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RANS Simulations of Premixed Turbulent
Flames

Andrei N. Lipatnikov

Abstract While Reynolds-Averaged Navier-Stokes (RANS) simulations are widely

used in applied research into premixed turbulent burning in spark ignition piston

engines and gas-turbine combustors, fundamental challenges associated with mod-

eling various unclosed terms in the RANS transport equations that describe pre-

mixed flames have not yet been solved. These challenges stem from two kinds of

phenomena. First, thermal expansion due to heat release in combustion reactions

affects turbulent flow and turbulent transport. Such effects manifest themselves in the

so-called counter gradient turbulent transport, flame-generated turbulence, hydrody-

namic instability of premixed combustion, etc. Second, turbulent eddies wrinkle and

stretch reaction zones, thus, increasing their surface area and changing their local

structure. Both the former effects, i.e. the influence of combustion on turbulence,

and the latter effects, i.e. the influence of turbulence on combustion, are localized to

small scales unresolved in RANS simulations and, therefore, require modeling. In the

present chapter, the former effects, their physical mechanisms and manifestations,

and approaches to modeling them are briefly overviewed, while discussion of the

latter effects is more detailed. More specifically, the state-of-the-art of RANS mod-

eling of the influence of turbulence on premixed combustion is considered, including

widely used approaches such as models that deal with a transport equation for the

mean Flame Surface Density or the mean Scalar Dissipation Rate. Subsequently, the

focus of discussion is placed on phenomenological foundations, closed equations,

qualitative features, quantitative validation, and applications of the so-called Turbu-

lent Flame Closure (TFC) model and its extension known as Flame Speed Closure

(FSC) model.
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6.1 Introduction

In this chapter, the problem of unsteady multidimensional numerical simulations

of premixed turbulent combustion is stated, transport equations that describe varia-

tions of mean (Favre-averaged) mixture and flow characteristics in turbulent flames

are introduced, and fundamental challenges associated with applications of these

equations are discussed. Various approaches to modeling unknown terms in the

Favre-averaged transport equations are briefly overviewed, followed by a detailed

discussion of foundations, equations, qualitative features, quantitative validation, and

engine applications of the so-called Turbulent Flame Closure (TFC) model, which

is implemented into most commercial CFD codes, as well as its extension known as

Flame Speed Closure (FSC) model.

6.2 Mathematical Background

The goal of this section is to introduce transport equations that RANS models of

premixed turbulent combustion deal with.

6.2.1 General Transport Equations

A general set of transport equations that model reacting flows is discussed in detail

elsewhere (Williams 1985). When modeling premixed turbulent combustion, a less

general set of transport equations is commonly used by invoking the following sim-

plifications (Libby and Williams 1994)

∙ The molecular mass and heat fluxes are approximated by Fick’s and Fourier’s laws,

respectively.

∙ The Soret and Dufour effects, pressure gradient diffusion, and bulk viscosity are

negligible.

∙ There is no body force.

∙ The Mach number is much less than unity.

∙ The mixture is an ideal gas, i.e.,

pM = 𝜌RoT , (6.1)

where p, 𝜌, and T are the pressure, density, and temperature, respectively, M is the

molecular weight of the mixture, and Ro
is the universal gas constant.

Under the above assumptions, combustion of gases is modeled by the following

transport equations.
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Mass conservation (continuity) equation reads

𝜕𝜌

𝜕t
+ 𝜕

𝜕xj

(
𝜌uj

)
= 0, (6.2)

where t is the time, xj and uj are the spatial coordinates and flow velocity components,

respectively. Henceforth, the summation convention applies for a repeated index that

indicates the coordinate axis, e.g., the repeated index j in Eq. (6.2), if the opposite is

not stated.

Momentum conservation (Navier–Stokes) equation reads

𝜕

𝜕t
(
𝜌ui

)
+ 𝜕

𝜕xj

(
𝜌uiuj

)
=

𝜕𝜏ij

𝜕xj
−

𝜕p
𝜕xi

, (6.3)

where

𝜏ij = 𝜇

(
𝜕ui
𝜕xj

+
𝜕uj
𝜕xi

− 2
3
𝜕ul
𝜕xl

𝛿ij

)
(6.4)

is the viscous stress tensor, 𝛿ij is the Kronecker delta, and the dynamic molecular

viscosity 𝜇 depends on pressure, temperature, and mixture composition. Methods

for evaluating the viscosity and other molecular transport coefficients (e.g., the mass

diffusivityDk of species k in a mixture or the heat diffusivity 𝜅 of the mixture) are dis-

cussed elsewhere (Giovangigli 1999; Hirschfelder et al. 1954). In the present chapter,

these transport coefficients are considered to be known functions of pressure and

temperature for each particular mixture.

Species mass conservation equations read

𝜕

𝜕t
(
𝜌Yk

)
+ 𝜕

𝜕xj

(
𝜌ujYk

)
= 𝜕

𝜕xj

(
𝜌Dk

𝜕Yk
𝜕xj

)
+ 𝜔̇k, (6.5)

where Yk is the mass fraction of species k, 𝜔̇k is the mass rate of creation (𝜔̇k > 0) or

consumption (𝜔̇k < 0) of the species k, and the summation convention does not apply

for the species index k. If N species Sk (k = 1,… ,N) participate in M reactions

N∑

k=1
akmSk ⇌

N∑

k=1
bkmSk, (6.6)

where m = 1,… ,M, then, the rate

𝜔̇k =
M∑

m=1
𝜔̇km, (6.7)

where

𝜔̇km = akmkb,m𝜌bm
N∏

n=1
Ybnm
n − bkmkf ,m𝜌am

N∏

n=1
Yanm
n , (6.8)
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am =
∑N

k=1 akm and bm =
∑N

k=1 bkm are orders of the forward and backward reactions

m, respectively, and the forward and backward reaction rates kf ,m and kb,m, respec-

tively, have dimensions of (kg∕m3)am−1s−1 and (kg∕m3)bm−1s−1, respectively. The

reaction rates are commonly modeled as follows:

kf ,m = Bf ,mTnf ,m exp
(
−
𝛩f ,m

T

)
, kb,m = Bb,mTnb,m exp

(
−
𝛩b,m

T

)
, (6.9)

whereBf ,m, nf ,m andBb,m, nb,m are constants of the forward and backward reactionsm,

respectively, 𝛩f ,m and 𝛩b,m are their activation temperatures, with a ratio of 𝛩f ,m∕T
being large for many important combustion reactions.

