
Chapter 13
Biodiesel from Microalgae
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Abstract Widespread application of non-renewable energy resources such as fossil
fuels is limited mainly due to their adverse environmental impacts by increasing the
amount of greenhouse gas (GHG) emissions. A solution to limit fossil-fuel pollu-
tion is the use of renewable energy resources. In the recent years, microalgae have
received considerable attention as a suitable feedstock for biofuel production.
Microalgae can grow in various aquatic wastewater media and are able to produce
biomass, lipids, and hydrocarbons. Using different types of wastewaters as media
for algae cultivation could not only reduce their freshwater footprint but also the
costs associated with algae cultivation and biofuel production. This chapter presents
an overview on various algal cultivation systems as well as on optimization of algal
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cultivations, while downstream processes including harvesting and drying of
microalgae and lipid extraction systems are also reviewed and discussed.
Subsequently, different microalgae biofuel production pathways are presented.
Finally, the applications of microalgae in integrated systems, i.e., in wastewater
treatment and biodiesel production systems and biofixation of carbon, are
scrutinized.

Keywords Biodiesel � Algae � Waste treatment � CO2 fixation

13.1 Introduction

Energy resources are divided into non-renewables and renewables, with the latter
having a minor contribution to the global energy market at the present time.
However, due to the limitations on non-renewable energy resources and increasing
greenhouse gas (GHG) emissions as a result of using these fuels, the share of
renewable energy resources such as biofuels, hydro, wind, solar, and geothermal
energies is bound to increase (Bwatanglang et al. 2015). Among the above-mentioned
renewables, only biofuels are being used globally in the transportation sector, the
main GHG emitter. Based on their feedstocks, biofuels are classified into
first-generation biofuels (FGBs) produced from sugar, starch, animal fats, and veg-
etable oils; second-generation biofuels (SGBs) produced from non-food crops,
agro-forest residues, and wastes; and third-generation biofuels (TGBs) produced from
microalgae (Demirbas and Demirbas 2011; Laghari et al. 2015).

Microalgae, photosynthetic microorganisms, could be grown on non-arable land
and have an acceptable growth rate (20–30 times faster than other conventional
energy crops) and high photosynthetic conversion efficiency (Ullah et al. 2014).
Cultivation of microalgae consumes less water than land crops, and unlike corn,
soybean, and palm as main sources of biofuel production, algae is not used as a
primary food source for human being, affirming that they can be used distinctively
as fuel while having less impact on food security. Moreover, due to their ability to
withstand high CO2 contents in gas stream, microalgae have high efficiency for CO2

mitigation as well (Demirbas and Demirbas 2010; Mata et al. 2010; Wang et al.
2008; Zhang 2015).

Microalgae are classified into four main taxonomic groups: diatoms
(Bacillariophyceae), green algae (Chlorophyceae), cyanobacteria or blue-green
algae (Cyanophyceae), and golden algae (Chrysophyceae). These microorganisms
contain high lipid, high protein, and low carbohydrate content. Nowadays, the main
interest is in cultivating microalgae to produce lipid as feedstock for biodiesel
(Markou and Nerantzis 2013), while other types of biofuels are also of some
interest. The lipid content, lipid productivity, and different types of biofuel
reportedly produced from different microalgae are shown in Table 13.1. Moreover,
a comparison among different biodiesel feedstocks in terms of their oil properties is
also presented in Table 13.2.
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Microalgae can grow in various aquatic environments, such as freshwater or
marine water (Zhou et al. 2011a, b), industrial wastewaters (Wang et al. 2010, Zhou
et al. 2013), municipal wastewaters (Kong et al. 2010), animal wastewaters (Wang
et al. 2010; Zhou et al. 2012; Hu et al. 2012), and agricultural wastewaters.
Accordingly, many studies have strived to promote biofuel production using
wastewater resources as a means of improving the economic aspects of algal fuels
production (Pittman et al. 2011; Wu et al. 2012). However, in a rather recent critical
review, Chisti (2013) pointed out the constraints to microalgal biofuel commer-
cialization. Among those was the calculations concerning the inadequacy of
wastewater as a source of nitrogen and phosphorus for microalgal cultivation and
that the algal biofuels produced using the wastewater generated in a metropolitan
area such as New York city could only be sufficient to replace 1–3% of the pet-
roleum demands of the city. As shown in Table 13.3, presenting the potential of
algal fuel production from wastewater in major cities in the world, this is absolutely
true and such a scenario would be totally inefficient if one places the main focus on
biofuel production using wastewater.

To the contrary and by highlighting algal-based wastewater treatment instead of
biofuels production, i.e., by looking at this scenario other way around, different
conclusions could be made. Accordingly, biofuel production using wastewater
would come second as a strategy to further justify, or economize, the algal-based
treatment process of various types of wastewater. Table 13.4 tabulates the pros and
cons of microalgal-based wastewater treatment systems and compares them with
the conventional wastewater treatment procedures.

The present chapter aims to review the developments made and success stories
reported in different aspects of algal cultivation and harvesting/extraction within the
framework of integrated biofuel production/wastewater treatment systems.
Furthermore, the application of microalgae in integrated systems, i.e.,
microalgae-driven wastewater treatment and algal-based carbon biofixation with
simultaneous biofuels production, has been brought into attention.

13.2 Algae Cultivation Systems

13.2.1 Suspended Culture

The most common large-scale algae production systems are based on suspended
culture. In these cultures, including open ponds and closed reactors, single cells and
small groups of cells are maintained in liquid medium. This medium requires
agitation and gas exchange.
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Table 13.4 Pros and cons of microalgal-based wastewater treatment systems in comparison with
the conventional wastewater treatment procedures

Wastewater
treatment

Type Advantages Disadvantages References

Algae-based
systems

HRAPa – Simple and cost
effective

– Algal biomass
harvesting is
difficult

– Risk of
contamination is
high

– Control on algal
species is low

– Unapplicable water
footprint

Park et al.
(2011)

Immobilized – Algae harvesting is
facilitated and
economical

– Possibility of nutrient
removal as well as
other pollutants such
as heavy metals and
industrial pollutants

– Phosphate-removal
efficiency is
dependent on
elevated pH of the
wastewater

– It is always
accompanied with
enhance removal of
nutrients

de-Bashan
and Bashan
(2010)

Attached
algal system

– Biomass harvesting is
facilitated

– Improved water
quality

– There is no
consensus on the
best method of
growing and
harvesting algal
biofilms

Christenson
and Sims
(2011)

Conventional
methods

Chemical – Low energy
requirement

– Cost of treatment is
higher than those
of the other
methods (physical
and biological)

Gupta et al.
(2012)

Physical – Possibility of volatile
and semi-volatile
organic compounds
removal

– Possibility of removal
of coarse solids

– Energy
requirements are
high

https://
www.
teicrete.gr

Biological – Cost effective
– Possibility of
controlling the
amount of aeration to
avoid excessive
dissolved oxygen

– Improve efficiency of
aeration system

– BOD removal by
biological
treatment

requires higher
energy than BOD
removal by primary
treatment

Mittal
(2011)

aHRAP: High rate algal pond
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13.2.1.1 Open Ponds

Open ponds can be categorized into natural waters (lakes, lagoons, and ponds) and
artificial ponds. The most commonly used systems for algae cultivation include
circular ponds and raceway ponds. Algae cultivation in open system has some
disadvantages, such as the difficulties in controlling contamination, culture envi-
ronment conditions, poor light utilization by the cells, and requirement for large
areas of land, while biomass harvesting is costly as well (Carvalho et al. 2006).
Circular ponds are generally round, simple, and mixed with a rotating circular arm
fixed in the pond center (Lee and Lee 2001). Raceway ponds are shallow ponds and
are used for commercial microalgal production, usually lined with plastic, with a
15–20 cm depth in which water and nutrients circulate around a racetrack with a
rotating paddle wheel (Brennan and Owende 2010). High-rae algal ponds (HRAP)s
are raceway-type ponds and have 0.2–1 m depth, paddle wheel-mixed, and provide
improved wastewater treatment. They are efficient and cost-effective upgrades for
treating municipal, industrial, and agricultural wastewater (Park et al. 2011; Craggs
et al. 2012). These ponds are in fact a combination of algal reactor and amplified
oxidation ponds.

