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Abstract The growing industrial development and concomitant efforts to protect
mother Earth from alleviating pollution levels has greatly demanded the use and
disposal of milder chemicals and xenobiotics. Of the widely used xenobiotics, sur-
factants have an increasing market demand due to its prevalent role in pharmaceutical
preparations, food industry as well as almost all foaming products. The use of bio-
surfactants in place of chemical surfactants has gained momentum owing to the low
toxicity, higher biodegradability and better environmental compatibility of biosur-
factants. The current review outlays the various biosurfactants produced and their
significance in various industries. An outline of the various biosynthetic pathways,
challenges and advancements in the synthesis of the two mostly used biologically
synthesised biosurfactants—rhamnolipids and sophorolipids has been discussed.
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1 Introduction

Surfactants find a myriad of applications in human life extending its role in household
products to a vast array of industrial processes. The realm of surfactant activity is
widespread to different industries including food (Kralova and Sjoblom 2009),
environmental remediation (Cheng et al. 2017), textiles (Jing-xin 2004), fuel
extraction (Torres et al. 2003; Chistyakov 2001), biotechnology (Singh et al. 2007),
antimicrobials (Ginkel 1989) and many more. Chemical modification of renewable or
non-renewable substrates is currently done to meet this great demand of surfactants
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(Behler et al. 2001). However, it leads to various environmental problems and health
concerns owing to the indiscriminate use of chemical surfactants (Rebello etal. 2014).

Life cycle assessment of surfactant synthesis and disposal undoubtedly proves the
levels of its toxicity at different ecosystems. The prevalence of some fluoridated
surfactants such as PFOA commonly used in nonsticky utensils in human blood
(Calafat et al. 2007), marine animals and birds (Groffen et al. 2017) are some
instances to substantiate it. The LCA analysis of PFOA alone indicates that maxi-
mum exposure comes from emission on the application (117.0 t), followed by
manufacture (3.9 t), consumer exposure (1.2 t), wastewater treatment plants (10.6 t)
and environmental emission of 12.8 t (Meng et al. 2017). Surfactant synthesis, in
turn, causes increased emission of greenhouse gases, which contribute to the
increased global warming, ozone damage, and climatic variations. Surfactant toxicity
is evident in almost all sectors of the ecosystem including both biotic (Meng et al.
2017) and abiotic elements of the atmosphere and water bodies (Pittinger et al. 1993).

1.1 Advantages of Biosurfactants

The choice of eco-friendly biosurfactants against chemical counterparts has attained
relevance owing to its biodegradability, low toxicity, ecological acceptability,
superior foaming ability, enhanced selectivity and increased specific activity
(Cameotra et al. 2010). Since its first use in the 1980s, the field of biosurfactant
research has gained great impetus and ecological significance due to increasing
rates of pollutions associated with chemical surfactants. Figure 1 schematically
represents the damage caused by surfactant chemical synthesis. Studies indicate that
biosurfactants even in very small concentrations give stable emulsions at different
environmental conditions compared to chemical surfactants requiring large con-
centrations (McClements and Gumus 2016).

Additionally, biosurfactants are found to be antibacterial (Mani et al. 2016;
Ndlovu et al. 2017), antifungal (Chen et al. 2017), antiviral (Pang et al. 2017;
Vollenbroich et al. 1997) and immunologic in nature, which adds an extra advantage
to be used in medicine and therapeutics (Rodrigues et al. 2006). The antifungal role
of surfactants in preventing various mycotic infections of plants is also evident by
inhibitory action of surfactin and fengycin against Mycosphaerella fijiensis
(Gonzalez-Jaramillo et al. 2017). Though economically biosurfactants are not a wise
choice for synthesis than chemical surfactants, the growing interest for greener
and biodegradable commodities has expected the biosurfactant market to rise in
2018-2020 approximately to $25 billion (http://www.transparencymarketresearch.
com/specialty-and-biosurfactants-market.html; http://www.grandviewresearch.com/
press-release/global-biosurfactants-market).