In premixed flames, energy conservation can be modeled using a transport equa-

tion for specific mixture enthalpy h, specific mixture internal energy e = h − p∕𝜌, or

temperature. For instance, the enthalpy conservation equation reads

𝜕

𝜕t
(𝜌h) + 𝜕

𝜕xj

(
𝜌ujh

)
=

𝜕p
𝜕t

+ 𝜕

𝜕xj

[
𝜇

Pr
𝜕h
𝜕xj

+ 𝜇

N∑

k=1

(
1
Sck

− 1
Pr

)
hk

𝜕Yk
𝜕xj

]

− qR,

(6.10)

where Pr = 𝜇∕𝜌𝜅 = 𝜈∕𝜅 and Sck = 𝜇∕𝜌Dk are the Prandtl and Schmidt numbers,

respectively, 𝜈 = 𝜇∕𝜌 is the molecular kinematic viscosity, qR is radiative heat loss,

hk = ∫
T

T0
cp,kdT + 𝛥hk (6.11)

is the specific enthalpy of species k per unit mass,

h =
N∑

k=1
Ykhk =

N∑

k=1
∫

T

T0
cp,kdT +

N∑

k=1
Yk𝛥hk = ∫

T

T0
cpdT +

N∑

k=1
Yk𝛥hk (6.12)

is the specific mixture enthalpy per unit mass, 𝛥hk is the enthalpy of species k at a

reference temperature T0, and cp =
∑N

k=1 cp,k is the specific heat of the mixture at

constant pressure. In the rest of this chapter, adiabatic burning will be considered,

i.e., qR = 0 if the opposite is not specified.

If the specific heats cp,k are equal to the same cp for all species, then, the following

temperature transport equation

cp
𝜕

𝜕t
(𝜌T) + cp

𝜕

𝜕xj

(
𝜌ujT

)
=

𝜕p
𝜕t

+ 𝜕

𝜕xj

(
𝜆
𝜕T
𝜕xj

)
−

N∑

k=1
(𝛥hk𝜔̇k) (6.13)

can be obtained by substituting Eq. (6.12) into Eq. (6.10) and using Eq. (6.5). Here,

𝜆 = 𝜌cp𝜅 is the heat conductivity of the mixture. For simulations of turbulent com-

bustion, Eq. (6.10) is more suitable than Eq. (6.13), because the latter equation

involves highly nonlinear source term
∑N

k=1(𝛥hk𝜔̇k), whose magnitude fluctuates

strongly in a premixed turbulent flame.
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Equations (6.1)–(6.12) can be integrated numerically to study a 1D laminar flame.

Such a research method is routinely used today and a number of advanced software

packages are available on the market.

If Eqs. (6.1)–(6.12) are numerically solved to simulate a 3D turbulent flame, such

computations should be performed using a fine mesh that resolves both the smallest

turbulent eddies and spatial variations of species within thin reaction zones. Such a

research method is known as Direct Numerical Simulation (DNS).

DNS is an expensive numerical tool and its applications are mainly limited to

simple model problems. Even in a constant-density non-reacting case, the size of a

numerical mesh required for 3D DNS study of a turbulent flow is on the order of Re3t
(Pope 2000), because (i) a ratio of length scales of the largest and smallest eddies in

such a flow is on the order ofRe3∕4t and (ii) time step 𝛥t is typically proportional to the

mesh step 𝛥x ∝ Re3∕4t in such simulations. Therefore, a DNS of a flow characterized

by a really high turbulent Reynolds number Ret = u′L∕𝜈 is still a challenging task.

Here, u′ and L designate rms velocity and an integral length scale of turbulence,

respectively.

In the case of premixed combustion, the main challenge consists not only of

a significant increase in a number of transport equations to be solved, i.e., O(N)
Eq. (6.5), but also (and mainly) in extension of the range of spatial scales to be

resolved. Accordingly, the majority of contemporary DNS studies of premixed tur-

bulent flames deal with moderate Ret (typically, well below 1000) and with com-

parable values of L and laminar flame thickness in order for ranges of spatial scales

associated with combustion and turbulence to well overlap. A 3D DNS study of a tur-

bulent premixed flame characterized by a large (when compared to the laminar flame

thickness) length scale L and, hence, by Ret = O(1000) or higher is still an unfea-

sible task. Accordingly, such flames are numerically modeled invoking simplified

approaches such as Reynolds-Averaged Navier Stokes (RANS) or Large Eddy Sim-

ulation (LES). The former research tool will be discussed in the rest of the present

chapter.

6.2.2 Favre-Averaged Transport Equations for First Moments

RANS approach is based on the decomposition of any (scalar, vector, tensor, etc.)

field q(𝐱, t) into mean q̄(𝐱, t) and fluctuating q′(𝐱, t) ≡ q(𝐱, t) − q̄(𝐱, t) fields. By

definition q̄(𝐱, t) = q̄(𝐱, t) and, hence, q′(𝐱, t) = q̄(𝐱, t) − q̄(𝐱, t) = 0. The mean field

q̄(𝐱, t) can be determined by averaging the field q(𝐱, t) over a sufficiently long time

interval, surface, or an ensemble of statistically equivalent realizations of a stochas-

tic process. Taking average over time is most suitable in the case of a statistically

stationary process, e.g., burning behind a flame-holder. In such a case, q̄ does not

depend on time. Taking average over a surface is most suitable in the case of a sta-

tistically 1D process, e.g., a statistically planar 1D flame addressed in a DNS or a

spherical flame kernel growing in homogeneous turbulence after spark ignition. In
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such a case, q̄ depends on a single spatial coordinate, distance x normal to the mean

flame position or radial coordinate r, respectively. Ensemble-averaged quantities are

commonly used in investigations of transient and spatially nonuniform mean flows,

e.g., combustion in a chamber of a piston engine. In such a case, q(𝐱, t) is an ensemble

of fields. These three methods of taking an average are considered to be fundamen-

tally equivalent, i.e., if the two or three methods can be applied to the same field

q(𝐱, t) or the same ensemble of fields, the obtained mean fields q̄(𝐱, t) should be the

same.

If 𝜌(𝐱, t) = 𝜌̄(𝐱, t) + 𝜌
′(𝐱, t) and 𝐮(𝐱, t) = 𝐮̄(𝐱, t) + 𝐮′(𝐱, t) are substituted into Eq.

(6.2) and the obtained transport equation is averaged, then, we arrive at

0 = 𝜕𝜌̄

𝜕t
+ 𝜕

𝜕xj

(
𝜌̄ūj + 𝜌′u′j

)
, (6.14)

because ab = (ā + a′)(b̄ + b′) = āb̄ + a′b̄ + b′ā + a′b′ = āb̄ + a′b′ for arbitrary

quantities a and b. In the following, dependencies of various flow and mixture char-

acteristics on the spatial coordinates 𝐱 and time t will often be skipped for brevity.

