

15.6 Trends and the Underlying Mechanisms

This microbial mid-elevation peak in species richness/diversity diverges from the

steady decline observed in richness pattern observed for the vascular plants on

Mt. Fuji (Ohsawa 1984). This observed trend for microbes on Mt. Fuji still

coincides with many terrestrial macroorganism patterns (McCain 2005; Rahbek

2005). One might expect to observe a decrease in microbial richness/diversity as we

move up the mountain as both vascular plant population and area are decreasing,

but this pattern seen on Mt. Fuji is evidently in conflict with the hypothesis that

habitat area or the ultimate food supply (plants) is key to deciphering patterns in

species richness with elevation (Lomolino 2001). One possible reason behind this

could be the size of the microbes which allows them to maintain a vast and

Fig. 15.6 Relationship between elevation and observed richness and estimated richness for the

EM fungal community
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successful population within small niches with minute sources of nutrients and thus

invalidates the habitat area hypothesis here.

So, how does this peak in mid-elevations could be explained? It could be perhaps

attributed to the mid-domain effect or MDE which predicts that within a confined

geographical area (such as Mt Fuji here), an increase in range overlap near the

center of the area (mid-elevations) could result in an increase in phylotypic rich-

ness/diversity in that area with time. The MDE model assumes that species which

have continuous dispersal ranges (Colwell et al. 2004; Currie and Kerr 2008) are

possibly related to environmental gradients present in that area. Mt. Fuji in itself

possesses an environmental gradient where almost all of the environmental

variables like total carbon and nitrogen and extractable phosphorus and potassium

linearly decrease with an increase in elevation, in a sense creating an optimal zone

at mid-elevations which could be possibly suitable for most of the microbes. Also,

near neutral pH range (optimal pH for most of the microbes) could be found near

mid-elevations on Mt. Fuji. Thus, this range overlap perhaps provides an “optimal”

environment of the two extremes demanding less physiological specialization, and

species accumulate into it with time.

“Intermediate disturbance” hypothesis could also provide likely answers for this

observed pattern (Huston 1994). We can observe this specifically for bacteria that

just beyond the vegetation line (above 2500 masl on Mt. Fuji), the extreme

fluctuations in temperature, harsher UV rays, dearth of nutrients, and a recurrent

soil erosion of the loose substrate lead to lower competition rates and a subsequent

increase in diversity due to “lottery” recruitment. However, at the summit and

higher elevation, the environmental conditions may reach such extremes that only

vastly adapted bacterial species for such environments can survive. In addition, this

relatively restricted and unstable environment at highest elevations may not have

allowed accumulation of substantial species through evolutionary time (especially

in case of vascular plants (Grime 2001). Similarly, for archaea and EM fungi, we

can say that it is possible that a more stable environment of the lowermost forest

zones (1000 masl) begets out-competition between species with overlapping

niches, resulting in a decrease in richness/diversity. Again, the higher elevations

(3000 masl and above) might be reverse of an optimal environment with bare/

sparsely vegetated by shrubs only fields, subjected to frequent frost heave and

landslides. This may result in viable habitation by only a few species

(or availability of a few viable niches which are highly prone to frequent

disturbances and hence to recurrent drops in populations) – hence the lower

diversity at summit and higher elevations (Huston 1994).

Potentially, the hypothesis of “everything is everywhere, and the environment

selects” also seems to play an important role, which needs us to observe which

environmental parameters are delimiting the community composition and diversity.

Extractable potassium, nitrate, and ammonium concentrations significantly vary

with diversity on Mt. Fuji for both archaea and bacteria, although not as strong as

elevation itself. But elevation in itself is strongly covarying with different soil

edaphic variables like temperature, total carbon, and nitrogen and might act as a

proxy for these variables. The relative importance of each measured variable is
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difficult to determine at this level as they probably are correlated with some

unknown and unmeasured variables such as disturbance or history, which could

turn out to be the parameter actually controlling the diversity trend. The area is still

open for further studies which can elucidate a better explanation for the trends

observed and underlying mechanisms.

15.7 Perspectives

We could say that with studies like this, we have started to understand the

elevational patterns of richness and diversity for microbes, but still further work

is required to comprehend the underlying causes of these observed patterns, includ-

ing both further observational studies and manipulative experiments along the

gradients.
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Integration of Soft Computing Approach
in Plant Biology and Its Applications
in Agriculture

16
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Abstract

Soft computing is a modern approach for analysis of complex problems. In

agricultural field for complex problems, we require conventional methods which

can give cost-effective, analytical and complete solutions. The past few decades

have witnessed extensive research in the field of soft computing. In retrospect to

development in agricultural sector, various analytical methods like artificial

neural networks, support vector machines, fuzzy logic, decision trees and

many more have been designed. These methods help to analyze soil and water

regimes which are directly involved in crop growth, food processing and also

help in precision farming. This review will provide an overview of the integra-

tion of soft computing approach in various fields of biology. Moreover, an

extensive review of future prospects of soft computing in agriculture in particu-

lar and plant biology in general. In this book chapter, co-relation between soil

and water as well as crop management has been discussed. The book chapter has

been made more reader friendly and easily understandable by incorporation of

appropriate diagrams providing detailed study on integration of soft computing

approach in plant biology and its applications in agriculture in an easy and

illustrative manner.