The current review targets to outlay the economised production of various
biosurfactants focusing on the predominantly biosynthesised biosurfactants—
rhamnolipids and sophorolipids. The review also outlays the biosurfactant utility in
various sectors and biosynthetic pathways involved in their generation. The
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Fig. 1 Significance of biosurfactants over chemical surfactants a schematic representation

challenges faced by the biosurfactant industry are also described along with the
progress developed by productive research.

1.2 Types of Biosurfactants

The term biosurfactant refers to amphipathic molecules derived from biological
origin (plants or microbial) capable of reducing the surface tension of liquids.
Though the term biosurfactant is used for microbially derived surfactants, any
surfactant formed with any of the hydrophilic or hydrophobic part of biological
origin is also included as a biosurfactant. Biosurfactants based on the mode of
synthesis can be divided to first-generation biosurfactants usually termed green
surfactants (involves chemical synthesis from renewable resources) and the
second-generation biosurfactants or true biosurfactants (involves biological syn-
thesis from renewable resources. The former category includes members such as
alkyl polyglucosides, sucrose esters, etc., whose hydrophobic part alone is derived
from a renewable resource. Such biosurfactants are produced using either plant- or
animal-derived oils with biobased carbohydrates (Tmakova et al. 2017).

The second generation of biosurfactants are mostly produced biologically by
fermentation using microbes, for example; rthamnolipids, sophorolipids, surfactin,
etc. Chemical classification of biosurfactants greatly depends on the combinatorial
linking of three different biomolecules, viz carbohydrates, lipids and proteins or
their components to generate glycolipids, lipopeptides, oligopeptides, fatty acids/
neutral lipids, phospholipids, polymeric molecules and particulate derivatives
(Muthusamy et al. 2008). The glycolipids are of diverse kinds including
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sophorolipids (produced by Candida bombicola, Candida tropicalis), thamnolipids
(Pseudomonas aeruginosa, Burkholderia sp.), cellobioselipids (by Cryptococcus
humicola, Ustilago maydis, Pseudozyma flocculosa), mannosylerythritol lipids (by
Pseudozyma sp.) and trehalose lipids (Arthrobacter sp.). The major lipopeptides
and oligopeptides include surfactins and subtilisin (Bacillus subtilis) and viscosin
and syringomysin (Pseudomonas fluorescens). Table 1 lists the different types of
biosurfactants produced by microbes and their industrial utility in various fields.
Studies indicate that yet new types of biosurfactants are reported from new isolates
as in the case of Wickerhamomyces anomalus CCMA 0358 (Souza et al. 2017).
Biosurfactants play diverse functions in the bacterial physiology, viz (a) as
components of cell membrane (Cortes-Sanchez et al. 2013), (b) biomolecules
enabling xenobiotic solubilisation and utilisation in hydrocarbon-loaded environ-
ment (Kaczorek et al. 2008), (c) as antibiotics (Magalhaes and Nitschke 2013),
(d) hemolytic activity in human pathogenesis (Ashdown and Koehler 1990),
(e) quorum signalling (Daniels et al. 2006), (f) regulating swarming (Wang et al.

Table 1 Microbial sources of biosurfactants

Type of biosurfactant Microorganism

Glycolipids

Trehalose lipids Rhodococcus erithropolis
Arthobacter sp., Tsukamurella sp. and Arthrobacter sp.

Rhamnolipids Pseudomonas aeruginosa, Pseudomonas putida,
P. chlororaphis, Bacillus subtilis, Renibacterium
salmoninarum

Sophorolipids Candida bombicola, C. apicola

Mannosylerythritol lipids C. antartica, Kurtzmanomyces sp.

Phospholipids Acinetobacter sp., Corynebacterium lepus

Lipopeptides

Viscosin Pseudomonas fluorescens

Serrawettin Serratia marcenscens

Surfactin Bacillus subtilis

Subtilisin Bacillus subtilis

Gramicidin Bacillus brevis

Polymyxin Bacillus polymyxia

Lichenysin B. licheniformis

Fatty acids Corynebacterium insidibasseosum

Particulate surfactin A. calcoaceticus

Polymeric

Emulsan Acinetobacter calcoaceticus

Biodispersan Acinetobacter calcoaceticus

Liposan Candida lipolytica

Carbohydrate-lipid— Pseudomonas fluorescens

protein

Mannan-lipid—protein Candida tropicalis
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2014), (g) biofilm formation (Bonnichsen et al. 2015), etc. They are produced either
externally or intracellularly in response to various environmental factors, carbon
sources and sometimes as factors to overcome stress.