Nevertheless, when introducing new flame characteristics, such dependencies will

sometimes be specified in the beginning and, then, will be skipped.

Equation (6.14) involves a second moment 𝜌′u′j , i.e., a correlation of fluctuat-

ing density and velocity fields, which should be modeled. This problem can be

circumvented by introducing Favre-averaged mass-weighted quantities as follows;

q̃ ≡ 𝜌q∕𝜌̄ and q′′ ≡ q − q̃. By definition, q̃′′ = 𝜌q′′ = 0. If 𝐮 = 𝐮̃ + 𝐮′′ is substituted

into Eq. (6.2) and the obtained transport equation is averaged using the Reynolds

method, then, we arrive at

𝜕𝜌̄

𝜕t
+ 𝜕

𝜕xj

(
𝜌̄ũj

)
= 0, (6.15)

because 𝜌𝐮 = 𝜌̄𝐮̃ by definition. The Favre-averaged transport Eq. (6.15) involves less

number of terms when compared to the Reynolds-averaged transport Eq. (6.14) and

a similar result can be obtained by averaging other transport equations. For this rea-

son, RANS models of turbulent combustion deal with the Favre-averaged transport

equations.

Substitution of ui = ũi + u′′i and uj = ũj + u′′j into the Navier–Stokes Eq. (6.3),

followed by averaging, yields

𝜕

𝜕t
(
𝜌̄ũi

)
+ 𝜕

𝜕xj

(
𝜌̄ũiũj

)
= − 𝜕

𝜕xj
𝜌u′′i u

′′
j +

𝜕𝜏ij

𝜕xj
−

𝜕p̄
𝜕xi

, (6.16)

because 𝜌ab = 𝜌(ã + a′′)(b̃ + b′′) = 𝜌̄ãb̃ + 𝜌a′′b̃ + 𝜌b′′ã + 𝜌a′′b′′ = 𝜌̄ãb̃ + 𝜌a′′b′′
for arbitrary quantities a and b.

Using a similar method, we arrive at the following Favre-averaged transport equa-

tions for species mass fractions
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𝜕

𝜕t
(
𝜌̄Ỹk

)
+ 𝜕

𝜕xj

(
𝜌̄ũjỸk

)
= − 𝜕

𝜕xj
𝜌u′′j Y

′′
k + 𝜕

𝜕xj

(

𝜌Dk
𝜕Yk
𝜕xj

)

+ ̄̇𝜔k (6.17)

and specific mixture enthalpy

𝜕

𝜕t
(
𝜌̄h̃

)
+ 𝜕

𝜕xj

(
𝜌̄ũjh̃

)
= − 𝜕

𝜕xj
𝜌u′′j h′′ +

𝜕p̄
𝜕t

+ 𝜕

𝜕xj

[
𝜇

Pr
𝜕h
𝜕xj

+ 𝜇

N∑

k=1

(
1
Sck

− 1
Pr

)
hk

𝜕Yk
𝜕xj

]

. (6.18)

Finally, the Favre-averaged ideal gas state Eq. (6.1) reads

pM = Ro
𝜌̄T̃ . (6.19)

If the Mach number is much less than unity, then, fluctuations and spatial variations

in the pressure may be neglected in Eq. (6.19) when compared to the mean pressure

(Majda and Sethian 1985). Therefore, symbol p in Eq. (6.19) designates pressure

averaged over the entire combustion chamber. Accordingly, Eq. (6.19) reads pM =
Ro

𝜌̄T̃ and allows us to evaluate the mean density, e.g., if the molecular wight M is

assumed to be constant.

6.3 Challenges of and Approaches to Premixed Turbulent
Combustion Modeling Within RANS Framework

Equations (6.15)–(6.18) involve (i) terms that can be determined by solving these

equations, e.g., the first moments 𝜌̄, ũi, Ỹk, and h̃ of the density, velocity, mass frac-

tion, and enthalpy fields, and (ii) the so-called unclosed terms that cannot be deter-

mined by solving the transport Eqs. (6.15)–(6.18), e.g., turbulent Reynolds stresses

𝜌u′′i u
′′
j , turbulent scalar fluxes 𝜌u′′j Y

′′
k and 𝜌u′′j h′′ or the mean reaction rates ̄̇𝜔k.

Accordingly, the number of unknowns is larger than the number of equations and

the latter terms should be modeled. Model equations invoked for these purposes are

commonly called closure relations.

The present section aims at briefly reviewing (i) various approaches to modeling

the aforementioned unclosed terms and (ii) associated challenges. However, before

considering such approaches and challenges, it is worth substantially simplifying

the problem, because an analysis of O(N) transport Eq. (6.17) is difficult if N ≫ 1.

This goal is commonly reached using the so-called combustion progress variable, as

discussed in the next section.
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6.3.1 Combustion Progress Variable

The vast majority of models for RANS simulations of premixed turbulent flames are

based on an assumption that the state of the mixture in a premixed flame can be char-

acterized with a single combustion progress variable c in the adiabatic iso-baric
1

case

(e.g., an open flame) or by two variables c and h if heat losses are substantial or/and

the pressure depends on time (e.g. combustion in piston engines). For simplicity, in

the rest of the present chapter, we will address the former (adiabatic iso-baric) case

if the opposite is not stated.

The aforementioned assumption can be justified by invoking one of the follow-

ing three approximations: (i) single-step chemistry and equidiffusive mixture, (ii)

flamelet combustion regime, (iii) two-fluid flow. Each approximation offers an oppor-

tunity to significantly simplify the problem, but retain the basic physics of flame–

turbulence interaction in the focus of consideration. Let us consider these three

approximations in a more detailed manner.

6.3.1.1 Single-Step Chemistry Approximation

If combustion chemistry is reduced to a single reaction

𝛷F + StO → P

and the Lewis number Lek = 𝜅∕Dk is equal to unity for fuel F and oxidant O, then,

Eq. (6.5) reads

𝜕

𝜕t
(
𝜌YF

)
+ 𝜕

𝜕xj

(
𝜌ujYF

)
= 𝜕

𝜕xj

(
𝜌D

𝜕YF
𝜕xj

)
− 𝜔̇ (6.20)

and

𝜕

𝜕t
(
𝜌YO

)
+ 𝜕

𝜕xj

(
𝜌ujYO

)
= 𝜕

𝜕xj

(
𝜌D

𝜕YO
𝜕xj

)
− St𝜔̇ (6.21)

for the fuel and oxidant, respectively. Here, St is the mass stoichiometric coefficient

and 𝛷 is the equivalence ratio. A transport equation for the mass fraction of product

P is not required, because YP = YF,u − YF + St(YO,u − YO) due to mass conservation.