13.2.1.2 Closed Reactors

Closed reactors are expensive to build. However, compared with open ponds, they
are much easier to control contamination and environmental conditions. Closed
reactors require chemical sterilizers to effectively sterilize. In such reactors, cost of
harvesting is less than open ponds and the obtained biomass concentration is higher
than open ponds (Lee and Lee 2001; Scott et al. 2010). There are four key
requirements for algal growth in reactors. The photosynthetic activity of microalgae
depends on light; therefore, light is one of the restrictive factors in the algae culture;
if light is too low, growth of microalgae will be slow and their photosynthesis will
decline. Conversely, if it is too high, photoinhibition and oxidative damage would
occur (Kumar et al. 2010a, b, c). Another key parameter is temperature, and too low
and too high values would result in slow growth and cell death, respectively.
Fluctuations in temperature can lead to significant decreases in productivity, while
the optimal growth temperature for microalgae is often in the range of 20–30 °C
(Chisti 2008). Mixing is also an important parameter in microalgal cultivation that
improves gas exchange, keeps cells in suspension, distributes the nutrients, and
decreases photoinhibition on the surface (Ugwu et al. 2008). Mixing in photo-
bioreactors (PBR) is provided by pumping or aeration through a variety of gas
transferring systems. Finally, nutrients are also instrumental in achieving am effi-
cient cultivation system. Low nutrient availability leads to growth inhibition, while
high concentration may exert toxic effects. Essential elements for algal growth
include nitrogen (N), phosphorus (P), and, in some cases, silicon (Chisti 2007).

Closed reactors can be categorized into flat-plate reactors and tubular reactors.
Flat-plate reactors are vertical reactors made up of narrow panels with 10-mm glass
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plates that are pasted together. Tubular reactors are another type of closed reactors
that can be categorized into: horizontal tubular, vertical airlift, and helical tubular.
The only type of closed systems used on large scales is tubular reactors (Chisti
2007). The control of temperature and pH in tubular photobioreactors is better than
that in open ponds. In comparison with open ponds, tubular photobioreactors can
generally provide a better protection against culture contamination, less evaporative
loss, better mixing, and higher cell densities (Mata et al. 2010). Horizontal tubular
systems are composed of thin-diameter tubing lying or stacked horizontally, while
vertical tubular systems are composed of vertical tubes that can be easily erased and
kept sterile. This type of reactor is suitably set and manufactured at low cost (Ugwu
et al. 2008). Helical tubular systems are constructed of tubing coiled around a
circular framework, and hence, angle to sunlight is reduced; subsequently, the

Flow

(a)        (b)
Degassing column

(c) (d)

Algal raceway pond

Degassing 
column

Heater

Pump

Solar 
collector
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Fig. 13.1 Schematic diagrams for closed reactors: a flat plate, b horizontal tubular, c helical
tubular, d vertical airlift, and e algal raceway pond (Chisti 2007; Xu et al. 2009; Mata et al. 2010;
Park et al. 2012)
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required land area is reduced (Morita et al. 2001). A comparison of open and closed
culture systems for microalgae is shown in Table 13.5 (Pluz 2001; Brennan and
Owende 2010; Ugwu et al. 2008). An efficient hybrid system of photobioreactor
and open ponds was also suggested by Narala and co-authors (2016). Schematic
diagrams for closed reactors and open pond are shown in Fig. 13.1.

Table 13.5 Comparison of open and closed culture systems for microalgaea

Culture
systems for
microalgae

Open systems
(Ponds)

Closed systems (PBRs)

Tubular
photobioreactor

Flat-plate
photobioreactor

Contamination
control

Difficult Easy Easy

Species control Difficult Easy Easy

Weather
dependence

High light intensity,
temperature, rainfall

Medium light
intensity, cooling
required

Medium light
intensity, cooling
required

Biomass
productivity

Poor biomass
productivity

Good biomass
productivities

High biomass
productivities

Sterility None Easy to sterilize Easy to sterilize

Mixing Poor mixing Good mixing Good mixing

Space required Large area of land
required

Requires large land
space

Requires large surface
area

Operation costs Open
systems � closed
systems

Expensive compared
to open ponds

Expensive compared
to open ponds

Illumination
surface area

Light only
effectively penetrates
2′–3″ in ponds

Large illumination
surface area

Large illumination
surface area

Temperature
control

Difficult temperature
control

More uniform
temperature

Difficult temperature
control

Evaporation of
growth
medium

High Low Low

Scalability High Medium Difficult

Gas transfer
control

Low High High

O2 inhibition Usually low enough
because of
continuous

High (O2 must be
removed to prevent
photosynthesis
inhibition)

High (O2 must be
removed to prevent
photosynthesis
inhibition)

Maintenance Easy Hard Hard
aSources Mata et al. (2010), Brennan and Owende (2010), Christenson and Sims (2011) and Singh
et al. (2016)
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13.2.2 Immobilized Algal Culture

Harvesting microalgae is a major challenge in suspended culture at large-scale algae
production system. Using immobilized cultures (attached algal processes) could
play a major role in overcoming this major challenge to production, i.e., harvesting
of microalgae (Hoffmann 1998). In addition to that, immobilization offers a number
of other advantages over free-cell systems as well, including less space require-
ments, easier handling, higher resistance to unfavorable environmental conditions,
and the possibility of using higher cell densities in the process as well as reusing the
biomass for product generation (Mallick 2002; de-Bashan and Bashan 2010;
Christenson and Sims 2011; Eroglu et al. 2015). It should also be mentioned that
immobilized cells have been reported to possess higher biosorption capacity and
bioactivity (Mallick 2002). These collectively mark immobilized algal cultivation
systems as cost-effective processes for scale-up processing. Among the various
immobilization processes, the most common ones are discussed herein.

13.2.2.1 Matrix-Immobilized Microalgae

In this method, microalgal cells are immobilized or entrapped in a 3D matrix made
of natural (such as agar, cellulose, alginate) or synthetic (such as polyacrylamide,
polyurethane, polyvinyl) polymers. de-Bashan and Bashan (2010) argued that the
latter is comparatively more stable in wastewater samples, while natural polymers
such as alginate are advantageous in terms of their higher nutrient/product diffusion
rates and their eco-friendly features (de-Bashan and Bashan 2010). In spite of the
promising aspects of matrix immobilization of algal cells, this method is still limited
to laboratory scale for the cost of the immobilization matrix is yet to be further
decreased in order to be economically justified (Chevalier et al. 2000).

13.2.2.2 Algal Biofilms

The main advantage of algal cultivation systems designed based on algal biofilm is
the facilitated harvesting of algal cells by scraping. As mentioned earlier, expensive
harvesting systems used in suspended cultures, e.g., flocculation and centrifugation,
generally jeopardize the economic viability of these systems, and therefore, algal
biofilms when become economically available could assist with overcoming this
shortcoming.
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13.3 Algal Cultivation Optimization

In order to achieve an economically viable biodiesel production system from
microalgal biomass, optimization of algal cultivation in terms of algal biomass and
lipid content is of prominent importance. Numerous attempts of different nature
have been made in order to achieve the above-mentioned goals. For instance,
Bohutskyi et al. (2014) introduced an innovative, mixed trophic state process based
on Auxenochlorella protothecoides grown phototrophically, to obtain high lipid
content for generating algal biodiesel. They argued that simultaneous nitrogen
deprivation and glucose supplementation during the heterotrophic stage could boost
total lipid content by over threefolds. They also proposed to couple biodiesel
production with anaerobic digestion in order to produce biogas from the remaining
biomass after oil extraction and stated that the overall energy output of the coupled
process could be increased by up to 40% (Bohutskyi et al. 2014).