1.3 Industrial Synthesis—Current Scenario

The effective utilisation and commercialization of a fermentation protocol is eco-
nomic effectiveness, substrate access and high yield. The recycling of
agro-industrial residuals for biosurfactants is a cost-effective strategy for econo-
mised production (Makkar et al. 2011). Figure 2 represents the structure of various
commercially produced biosurfactants including both chemically modified and
biosynthesized biosurfactants. According to biosurfactant market evaluation pub-
lished in 2015, of the various biosurfactants produced industrially methyl ester
ketone accounted for the highest biosurfactant market followed by alkyl polyglu-
cosides and rhamnolipid (http://www.grandviewresearch.com/industry-analysis/
biosurfactants-industry).

Biosurfactants are produced in various countries including companies such as
BASF Cognis (Alkylpolyglucosides), Jeneil Biotech (rhamnolipids), Evonik
(sophorolipids), etc. Of the commercially produced biosurfactants, methyl ester
ketones and alkyl polyglucosides are derived from renewable resources like waste
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Fig. 2 Chemical structure of commercially produced biosurfactants
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oil which further undergoes chemical modifications to yield the final biosurfactant
product. However, rhamnolipids and sophorolipids are microbially derived, bio-
logically synthesised rather than mere modification of biologically derived
resources and thus are considered for study in this review as biosynthesized
biosurfactants.

Various factors such as microbial type, carbon source, stirring, oxygen avail-
ability, physical factors (pH, temperature), aeration, nutrient level, bioprocess
conditions, etc., greatly influence the production rate of biosurfactants. The
biosynthesis and commercialization of biosurfactants is effective only to a small
extent owing to poor yields and elevated post-production expenditure. Strategies
adopted to overcome this crisis include the use of cheaper raw materials, high
yielding fermentation protocols and use of novel or mutant hyperproducing strains
(Muthusamy et al. 2008). Biosurfactants are produced using large number of carbon
sources including vegetable oil, mineral oil (Stoimenova et al. 2009), glycerol (Putri
and Hertadi 2015), palm oil (Radzuan et al. 2017), vineyard pruning (Vecino et al.
2017), SDS (Rebello et al. 2013), etc. Currently, biosurfactant research is advancing
at a higher rate yielding new possibilities of replacing synthetic surfactants with
eco-friendly candidates to a great extent in the near future.

1.4 Rhamnolipids

1.4.1 Chemistry and Biosynthesis

Rhamnolipids are microbial surface-active glycolipids containing one or more
rhamnose moieties attached to a different type of fatty acids. The wide variety of
rhamnolipids produced are critically analysed for their biopotential and applications
(Chrzanowski et al. 2011). Chemically thamnolipids contains dimers of 3-hydroxy
fatty acids of different carbon lengths linked to a mono- or di-rhamnose moiety
through a beta glycosidic bond. Naturally, they are released as mixtures of
mono-rhamnolpids or di-rhamnolipids, for example rhamnolipid congeners
Rha-C10-C10, Rha-C10-C12 and Rha-Rha-C10 were produced by Pseudomonas
aeruginosa on growth on SDS as a carbon source (Rebello et al. 2013). The ratio of
mono-rthamnolipid and di-rhamnolipid ratio generated is greatly influenced by
carbon sources (Nicolo et al. 2017) and environmental factors.

Three main proteins, viz RhIA, RhIB and RhIC are involved in the biogenesis of
rhamnolipids. RAIA utilises the b-hydroxydecanoyl-ACP precursors from the bac-
terial fatty acid synthetic pathway and convert them to hydroxyl-alkanoic acid
(HAA), which serves the building blocks for mono- and di-rhamnolipids (Timmis
2002). Rhamnolipid formation utilises hydroxyl-alkanoic acid (HAA) to which two
different rhamnose molecules are sequentially added to form mono-rhamnolipid and
di-rhamnolipid respectively. The initial transfer of rhamnose to HAA is catalysed
by RhIA. The transfer of dTDP-L-rhamnose to either HAA, or a previously gen-
erated mono-rhamnolipid is then catalysed by RhlB and RhIC (Deziel et al. 2003).
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1.4.2 Challenges in Rhamnolipid Production