Here, subscripts u and b designate fresh mixture and equilibrium combustion prod-

ucts, respectively.

If YF = YF,b + yF(YF,u − YF,b) and YO = YO,b + yO(YO,u − YO,b) are substituted

into Eqs. (6.20) and (6.21), respectively, then, the transport equations for the nor-

malized mass fractions of the fuel, yF, and oxidant, yO, are identical, because

1
It is worth remembering that the pressure in a turbulent flow always fluctuates with time, but the

magnitude of such fluctuations is much smaller than the mean pressure if the Mach number is low.

Here, term “iso-baric case” means that the mean pressure does not depend on time.
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YO,u − YO,b = St(YF,u − YF,b). The boundary conditions for yF and yO are also iden-

tical, i.e., yF,u = yO,u = 1 and yF,b = yO,b = 0. Consequently, the solutions yF(𝐱, t)
and yO(𝐱, t) to the two equations should be the same in a general unsteady 3D case.

Accordingly, if a combustion progress variable is defined as follows:

c =
YF − YF,u
YF,b − YF,u

=
YO − YO,u

YO,b − YO,u
, (6.22)

then, the following transport equation

𝜕

𝜕t
(𝜌c) + 𝜕

𝜕xj

(
𝜌ujc

)
= 𝜕

𝜕xj

(
𝜌D 𝜕c

𝜕xj

)
+ 𝜔̇c (6.23)

results from Eq. (6.20) or (6.21). Here, 𝜔̇c = 𝜔̇F∕(YF,b − YF,u). By definition c = 0
and 1 in the unburned and burned gas, respectively.

Thus, the mixture composition is solely controlled by c. The temperature can be

evaluated using Eq. (6.12), because the transport equation for the enthalpy simply

reads

𝜕

𝜕t
(𝜌h) + 𝜕

𝜕xj

(
𝜌ujh

)
= 𝜕

𝜕xj

(
𝜆
𝜕h
𝜕xj

)
(6.24)

and has a trivial solution of h(𝐱, t) = const in the considered adiabatic, iso-baric,

equidiffusive case. Furthermore, if the mixture specific heat cp is constant, as widely

assumed when modeling premixed turbulent combustion, then, Eqs. (6.12) and

(6.22) result straightforwardly in

c =
T − Tu
Tb − Tu

. (6.25)

The mean molecular weight of the mixture is equal to

M =

(
YF

MF
+

YO

MO
+

YP

MP

)−1

, (6.26)

where MF, MO, and MP are molecular weights of the fuel, oxidant, and product,

respectively.

Thus, the combustion progress variable fully characterizes the mixture state in

an arbitrary unsteady 3D flow provided that the invoked simplifications (single-step

chemistry, LeF = Le0 = 1, qR = 0, and the mean pressure p does not depend on time)

hold.

The Favre-averaged transport Eq. (6.23) reads

𝜕

𝜕t
(𝜌̄c̃) + 𝜕

𝜕xj

(
𝜌̄ũjc̃

)
= − 𝜕

𝜕xj
𝜌u′′j c′′ +

𝜕

𝜕xj

(
𝜌D 𝜕c

𝜕xj

)
+ 𝜔̇c (6.27)
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To conclude this section, it is worth stressing the following points. The major

goal of premixed turbulent combustion modeling consists in predicting the burning

rate, which is commonly quantified by evaluating turbulent burning velocity Ut, i.e.,

burning rate per unit area of a mean flame surface, normalized using partial density

of an appropriate reactant in unburned mixture. In various flames, this goal may be

reached invoking a single-step chemistry and characterizing the mixture state in the

flame with a single combustion progress variable provided that the used values of 𝜌b,

Tb, the laminar flame speed SL and thickness 𝛿L have been obtained in experiments

or in simulations that dealt with detailed combustion chemistry.

For instance, Burluka et al. (2009) experimentally investigated expansion of var-

ious statistically spherical premixed turbulent flames in the well-known Leeds fan-

stirred bomb. These authors studied not only burning of commonly used

hydrocarbon–air mixtures, but also flames of di-t-butyl-peroxide (DTBP) decompo-

sition, with such flames being associated with a much simpler chemistry when com-

pared to combustion of hydrocarbons in the air. Nevertheless, similar dependencies

of Ut on the rms turbulent velocity u′ were obtained from both the hydrocarbon–air

and DTBP flames, provided that they were characterized by approximately the same

laminar flame speeds. These experimental data imply a minor effect of combustion

chemistry on Ut.

Moreover, in a recent DNS study of premixed flames propagating in intense small-

scale turbulence, Lapointe and Blanquart (2016) found that neither fuel formula

nor chemical mechanism substantially affected computed turbulent burning veloc-

ity. Accordingly, they have concluded that “fuel consumption can be predicted with

the knowledge of only a few global laminar flame properties” (Lapointe and Blan-

quart 2016). In another recent DNS study of lean methane–air turbulent flames under

conditions relevant to Spark Ignition (SI) engines, Wang et al. (2017) compared

results simulated using a single-step and a 13-species-reduced chemical mechanism.

These authors have also concluded that the single-step “mechanism is adequate for

predicting flame speed” (Wang et al. 2017).

Thus, in many cases, the use of a single combustion progress variable and a single-

step chemistry appears to be basically adequate for analyzing the fundamentals of

flame–turbulence interaction even if complex chemistry introduces new local effects,

e.g., see Dasgupta et al. (2017). Nevertheless, combustion chemistry appears to play

an important role under conditions associated with local combustion quenching e.g.

due to heat losses, inflammable local mixture composition, strong local perturbations

caused by turbulent eddies, etc.

6.3.1.2 Flamelet Approximation

In the previous section, characterization of mixture state with a single combustion

progress variable was obtained by considering an arbitrary flow, but significantly

simplifying combustion chemistry and molecular transport model. The same result

can also be obtained in the opposite case of complex combustion chemistry and an

advanced model of molecular transport, but significantly simplified flow.
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Indeed, the simplest paradigm of the influence of turbulence on premixed com-

bustion consists in reducing this influence to wrinkling the surface of a thin inher-

ently laminar flamelet whose structure is assumed to be close to the structure of

the unperturbed planar 1D laminar flame (Bilger et al. 2005; Bray 1980, 1996;

Lipatnikov 2012; Peters 2000; Poinsot and Veynante 2005). Accordingly, within the

framework of such a paradigm, (i) the 1D laminar flame can be simulated using

detailed chemistry and molecular transport models and (ii) results of such simu-

lations can be tabulated in a form of Yk(c), T(c), 𝜌(c), etc., e.g., see a recent review

paper by van Oijen et al. (2016). Subsequently, the state of the mixture in a premixed

turbulent flame can be characterized with a single combustion progress variable c
and the aforementioned tables.

