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Abstract
This paper presents a method based on hidden Markov models in combination with
Gaussian mixture models for classification of respiratory sounds into normal, wheeze and
crackle classes. Input features are mel-frequency cepstral coefficients extracted in the range
between 50 Hz and 2000 Hz in combination with their first derivatives. The audio files are
preprocessed to remove noise using spectral subtraction. Our best score achieved in the
official ICHBI Challenge second evaluation phase is 39.56.
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Introduction

Auscultation is a common, fast and noninvasive way to
diagnose patients with lung diseases. Respiratory sounds
according to their acoustic properties can be classified into
normal and abnormal [1, 2]. Frequency content of normal
respiratory sounds depends on stethoscope position and does
not contain tonal (musical) components [2]. For example,
lung or vesicular sounds are dominated by frequencies below
100 Hz, whereas in the tracheal sounds frequencies from 100
to 1500 Hz are more distinctive. Abnormal sounds consist of
both normal and adventitious respiratory sound. Adventitious
crackle sounds are discontinuous, nontonal lung sounds with
a duration of less than 20 ms [2]. They are normally heard
during inspiration and sometimes during expiration [2]. The
crackle sounds’ frequency range is 60–2000 Hz, with their
major contribution below 1200 Hz [2]. Wheezes are contin-
uous tonal lung sounds with the dominant frequency above

400 Hz, and with a duration longer than 100 ms [2].
The most comprehensive evaluation of different classifi-

cation algorithms over healthy and asthmatic respiratory
sound databases is presented in [3]. The best performance in
[3] is obtained by the model based on Gaussian mixture
models (GMM) in combination with mel-frequency cepstral
coefficients (MFCCs). For these reasons this model has been
selected as the baseline model. The functionality of this
model has been enriched with the information about the
frame position in a sequence, leading to hidden Markov
model (HMM) instead of GMM. As hidden Markov models
were the backbone in automatic speech recognition for many
years [4], theoretical foundations have been developed, and
many practical considerations are well defined. A respiration
cycle varies in duration and acoustical content, just as in
speech, which suggests that HMM is an appropriate tool to
model it.

Methods

Preprocessing

The dataset contains audio recordings sampled at 44.1 kHz
and 4 kHz. Even though a majority of the recordings is
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sampled at 44.1 kHz, downsampling to 4 kHz is performed
as the frequency content of both wheeze and crackle is in the
range of 60–2000 Hz [2]. An additional benefit is a signif-
icant reduction in computational complexity of feature
extraction.

To remove sounds caused by heartbeats, the signal
components at low frequencies have to be suppressed. We
have evaluated the performance of two different filters. The
first one is the low order bandpass filter with the transfer
function:

H1ðzÞ ¼ 1� z�2

1� 0:9z�2
ð1Þ

The additional benefit of this filter are the reduced effects
of sudden changes in signal which can appear at the edges of
clipped segments if only a high pass filter was applied.

The second filter is the high pass finite impulse response
filter with cutoff frequency fc = 100 Hz and constant group
delay sg = 1024 samples obtained by Hann window func-
tion. In this way components at frequencies below 96 Hz are
attenuated by at least 54 dB, i.e. heartbeat sound is sup-
pressed more than in the case of the first filter.

Noise Suppression

Many sound files in the dataset contain stationary noise, thus
the following step in this algorithm is noise suppression. The
implemented noise suppression is based on spectral sub-
traction [5], which is performed on the signal which is
segmented into 30 ms long frames shifted by 15 ms using
Hann window function. For each frame discrete Fourier
transform (DFT) is performed and each magnitude spectrum
is decreased by the estimated noise magnitude spectrum, i.e.:

Xdðk; tÞj j ¼ Xðk; tÞj j � DðkÞj j ð2Þ
where |X(k, t)|, |D(k)| and |Xd(k, t)| are the magnitude spectra
of the original signal, the noise, and the denoised signal at
time t respectively, where k denotes the frequency bin. The
noise magnitude spectrum |D(k)| is estimated as the mean
value of |X(k, t)| over 1% of the frames with minimum
energy in the audio signal, excluding invalid frames with
zero energy.

The problem of the negative values of |Xd(k)| has been
solved using two approaches. The first approach, referred to
as SS1, sets the negative magnitude values to 1% of |X(k,t)|,
i.e.:

Xdðk; tÞj j ¼ Xðk; tÞj j � DðkÞj j Xðk; tÞj j[ DðkÞj j
0:01 � Xðk; tÞj j else

�
ð3Þ

The second approach, referred to as SS2, additionally
reduces the musical noise level introduced by magnitude
spectrum subtraction. The musical noise is caused by sudden
drops of magnitude at a certain frequency bin in successive
frames. Relying on the assumption that breath sound should
be dominant in the signal, for each k the estimated noise
level |D(k)| has been iteratively reduced by 10%, until in at
least 60% of frames |X(k, t)| > |D(k)| is fulfilled. The
denoised magnitude spectrum is obtained by:

Xdðk; tÞj j ¼ Xðk; tÞj j � DðkÞj j Xðk; tÞj j[ DðkÞj j
Xðk; tÞj j2 else

�
ð4Þ

where instead of linear scaling of critical components,
quadrature scaling is introduced, further suppressing small
magnitudes in |Xd(k, t)|. It should be noted that |X(k, t)| has to
be range normalized to accommodate quadrature scaling.