In a different study, various nutritional modes, including glucose supplementa-
tion, were investigated with an aim to enhance biomass and lipid productivity in
different microalgal strains. They reported that lipid productivity ranged from 2 to
13% under photoautotrophic conditions, 1.7–32% under mixotrophic conditions,
and 0.9–20% under heterotrophic conditions. While under heterotrophic conditions
where glucose supplementation was practiced, polyunsaturated fatty acids (PUFA)
fraction of the oil was decreased by around 2–4-folds depending on the microalgae
strain under investigation. On the other hand, saturated fatty acid (SFA) fraction
was also negatively impacted by glucose supplementation. Oils rich in SFA con-
taining low PUFA are ideal feedstock for achieving high oxidative stability in
biodiesel, and therefore, glucose supplementation could be serve this purpose well
(Ratha et al. 2013).

Another strategy proposed by Duong et al. (2015) was to target both algal lipid
and protein simultaneously to improve the economic viability of algal biodiesel
production. More specifically, they tried to isolate algal strains meeting three cri-
teria of fast growth, high lipid content, and protein-rich biomass, while that last
could be used for animal feed (Duong et al. 2015). Converti et al. (2009) explored
the effects of temperature concentration on lipid content in Nannochloropsis ocu-
lata and Chlorella vulgaris. They argued that variations in the investigated factor
strongly impacted lipid content. For instance, a temperature boost from 20 to 25 °C
increased lipid content by 100%, while an opposite was observed for C. vulgaris
when the temperature was increased from 25 to 30 °C (Converti et al. 2009).

Nitrogen concentration in the cultivation media is also an important parameter. It
is well documented that nitrogen deprivation could result in increased lipid content
but could also negatively affect algal growth. Therefore, a trade-off should be
observed to achieve the highest lipid productivity. In-depth understanding of the
relationships between cell nitrogen content, growth, and cell composition is
essential in order to be able to identify an optimal nitrogen content required for
most favorable lipid productivity in batch or continuous cultivation modes (Griffiths
et al. 2014). It should be highlighted that nitrogen deprivation could also improve
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the fatty acid profile of algal oils leading to more favorable biodiesel properties
(Griffiths et al. 2014).

Nitrogen-to-phosphorus (N/P) ratio could also have a crucial effect on the bio-
mass growth (Alketife et al. 2017). Xin et al. (2010) showed that this ratio is
significantly effective on biomass yield and lipid accumulation of a freshwater
microalga Scenedesmus sp. LX1. They claimed that under nitrogen (2.5 mg L−1) or
phosphorus (0.1 mg L−1) limitations, the microalgae under investigation could
accumulate lipids to as high as 30 and 53% of its algal biomass, respectively and
lipid productivity was not enhanced reportedly. Similar observations were made by
Kalla and Khan (2016) who also studied the effect of decreasing nitrogen and
phosphorus concentrations on growth, biomass, and lipid content of C. vulgaris.
They argued that significant decreases were recorded in growth and by decreasing
nitrogen and phosphorus concentrations in the medium from (1.5–0.0 g/l) and
(0.04–0.0 g/l), respectively. On the contrary, lipid accumulation was enhanced
under the phosphorus and nitrogen limitations.

Different ions could also impact algal growth and lipid production significantly.
For instance, Huang et al. (2014) investigated the effects of ferric ion concentrations
on three species of microalgae (Tetraselmis subcordiformis, Nannochloropsis
oculata, and Pavlova viridis). They concluded that growth, lipid content, as well as
the fatty acid profiles of the studied microalgae varied in response to changes in
ferric ion concentrations and that an optimum ferric ion concentration can improve
the properties of respective algal biodiesels.

In a different study performed in high-glycerol content media, the effect of calcium
and magnesium ions supplementation was studied using two fast-growing algal
strains of Aurantiochytrium sp. DBTIOC-18 and Schizochytrium sp. DBTIOC-1 for
biomass and lipid production (Singh et al. 2016). It was revealed that increasing both
calcium and magnesium ions’ concentration promoted glycerol utilization and
resulted in a significant boost in biomass and lipid production. Such findings high-
light the importance of calcium and magnesium ions’ concentrations in preventing
substrate inhibition under high nutrient concentrations, especially carbon sources to
achieve high biomass and lipid yields (Singh et al. 2016).

Sulfate ions are also effective on growth of microalgae. In a recent study, Lv
et al. (2017) strived to look into the responses of the self-flocculating microalga
Chlorococcum sp. GD to different sulfate concentrations in a synthetic municipal
wastewater. Their results showed that the microalgal cells grew better in the syn-
thetic municipal wastewaters containing 18, 45, 77, 136, and 271 mg/L SO2�

4 than
in the control wastewater without SO2�

4 . They argued that sulfate deprivation led to
significant decreases in antioxidative enzymes and photosynthetic activities and that
these in turn significantly weakened the growth and self-flocculation properties of
the algal cells (Lv et al. 2017).

pH is also important for the microalgal growth and the accumulation of intra-
cellular lipids. This was confirmed by the findings of Sakarika and Kornaros (2016)
who investigated the impacts of various pH values on C. vulgaris cultivation. They
also argued that the fatty acid composition of the algal cultures was not impacted by
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pH variations. Illumination, i.e., length of photoperiod and light intensity, could
also result in changes in algal growth and lipid content and have to be optimized
(Wahidin et al. 2013). Overall, producing high amounts of lipids while maintaining
a high algal growth rate is critical for an economic algal biodiesel production
simply because high algal biomass productivity would lead to high yield per harvest
volume and high lipid content would decrease the cost of extraction per unit pro-
duct (Tan and Lee 2016). On such basis and since high lipid content and high
biomass growth rate basically contradict each other, efforts have been being made
to construct algal strains capable of producing high amounts of lipids without
sacrificing growth through genetic and metabolic engineering (Talebi et al. 2015).

13.4 Harvesting and Drying of Microalgae

Harvesting in general constitutes a major fraction (20–30%) of the costs associated
with microalgal production (Ndikubwimana et al. 2016). Two-step separation, i.e.,
thickening followed by dewatering, is usually practiced to decrease the cost of the
final product. The concentration of the algal cells is increased to approx. 2–7 and
15–25% (TSS basis) through the two stages, respectively. There are several
methods for harvesting algae including (Christenson and Sims 2011): (1) filtration
—algae can be filtered out by passing through membranes; in this method, recovery
rate is high and lower energy inputs are involved, but dewatering might be required;
(2) centrifugation—a mechanical method for harvesting microalgae which does not
involve contamination with chemicals and, like filtration, the rate of recovery is
high; (3) flocculation, a method for separating algae using chemicals that lead to

Table 13.6 List of some microorganisms used for bioflocculation of microalgaea

Microorganism Type Bioflocculated microalgae

Bacillus licheniformis Bacteria Desmodesmus sp.

Pseudomonas stutzeri and Bacillus
cereus

Pleurochrysis carterae

Paenibacillus sp. Chlorella vulgaris

Paenibacillus polymyxa Scenedesmus sp.

Bacillus subtilis Chlorella vulgaris

Bacillus sp. Nannochloropsis oceanica sp.

Ankistrodesmus falcatus Fungi Chlorella vulgaris

Scenedesmus obliquus Chlorella vulgaris

Tetraselmis suecica Nannochloropsis oleabundans

Skeletonema sp. Nannochloropsis sp.

Tetraselmis suecica Microalgae Chlorella sp. and Nannochloropsis
sp.

aAl Hattab et al. 2015, Powell and Hill (2013), and Kawaroe et al. (2016)
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aggregation of algal cells. In this method, destruction of algal cells is less than in
centrifugation and low energy is required; (4) floatation is a separation method in
which algae are floated into the surface using bubbling, often used in combination
with flocculation for wastewater treatment. No disturbance is made to the cells, and
low-energy requirement is also considered as an advantage of this system; (5) ul-
trasonic separation in which sound waves cause the cells to agglomerate.