Such an approach was used in certain recent RANS studies of premixed turbulent

combustion and is widely used in LES research into turbulent flames. However, it

is worth remembering that the assumption that reaction zones retain the structure

of weakly perturbed 1D laminar flames in a turbulent flow is very demanding and

does not seem to hold even in weakly turbulent flames, e.g., see results (Lipatnikov

et al. 2015b, 2017; Sabelnikov et al. 2016, 2017) of processing DNS data obtained

from weakly turbulent flames that are well associated (Lipatnikov et al. 2015a) with

the flamelet combustion regime. In the present author’s opinion, this assumption

distorts the basic physics of flame–turbulence interaction much stronger when the

assumption of single-step chemistry does.

6.3.1.3 Two-Fluid Approximation and BML Approach

To the best of the present author’s knowledge, two-fluid approximation was intro-

duced into the combustion literature by Prudnikov (1960, 1964). It is based on an

assumption that unburned and burned gases are separated by an infinitely thin inter-

face that propagates at the laminar flame speed SL with respect to the unburned mix-

ture. Accordingly, the mean value of any mixture characteristic q can be evaluated

as follows:

q̄(𝐱, t) = quℙu(𝐱, t) + qbℙb(𝐱, t), (6.28)

where ℙu(𝐱, t) or ℙb(𝐱, t) is the probability of finding the unburned or burned mix-

ture, respectively, in point 𝐱 at instant t and qu or qb is the value of q in the unburned

or burned mixture, respectively. The latter value can be found by calculating the tem-

perature and composition of the adiabatic equilibrium combustion products. In such

calculations, the product composition may consist of a number of different species

such as H2O, CO2, CO, O2, H2, N2, OH, O, H, etc.

If we (i) introduce an indicator variable I, which is equal to zero and unity in the

unburned and burned mixtures, respectively, and (ii) apply Eq. (6.28) to I, (1 − I),
𝜌I, and 𝜌(1 − I), then, we obtain
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Ī = ℙb, 1 − Ī = ℙu, 𝜌̄Ĩ = 𝜌I = 𝜌bℙb, 𝜌̄(1 − Ĩ) = 𝜌(1 − I) = 𝜌uℙu,

(6.29)

respectively. Subsequently, the application of Eqs. (6.28) and (6.29) to 𝜌YR and 𝜌T
yields

𝜌̄ỸR = 𝜌̄(1 − Ĩ)YR,u + 𝜌̄ĨYR,b, 𝜌̄T̃ = 𝜌̄(1 − Ĩ)Tu + 𝜌̄ĨTb, (6.30)

where subscript R designates a reactant, e.g., fuel, oxygen, or product species. Con-

sequently,

Ĩ =
ỸF − YF,u
YF,b − YF,u

=
ỸO − YO,u

YO,b − YO,u
=

T̃ − Tu
Tb − Tu

, (6.31)

i.e., the Favre-averaged value of the indicator function is equal to the Favre-averaged

value of the combustion progress variable c defined by Eq. (6.22) or (6.25). Finally,

application of Eqs. (6.28) and (6.29) to c and (1 − c) yields

c̄ = ℙb = Ī, 1 − c̄ = ℙu = 1 − Ī, (6.32)

i.e., the Reynolds-averaged value of the combustion progress variable is equal to

the probability of finding combustion products and the indicator function I can be

substituted with c in Eqs. (6.29)–(6.31).

In the particular case of single-step chemistry, the two-fluid approximation is

associated with the limit of the infinitely fast reaction. Accordingly, the two-fluid

approximation might be claimed to invoke an extra simplification when compared

to the approximation of single-step chemistry. However, the former approximation

offers an opportunity to use the temperature, density, and species mass fractions cal-

culated for the equilibrium combustion products in the case of detailed chemistry.

Therefore, if the sum of the probabilities ℙu and ℙb is close to unity everywhere

in a real flame, the two-fluid approach is capable of predicting mean mixture char-

acteristics whose values within the reaction zones are of the same order or less than

their values in the unburned or burned gas. However, the approach cannot be used

to predict mean mass fractions of intermediate species, e.g., radicals, whose concen-

tration is very low both in the unburned and burned mixtures. At first glance, this

limitation of the two-fluid approximation appears to be a substantial drawback when

compared to the flamelet approximation, which offers an opportunity to compute the

mean mass fractions of intermediate species. However, to compute does not mean

to predict. The use of the assumption of weak perturbations of the local flamelet

structure when compared to the counterpart 1D laminar flame may yield wrong val-

ues of the mean mass fractions of the intermediate species if perturbations of the

local flamelet structure are strong enough, as occurs in various flames. Accordingly,

the present author cannot claim that the flamelet approximation is superior to the

two-fluid approximation, at least within the RANS framework.
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A bridge between the two-fluid and flamelet approximations was built by Bray

(1980), Bray and Moss (1977), Bray et al. (1985) and Libby and Bray (1977, 1981)

who developed the well-known BML approach by introducing the following Proba-

bility Density Function (PDF)

P(c, t, 𝐱) = 𝛼(t, 𝐱)𝛿(c) + 𝛽(t, 𝐱)𝛿(1 − c) + 𝛾(t, 𝐱)Pf (c, t, 𝐱) (6.33)

for the combustion progress variable defined using Eq. (6.22) written for the mass

fraction of the deficient reactant, i.e., fuel in a lean mixture or oxygen in a rich mix-

ture. Here, 𝛿(c) and 𝛿(1 − c) are Dirac delta functions, Pf (c, t, 𝐱) is an unknown PDF

for 0 < c < 1, i.e., Pf (0, t, 𝐱) = Pf (1, t, 𝐱) = 0, 𝛼(t, 𝐱) and 𝛽(t, 𝐱) are the probabilities

of finding unburned (c = 0) and burned (c = 1) mixture, respectively, while the prob-

ability 𝛾(t, 𝐱) of finding intermediate states (0 < c < 1) of the mixture is assumed to

be much less than unity at any point 𝐱 at any instant t. If 𝛾 = 0, the BML approach

reduces to the two-fluid approximation. Alternatively, if 𝛾 > 0, a model for the inter-

mediate PDF Pf may be developed invoking the flamelet approximation (Bray et al.

2006).