To suppress sudden drops of magnitude, |X(k, t)| is
monitored in 5 successive frames. If |X(k, t)| < |D(k)| in at
least 3 of 5 adjacent frames, the frequency bin is marked as
noise. An entire frame is considered as corrupted by noise
and set to zero (|Xd(k,t)| = 0, for each k) if more than 70% of
the bins are marked as noise.

In the synthesis step, the phase spectrum is approximated
with the phase spectrum of the noisy signal, thus the spec-
trum of denoised signal is:

Xdðk; tÞ ¼ Xdðk; tÞj jej argfXðk;tÞg ð5Þ
and the reconstructed signal is the sum of overlapping seg-
ments obtained by inverse DFT of Xd(k,t).

Feature Extraction

The MFCCs are estimated every 10 ms using 30 ms long
windows. The frequency range [50, 2000 Hz] is divided into
16 equal-width overlapped channels in mel-frequency
domain. The discrete cosine transform is performed on the
logarithm of 16 energy coefficients calculated for each
channel.

Cn ¼
X16

k¼1
log EðkÞð Þ cos np

16
k � 1

2

� �� �
ð6Þ

for n = 0, 1, … 15, where Cn is the nth MFCC and E(k) is
the energy at the kth channel. The coefficient C0, which
represents signal energy in the selected frequency band, is
discarded from further steps, since in some signals it sig-
nificantly correlates with heartbeat sound.

The cepstral mean and variance normalization per record
is applied to remove variations caused by the remaining
noise and it is defined by:
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C
_

nðtÞ ¼ CnðtÞ � �Cn

Sn
ð7Þ

where:

�Cn ¼ 1
T

XT

t¼1
CnðtÞ ð8Þ

Sn ¼ 1
T

XT

t¼1
CnðtÞ � �Cnð Þ2 ð9Þ

and T is the duration of signal in frames.
Additionally, to track feature dynamics and to decorrelate

successive feature vectors, first time derivatives of MFCCs
are introduced, increasing the cardinality of the feature
vector to d = 30.

Modeling

By visual inspection we have found that the same sound
class varies in acoustic content depending on recording
location, thus a respiration cycle for each location (trachea,
anterior left/right, lateral left/right, posterior left/right) and
sound class (normal, crackle, wheeze, and both crackle and
wheeze) is represented as a sequential HMM with S states
(see Fig. 1).

An HMM is described by its initial state probabilities (P),
state transition matrix (A), and emitting probability density
function for each state (bs). A state emitting probability
density function (pdf) for a given d-dimensional observation
o is defined by:

bsðoÞ ¼
XM
i¼1

wi
1

ð2pÞd=2 Rij j1=2
e�

1
2ðo�liÞTR�1

i ðo�liÞ ð10Þ

where wi, li and Ri are weight, mean and covariance matrix
of the i‐th mixture component, respectively. Although each
state can have a different number of mixture components, it
is common that the number is the same for all states.

In case of sequential model only one state can be the first
one, so in the vector P only one value is equal to 1 and the
others are 0, and each row in the state transition matrix
A contains at most 2 nonzero elements.

The standard criterion for HMM parameter estimation is
the maximization of the likelihood that the models will
generate the training sequence [4]. The optimization is
usually performed using expectation maximization algo-
rithm (Baum-Welch estimation). For an efficient estimation
procedure, the initial values of model parameters should be
carefully set. In this study, the initial parameters were
obtained by the time equidistant partition of the observation
sequence between states, and for each state the sample mean
ls and the covariance matrix Rs were calculated. In case of
several mixture components per state, means (li) were
obtained by random sampling from normal distribution N(ls,
Rs), and covariance matrices (Ri) by assigning the corre-
sponding sample covariance matrix (Ri = Rs). The initial
transition probabilities (Fig. 1) were set to 0.5, with stay
probability corresponding to the last HMM state, except for
aSS, which was initialized to 1.

The existing model parameters are used to calculate
probabilities that the model will be in the state s at time t and
will generate the observation (ot) using the m‐th mixture
component. These probabilities are used to update the values
of the transition probabilities, means and covariance matri-
ces of the model. In our experiments these parameters con-
verged in 6–12 iterations.

During the test phase, an unknown observation sequence,
denoted O = [o1, o2, … oT], is aligned with all HMMs (kc),
and the classification decision is based on the maximum
likelihood criterion, i.e.

ĉ ¼ arg max
1� c�C

pðOjkcÞ ð11Þ

pðOjkcÞ ¼ p1b1ðo1Þ
X

sð2Þ;...;sðTÞ
a1sð2Þ

YT
t¼2

bsðtÞðotÞasðtÞsðtþ 1Þ

ð12Þ
where s(t) represents the state at time t, and C the number of
classes. Having in mind computational complexity, the log
probabilities are used instead of probabilities themselves.