Choice of harvesting methods depends on the characteristics of microalgal
strain/consortium, while the type and value of the end product are also of impor-
tance (Barros et al. 2015). Among different methods, bioflocculation, i.e., the use of
microorganisms for the recovery of microalgae biomass, has been most widely used
as it is accompanied with significantly less dewatering cost which is economically
critical for their full-scale application (Ndikubwimana et al. 2016). A list of
microorganisms used in bioflocculation is tabulated in Table 13.6 (Al Hattab et al.
2015; Kawaroe et al. 2016). These microorganisms when added to an algal culture
lead to the settlement of the algal cells by adhering and consequent weight increase
(Al Hattab et al. 2015). For instance, Ndikubwimana et al. (2014) claimed 98%
removal efficiency when they use Bacillus licheniformis as bioflocculant for har-
vesting Desmodesmus sp. culture. In a different study, Zhang and Hu (2012)
employed a co-culture of Chlorella vulgaris and filamentous fungi and successfully
extracted the oil for biodiesel production.

In general, both algal oil extraction and its conversion into biodiesel are strongly
negatively affected by the presence of water and, therefore, algal biomass should be
effectively dried prior to the transesterification reaction (Kumar et al. 2010a, b, c).
As a result, different drying methods are usually employed after secondary dewa-
tering (Richmond 2008). Solar drying is the most economically viable drying
method especially in places where abundant sunlight is available throughout the
year (Sharma et al. 2013). On the contrary, drying methods which are dependent on
fossil-oriented energy carriers for their operation, e.g., spray drying and drum
drying, are economically and environmentally justified for microalgae biodiesel
production (Zhang et al. 2014).

13.5 Lipid Extraction

Microalgal lipids are divided into nonpolar (hydrocarbons, waxes, eicosanoids,
fatty acids, and acylglycerols) and polar (phospholipids and glycolipids). There are
several methods for cell disruption and extracting microalgal lipids such as
mechanical (expeller press), physical (decompression, microwave, freeze-drying,
and thermolysis), chemical (organic solvent, chelating agent, supercritical CO2,
detergent, and antibiotics), and enzymatic (lytic, autolysis, and phage) (Kumar et al.
2015).

Mechanical extraction methods offer a number of advantages over the other
methods including less dependency on the type of microalgae species to be pro-
cessed and no contamination of the extracted lipid (Ramesh 2013). Nevertheless,
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higher energy requirements are considered as a drawback of mechanical extraction
methods. This is ascribed to the fact that heat is generated during mechanical
extraction of lipids and, in order to prevent damages to the lipids, cooling needs to
be performed whose energy and equipment costs negatively impact the overall
economics of the process (Lee et al. 2012). Moreover, for a successful imple-
mentation of mechanical extraction methods, low-moisture-content algal biomass is
required and, therefore, a drying stage needs to be included which could also
considerably increase the overall extraction costs. It should also be noted that the
amount of pressure employed during mechanical extraction is of critical impor-
tance. More specifically, increasing pressure to an optimal level could improve the
extraction efficiency, while above-optimal pressure values could negatively affect
the process leading to decreased lipid recovery and increased heat generation
(Ramesh 2013). Expeller press is one of the simplest mechanical techniques for
extracting various oil feedstocks including algae. Nevertheless, its major technical
drawback is the presence of pigments along with oil. This method also requires
huge amounts of energy, and its efficiency rate is low to moderate.

Among the physical extraction methods, microwave-assisted extraction has
attracted a great deal of attention due to its effectiveness in disrupting algal cell
walls, being non-toxic, and the possibility of reusing the media after extraction (Lee
et al. 2010; Halim et al. 2012; Hattab and Ghaly 2015). Nevertheless, the high costs
associated with its maintenance still limit its large-scale application. Freeze-drying
and autoclave techniques are also classified among physical extraction methods.
However, both these methods suffer from drawbacks such as high costs and long
processing times (Hattab and Ghaly 2015).

Cell disruption and consequently extraction of lipids can be also achieved by
using a large variety of chemical compounds including antibiotics, chelating agents,
chaotropes, detergents, solvents, hypochlorites, acids, and alkali, through different
mechanisms though (Günerken et al. 2015). For instance, basic compounds disrupt
the cell membranes through saponification of the membrane lipids, while acidic
compounds exert their disruptive properties through poration of the cell membrane/
wall (Halim et al. 2012; Günerken et al. 2015). In general, lipid extraction from
algal biomass is currently carried out using organic solvents such as chloroform,
methanol, water, chloroform/methanol (1:2 v/v), chloroform/methanol/water
(1:2:0.8 v/v/v), hexane, isopropanol, hexane/isopropanol (3:2 v/v), and ethanol
(Zhang et al. 2014). It should be mentioned that organic solvent-based extraction is
time- and labor-demanding and, more importantly, it is most efficient for lipid
extraction from some algal strains, while it is not reportedly applicable for all algal
strains (Ranjith Kumar et al. 2015).

Extracting oil from algal cells is generally limited due to the presence of algal
cell wall (Johnson and Wen 2009). Therefore, the use of enzymes such as cellulase,
neutral protease, alkaline protease, papain, and lysozyme has been practiced to
facilitate cell disruption (Taher et al. 2014; Hattab and Ghaly 2015). Compared to
mechanical and chemical methods, enzymatic extraction of algal lipids is very
efficient and rapid while causing no corrosion as is the case when chemical
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extraction methods are used. However, the application of enzyme-based methods is
limited owing to the high cost of enzymes.

Table 13.7 Different processes used for converting algal biomass to various types of biofuelsa

Conversion process Final
product

Advantages and
limitations

Biochemical conversion Photobiological
hydrogen
production

Hydrogen –

Fermentation Bioethanol,
acetone,
bioethanol

Co-products can be
utilized, conversion of
sugar to bioethanol
possible, long processing
time required, biomass has
to be preprocessed to be
converted to sugars

Anaerobic
digestion

Methane,
hydrogen

Thermochemical
conversion

Dry
feedstock

Gasification Syngas –

Pyrolysis Bio-oil–
charcoal–
syngas

High bio-oil yields
possible(up to 57.5% w/w
for fast and flash pyrolysis,
high-energy content
required to dry feedstock

Wet
feedstock

Liquefaction Bio-oil Algal wet slurry can be
used, energy (and cost)
reduction, high yields
possible (up to 60% w/w),
reactors are complex and
expensive

Direct combustion Power
generation

–

Chemical reaction Transesterification Biodiesel Enhanced physical
properties of renewable
fuels, biodiesel has a
current market that
simplifies
commercialization, limited
to conversion of lipids and
does not utilize
carbohydrate and protein
fractions of feedstock

aTsukahara and Sawayama (2005) and Vardon et al. (2012)
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13.6 Microalgae Biofuel Production Pathways

After oil extraction from microalgae for biodiesel production, the remaining bio-
mass can be converted into different types of biofuels, i.e., biohydrogen (Fedorov
et al. 2005; Kapdan and Kargi 2006), biomethane (Sialve et al. 2009), and bioe-
thanol (Dexter and Fu 2009) (Table 13.7).

13.6.1 Biochemical Conversion of Algal Biomass

Technologies for biochemical conversion of algal biomass include anaerobic
digestion (or biomethanation) and fermentation. More specifically, in biochemical
conversion, carbohydrates are digested into sugars using bacteria, microorganisms,
and enzymes, which are then transformed into gaseous or liquid fuels, such as
biogas (biomethane and biohydrogen) and bioethanol (Zamalloa et al. 2012). For
instance, Batista et al. (2015) converted the biomass of an algal consortium
(Chlorella vulgaris, Scenedesmus obliquus) grown on wastewater into biohydrogen
through dark fermentation by an Enterobacter aerogenes strain. The highest bio-
hydrogen production yield achieved was 56.8 mL H2/gVS.

13.6.2 Thermochemical Conversion of Algal Biomass

Thermochemical conversion involves the use of heat to convert algal biomass into
gaseous or liquid fuels. Thermochemical conversion can be classified according to
the primary desired product (solid, liquid, gas) and the water content of the feed-
stock (dry or wet).