Rhamnolipids are most explored biosurfactants and are produced mainly by
Pseudomonas aeruginosa sp. utilising various carbon sources such as soybean
(Giani et al. 1997), corn (Linhardt et al. 1989), olive (Robert et al. 1989), hex-
adecane (Tuleva et al. 2002), detergents such as SDS (Rebello et al. 2016), etc. In
majority of the countries, high production costs hinders or slows down rhamnolipid
industrial production to some extent. Problems related to costly raw materials, foam
generation during production, low yield and increased post- production recovery
charges are some factors contributing to such a scenario (Muthusamy et al. 2008).

The major challenges faced in its industrial production are (1) use of oppor-
tunistic pathogen Pseudomonas aeruginosa for biosurfactant production requires
extra care in handling (Van Bogaert et al. 2007) (2) generation of excessive foam
during large-scale production (3) formation of mixture of different congeners
requires further purification thereby increasing cost (4) laborious and expensive
downstream processing accounts for 70-80% of production cost (5) low yield
(6) sophisticated fermentation, time-consuming production.

1.4.3 Bioreactors to Optimise Production

Rhamnolipids are produced both by shake flask or reactors as batch, continuous or
fed-batch cultures. The latter technique proved superior to mere batch cultures, with
approximately 1.3-fold increase in rhamnolipid yield and high substrate—product
conversion ratios (Lee et al. 2004). Similarly fed-batch mode of recycling stationary
phase P.aeruginosa into new culture media accounted for 100% increase in
rhamnolipid yield in another study (dos Santos et al. 2016). Further advancements
of fed-batch culture with a fill and take strategy yielded better thamnolipid yields
than conventional fed-batch modes (He et al. 2017). The use of semi-solid state
fermentation technique using glycerol and wheat bran substrates for rhamnolipid
production effectively reduced the foam generation associated with rhamnolipid
synthesis (Wu et al. 2017). The excessive foam generated during rhamnolipid
synthesis could be effectively overcome by methods of simple foam fractionating
techniques reaching enrichment factors up to 200 (Beuker et al. 2016) or by use of
stop valves as a foam breakers (Long et al. 2016).

Renewable resources such as agro wastes could help to reduce the cost of
rhamnolipid synthesis to a factor of 10-30% compared to chemical surfactants
(Satpute et al. 2017). With the increasing levels of glycerol generated as a
by-product of biodiesel production, methods utilising glycerol for biosurfactant
synthesis has also gained much interest (Randhawa and Rahman 2014). The con-
tinuous mode foam fractionation of biosurfactants from bioreactor has been found
to be effective in controlling the foam generated during production as well as
increasing the rate of mono-rhamnolipid production to a fivefold (Diaz De Rienzo
et al. 2016). The use of hollow fibre reactors containing immobilised cells of
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Pseudomonas aeruginosa along with nitrate reduction instead of oxygen showed no
problems associated with foam generation as observed in aerated systems (Pinzon
et al. 2013).Thus, the compilation of information of different research around the
world could surely help to economise rhamnolipid yields.

144 Genetic Engineering to Optimised Production

Attempts to resolve the first challenge of Pseudomonas aeruginosa pathogenicity
has already resulted in the expression of its biosynthetic genes in E.coli, but the
yields were less (Ochsner et al. 1994). The various recombinant DNA-based
attempts to improve rhamnolipid production ranged from attempts to introduce
LacZY genes of E.coli in Pseudomonas (Koch et al. 1988), transposome-mediated
integration of rhlAB gene in E.coli (Wang et al. 2007) as well techniques to induce
mutations in wild strains. Synthesis and expression of rhIAB gene and thaBDAC
gene cluster in recombinant E.coli under the influence of various synthetic pro-
moters gave good rhamnolipid yields and they were further optimised by media
engineering strategies (Gong et al. 2015). The recombinant expression of P.
aeruginosa and Burkholderia rhIAB and rhlC genes in E.coli yielded
di-rhamnolipid congeners to a greater extent (Du et al. 2017). Studies utilising
mutation induced optimisation of rhamnolipids are also evident via transposon
Tn5-GM-induced mutations of Pseudomonas (Koch et al. 1991), gamma ray
mutations (Igbal et al. 1995) and N-methyl-N-nitro-N-nitrosoguanidine-induced
random mutagenesis (Tahzibi et al. 2004) yielding some successful reports on
rhamnolipid yield.