Using Eq. (6.33), one can easily obtain Eqs. (6.29) and (6.30), where I is substi-

tuted with c and small terms on the order of O(𝛾) are added on the RHSs of each

equation. Moreover,

𝜌̄ = (1 − c̄)𝜌u + c̄𝜌b + O(𝛾) = 𝜌u − (𝜎 − 1)𝜌bc̄ + O(𝛾) = 𝜌u − (𝜎 − 1)𝜌̄c̃ + O(𝛾)
(6.34)

and, hence,

𝜌̄ =
𝜌u

1 + 𝜏 c̃
+ O(𝛾), (6.35)

where 𝜎 = 𝜌u∕𝜌b is the density ratio and 𝜏 = 𝜎 − 1 is a heat-release factor.

The domain of validity of the BML approach is commonly characterized using

the segregation factor

g = 𝜌c′′2

𝜌̄c̃(1 − c̃)
, (6.36)

i.e., the closer g to unity, the more accurate the BML approach is considered to be.

Indeed, using Eq. (6.33), we have

𝜌c′′2 = 𝜌(c − c̃)2 = (1 − c̄)𝜌uc̃2 + c̄𝜌b(1 − c̃)2 + O(𝛾)
= 𝜌̄

[
(1 − c̃)c̃2 + c̃(1 − c̃)2

]
+ O(𝛾) = 𝜌̄c̃(1 − c̃) + O(𝛾). (6.37)

Therefore, when 𝜌c′′2 → 𝜌̄c̃(1 − c̃) and g → 1, the magnitude of O(𝛾)-terms is

asymptotically decreased and such unknown terms may be neglected if g ≈ 1 and

𝛾 ≪ 1. It is worth noting that Eqs. (6.34)–(6.37) can also be derived within the frame-

work of the two-fluid approximation, but O(𝛾)-terms vanish in such a case.
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In addition to the c-PDF given by Eq. (6.33), the BML approach deals with the

following joint PDF

P(c,𝐮, t, 𝐱) = 𝛼(t, 𝐱)Pu(𝐮, t, 𝐱)𝛿(c) + 𝛽(t, 𝐱)Pb(𝐮, t, 𝐱)𝛿(1 − c) + 𝛾(t, 𝐱)Pf (c,𝐮, t, 𝐱)
(6.38)

for the flow velocity vector 𝐮 and the combustion progress variable c at point 𝐱 at

instant t. Here, Pu(𝐮, t, 𝐱) and Pb(𝐮, t, 𝐱) are velocity PDFs conditioned on either the

unburned or the burned mixture, respectively. Using Eq. (6.38), one can easily obtain

the following equations:

𝐮̄ = 𝐮̄u(1 − c̄) + 𝐮̄bc̄ + O(𝛾), (6.39)

𝐮̃ = 𝐮̄u(1 − c̃) + 𝐮̄bc̃ + O(𝛾), (6.40)

𝜌𝐮′′c′′ = 𝜌(𝐮 − 𝐮̃)(c − c̃) = (1 − c̄)𝜌u(𝐮̄u − 𝐮̃)(−c̃) + c̄𝜌b(𝐮̄b − 𝐮̃)(1 − c̃) + O(𝛾)
= 𝜌̄

[
−(1 − c̃)c̃(𝐮̄u − 𝐮̃) + c̃(1 − c̃)(𝐮̄b − 𝐮̃)

]
+ O(𝛾) = 𝜌̄c̃(1 − c̃)

(
𝐮̄b − 𝐮̄u

)
+ O(𝛾),

(6.41)

𝜌u𝐮′′ = 𝜌u(𝐮 − 𝐮̃) = (1 − c̄)𝜌u(𝐮̄u − 𝐮̃) + c̄𝜌u(𝐮̄b − 𝐮̃) + O(𝛾)
= (1 − c̃)𝜌̄c̃(𝐮̄u − 𝐮̄b) + c̃𝜎𝜌̄(1 − c̃)(𝐮̄b − 𝐮̄u) + O(𝛾)

= (𝜎 − 1)𝜌̄c̃(1 − c̃)(𝐮̄b − 𝐮̄u) + O(𝛾) = 𝜏𝜌𝐮′′c′′ + O(𝛾), (6.42)

𝜌𝐮′′𝐮′′ = 𝜌̄(1 − c̃)(𝐮′𝐮′)u + 𝜌̄c̃(𝐮′𝐮′)b + 𝜌̄c̃(1 − c̃)(𝐮̄b − 𝐮̄u)(𝐮̄b − 𝐮̄u) + O(𝛾).
(6.43)

Here, 𝐮̄u and 𝐮̄b are the velocity vectors conditioned to the unburned and burned

mixture respectively, i.e.

𝐮̄u(𝐱, t) = ∫
𝜀

0

[

∫ ∫ ∫ 𝐮P(c,𝐮, 𝐱, t)d𝐮
]
dc,

𝐮̄b(𝐱, t) = ∫
1

1−𝜀

[

∫ ∫ ∫ 𝐮P(c,𝐮, 𝐱, t)d𝐮
]
dc, (6.44)

where 𝜀 ≪ 1 is a small number. Because the probabilities Pu(𝐮, t, 𝐱) and Pb(𝐮, t, 𝐱)
are unknown, the conditioned velocities 𝐮̄u and 𝐮̄b are also unknown and require

modeling.
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Equation (6.35) is widely used as a state equation in RANS simulations of pre-

mixed turbulent flames. Equations (6.39)–(6.43) are widely used when interpreting

experimental data and discussing the influence of combustion on turbulence, as will

be demonstrated in the next section. In the rest of the present chapter, all the BML

equations are considered to be valid and O(𝛾)-terms will be neglected if the opposite

is not stated.

The same equations can be derived within the framework of the two-fluid approx-

imation. In this case, the conditioned velocities are defined as follows

(1 − c̄)𝐮̄u = (1 − c)𝐮, c̄𝐮̄b = c𝐮. (6.45)

If the state of a mixture in a flame is characterized with a single combustion

progress variable, then, within the RANS framework, the adiabatic and iso-baric

combustion process is modeled using a single specific transport Eq. (6.27) in addition

to the Favre-averaged continuity and Navier–Stokes equations, i.e., Eqs. (6.15) and

(6.16), respectively. To close the problem, all terms on the RHS of Eq. (6.27) and

the Reynolds stresses 𝜌u′′i u
′′
j in Eq. (6.16) should be modeled.

The first, molecular transport, term on the RHS of Eq. (6.27) is often neglected

when compared to other terms if turbulent Reynolds number is sufficiently large.