13.6.2.1 Biocrude Oil Production by Hydrothermal Liquefaction
(HTL) of Wet Algal Biomass

The thermochemical conversion of wet algal biomass (75–98% moisture) into
biocrude oil in the presence of a solvent at 200–350 °C temperatures and 5–25 MPa
pressure to maintain water in the liquid state is called hydrothermal liquefaction
(HTL) (Biller et al. 2011). In HTL, biomass is broken down into shorter carbon
chains that have a higher energy density (Brennan and Owende 2010). Oxygen,
sulfur, and water contents are very low in crude HTL oil. HTL oil recovers more
than 70% of the feedstock carbon content. The product is a heavy oil or tarry
material, which is called biocrude oil (Biller et al. 2011). The size of biomass
particles, residence time, solvent media type, and hydrogen donor solvents are
effective for the bio-oil yield and the product quality (Akhtar and Amin 2011). The
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basic reaction mechanisms involve: (a) depolymerization of the biomass, (b) de-
composition of biomass monomers, and (c) recombination of reactive fragments
(Toor et al. 2011).

13.6.2.2 Biofuel Production by Pyrolysis of Algal Biomass

Pyrolysis is one of the subclasses of thermochemical conversion in which dry algal
biomass is decomposed in the absence of oxygen (or any halogen) and converted
into biofuels such as bio-oil–charcoal–syngas. This conversion occurs in the tem-
perature range of 401.85–701.85 °C and 0.1–0.5 MPa pressure (Demirbas 2006).
On the basis of operation conditions, pyrolysis process is classified into: (1) slow
pyrolysis with operation temperature of 286.75–676.85 °C (Bridgwater 2003),
(2) fast pyrolysis with operation temperature of 577–977 °C under inert atmo-
spheric conditions (Mohan et al. 2006), and (3) flash pyrolysis with operation
temperature of 777–1027 °C (Balat et al. 2009).

13.6.2.3 Syngas Production Through Gasification of Microalgal
Biomass

Syngas (a combination of hydrogen, carbon monoxide, and carbon dioxide) is
usually produced through the gasification of different carbonous materials including
algal biomass (Brown et al. 2010). Gasification process is in fact a partial oxidation
process that converts dry algal biomass for instance into a mixture of gases.
Gasification is classified into low temperature gasification (700–1000 °C) and high
temperature gasification (1200–1600 °C) (McKendry 2002). Yield of syngas
depends on various factors including microalgal biomass quality, the equipment
(gasifier) used, as well as process parameters (e.g., temperature and catalysis used).
In a study, Raheem et al. (2015a, b) reported that syngas yield increases from 28 to
57% by increasing temperature from 552 to 952 °C. The generated syngas could
eventually be used for hydrogen production, liquid biofuels production, synthetic
natural gas (SNG) production, etc. (Mondal et al. 2011).

13.6.3 Chemical Reaction

13.6.3.1 Biodiesel Production by Transesterification of Algal Oil

Biodiesel, also known as methyl or ethyl esters of long-chain fatty acids, is an
alternative to mineral diesel fuel produced from vegetable oils, animal fats, and
algal oil mainly through the transesterification reaction with an alcohol (methanol
and/or ethanol) and in the presence of a catalyst (mostly NaOH or KOH). The main
advantages of biodiesel as fuel include widespread availability, renewability,
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clean-burning features compared with mineral diesel, and lower sulfur and aromatic
contents (Demirbas 2007). These are numerous reports confirming that biodiesel
lowers exhaust emissions from diesel engines (Hayyan et al. 2010), i.e., particulate
matter (PM) (Kolesárová et al. 2011), unburned hydrocarbons (HC), and carbon
monoxide (CO). On the contrary, there is no consensus on the impact of biodiesel
on nitrogen oxide (NOx) emission as there are reports claiming increases in NOx

due to the oxygen content of biodiesel (Sharma et al. 2008). There are four methods
for biodiesel production and utilization, direct use and raw oils blending,
microemulsions, pyrolysis, and transesterification. As mentioned earlier, the last
procedure is most commonly used (Demirbas 2003). Through transesterification,
biodiesel and its co-product, i.e., glycerin, is produced in several stages. Afterward,
the excess methanol is recovered from the methyl esters through evaporation, and
the final biodiesel is eventually washed with water, neutralized, and dried (Xu et al.
2006). Since fossil oil is derived from spores and planktonic algae that were under
high pressure and temperature over millions of years, the chemical properties of
microalgal lipids and the consequent biodiesel are also very similar to those of
mineral diesel (Demirbas and Demirbas 2011).

Transesterification reaction can be acid/base/enzyme catalyzed. Alkaline cata-
lysts include NaOH, NaO−, KOH, and KO−1, while acid catalysts include HCL and
H2SO4. Enzymatic catalysts such as lipases that are able to catalyze the transes-
terification of triglycerides effectively in either aqueous or nonaqueous systems are
more environmentally friendly than the other two groups as they result in no
wastewater and the produced glycerin needs minimal purification (Fukuda et al.
2001). In another word, the weak points of transesterification reaction by alkaline
catalysts are difficult recovery of glycerol, the need for alkaline wastewater treat-
ment, free fatty acid and water interference with the reaction, energy intensity, and
the necessity of removing the catalyst from the product (Meher et al. 2006). Some
properties of diesel, biodiesel from various oil feedstocks, and microalgae biodiesel
are shown in Table 13.8 (Kiss et al. 2007; Huang et al. 2010; Veillette et al. 2012).

13.7 Applications of Microalgae in Integrated Systems

Integration of algal biodiesel production with other activities such as wastewater
treatment with an aim to enhance the economic viability of the whole process could
be regarded as an efficient strategy to overcome most of the challenges faced. For
instance, and as mentioned earlier, wastewater resources are rich in nutrients, such
as nitrogen and phosphorus, and could be served microalgal growth as cultivation
medium. In fact, using wastewater for microalgal biofuel production not only can
reduce freshwater footprint and the cost of these fuels (Clarens et al. 2010) but also
could offer new algal-based wastewater treatment systems (Table 13.5). It is worth
mentioning that non-fuel products such as fertilizers, chemicals, pharmaceutics,
dyes, paints, and animal feeds could also be obtained from microalgaes grown on
wastewater (Bhatt et al. 2014).
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Beside biofuel production, biofixation of carbon could also be the secondary
objective of algal-based biofuel production systems. This is increasingly important
given the criticality of climate change and the very recent international call for
immediate action to address this crisis to the level that even the leader of the
Catholic Church Pope Francis raised the issue during his visit to the USA in
September 2015 (The Gurdian 2015).

The following sections summarize the efforts made during the last several years
in order for integrating algal biofuel production systems with wastewater treatment
and carbon biofixation.

13.7.1 Algal Biofuel Production and Wastewater Treatment

A major requirement of an efficient wastewater treatment is obviously the need to
remove high concentrations of nutrients, in particular N and P. As mentioned
earlier, microalgae are capable of uptaking such nutrients as well as heavy metals
and organic pollutants from wastewater and producing biomass. Thus, it offers great
promises for the treatment of various municipal, agricultural, and industrial
wastewaters (Feng et al. 2011; Zhu et al. 2013). However, there are many reports
indicating that most of the microalgal species with high lipid contents do not adapt
well to grow in wastewater (Xin et al. 2010). Contrary to these reports, there are
also a number of success stories through which efficient integration of algal biofuels
production and wastewater treatment has been accomplished (Zhou et al. 2011a, b,
2013; de Alva et al. 2013; Hena et al. 2015). For instance, Zhou et al. (2011a, b)
claimed that five species of microalgae isolated from Minnesota wastewaters
including Chlorella sp., Heynigia sp., Hindakia sp., Micractinium sp., and
Scenedesmus sp. showed high growth rate (0.455–0.498 d−1) and lipid productiv-
ities (74.5–77.8 mg L−1 d−1) on municipal wastewater.