A. Kumari

Department of Biotechnology, Bodoland University, Kokrajhar, Assam, India

M. Kesheri

Amity School of Engineering and Technology, Amity University Jharkhand, Ranchi, India

R. P. Sinha

Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India

S. Kanchan (*)

Department of Biology, School of Engineering, Presidency University, Bengaluru, India

e-mail: swarnabioinfo@gmail.com

# Springer Nature Singapore Pte Ltd. 2018

H. J. Purohit et al. (eds.), Soft Computing for Biological Systems,
https://doi.org/10.1007/978-981-10-7455-4_16

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7455-4_16&domain=pdf
mailto:swarnabioinfo@gmail.com


Keywords

Agriculture · Plant biology · Artificial neural network · Genetic algorithms

· Soft computing

16.1 Introduction

Soft computing is basically a study of single or unique combination of various

machine learning methods like genetic algorithm, fuzzy logic, artificial neural

network, etc. All of which serves to aid in providing solution for very complex

problems. Actually, it is a mixture of various biological data which includes gene

and protein sequences, domains, secondary and tertiary protein structures and

computing techniques. Different techniques provide varied ways of solution for a

particular problem. For example, fuzzy logic (FL) generally gives a multivalued,

nonnumeric variable, artificial neural networks (ANNs) provide the solution based

on the connection of a number of artificial neurons (ANN mimics biological

neurons and their connections), and genetic algorithms (GAs) provide solution

based on the same process which nature uses, i.e. best selection for survival,

recombination and mutation. Soft computing is a modern approach to get a cost-

effective as well as less time-consuming solution in a precise way. Due to these

features, soft computing techniques become the most conventional method

providing solution in analytical way. Among all machine learning techniques, FL

is the first soft computing technique which laid the foundation of machine learning

(Zadeh 1965, 1981, 1973) techniques. The idea of ANN was given by Rumelhart

and McClelland (1986), whereas idea of GA was given by John Holland in 1975,

and later this idea was promoted by his student, David Goldberg.

In the present scenario, these three methods are considered as the heart of soft

computing. In modern sciences, some other techniques are also included in soft

computing/machine learning tools like support vector machine, probabilistic

reasoning, chaos theory, etc. From the last few years, soft computing emerged as

the hot area for various scientific researches. Although techniques used in soft

computing are providing new approaches for efficient and reliable solutions for

complex biological problems yet, support vector machines (SVMs) which provide

the higher accuracies as compared to ANN and is based on supervised linear

classifiers (Burges 1998), have emerged as one of the major areas of research in

the last few years. Another approach of modern soft computing is the fusion of two

or more soft computing techniques. Actually, fusion is a cascade or combination of

advanced soft computing techniques for the best system performance. The best

example for this type of system is neuro-fuzzy (Simpson and Jahns 1993; Takagi

and Hayashi 1991; Horikawa et al. 1992; Nie and Linkens 1992). It is quite easy to

predict the stability and behaviour of hard computing, whereas the burden of

algorithms in hard computing is typically very low or moderate. The combination

of soft computing and hard computing has great potential. Due to its good compati-

bility, it is easy to develop high enactment, cost-effective and trustworthy
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computing arrangements which ultimately provide innovative solutions (Ovaska

et al. 2002).

In plant biology and agriculture, soft computing emerged very slowly as com-

pared to other branches of sciences (Whittaker et al. 1991; Eerikäinen et al. 1993;

Zhang and Litchfield 1992); however, it suddenly increased from the last few

decades. In plant biology and agriculture, scientists have developed novel

approaches for decision tree (DT), FL, ANN, GA, Bayesian inference (BI) and

SVM. In plant biology these soft computing/machine learning methods are used to

explore the 3D protein structures (Priya et al. 2016; Kumari et al. 2016; Kesheri

et al. 2015a, b). These soft computing methods are used in evolutionary study of

various proteins having plant and animal origin (Kanchan et al. 2014, 2015). These

approaches are mostly used for the study of soil as well as water in relation to

growth of agricultural crop. It also helps to improve the process of food processing

as well as helps to take good decisions in precision farming. They also used

combination techniques in solving problems related to plant biology and agriculture.

Still, we have not found any proper application which can establish a strong link

between soft computing and hard computing. While elucidating the phenomena of

stress tolerance in Nostoc commune, the use of computational biology/soft comput-

ing revealed the evolutionary relationship through phylogenetic tree (Kesheri et al.

2014). The significance of soft computing techniques is also visualized while

exploring the potential of antioxidants in retarding ageing (Kesheri et al. 2017).

This could be a unique research topic which could also have a great potential. In this

chapter, we briefly reviewed the various machine learning/soft computing tools and

their applications in plant biology and agriculture. This chapter will explain a basic

concept of soft computing techniques in a very precise way with reference to crop

improvement and management.

16.2 Methods of Soft Computing

Generally, soft computing/machine learning methods include FL, ANN, GA, prob-

abilistic computing, chaotic systems, etc. These methods are considered as primary

methods particularly for research and development in plant biology and agricultural

fields. In other words, ANNs are based on the idea of the presence of a number of

neurons in the human brain. GAs is known as genetic algorithm, whereas BI deals

with probabilistic computing. For huge data management, DT is one of the interest-

ing and unique ways of learning as well as organizing the data sets in soft computing.

Hence all these methods are applied in plant biology and agriculture, significantly

since the last few decades. A list of soft computing methods is mentioned in (Fig. 16.1).

16.2.1 Fuzzy Logic

Fussy logic implements fuzzy set theory which consists of multivalued logic. Fussy

logic displays 0 and 1 as outputs, which represent fuzzy (degree of truth). In FL, the
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fuzzy set functions can measure every input used. Different functions are used in

different logical operations like AND and OR. Some specified inference systems

included in FL (Jang 1993) should have following features:

1. A FL interface should have the capacity to convert the inputs into linguistic

values.