Database

For training and evaluation, the official ICBHI Challenge
respiratory sound database released in September 2017 was
used [6]. The details on data acquisition and ethical con-
siderations are provided [6]. The number of attempts for the
official scoring was limited, therefore many of experiments
were evaluated only on a validation set. The official training
set was divided into 10 folds. The validation set in each fold
contains at least one sound class for every possible recording

π1=1 

a11 a22 a33 a44 a55

a12 a23 a34 a45

b1(·) b2(·) b3(·) b4(·) b5(·)

Fig. 1 Sequential HMM with S = 5 states
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location. All respiratory cycle instances from an audio file
were in the same (train/validation) set.

Evaluation Criterion

The performances of classifiers were evaluated using offi-
cially proposed scores [7] i.e. sensitivity (Se), specificity
(Sp), and overall score, compactly written as:

Se ¼ Cc þCw þCb

Tc þ Tw þ Tb
; Sp ¼ Cn

Tn
; Score ¼ Seþ Sp

2
100%

ð13Þ
where Ci and Ti (i = c, w, b) are the number of correctly
recognized instances of class i, and the total number of
instances of class i in the test (or validation) set, respectively.
Indices c, w, b, and n stand for classes: crackle, wheeze, both
crackle and wheeze, and normal, respectively.

Results and Discussion

The selected results are summarized in Table 1. The clas-
sifiers differ by the preprocessing procedure, the number of
states and mixture components per state and the type of the
covariance matrix. In the first preprocessing procedure (T1),
proposed in the first phase of ICBHI Challenge, the input
signal is filtered through the bandpass filter H1(z) and noise
suppression is based on the SS1 method. The second pre-
processing procedure (T2) includes downsampling to 4 kHz,
filtering by the high pass FIR filter and noise suppression
based on SS2. It should be noted that the features are
extracted in the frequency range [50, 2000 Hz] indepen-
dently of the preprocessing procedure. Our initial experi-
ments for the simpler models on reduced dataset have shown

that there is no significant difference between these prepro-
cessing procedures, but a difference has been noted on the
extended dataset (see last two rows in Table 1).

The baseline system based on GMM has shown slightly
inferior performance to the HMM based systems. It can be
noted that with the increasing number of mixture compo-
nents the overall score is improving, as the result of higher
specificity. However, sensitivity is decreasing, indicating
that the classifier could not resolve adventitious sound types.

Introducing HMM, i.e. taking into consideration the
position of the frame in a sequence, increases the accuracy of
the model without a significant increase of its complexity.

As the used features are correlated, modeling data with
full covariance matrix increases the overall score by
increasing the specificity, without degradation in sensitivity
(Table 1, rows 6 and 7). The difference of the scores
obtained on the validation set (6.24) is higher than the dif-
ference of the official test set scores (0.30).

The overall discrepancies of scores obtained in
cross-validation using the publicly available dataset, and the
official test set (Table 1, columns 7 and 8) are noticeable.
One plausible reason for the score discrepancies might be the
correlation of the recordings in the publicly available dataset
(recordings from the same subject might be present in both
training and validation set), whereas the test set strictly
comprises a disjunct set of subjects [7].

To increase the overall score, we have tried with an
ensemble of classifiers trained over the 10 different folds. All
classifiers which had the same model complexity (28 models
with 5 states and 1 Gaussian per state) were trained with a
single learning method. The final decision was made by
simple majority voting by the classifiers. This approach has
achieved our best official score of 39.56, that represents a
minor increase in the score (0.24) at the expense of 10 times
greater computational complexity.

Table 1 Sensitivity (Se), specificity (Sp), and score evaluated on the validation set, and score on the official test for different preprocessing
procedures (PP), the number of states (S), the number of mixture components per state (M), and covariance matrix type (CMT)

PP S M CMT Validation set Official

Se Sp Score Score

T2 1 4 full 0.4381 0.4533 44.57 n/a

T2 1 8 full 0.4252 0.5136 46.94 n/a

T2 1 16 full 0.3517 0.6115 48.16 n/a

T2 1 32 full 0.2089 0.7671 48.80 n/a

T2 1 64 full 0.0917 0.8702 48.09 n/a

T1 5 1 full 0.4093 0.5326 47.09 39.32

T1 5 1 diag. 0.4079 0.4091 40.85 39.02

T1 6 1 full 0.4232 0.5669 49.50 39.37

T2 6 1 full 0.4102 0.5267 46.85 36.98

Class. ensemble n/a n/a n/a 39.56
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The presented results are modest in comparison with the
results published in [1, 3, 8], where both less extensive
databases and a smaller number of the adventitious sound
classes are used. There are several challenging issues
regarding the database used in this study: different types of
noise, multiple recording locations, and small numbers of
samples for different classes.

Conclusions

This study shows that MFCCs in combination with HMM can
be used for classification or respiratory sounds into 4 cate-
gories: normal, crackle, wheeze, and both crackle andwheeze.
The performances of the examined classifiers are modest
because they were evaluated on real data under varying levels
of different types of real noise.We assume that advanced noise
suppression techniques can improve the overall score.
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