The heterologous rhamnolipid production in Pseudomonas putida KT2440 by
the introduction of rhlAB-genes helped to overcome pathogenicity of P.aeruginosa
strains, quorum-sensing regulation and made possible biomass free production of
the biosurfactant (Wittgens et al. 2011). The use of biofilms of the above recom-
binant P.putida KT72440 was also found to be a good source to produce
mono-rhamnolipids (Wigneswaran et al. 2016). The carbon sources such as fatty
acids transcriptionally delay the expression of ril/C gene and this could be used to
control the ratio of monorhamnolipid to dirhamnolipids produced in the fermen-
tation (Nicolo et al. 2017).

1.4.5 Application Potential

Rhamnolipids aid the solubilisation and easy uptake of hydrophobic xenobiotic
compounds, thus becoming useful in soil remediation (Chebbi et al. 2017) and
enhanced microbial oil uptake (Safdel et al. 2017). Rhamnolipids also extend its
activity in the field of medicine by differentiating fibroblasts and keratinocytes to
help in early wound healing (Stipcevic et al. 2006), targeted killing of myofi-
broblasts as therapy of scars (Shen et al. 2016). The antimicrobial role of this
biosurfactant facilitates its use against plant pathogens (Sha et al. 2012) as well as
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human pathogenic microbes (De Rienzo et al. 2016; Magalhaes and Nitschke
2013). Apart from the antimicrobial properties of rhamnolipids, the high emulsi-
fying property makes it a cleansing agent in detergents and other cleansers. The
biopesticidal properties of rhamnolipids enable the control of various insects also
(Kim et al. 2010).

1.5 Sophorolipids

1.5.1 Chemistry and Biosynthesis

Sophorolipids are glycolipids produced extracellularly by various non-pathogenic
yeasts such as Candida bombicola, Candida apicola, Candida bogoriensis (Tulloch
et al. 1968) and Wickerhamiella domericqiae (Chen et al. 2006). Chemically, they
contain a glucose disaccharide sugar sophorose, formed by a glucosyl-p-(1-2)glu-
cosyl linkage between the sugar moieties. The complete sophorolipid is generated
by joining the fatty acid with the sophorose moiety. In the majority of the
sophorolipids, fatty acids of 22 carbon chain length are found, with the remaining
10% containing 24 carbon atom-based fatty acids. The non-pathogenicity of the
host strains makes sophorolipids more advantageous than rhamnolipids derived
from Pseudomonas aeruginosa, which are opportunistic pathogens. Sophorolipids
are found as mixtures of free acidic, lactonised form and acetylated derivatives; with
the lactonised form having better foaming and solubility agents (Elshafie et al.
2015). The greater degree of acetylation of sophorolipids makes them more water
insoluble enabling its easy recovery. The acetylated derivatives of this biosurfactant
are also a good antiviral agent and have cytokine stimulatory effect.

Biosynthesis of sophorolipids works in combination with fatty acid synthesis
which yields the building blocks for sophorolipids, catalysed by the enzyme
cytochrome P450 monooxygenases a member of CYP52 family. The first step in
the sophorolipid synthesis is the formation of hydroxylated fatty acids from fatty
acids (Van Bogaert et al. 2013). The formation of sophorolipids is further catalysed
by two sequential glycosylation reactions to yield a B-D glucosyloxy fatty acid
(Esders and Light 1972) which further gets acetylated on the breakdown of acetyl
CoA as per the metaCyC sophorolipid biosynthetic pathway shown in Fig. 3
(Caspi et al. 2014). The acidic sophorolipids get lactonised by specific proteins
secreted by S. bombicola (Ciesielska et al. 2016).