2. A number of fuzzy sets based on fuzzy rules.

3. A knowledge base.

4. A database which explains the functions of the fuzzy sets.

5. An unit which carries operations.

6. An interface which converts results into 0 and 1 (output).

16.2.2 Artificial Neural Networks

ANNs mimics the human brain, i.e. biological neurons to solve multifaceted

problems. Since the last few years, scientists showed their great interest to under-

stand the mechanism of working of the brain and its structure. As we know every

neuron is self-directed and self-determining and has capacity to work asynchro-

nously. Due to great processing power of biological neurons, it inspired the study of

ANNs with respect to their organization and computing power for complex

problems. In comparison to the conventional methods, ANNs offer an adaptive,

fast, robust solution, aptitude to handle inaccurate and fuzzy data, along with the

capability to generalize in a well-organized way which is easy to understand. ANN

is a powerful data processing method which is capable enough to record process

input as well as output. ANNs became more popular because of their capability to

solve complex engineering problems, apart from providing a powerful method for

accurate solutions which can be verified through experimental data.

ANNs are analogous to synapses in human body and composed of many

interconnected processing elements; these processing units are associated with

Fig. 16.1 Different approaches of soft computing
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different weights. Feedforward and recurrent neural networks are considered as two

major categories for ANNs. Feedforward neural networks are acyclic, whereas

recurrent neural networks are cyclic. ANN is successfully applied to identify

various genes of biological importance which might be associated with crop

improvements in agriculture (Kesheri et al. 2016). A number of drawbacks are

also associated with ANN.

16.2.3 Genetic Algorithms

The genetic algorithm is one of the popular data mining tools which was proposed

by computer scientists J. H. Holland. Genetic algorithm is basically a heuristic

search technique used for optimization. This is also known as evolutionary com-

puting which is used to solve problems which need optimization. GAs generally use

iterative method to find the fit individual in a selected population. GA uses parallel

processing to reach the optimal solution. The processing technique used by GAs is

based on theory of evolution proposed by Darwin (1859). GAs use inheritance,

mutation, selection and crossover operators to provide a desired output of a

particular input. GA works simultaneously on selected population with solutions

to the problem related to individual. It starts with subpopulation to select a set of

surviving individuals that will have the capacity of reproduction to carry out the life

in that particular population. Then, the individuals will manage some changes using

genetic mutation and crossover for their survival. A very careful selection of

different approaches of genetic algorithm provides optimal solution after few

iterations. GA is computationally simple, less expansive and very powerful method.

It is powerful enough to do a number of iterative searches for difficult combina-

tional problems. Due to these reasons, GAs became alternative tools for traditional

optimization.

Genetic algorithms have advantage over other data mining methods in terms of

movement which is very fast, from one generation to another generation. The major

disadvantage of genetic algorithm is that this method is biased towards fit

individuals.

16.2.4 Bayesian Inference

Another approach is Bayesian inference (BI); it is also known as probabilistic

computing. This method is based on probability which can handle uncertainty by

combining statistical methods and probability distributions. Usually, hypothesis

(i.e. either true or false) testing is used to check which hypothesis is correct.

Bayesian networks are well known as one of the best decision-making tools in

multifaceted conditions in a wide range of disciplines (Charniak 1991). Bayesian

networks are mainly based on probabilistic graphical models which are defined in a

set of variables. Bayesian networks provide the fine representation of a cognitive

process. This cognitive process is based on two attributes: first is called link and
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second is called node. In this process the state of parent node helps in prediction of

the state of the child node. Further, conditional probability tables, which also use

Bayesian statistics, are used to explore the actual connection between the states of

nodes for parent and child nodes.

16.2.5 Decision Tree

Decision tree (DT) was discovered by Magee (1964), and it is composed of a

treelike structure. In DT, various attributes are considered to evaluate the problem,

and these attributes are further used to predict the output. In DT, a recursive

algorithm is used to find out the attribute having highest information, which is

further used for the evaluation first. DTs are mostly used to identify a particular

approach to achieve the desired goal. DT is also used for calculating conditional

probabilities and predictive model in data mining/machine learning (Teorey 1999;

Witten and Frank 2000). One of the major drawbacks of DT is that it cannot provide

the final decision to any problem. The classification tree is used for decision-

making. In DT, leaves describe classifications, whereas branches describe the

common features. DTs are helpful in analyzing large quantity of data in a short

period which may be applied for many plant biology and crop improvement

programmes.

16.3 Applications of Soft Computing in Plant Biology
and Agriculture

Nowadays, many applications which are having good accuracy are available which

can be also used at industrial level. Problems in plant biology and agriculture

related to soil management, crop management, water management and

postharvesting have been resolved through soft computing. Problems related to

precision agriculture, food safety and food processing can be solved through soft

computing/machine learning methods based on prediction and optimization. It is

quite valuable to employ ANNs, FL and GAs in different combination instead of

using it alone. A list of hybrid soft computing techniques/machine learning tools

(Table 16.1) is also being used in plant biology and agriculture. This list indicates

that the fusion of FL and ANNs is the most commonly used for evolving the hybrid

methods of machine learning techniques. A list of hybrid methods of soft comput-

ing/machine learning techniques which are being applied in plant biology and

agriculture is shown in Fig. 16.2.