In a more recent investigation, de Alva et al. (2013) also cultivated Scenedesmus
acutus in pretreated municipal wastewater with a dual focus on biomass produc-
tivity and lipid accumulation. They argued that S. acutus could successfully remove
nutrients from the wastewater and that they achieved 249.4 mg L−1 biodiesel from
the referred algal oil. It should be pointed out that in a series of experimental
surveys, Chinnasamy et al. (2010a, b), Kong et al. (2010), and Zhou et al. (2011a,
b) revealed that municipal wastewater was a better option compared with industrial
wastewater for algal biomass and lipid production. A comparison of biomass
productivity, lipid content, and lipid productivity of different microalgae species
grown on various wastewater is tabulated in Table 13.9. The following sections
present the integration of biofuels production with algal-based treatment of different
types of wastewaters, namely high N/P content wastewater, high heavy
metal-content wastewater, and high organic-content wastewater (PAHs aromatic
hydrocarbons and polychlorinated biphenyls (PCBs)).

Zhu et al. (2013) proposed Chlorella zofingiensis cultivation on piggery
wastewater with a dual purpose of wastewater treatment and biodiesel production.
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In a different investigation, Maity et al. (2014) investigated the integration of
biofuel and bioelectricity production with wastewater treatment using one species
of microalgae, i.e., Leptolyngbya sp. JPMTW1 (KF977831). They argued that only
after 7 d of cultivation, biomass production, rate of biomass production, lipid
production, and rate of lipid production stood at 3300 mg L−1,
471.42 mg L−1 day−1, 1068.383 mg g−1 dry wt. biomass, 152.62 mg g−1 dry
biomass/day, respectively. The also reported that over the same period, electrical
conductivity (EC), chemical oxygen demand (COD), and total dissolved solid
(TDS) decreased from 982 to 854 (mS/cm), 255 to 112 mg L−1, and 490–
427 mg L−1, respectively. Overall, their findings were indicative of the possibility
of the production of biofuel, bioelectricity, and wastewater treatment by
Leptolyngbya sp. JPMTW1. In another study, Chen et al. (2014) produced biocrude

Table 13.10 Nutrient removal efficiency of microalgal species

Microalgal
species

Wastewater
type

Nitrogen
(%)

Phosphate
(%)

COD
removal
(%)

References

Chlorella
Mexicana

Piggery 62 28% – Abou-Shanab et al.
(2013)

Chlorella
vulgaris

Textile 44.4–
45.1

33.1–33.3 38.3–
62.3

Lim et al. (2010)

Chlorella
vulgaris

Municipal 55–88 12–100 – Khan and Yoshida
(2008), Ruiz-Marin et al.
(2010)

Chlorella
kessleri

Artificial
medium

8–19a 8–20b – Cai et al (2013)

Chlorella sp. Municipal
centrate

89.1 80.9 90.8 Li et al. (2011)

Chlorella sp. Dairy manure 75.7–
82.5

62.5–74.7 27.4–
38.4

Wang et al. (2010)

Chlorella
pyrenoidosa

Industrial 87–89 70 – Hongyang et al. (2011)

Chlorella
minutissima

Primary- and
tertiary-treated

70–80 60–70 – Malla et al. (2015)

Chlamydomonas
reinhardtii

Artificial
medium

12–83 13–14 – Kong et al. (2010)

Chlamydomonas
polypyrenoideum

Dairy 74–90 70 – Kothari et al. (2012)

Scenedesmus
obliquus

Municipal 79–100a 47–98 – Cai et al. (2013)

Scenedesmus
acutus

Municipal 66 94 – de Alva et al. (2013)

Euglena sp. Sewage
treatment
plant

93 66 – Mahapatra et al. (2013)

aNitrate, nitrite
bTotal orthophosphates
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oils from a mixed-culture algal biomass harvested from a functioning wastewater
treatment system as well.

13.7.1.1 High N/P Content Wastewater

Nitrogen is a critical nutrient required for algal growth, and the application of
nitrogen starvation for enhancing algal cell lipid content is well documented
(Brennan and Owende 2010). Likewise, another key factor in algal energy meta-
bolism is phosphorus which is found in a variety of biological substances, such as
nucleic acids, lipid, proteins, and intermediates of carbohydrate metabolism. All
eukaryotic algae require inorganic nitrogen, while some algal species are capable of
using both inorganic and organic phosphorus (Liang 2013). In recent years,
investigations into the ability of microalgae to simultaneously grow on wastewater
streams and remove nutrients have revealed many microalgae species with high
protectional for N and P removal from wastewaters (Table 13.10). For instance, Cai
et al. (2013) achieved an N removal efficiency of 79–100% by S. obliquus from
municipal wastewater. Earlier in the year 2010, Lim et al. made an attempt to treat
textile wastewater medium using C. vulgaris and reportedly managed to remove N
and P by 45 and 33%, respectively. A wide range of N (55–88%) and P (12–100%)
removal has been reported when municipal wastewater was used as the waste
stream (Khan and Yoshida 2008; Ruiz-Marin et al. 2010; Li et al. 2011). Mixed
municipal and industrial wastewater was used by Gentili (2014) to produce
Selenastrum minutum algal biomass and lipid, while effective wastewater treatment
was also targeted. Their results showed that ammonium and phosphate contents
were decreased from 96 to 99% and 91 to 99%, respectively, while the highest
biomass and lipids yields (dry matter basis) reaching 37%.

Lu et al. (2015) used meat processing wastewater for the cultivation of the
microalgae Chlorella sp. (UM6151) aiming at simultaneous biomass production,
wastewater treatment, and nutrient removal. They implemented an innovative
cultivation approach based on wastewater mixing to supply nutrients and improve
biomass yield at economic rates. They claimed that algal biomass yield (0.675–
1.538 g/L) achieved using mixed wastewater was much higher than those obtained
using individual wastewater and synthetic medium. Moreover, they achieved
improved ammonia nitrogen removal efficiencies (68.75–90.38%) and total nitro-
gen removal efficiencies (30.06–50.94%). Interestingly, by using wastewater mix-
ing, algal protein content was also enhanced reaching as high as 60.87–68.65%.

In an effort, Abou-Shanab et al. (2013) strived to integrate biofuel production
and the treatment of piggery wastewater (TN: 56 ± 2 and TP:13.5 ± 0.6 mg/L).
They reported that six microalgal species including Ourococcus multisporus,
Nitzschia cf. pusilla, Chlamydomonas mexicana, S. obliquus, Chlorella vulgaris,
and Micractinium reisseri were capable of efficiently treating wastewater and
producing high oil content for biodiesel production. Among the studied species, C.
Mexicana was proven to have the highest removal rates, i.e., N (62%), phosphorus
(28%), and inorganic carbon (29%). Hence and due to the higher lipid productivity
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and lipid content (0.31 ± 0.03 g/L and 33 ± 3%, respectively), compared with the
other species, the authors suggested that C. mexicana could be a suitable candidate
for integrated biodiesel production and wastewater treatment.

In a study, Min et al. (2014) suggested an efficient method, i.e., a pilot-scale
stacked-tray bioreactor to increase nutrient removal rate from piggery wastewater
coupled with biofuel production. Through their proposed cultivation system, algal
biomass productivity (based on TSS) was enhanced from 19.15 to 23.19 g m−2

day−1 and they achieved lipid contents ranging between 1.77 and 3.55%. Wang
et al. (2012) looked into the impact of dilution on algal biodiesel production and
nutrient removal from high N/P content wastewater. In their study, primary piggery
wastewater was used as the waste stream and was treated by mixotrophic cultiva-
tion of Chlorella pyrenoidosa. They stated that there was a positive linear corre-
lation between algal biomass productivity and the initial COD values ranging from
250 to 1000 mg L−1. The maximal lipid productivity 6.3 mg L−1 day−1 was
recorded with an initial COD of 1000 mg L−1, while nutrients such as ammonium
were removed efficiently at rates as high as >90% in all diluted samples. Can et al.
(2015) also explored the potential of microalgae Spirulina platensis for biofuel and
biochemical production coupled with domestic wastewater treatment. Similar to
Wang et al. (2012), in their experimental approach, wastewater was also diluted
with distilled water to achieve different concentrations of 100, 75, 50, and 25%.
Their findings were in line with those of Wang et al. (2012), revealing that the
highest biomass yield was recorded when the wastewater without dilution (100%)
was used. In terms of lipid production, however, the maximal value was measured
in 25% wastewater. Therefore, a trade-off should be observed in order to maximize
lipid productivity.