Modeling of the turbulent scalar flux 𝜌𝐮′′c′′ and the mean reaction rate 𝜔̇c is

addressed in the next two Sects. 6.3.1 and 6.3.2, respectively.

To conclude the present section, it is worth noting that the approximation of

a single-step chemistry appears to be the best tool (i) for qualitatively discussing

most important local effects associated with flame–turbulence interaction and (ii)

for developing closure relations for 𝜌𝐮′′c′′ and, especially, 𝜔̇c. However, when apply-

ing these closure relations in CFD research, it is better to invoke two-fluid or BML

approach, because it offers an opportunity to use values of 𝜌b, Tb, and species mass

fractions Yk,b, which are calculated for a mixture of H2O, CO2, CO, O2, H2, OH, O,

H, etc.

6.3.2 Effects of Combustion on Turbulence and Model
Challenges

The problems of modeling the flux 𝜌𝐮′′c′′ and the Reynolds stresses 𝜌u′′i u
′′
j are

not specific to turbulent combustion and were thoroughly investigated in studies

of (i) turbulent mixing in constant-density flows and (ii) turbulent flows, respec-

tively. However, due to significant density variations localized to thin zones, com-

bustion generates variety of new effects and makes the problem much more difficult,

as briefly discussed in the present section. The reader interested in a more detailed

discussion of these effects and approaches to modeling them is referred to recent

review papers (Lipatnikov and Chomiak 2010; Sabelnikov and Lipatnikov 2017)

and monograph (Lipatnikov 2012).
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6.3.2.1 Transport Equations for Second Moments

At first glance, the problem of modeling the second moments 𝜌u′′i c′′ and 𝜌u′′i u
′′
j of

turbulent fields 𝐮(𝐱, t) and c(𝐱, t) might be solved by deriving appropriate transport

equations, as such a derivation is straightforward. For instance, let us, first, (i) use

the continuity Eq. (6.2) to move 𝜌 and 𝜌uj outside the time and spatial derivatives

on the Left Hand Side (LHS) of Eq. (6.3) or (6.23), (ii) multiply the two equations

with c and ui, respectively, and sum them, (iii) use the continuity Eq. (6.2) to move 𝜌

and 𝜌uj inside the time and spatial derivatives on the LHS of the obtained equation.

Then, we arrive at

𝜕

𝜕t
(
𝜌uic

)
+ 𝜕

𝜕xj

(
𝜌uiujc

)
= c

𝜕𝜏ij

𝜕xj
− c

𝜕p
𝜕xi

+ ui
𝜕

𝜕xj

(
𝜌D 𝜕c

𝜕xj

)
+ ui𝜔̇c. (6.46)

Second, application of a similar algorithm to the Favre-averaged Eqs. (6.16) and

(6.27) results in

𝜕

𝜕t
(
𝜌̄ũic̃

)
+ 𝜕

𝜕xj

(
𝜌̄ũiũjc̃

)
= −c̃ 𝜕

𝜕xj
𝜌u′′i u

′′
j − ũi

𝜕

𝜕xj
𝜌u′′j c′′

+ũi
𝜕

𝜕xj

(
𝜌D 𝜕c

𝜕xj

)
+ c̃

𝜕𝜏ij

𝜕xj
− c̃

𝜕p̄
𝜕xi

+ ũi𝜔̇c. (6.47)

Third, the Favre-averaged Eq. (6.46) reads

𝜕

𝜕t
(
𝜌̄ũic̃

)
+ 𝜕

𝜕t
𝜌u′′i c′′ +

𝜕

𝜕xj

(
𝜌̄ũiũjc̃

)
+ 𝜕

𝜕xj

(
ũj𝜌u′′i c′′

)

= − 𝜕

𝜕xj

(
ũi𝜌u′′j c′′ + c̃𝜌u′′i u

′′
j

)
− 𝜕

𝜕xj
𝜌u′′i u

′′
j c′′ + c̃

𝜕𝜏ij

𝜕xj
+ c′′

𝜕𝜏ij

𝜕xj

−c̃
𝜕p̄
𝜕xi

− c′′
𝜕p
𝜕xi

+ ũi
𝜕

𝜕xj

(
𝜌D 𝜕c

𝜕xj

)
+ u′′i

𝜕

𝜕xj

(
𝜌D 𝜕c

𝜕xj

)
+ ũi𝜔̇c + u′′i 𝜔̇c, (6.48)

because 𝜌abc = 𝜌(ã + a′′)(b̃ + b′′)(c̃ + c′′) = 𝜌̄ãb̃c̃ + 𝜌a′′b̃c̃ + 𝜌b′′ãc̃ + 𝜌c′′ãb̃ +
𝜌a′′b′′c̃ + 𝜌a′′c′′b̃ + 𝜌b′′c′′ã + 𝜌a′′b′′c′′ = 𝜌̄ãb̃c̃ + 𝜌a′′b′′c̃ + 𝜌a′′c′′b̃ + 𝜌b′′c′′ã +
𝜌a′′b′′c′′ for arbitrary quantities a, b, and c.

Finally, subtraction of Eq. (6.47) from Eq. (6.48) yields

𝜕

𝜕t
𝜌u′′i c′′ +

𝜕

𝜕xj

(
ũj𝜌u′′i c′′

)
= −𝜌u′′i u

′′
j
𝜕c̃
𝜕xj

− 𝜌u′′j c′′
𝜕ũi
𝜕xj

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

i

− 𝜕

𝜕xj
𝜌u′′i u

′′
j c′′

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

ii

+ c′′
𝜕𝜏ij

𝜕xj
⏟⏞⏟⏞⏟

iii

+u′′i
𝜕

𝜕xj

(
𝜌D 𝜕c

𝜕xj

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

iv

−c′′
𝜕p′

𝜕xi
⏟⏟⏟

v

−c′′
𝜕p̄
𝜕xi

⏟⏟⏟

vi

+u′′i 𝜔̇c
⏟⏟⏟

vii

. (6.49)
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Using a similar method, the following transport equation for the Reynolds stresses

𝜕

𝜕t
𝜌u′′i u

′′
j + 𝜕

𝜕xl

(
ũl𝜌u′′i u

′′
j

)
= −𝜌u′′j u

′′
l
𝜕ũi
𝜕xl

− 𝜌u′′i u
′′
l

𝜕ũj
𝜕xl

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I

(6.50)

− 𝜕

𝜕xl
𝜌u′′i u

′′
j u

′′
l

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

II

+u′′j
𝜕𝜏il

𝜕xl
+ u′′i

𝜕𝜏jl

𝜕xl
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

III

−u′′j
𝜕p′

𝜕xi
− u′′i

𝜕p′

𝜕xj
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

IV

−u′′j
𝜕p̄
𝜕xi

− u′′i
𝜕p̄
𝜕xj

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

V

can be derived.