16.3.1 Crop Management

Pearson and Wicklow (2006) established a novel method of ANN to recognize

fungal species that contaminate single kernels in place of input for crop protection.
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Table 16.1 Major finding using combination of soft computing techniques for plant biology and

agricultural improvement

SL.

no. Combination type Applications References

ANN + GA Snack foods identification Jindal and

Srisawas

(2001)

1. FL + GA Optimization of design of

threshing units

Miu and

Perhinschi

(2001)

2. ANN + GA Cold storage optimization for

tomato storage

Morimoto

et al. (2003)

3. FCM + RBF Performance of vegetative strips Andriyas

et al. (2003)

4. ANFIS modelling Prediction of various properties

of soil

Lee et al.

(2003)

5. ANFIS classification Detection of weed by

segmentation of colour image of

weed

Neto et al.

(2003)

6. SOM + FCM Segmentation of coloured image

of beans

Chtioui et al.

(2003)

7. Fuzzy–ANN Classification of soil

8. ANFIS classification Colour images of plant and their

residues and soil

Meyer et al.

(2004)

9. Fuzzy c-means clustering + RBF Determination of phosphorous

movement

Goel et al.

(2004)

10. ANN + GA Modelling of rainfall Jain and

Srinivasulu

(2004)

11. GA + ANN Determination of sugarcane

maturation curves

Madeiro

et al. (2006)

12. GA + ANN Helps in determination of

sugarcane harvest period

Oliveira et al.

(2006)

13. ANFIS classification Monitoring hydraulic pump

health

Hancock and

Zhang

(2006)

14. ANN + GA Automated calibration of

watershed

Lakshmi

et al. (2006)

15. ANN + GA For detection of fungi infection,

automated classification of corn

kernels

Pearson and

Wicklow

(2006)

16. ANN + fuzzy Applications in plant tissue

culture

Prasad and

Dutta Gupta

(2008)

17. Support vector machines Classification and identification

of plant diseases

Rumpfa et al.

(2010)

18. ANN modelling + fuzzy control In vitro rhizogenesis Gago et al.

(2010a)

(continued)
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The ANN was trained using GAs where they observed that the GA training

algorithm is good for training the data sets which doesn’t over-fit the data

(Lestander et al. 2003). Meyer and co-workers used uncertain inference structures

in ANFIS for generation of colourful images of grass, cornstalk residue and wheat

Table 16.1 (continued)

SL.

no. Combination type Applications References

19. ANN modelling + GA Used in complex plant processes Gago et al.

(2010b)

20. Neuro-fuzzy approach “In vitro” direct rooting Gago et al.

(2010c)

21. ANN with evolutionary

preprocessing

Plant virus identification Glezakos

et al. (2010)

22. Optimized hyperspectral spectral

indices and partial least-squares

regression

Estimation of nitrogen content Li et al.

(2014)

23. ANN with SVM Prediction of soil organic carbon Werea et al.

(2015)

24. ANN with fuzzy Evaluation of polyphenol

oxidase (PPO) activity in lychee

pericarp

Yang et al.

(2015)

25. ANN with fuzzy Determination of influential

weather parameters on reference

evapotranspiration

Petkovića

et al. (2015)

26. GA with ANN Estimating of soil temperature Nahvia et al.

(2016)

Fig. 16.2 Various applications of soft computing in plant biology and agricultural field
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straw residue (Meyer et al. 2004). Neto et al. (2003) also used ANFIS for generation

of colourful image which was used to distinguish weeds from the others plants in

background. Odhiambo et al. (2001a, b) illustrated the means to remove trial and

error in defining connection which are based on supervised learning which

optimizes functions.

16.3.2 Soil Analysis

Soil profile studies involve collective use of ANN and fuzzy system for unsup-

ported assembling and arrangement of soil profiles by means of ground-penetrating

detector. ANN categorizes soil in a number of profile strips into an assured number

of groups. The fuzzy members for each soil profiles are determined in the set of

confidential groups. Residue and phosphorous movement were recognized by fuzzy

K-mean clustering algorithms (Goel et al. 2004). Many researchers used partial

least-squares method as well as adaptive network fuzzy inference arrangement

methods for determination of water content and salinity in soil.

16.3.3 Precision Agriculture

Xiang and co-workers established an inclusive artificially intelligent controller

which was based on ANN and fuzzy network system. In that they used a checker

to spontaneously regulate camera for advantage of nonconformities during day

hours (Xiang and Tian 2007). Oliveira et al. (2006) suggested a system which is

integrated with ANNmonitored for heuristic examination by gas, which is also used

to approve suitable sugarcane regions to be harvested. It has also been confirmed

that use of feedforward, completely related, BP-trained ANN may be imprecise for

the nonlinear harvest determination connecting advance corn yield (Liu et al. 2001).

Some of the data were used to train the database which is called as training set. This

training set increases the accuracy for prediction of rainfall by ANN. Once the ANN

is well trained, GA was integrated for optimization of the various input features so

that maximum accuracy can be achieved.