In a different study, Malla et al. (2015) also studied the potential of Chlorella
minutissima for biodiesel production coupled with wastewater treatment. Their
results indicated that after 12 d of the experiment, C. minutissima removed about
90–98% TDS, 70–80% N, 60–70% P, and 45–50% K from the high N/P content
wastewater. They also converted the algal lipid extracted to biodiesel as part of the
integrated system. Hena et al. (2015) investigated the potentials of a consortium of
native microalgae species grown on a dairy farm treated wastewater for biodiesel
production. The claimed that biomass production and lipid content of the consor-
tium were 153.54 t ha−1 year−1 and 16.89%, respectively, and that 72.70% of the
algal lipid obtained could be converted into biodiesel.

13.7.1.2 High Heavy Metal Content Wastewaters

Heavy metals mainly include transition metals, metalloids, lanthanides, and acti-
nides. These metals have a highly specified gravity and are toxic to a level that even
at low concentrations represents a significant environmental concern (Bhargava
et al. 2012). Various methods have been investigated for heavy metal removal,
which are tabulated in Table 13.11 (Fu et al. 2011). Among these methods, algae
have been proposed as ideal candidates for heavy metal removal from various
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wastewaters through either uptake or accumulation of Hg, Cd, Zn, Au, Ag, Co, Mn,
Cs, Ni, Fe, Cu, and Cr from their environment (Chekroun and Baghour 2013). In
fact, algae produce polypeptides called chelating agents capable of binding to heavy
metals. Apart from that, large surface area of algal cells is also effective in removing
heavy metals (Kumar et al. 2015). More specifically, metal absorption by
microalgae occurs at two stages: first, at the surface of algal cells through very
quick physical adsorption or ion exchange. The second stage, also called

Table 13.11 Heavy metal wastewater treatment techniques (Fu and Wang 2011)

Technique Conventional
processes

Material used in the process Removed ions

Chemical
precipitation

Hydroxide
precipitation

Ca(OH)2, NaOH Zn2+, Cr3+, Pb2+,
Hg2+, Cu2+

Sulfide
precipitation

Iron sulfide (FeS) Pb2+, Cu2+, Cd2+

Heavy metal
chelating
precipitation

1,3-benzenediamidoethanethiol,
hexahydrotriazine dithiocarbamate
(HTDC), ethyl xanthate

Hg2+, Cu2+

Ion exchange – Clinoptilolite Pb2+, Ni2+, Zn2+

Adsorption Activated
carbon
adsorbents

– Pb2+, Cu2+

Low-cost
adsorbents

Chemically modified plant wastes,
agricultural waste material,
industrial by-products such as
lignin, natural substances

Pb2+, Ni 2+, Cd2+

Carbon
nanotube
absorbents

(1) Single-walled CNTs
(SWCNTs)

Pb2+, Ni 2+, Cd2+,
Cu2+

(2) Multi-walled CNTs
(MWCNTs)

Bioadsorbents Non-living such as potato peels,
sawdust, coffee husks as well as
living such as algal biomass and
microbial biomass

Pb2+, Cd2+, Cu2+

Membrane
filtration

Ultrafiltration Micellar-enhanced ultrafiltration
(MEUF) and polymer-enhanced
ultrafiltration (PEUF)

Pb2+, ASO4−, Cd2+,
Zn2+, Cr(III), Cr(VI),
Cu2+, Cr3+, Ni2+

Reverse
osmosis

– Zn2+, As, Cu2+, Ni2+

Nanofiltration NF90 andN30F Cr(VI), Cu2+

Electrodialysis – Pb2+, Cr(III)

Coagulation and
flocculation

– Polyferric sulfate (PFS),
polyacrylamide (PAM)

Ni2+, Cu2+, Pb2+,
Zn2+

Electrochemical
treatment

– – Zn2+, Ag+, Cu2+,
Ni2+

Flotation – – Cd2+, Pb2+, Cu2+
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chemisorption, takes place at a slower rate intracellularly and is driven by metabolic
processes involving active binding groups (Zhou et al. 2012).

Richards and Mullins (2013) studied algal-based bioremediation of municipal
leachate by using a consortium of four marine microalgae species, i.e., Pavlova
lutheri, Tetraselmis chuii, Nannochloropsis, and Chaetoceros muelleri while also
targeting enhanced lipid production. Their results revealed that algal-based biore-
mediation was a feasible method for simultaneous treatment of waste streams and
lipid production. Yang et al. (2015) proposed an integration of heavy metal
wastewater utilization and biofuel production as an alternative solution to address
energy shortage and environmental concerns. They claimed that Chlorella
minutissima UTEX 2341 had strong resistance to cadmium, copper, manganese,
and zinc ions under heterotrophic culture condition and could efficiently remove
these heavy metals through intracellular accumulation and extracellular immobi-
lization. Moreover, lipid accumulation was not negatively affected by heavy metals.
Heavy metal removal by some species of microalgae from various wastewater
sources is depicted in Table 13.12.

Table 13.12 Heavy metal removal by microalgae from different wastewater source

Microalgae species Wastewater type Metal
studied

Removal
efficiency or
accumulation

References

Scenedesmus sp. Cu, Ni Kumar
et al. (2015)

Chlorella vulgaris Synthetic wastewater Cr 43.3 mg g−1

biomass
Xie et al.
(2014)

Spirulina maxima and
Chlorella vulgaris

Secondary effluent Cu 81.7% Chen et al.
(2014)

Pavlova lutheri,
Tetraselmis chuii,
Nannochloropsis, and
Chaetoceros muelleri

Municipal wastewater Leachate Richards
and Mullins
(2013)

Scenedesmus
quadricauda

Synthetic wastewater Pb 82% Mirghaffari
et al. (2015)

Phaeodactylum
tricornutum

Seawater enriched Hg 2229 mg g−1

biomass
Deng and
Lu (2013)

Chlorella vulgaris,
Spirulina maxima and
Synechocystis sp.

Wastewater treatment
plant discharge

Cu, Zn Chan et al.
(2013)

Scenedesmus bijuga,
Oscillatoria
quadripunctulata

Sewage wastewater and
petrochemical effluents

Cu, Co,
Zn, Pb

Ajayan
et al. (2011)

Dictyosphaerium
chlorelloides

Leather tanning, tincture
wood preservatives, and
the electroplating industry
wastewater

Cr (III) Pereira
et al. (2010)
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13.7.1.3 High Organic-Content Wastewater

Organic pollutants are chemical substances that persist in an environment through
industrial discharges and agricultural usages. They are also resistant to environ-
mental degradation through chemical, biological, and photolytic processes and have
harmful effects on human health. Among these organic pollutants, polycyclic
aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are highly
persistent compounds and, if introduced into the food chain, they have been proven
to be carcinogenic (Gilden et al. 2010). Microalgae are capable of decomposing
different kinds of organic pollutants including phenolics, pesticides, as well as
PAHs and PCBs. Ankistrodesmus braunii, Scenedesmus quadricauda, Ochromonas
danica, and Monoraphidium braunni are examples of microalgae species that can
biodegrade phenolic and biophenolic compounds (Mukherjee et al. 2013; Gattullo
et al. 2012). Ali et al. (2012) introduced microalgae such as chlorella vulgaris as a
low-cost adsorbent for removing organic pollutants from wastewaters. Attempts for
degradation of organic pollutants by some species of microalgae are summarized in
Table 13.13.