1.5.2 Challenges in Sophorolipid Production

The key hold-up to its economised synthesis is the increased expenditure associated
with production. However, the use of low-cost renewable agro wastes, waste oil
(Makkar et al. 2011), molasses and coconut oil (Hoa et al. 2017), etc., could reduce
the cost of production to a large extent. The major companies manufacturing
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sophorolipids include Evonik, Japan-based Saraya, South Korea-based MG Intobio,
Japan-based Allied Carbon Solutions and US-based Synthezyme. Most predomi-
nantly sophorolipids are used for the production of cosmetics, toiletries and in
medical field. The ecofriendliness of sophorolipids as well as its high yield of
around 400 g/L has aroused much industrial interest of these biosurfactants (Van
Bogaert et al. 2011).

1.5.3 Bioreactors to Optimised Production

Sophorolipids are produced by Candida bombicola from fat- or oil-contaminated
wastewater both in batch and continuous reactions (Daverey and Pakshirajan 2015).
Solid-state fermentation of Starmerella bombicola using agro wastes such as
molasses, oil cake and straw yielded 0.179 g of sophorolipid per gram dry matter
(Jimenez-Penalver et al. 2016). The combinatorial use of fed-batch method along
with ultrasounds greatly increased the sophorolipid yield from waste vegetable oil
(Maddikeri et al. 2015). Pilot-scale optimisation of Starmerella bombicola lactone
esterase overexpression strain was done to get a highly pure diacetylated sophor-
olipid, which was suitable for chemical modification to generate sophorolipid amine
oxides (Delbeke et al. 2016). High cell density fermentation with increased nutri-
ents and optimised physical parameters using Candida bombicola was done in a
fermentor to achieve productivity of 200 g/L/day (Gao et al. 2013). This was found
to be of much relevance for industrial synthesis.

1.5.4 Genetic Engineering

Most of the recombinant work on sophorolipids is related to the identification of
genes involved in sophorolipid synthesis. The proteins encoded by YP52M1 gene
cluster catalyse the hydroxylated fatty acids synthesis—an essential step for
sophorolipid synthesis (Van Bogaert et al. 2013), while glucosyltransferase gene
UGTAL catalyses first addition of glucose to the fattyacid derivative generated in
the former step (Saerens et al. 2011). The cloning and recombinant expression of
the glucosyltransferase gene from C. bombicola in Sacharomyces cerevesiae was
done to study the broad spectrum glycosylating activity of this enzyme gtf-1 on
sterols and fatty acids (Solaiman et al. 2014). The further lactonization of
sophorolipids is found to be catalysed by an esterase, entitled S. bombicola lactone
esterase which was characterised to prove that the above protein generates the
lactonised form of sophorlipids by a serine hydrolase mechanism (Ciesielska et al.
2016). Most of the scientific developments related to sophorolipids are mostly
patented such as the generation of sophorolipid transport protein (Soetaert and Van
Bogaert 2012) which regulates the secretion of sophorolipids.
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1.5.5 Application Potential

The anticancerous role of sophorolipid and its derivatives was effective in the
treatment of pancreatic cancer and oesophageal cancer (Fu et al. 2008; Shao et al.
2012). Though the spermicidal and anti-HIV properties of this biosurfactant makes
it a good topical contraceptive, the higher rates of cytotoxicity discourages its
long-term use as a microbicidal contraceptive (Shah et al. 2005). They are used as
surfactants, emulsifiers, antimicrobials, in environmental remediation of heavy
metals, insoluble aromatic compounds and also in microbial-enhanced oil recovery
(Elshafie et al. 2015). Moreover, it also is used in the generation of ® and
o-1hydroxy fatty acids, an essential component of perfumes (Van Bogaert et al.
2007).

2 Conclusions

Biosurfactant industrialised production is the need of the hour for the better eco-
logical sustenance of the environment as well as the well-being of the human
health. The cost factor of the biosurfactants could be overcome by using renewable
resources as feedstock, response surface methodology-based optimisation, hyper-
producing strains, better extraction protocols and cost-effective production proto-
cols. The use of different expression systems using recombinant technology, in
combination with media engineering and better extraction methods such as foam
fractionation would help to achieve better yields. With successful attempts in the
directions of rhamnolipids, sophorolipids and other biosurfactants the vision to
replace chemical surfactants by biosurfactants would be possible in the near future.
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