16.4 Support Vector Machines

Support vector machines (SVMs) are known as best classifiers nowadays. SVMs

can solve many complex problems and have fascinated more attention in recent

times in plant biology and agricultural field. SVMs are also associated with ANNs

many times which increases the prediction accuracy. In reality, SVM model is

similar to a two-layer neural network. SVMs can also be used as substituting

training tool for radial- and polynomial-based functions. SVMs have very sophisti-

cated classification accurateness as compared to multilayer perceptron ANNs.
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Table 16.2 List of various soft computing techniques used for plant biology and agricultural

improvement

SL.

no. Application methods Application area References

1. SVM approach Plant disease classification Tian et al.

(2004)

2. SVM approach Identification of different varieties of tea Chen et al.

(2006a, b)

3. SVM approach Nitrogen stress identification and

classification of various kinds of weeds

Karimi

et al. 2006

4. SVM approach Immature hazelnut screening Onaran

et al. (2006)

5. SVM approach Analysis of compound feeds Pierna et al.

(2006)

6. Least-squares SVM

classification

Classification of wheat classes Wang and

Paliwal

(2006)

7. Gaussian kernel-based

SVM classification

Meat classification Jiang et al.

(2007)

8. SVM modelling and

prediction

Sediment yield determination of a

watershed

Oommen

et al. (2007)

9. Multi-class SVM with

kernel of RBF neural

network

Discrimination of individual fungal wheat

kernels

Zhang et al.

(2007)

10. Least-squares SVM

modelling

Vitamin C content determination in

kiwifruit

Fu et al.

(2008)

11. SVM modelling Determination of various concentration of

instant coffee

Kovacs

et al. (2008)

12. SVM modelling Evaluation of hydraulic properties of soil Lamorski

et al. (2008)

13. Least-squares SVM

classification

Identification of paddy seeds by their year

of harvesting

Li et al.

(2008)

14. Least-squares SVM

classification

Chinese cabbage variety seeds

identification

Wu et al.

(2008)

15. Least-squares SVM

modelling

Composition of wine made from rice Yu et al.

(2008)

16. SVM classification Class recognition of rice blast with

multispectral imaging to supervise variable

spray

Qi and Ma

(2009)

17. Least-squares SVM Amylose and protein content

determination in rice after gamma

irradiation

Shao et al.

(2009)

18. SVM with laser-induced

fluorescence

Accurate identification of nitrogen

fertilizer application of paddy rice

Yang et al.

(2015)

19. Using support vector

machine

Identification and classification of various

diseases in Brassica sp.

Palak et al.

(2015)

20. SVM-based modelling Used to detect evapotranspiration using

hydro-climatic variables in a sub-tropical

environment

Shukla

et al. (2015)

(continued)
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In plant biology and agricultural field, the growing interest in SVMs is increas-

ing day by day. There are popular applications of SVMs (Table 16.2) which are

used in plant biology and agricultural fields. The increasing attention in SVMs is

because of (a) their essential success regarding traditional classifiers, consequently

resulting in elevation of classification precisions in a simplified way, (b) some

degree of determination is necessary for structural design and (c) the probability of

elucidating problems rendering to linearly self-conscious quadratic user interface

design (Melgani and Bruzzone 2004). In soil analysis, soil hydraulic factors affect

dignified soil properties using SVMs (Lamorski et al. 2008). Various researches

indicated that the importance of SVM was prominent for soil abilities, whereas

comparative errors and the correlation were lower. Currently developed SVMs are

used to calculate water retention and hydraulic conductivity of soil (Twarakavi

et al. 2009).

It has been also proposed that SVMs act as a tool for categorizing airborne

hyperspectral pictures in use for a cornfield (Karimi et al. 2006). The SVM

technique ensured truncated misclassification proportions when it was compared

with ANN. Uncovering stresses in initial crop development via the SVM could

provide site-specific remedies. Tian et al. (2004) used SVM and designed for better

consistency especially for coloured images for various plant diseases. The

investigations also demonstrated that the SVM had outstanding arrangement and

broad view in resolving erudition problem. This technique works well for classifi-

cation of plant disease with a small amount of sample (Trebar and Steele 2008). The

use of disseminated SVM structural design showed good results against optimiza-

tion of large data.

16.5 Comparison and Limitations of Soft Computing
Techniques

Soft computing techniques have some restrictions because of lack of conscious in

theoretical study as well as practical application. Calculations on activities of many

soft computing techniques were thoroughly discussed by Tikk et al. (2003). These

soft computing techniques were mainly based on neural networks and fuzzy

systems, and it was observed that the hybrid method increased the degree of

accuracy dramatically. Nevertheless, ‘building blocks’ in large quantities may be

required to accomplish the prescribed accuracy for the rough calculation.

Table 16.2 (continued)

SL.

no. Application methods Application area References

21. SVM approach High-throughput stress phenotyping in

plants

Singh et al.

(2016)

22. SVM Soil quality assessment Liua et al.

(2016)
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Uncertainty may exist on the number of building blocks; if their numbers are

restricted during calculation, they may lose their universal approximation property.

Consequently, there should be a balance between accuracy and the number of the

building blocks which is used to count the hidden layers (i.e. fuzzy sets or hidden

neurons) in ANN which are used for training of the data sets and predictions.

Similarly, fuzzy systems are involved in the time-consuming as well as difficult

process knowledge acquisition and demonstration.

16.6 Future Prospects

Nowadays, a number of soft computing methods are being used in plant biology and

agriculture; each of these methods has some limitations. Fusion of these computing

methods contributes a lot in better generalization and predictions. In view of that,

FL was fused with ANNs to include the advantages of these methods for better

accuracy and predictions. Nowadays, due to wonderful development in electronics

and information technology, global positioning system (GPS), remote sensing (RS),

variable rate technology (VRT) and geographic information system (GIS)

technologies have started being used for better agricultural production and irriga-

tion. For good output due to use of the technologies, various kinds of information

sources such as scientists, farmers, experts, engineers and system incorporation are

highly required. Therefore, it delivers relevant information about location based on

climatic data like soil, weather and water. Various metrological data are collected

by different automated instruments on a daily basis for the measuring of wind,

speed, solar radiation, rainfall, air temperature, etc. This information will help

farmers to provide more precise information about seeding time, optimum use of

fertilizers and irrigated water to enhance crop productivity.