Table 13.13 Degradation of organic pollutants by algal species

Microalgae species Organic pollutant References

Monoraphidium braunii Bisphenol Gattullo et al. (2012)

Chlamydomonas reinhardtii Herbicide (fluroxypyr) Zhang and Hu (2012)

Pediastrum tetras
Ankistrodesmus fusiformis
Amphora coffeaeformis

Herbicide (mesotrione) Valiente Moro et al. (2012)

Scenedesmus quadricauda Herbicide (isoproturon) Dosnon-Olette et al. (2010)

Scenedesmus obliquus GH2 Crude oil degradation Tang et al. (2011)

Scenedesmus obliquus Nonylphenol, octylphenol Zhu et al. (2013)

Skeletonema costatum Phenanthrene, fluoranthene Hong et al. (2008)

Selenastrum capricornutum Benzene, toluene, chlorobenzene,
1,2-dichlorobenzene, nitrobenzene,
naphthalene, 2,6-dinitrotoluene,
phenanthrene, di-n-butylphthalate,
pyrene

Lei et al. (2007), Gavrilescu
(2010)

Nitzschia sp. Phenanthrene, fluoranthene Hong et al. (2008)

Chlorella sp.
Scenedesmus obliquus
Stichococcus sp.

Phenol Zhang and Hu (2012)

Chlorella vulgaris Atrazine Dosnon-Olette et al. (2010)

Chlorella fusca var.
vacuolata

2,4-Dichlorophenol Zhang and Hu (2012)

Chattonella subsalsa
Chattonella marina var.
marina
Chattonella marina var.
ovata

PCB (Aroclor 1242) Niestroy et al. (2014)
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– PAHs aromatic hydrocarbons
PAHs and polyaromatic hydrocarbons are ubiquitous environmental pollutants
which are found in petroleum and fossil fuels, or are formed during the
incomplete combustion of these energy carriers (Chekroun et al. 2014). These
are neutral and nonpolar hydrocarbons that are composed of two or more
benzene rings or pentacyclic molecules. Certain types of PAHs including benzo
[a] anthracene, chrysene, benzo [b] fluoranthene, benzo [a] pyrene, and benzo
[ghi] perylene are potentially carcinogenic for human beings and, due to their
carcinogenic and mutagenic characteristics, are dangerous air pollutants
(Gariazzo et al. 2015). Some types of the PAHs such as fluoranthene (Fla),
pyrene (Pyr), benz[a]anthracene (BaA), chrysene (Chr), benzo[a]pyrene (BaP),
benzo[k]fluoranthene (BkF), and dibenzo[a,h] anthracene (DA)] have half-lives
of about 1000–3000 h in aquatic environments (Luo et al. 2014). Absorption,
chemical degradation, photolysis, and volatilization and microbial degradation
are significant methods for PAH removal. Nevertheless, the major process of
removing PAH contamination in the environment is microbial degradation and
algae are no exception (Ukiwe et al. 2013).
Microalgae release biosurfactants that could further enhance phenanthrene
degradation. Moreover, microalgae are able to produce the O2 required by
acclimatized bacteria to biodegrade hazardous pollutants such as polycyclic
aromatic hydrocarbons, phenolics, and organic solvents (Chekroun et al. 2014).
For example, some kinds of marine algae such as cyanobacteria, Oscillatoria,
and Agmenellum spp. are known to degrade naphthalene through pathways that
are similar to fungus (Haritash and Kaushik 2009; Barrios et al. 2011). The
capability of S. obliquus and Nitzschia linearis in removing n-alkanes and PAHs
has also been reported (Subashchandrabose et al. 2013).

– Polychlorinated biphenyls (PCBs)
PCBs; organic chemical compounds of chlorine attached to ‘biphenyl, are a
class of the worst persistent organic pollutants (POPs) (Gauthier et al. 2014).
Due to their characteristics such as high toxicity, carcinogenicity, and slow
biodegradation, exposure to PCBs can cause neurological disorders, reproduc-
tive toxicity, endocrine disruption, cancer, and even at extremely low concen-
trations (Pandelova et al. 2010). There are several technologies for PCB
remediation, including biological treatment (phytoremediation, aerobic
biodegradation, anaerobic dechlorination), physical methods, thermal treatment,
and chemical treatment (Gomes et al. 2013). Bioaccumulation of PCBs by algae
has attracted a great deal of attention (Chekroun et al. 2014), while its inte-
gration with biodiesel production is also of interest (Usher et al. 2014). The
efficiency of algal-based remediation of PCBs could be influenced by water
quality, chlorination, phytoplankton composition, the structure of the PCBs, and
the algal cell wall (Zhao et al. 2014).
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13.7.2 Biofixation of Carbon and Biofuel Production
Systems

Microalgae use inorganic carbon for growth, while they can also fix CO2 from
industrial exhaust gases (Shilton et al. 2008). Utilization of microalgae for biofix-
ation of carbon has numerous advantages as follows: (1) Microalgae have much
higher CO2 fixation abilities compared with other crops, since they have a higher
growth rate (Chisti 2007; Li et al. 2008), and (2) microalgae are able to convert CO2

into chemical energy through photosynthesis, which can then be converted into
biofuels (Demirbas et al. 2004). Therefore, combination of wastewater treatment,
biofuel production, and biofixation of CO2 and GHG may provide a very promising
alternative to climate change mitigation strategies.

For instance, CO2 fixation rate (g/m3/h) by Chlorella vulgaris has been reported
at 80–260 (Cheng et al. 2006). Yoo et al. (2010) studied three species of
microalgae, Botryococcus braunii, Chlorella vulgaris, and Scenedesmus sp., cul-
tivated with ambient air containing 10% CO2 and flue gas. Their results showed that
the biomass and lipid productivity in flue gas condition rose by 1.9-fold
(39.44 mg L−1 d−1) and 3.7-folds (20.65 mg L−1 d−1), for Scenedesmus sp and
B. braunii, respectively. Moreover, they suggested that B. braunii was suitable for
biodiesel production, due to its high lipid content, whereas Scenedesmus sp. was
suitable for mitigating CO2 as a result of high biomass productivity. In another
study by Tang et al. (2011), two species of microalgae, S. obliquus and Chlorella
pyrenoidosa, were explored as suitable species for mitigating CO2 in the flue gases
and biodiesel production.

CO2 removal efficiency (%) by Euglena gracilis, Porphyridium sp., S. platensis
has also been recorded at 3.1, 3–18, 38.3–60, respectively (Chae et al. 2006;
Shibata et al. 2004; Kumar et al. 2010a, b, c). Nayak et al. (2013) also demonstrated
biomass productivity and CO2 biofixation of three strains of Scenedesmus sp. in the
presence of different NaOH concentrations in algae cultivation media. They stated
that under their experimental conditions, the algal lipids were mainly composed of
C16/C18 fatty acids and were favorable for biodiesel production.

Exogenous CO2 concentration could also impact algal biomass yield, nutrients
removal rate, as well as biodiesel production potentials. For instance, in a study, Li
et al. (2011) looked into the effects of environmental factors including exogenous
CO2 concentration on wastewater nutrient removal and biodiesel production using
14 strains of microalgae belonging to the genus of Chlorella, Haematococcus,
Scenedesmus, Chlamydomonas, and Chloroccum cultivated. The results of this
study proved that the environmental factors had effects on the yields of algal
biomass and lipid accumulation which could consequently result in significantly
different biodiesel production potentials. Among the algal strains investigated,
Chlorella kessleri and Chlorella protothecoides represented the highest biomass
accumulation of 2.01, 1.31 g/L, respectively. Overall, biomass accumulation, bio-
diesel production rate, and the removal rates of nitrogen and COD were increased
by higher light intensity and exogenous CO2 concentration as well as longer
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lighting period, while higher phosphorus removal rates were achieved in lower
exogenous CO2 concentrations.

13.8 Conclusions and Future Prospects

Widespread utilization of fossil fuels is among the major causes of GHG emissions
and the resultant tragic environmental consequences such as global warming.
Biofuels such as biodiesel produced from algae could be regarded as a promising
solution to turn this scenario around. However and in spite of these attractive
features of algal fuels, current technologies are yet to be further improved to lead to
economically justified production of these alternative fuels. Accordingly, it seems
that the integration of algal fuels production with wastewater treatment and/or
carbon biofixation could potentially serve as cost-effective and eco-friendly plat-
form to achieve the above-mentioned goals.
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