For proper expansion of soft computing technologies, it is a must to frame proper

guidelines for optimal artificial neural network structures and various algorithms

responsible for training of the data sets used by ANN. These developments will

allow the utilization of numerous soft computing techniques among which SVM

has proved one of the most popular techniques. In practical, SVMs produced high

accuracy specially in classifying objects, when it is compared to ANNs. Moreover,

SVMs are involved in modelling the setup of control parameters especially for

structural design.

In context of the soil and water, they are playing an essential role in crop

management, precision agriculture and sensor-derived information. A number of

soft computing technology-based applications might be involved in classification of

agricultural soil and their distribution. Such applications might be also used for

water resource optimization for irrigation planning. Now only in the above area of

agriculture these applications might be also used for detection and classification of

crop stress. These applications are also being used for detection and classification of

pests which include diseases as well as insects. Moreover, they may also include

detection, analysis of crop yield, remote sensing and field recommendations for

variable rate of fertilization application. Modern science is targeting the fusion of
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soft computing methods with their integration with hardware/instruments and their

application in plant biology and agriculture. The fusion of soft computing

technologies with high-performance hardware may have the capability to produce

most accurate results for the problems related with reliable computing systems in a

cost-effective manner.
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Abstract

With available knowledge and databases, the mining of more information has

driven the last decade of computational biology. We validated the existing

known information with omics data. There is need in overall shift in our

approach; instead of understanding the architecture of hierarchical gene net-

work, we should work on condition-specific shift in hierarchies or partnerships

of gene to manage plasticity. We assume that there will be a great shift in

metabolomics approach to understand how cell manages to perform at its

minimum driving energy level. Transformation of decision-making system

with systematic mathematical and multiple soft computing modeling platform

will be crucial to untangle the thread of pattern with which the nature follows for

the process of evolution, expression, and engineering the cellular machinery.
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17.1 Introduction

A surge in availability of information has resulted in the emergence of new

challenges in understanding the biological systems. The observed data is being

analyzed and used for predicting its behavior using appropriate mathematical

modeling. This is complemented by the statistical tools, which ensure the

accuracies of the recorded data (Bassalo et al. 2016; Wright et al. 2016). The

application of soft computing and support from fuzzy logics includes the

explorations of diverse hypothesis in different models (Liu et al. 2016; Mahata

et al. 2017). The book presents the current trends in soft computing tools and

techniques in various domains of biological sciences (Meza-Lucas et al. 2016).

17.2 DNA, RNA Sequence, and Proteins to Functional Element
Prediction

The question is whether the biological system is very complex or it has the great

architecture of simple system components. Due to inherent plasticity of the

biological systems, the simple architectures may give an overall projection as a

most complicated system. If we look at the most simple form of biological intelli-

gence, then its most organized and least understood molecule, i.e., DNA, is

sometimes considered as junk DNA or non-transcribed DNA (Palazzo and Gregory

2014). Other than that, DNA sequences also have an occurrence of nucleotide

patterns either following the ordered nature of distribution or with some insertions

and deletions (Bhushan et al. 2013, 2015; Puri et al. 2016). With the concept of the

epigenome, this information gains more interest, which to an extent is translated via

mRNA to proteins. If we closely look into the biochemical reactions, then from a

cell to a multicellular system, we can identify the functional units required to bring

out a specific biological event. We consider these participating functional units as

enzymes, cofactors, signaling molecules or transport system, and so on. Different

functional biomolecules have an active site, modulation, or regulatory elements.

This demands massive mining exercise for functional elements and generating the

correlations at DNA, RNA, and at protein levels with their primary structures.

These elements could be nucleotide patterns and their organization or organized

distributions of amino acids as motifs (Bohlin et al. 2017; Kalia et al. 2017). At the

end of this exercise, we shall end up with a database of functional elements that

participates in different biochemical events in the cells. With this fact, it will be

interesting to generate new organization of functional elements or predict new

functions for defined biomolecules. These new functions may not work with

expected efficiency but definitely could help stress cells with the desired plasticity.

NGS has changed our data generation capacities for any environment. This has

revolutionized and provided the depth of information for DNA and RNA

transcripts. Now, we are trying to correlate available microbiome with every living

environment. This has created a new avenue for metagenomics with depth of the

sequence data (Qiu et al. 2017). The generated data may be up to 70% or more
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cannot be even annotated (Spetale et al. 2016). The conventional approach based on

the similarity index and known information cannot correlate the expected

biological phenomenon associated with that environmental DNA. The emerging

area of gut microbiome (Pooja et al. 2015), where the shift in community with a

clinical scenario, will be a very challenging task in the future; that will be further

superimposed by the SNPs of that host. The approach of understanding of func-

tional elements and their organization might be the way to dig into this massive

data. This will suggest new ways of bacterial survival and may be new pathways,

either to help and survive in the host with options of symbiosis or to dominate the

community, which is associated with the host.

17.3 Protein Network and Docking

With the development of so many soft computational tools and algorithms for a

given sequence, its protein 3D structure can be determined and so its nature and a

predictable function based on the domain it possesses. Now there is a necessity of

algorithms, which can predict the possible networks/ direct interactions for a

protein based on functional elements. This should further follow the movement of

this protein in total cell metabolic machinery and suggest possible participation in

different cellular events (Li et al. 2014). All this demands more efficient docking

and simulation platform for protein/receptors to generate 3D structure and an

automatic pipeline, which sort out the possible interaction between proteins and

ligands. Another area of interest is protein structure elasticity. A protein interacts

with a molecule with specificity, we can predict different possible energy levels and

possible outcome, but we need comprehensive algorithms to understand in the

milieu of cytoplasm with a pool of intermediates and their interactions with a

differential specificity of chemically similar molecules/analogs. How this titration

reaction segregates and aligns with a particular time-specific decision-making

system will be the next step in our biological comprehension.

Fabricating new molecules with protein engineering still needs a lot of iteration

in the understanding of functional elements associated with enzymatic/receptor-

mediated processes. There are few databases like STRING, Gene MANIA, and I2D

which generate a network of protein, but a lot more has to be done (Mostafavi and

Morris 2012). Construction of new molecule needs to be more accurate and requires

in silico testing with docking dynamic study for all its possible types of action

inside a cell milieu with competing metabolites. Exploration of a transported drug

inside a cell with simulated gene network, protein expression profile, and related

metabolic potential/ metabolite spacing will provide a pathway for uncovering of

all the actions a drug molecule can encounter in a cell. This might open up a way to

understand side effects of the drug, which is essentially a mismanaged metabolic

event.
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17.4 Soft-Tool Development

Computational tools in the sphere of omics will require the development of

different options of data mining and organization. The future interpretation drawn

from such data set will be like QR code where a set of same functional elements

organized in different ways in two- or three-dimensional scale will suggest different

cellular events. The information across different data set has already started merg-

ing, but now it’s the time to generate a more stringent rule for data merger. Not only

integration of tools is required but a concatenation of tools in a systematic pipeline

is also in the stipulation. Working with different levels of cell organization and

making inferences based on selected signatures of the biochemical events could

help in predicting the final course of cell decision-making framework. This can be

possible if deep machine learning and artificial intelligence can be utilized for such

process, which will require strong hypothesis generation with a team of experts.

The idea such as bioboxes can be a solution to cater these processes, which proposes

the concept of containerization of software and make it interchangeable thus

increasing its accessibility (Belmann et al. 2015).

17.5 Epigenomics and Pan-Genomics

The idea of epigenetics a decade back was limited to eukaryotes only, but now it has

been associated with gene regulatory network in prokaryotes also. Bacterial

epigenetics similar to eukaryotes unfolds the methylation pattern associated with

regulation of genes in bacteria. Histone modification system is absent in bacteria,

and epigenetics is centered on discovering of distribution of DNA methylation

pattern. Study of bacterial epigenetics is mostly focused on pathogenic ones like

deciphering cystic fibrosis epigenetic control by Pseudomonas aeruginosa
(Madhavaram 2016) and conception of ciprofloxacin resistance in E.coli due to

rise in methylation level (Yugendran and Harish 2016). The epigenetic role is

extensively studied in bacterial restriction-modification system only. But now it

has approached a wider depth and so requires new tools to unfold the circuit of

epigenetic regulation in bacteria along with NGS analysis. Need for exploration of

methyltransferases, mechanism of transfer, and process regulation by cytosine

methylation are demanding ones. This will surely lead to a surge in the generation

of more software and algorithms and a new type of networking system to connect

metagenome and metabolome with epigenome.

When the understanding of bacterial diversity and filling of a gap in ecological

interaction begins with metagenome analysis, pan-genome emerges as a way to

bridge the gap. Pan-genome is simply just an analysis plot to extrapolate the genetic

diversity and classification of the genes and their level of sharing in different life

forms (Dumas et al. 2016; Monat et al. 2017). The application of pan-genome can

contribute to increasing the gene pool in a particular system and interaction. It can

guide us to understand the complex intercommunication and relay network existing

between a group of organisms and with organisms themselves. To fulfill such
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promising concept, NGS technologies can surely help along with metagenomic,

gene regulatory network and pan-genomic software. There are already computing

techniques like GET_HOMOLOGUES, PANNOTATOR, SplitMEM, PanGP,

Roary, etc. to carry out pan-genome analysis. But the problems of identifying

core genomes, describing pan-genome as open or closed and size estimation limits

the precision of the result generated by this software (Vernikos et al. 2015). Hence,

it opens a challenge for bioinformaticians to architect stronger algorithm to over-

come this problem.

17.6 Genomic Plasticity and Evolution

Understanding the trend in evolution has been always a key to understanding the

biological phenomenon. It has broadened its way from simple evolutionary genetics

to different branches of omics. This property of genomic plasticity creates a

difficult task of interpreting functional and metabolic changes in the cell or organ-

ism itself (Ricker et al. 2016; Vandecraen et al. 2017). There is a need for

algorithms, which can capture subtle changes in overall DNA information. The

challenges include the study of adaptations in the microbial community or stress-

mediated shift in community dynamics. The scenario generates the specific com-

munity structure and redefines the overall community intelligence that drives the

required function to meet the enforced changes by the environment. The other

scenario could be the changes in genome structure. The changes in genetic compo-

sition are of special concern in disease diagnosis and construction of an ideal

prevention strategy. The host-pathogen interaction is another area where prediction

of host-mediated changes in pathogen physiology will suggest new strategies to

prevent overall pathogenesis (Goh and Knight 2017). There can be the construction

of a sophisticated evolutionary model that in a biological system predicts the course

of gene shuffling, transversion or translational changes, and events like gene

transfer. This part can really be helpful for combating epidemic diseases and sudden

outburst of some pathogens in an area.

17.7 Biological Modeling

In the domain of biological modeling, new tools such as “fractal analysis” will help

in computing the changes using data generated as signal, networks, or even

predicted molecular motions. Future modeling will require a lot of unsupervised

validation of model where the wet laboratory data with different hypothesis will

make the base (Tsigkinopoulou et al. 2017). This will help in capturing the subtle

variants that might be influencing the overall behavior of the system. There are a

broad range of areas where these types of studies could be essential, which includes

the survival of microbes in wastewater to colonization in human gut or a pathogen-

esis scenario. Mathematical models are applied to study the ecological functioning

and biodiversity (Fitzpatrick and Keller 2015), process efficiency of a wastewater
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treatment plant (Pan et al. 2015), immunological processes and response

(Cappuccio et al. 2016), and even the exploration of metabolic regulation in

aging conditions (Mc Auley et al. 2015). The understanding in gene regulation

finds a new paradigm with siRNA (Dar et al. 2016; Alkan et al. 2017; He et al.

2017) or CRISPR-Cas systems (Mohanraju et al. 2016; Cloney 2017) and will

demand new tools to explore their interactions in gene silencing.

17.8 Pattern-Based Expression and Organization

Mining of data set from the independent experiment for a typical pattern gives a

trend associated with that particular system. This data set could be DNA sequence

data, RNA expression profile of siRNA associated with the atypical condition.

Finding the pattern and deducing out the core function are tasks that really project

out the machinery of the system. There are many ways by which this expression

pattern can solve many of the biological problems. Finding the heterogeneity in

colorectal cancer with the help of exploration of gene expression network was a

way by which pattern-based study can assist in expanding deep knowledge about a

disease (Budinska et al. 2013). Another is that this expression pattern can reveal

niche diversification in a microbial community (Gifford et al. 2013).

DNA pattern-based study at genome level can also help to deduce evolutionary

lineages and polymorphisms associated with the genes (Cornejo et al. 2015; Yu

et al. 2015; Ambardar et al. 2016; Kumar et al. 2017). Apart from revealing genetic

alterations, this genome level pattern analysis can be used for mining gene cluster

of interest (Duncan et al. 2015; Kumar et al. 2016). Moreover, this genome-wide

pattern analysis at large extent can really provide us the solution of trait selection

during evolution (Kalia et al. 2015, 2016; Kekre et al. 2015; Mathieson et al. 2015;

Koul and Kalia 2016; Lee and Rho 2016; Lee et al. 2016). These examples grant

ample opportunities for further research by using soft tools for pattern-based

expression or genome-wide studies. It also opens multiple doors for the application

developer to tackle problems of pattern-based study (Kumar et al. 2015). This also

enforced the addition of pipeline system for pattern-based study because one has to

deal with different types of data set.

17.9 System Biology and Decision-Making in Biological
Sciences

System biology was evolved to understand complex interactions occurring in the

biological matrix. Now with the evolution of huge computational power, the

framework shifted to integrate the separate data generated by omics to completely

new interface and suggest an output through system biology (Batchelor and Loewer

2017). An array of tools and networking system is being built to understand the

biological phenomenon as a whole (Bartocci and Lió 2016); for example, to know

what physiological, immunological, gut bacterial responses are generated when a
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new drug molecule enters the system (Nickerson et al. 2017). Most of the

investigations consider response/signaling in a cell and study as a separate, but its

effect on peripheral and housekeeping pathways is generally ignored; a holistic

conclusion through systematic interconnecting network could provide more insight

into overall physiology. A model scheme has to be laid out for such complex

interactive system. Work has already been initiated in this direction; one such

example is pathway tools which integrate genomic, metabolic, and regulatory

data and thus assist in the investigation of the biological network in question

(Karp et al. 2016). It has also included the energy and flux modeling system to

estimate the possible interaction and reactions occurring for an accurate metabolic

pathway prediction.

17.10 Conclusion

The understanding in biological sciences started with one gene and a physiological

scenario as a concept (Risch and Merikangas 1996). Time has changed with more

information and analytical tools; now we are considering even one gene and many

scenarios (Zhu et al. 2014). Investigations are supported by omics as an option of

data generation and system biology tools with their analytical capabilities are

integrating our understanding to a more complex outcome (Shaik and Ramakrishna

2014; Kalia and Kumar 2015; Puranik and Purohit 2015; Bracken et al. 2016; Ram

et al. 2016). This way we can conclude that we are going away from reaching any

conclusion soon for a defined biological system (Wu et al. 2016).

17.11 Opinion

We need to rethink and change our strategy of analysis, which is mostly driven by

statistics for selecting the most appropriate data. The system may not require too

many copies of a regulatory protein, but its influence could lead to many copies of a

functioning protein, which will provide a typical phenotype. Similarly, in a

metagenome data, we select a cutoff to understand a dominating population, but a

time series data or a stress condition suddenly picks a bacterium that was otherwise

removed from the statistics. Maybe in few years, we shall be correlating every

single disease condition with the signature gut microbiome. This suggests that for

every scenario, irrespective of omic tools applied, the data needs better mining,

binning, and discriminating approach to understand the cause of the key events and

the metabolic status of the cell supporting the key event, and new emerging

biochemical perturbances in cell expected in different compartments need to be

understood. The time series data supported with compartmentalization will add to

our understanding.
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