The transport Eqs. (6.49) and (6.50) do not resolve the problem of closing the

turbulent scalar flux 𝜌u′′i c′′ and the Reynolds stresses 𝜌u′′i u
′′
j , because these transport

equations involve a number of new unclosed terms, i.e., terms (ii)–(vii) on the RHS of

Eq. (6.49) and terms (II)–(V) on the RHS of Eq. (6.50). It is worth stressing that some

of these unclosed terms are specific to turbulent combustion. Indeed, application of

the two transport equations to a constant-density non-reacting flow results in

𝜕

𝜕t
u′ic′ +

𝜕

𝜕xj

(
uju′ic′

)
= −u′iu

′
j
𝜕c̄
𝜕xj

− u′jc′
𝜕ūi
𝜕xj

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

i′

− 𝜕

𝜕xj
u′iu

′
jc′

⏟⏞⏞⏞⏟⏞⏞⏞⏟

ii′

+ 𝜈c′
𝜕2u′i
𝜕x2j

⏟⏞⏞⏟⏞⏞⏟

iii′

+Du′i
𝜕2c′

𝜕x2j
⏟⏞⏞⏟⏞⏞⏟

iv′

−1
𝜌
c′
𝜕p′

𝜕xi
⏟⏞⏟⏞⏟

v′

(6.51)

and

𝜕
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′
j +

𝜕

𝜕xl

(
ulu′iu
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′
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III′
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𝜌

(

u′j
𝜕p′

𝜕xi
− u′i

𝜕p′

𝜕xj

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

IV′

. (6.52)

Equation (6.51) does not contain counterparts of terms (vi) and (vii) on the RHS

of Eq. (6.49), with an important role played by these terms in premixed turbulent

flames being documented in DNS studies reviewed elsewhere (Lipatnikov and Cho-

miak 2010). Similarly, Eq. (6.52) does not contain a counterpart of term V on the

RHS of Eq. (6.50), with this term also playing an important role in premixed turbu-

lent flames (Lipatnikov and Chomiak 2010).
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Because transport equations for the considered second moments are substantially

different in the cases of a non-reacting constant-density turbulent flow and a pre-

mixed turbulent flame, we could expect that closure relations developed for u′ic′ and

u′iu
′
j may be inappropriate in the latter case.

6.3.2.2 Countergradient Turbulent Transport

For instance, when modeling turbulent mixing in constant-density flows, the follow-

ing gradient diffusion closure relation

𝐮′′c′′ = −Dt∇c̃ (6.53)

is widely used. Here, Dt > 0 is the turbulent diffusivity given by an invoked model

of turbulence and it is worth remembering that q̄ = q̃ and q′′ = q′ in the case of

a constant density. However, as well documented in various experiments reviewed

elsewhere (Bray 1995; Lipatnikov and Chomiak 2010; Sabelnikov and Lipatnikov

2017), the scalar product of 𝐮′′c′′ ⋅ ∇c̃ may be positive in premixed flames, contrary

to Eq. (6.53). This phenomenon is known as countergradient turbulent transport. It

was predicted by Clavin and Williams (1979) and Libby and Bray (1981) and was

first documented in experiments by Moss (1980) and by Yanagi and Mimura (1981).

The simplest explanation of the countergradient turbulent transport in premixed

flames is as follows. Equation (6.41) shows that (𝐮̄b − 𝐮̄u) ⋅ ∇c̃ > 0 in the case of

the countergradient turbulent transport. In particular, ūb > ūu within a statistically

planar 1D turbulent flame brush
2

sketched in Fig. 6.1. This difference in ūb and ūu
may stem from the following two physical mechanisms.

First, the mean pressure gradient ∇p̄ induced within the mean flame brush due

to thermal expansion accelerates lighter products stronger than denser unburned gas

(Libby and Bray 1981; Scurlock and Grover 1953), because 𝜕𝐮∕𝜕t ∝ 𝜌
−1∇p due to

Navier–Stokes equations. For instance, the axial velocity in point A
′

in Fig. 6.1 is

larger than the axial velocity in point A or B, because the burned gas is significantly

accelerated by the mean pressure gradient when moving from point A to A
′
, whereas

such an acceleration is weak in the unburned gas and even negligible if 𝜌u ≫ 𝜌b
Second, due to thermal expansion, the normal gas velocity increases from

unburned to burned edges of a laminar premixed flame (Zel’dovich et al. 1985) and

similar jumps in |𝐮 ⋅ 𝐧| occur locally at flame fronts in turbulent flows, e.g., in point

A or B in Fig. 6.1. Here, 𝐧 = −∇c∕|∇c| is a unit vector that is locally normal to the

flamelet and points to the unburned gas.

In a turbulent flow, the two aforementioned mechanisms associated with thermal

expansion are counteracted by velocity fluctuations, which yield turbulent diffusion

in constant-density flows. Accordingly, depending on conditions, both the counter-

2
Premixed turbulent flame brush is a spatial volume where the probabilities of finding c = 0 and

c = 1 are both less than unity.
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Fig. 6.1 Preferential

acceleration of burned gas

due to thermal expansion

gradient turbulent transport and gradient diffusion associated with 𝜌𝐮′′c′′ ⋅ ∇c̃ < 0
can occur in premixed turbulent flames. It is widely accepted that the countergradient

turbulent transport dominates if the Bray number (Bray 1995) defined as follows:

NB =
𝜏SL
u′

(6.54)

is substantially larger than unity, whereas the gradient diffusion is often associated

with a lowNB. It is worth stressing, however, that the sign of 𝜌𝐮′′c′′ ⋅ ∇c̃ depends also

on other flow and mixture characteristics, as discussed in detail elsewhere (Lipat-

nikov and Chomiak 2010). For instance, the sign of the flux 𝜌𝐮′′c′′ may change its

direction during premixed turbulent flame development (Lipatnikov 2011b), but the

Bray number does not involve flame-development time.

Over the first two decades, since the discovery of the countergradient turbulent

transport in premixed flames (Clavin and Williams 1979; Libby and Bray 1981; Moss

1980; Yanagi and Mimura 1981), the sole approach to modeling this phenomenon

within the RANS framework consisted in developing closure relations for various

terms in Eq. (6.49). However, as discussed in detail elsewhere (Lipatnikov and Cho-

miak 2010), such efforts have not yet yielded a model whose predictive capabili-

ties were well documented against a representative set of experimental or DNS data

obtained from substantially different flames under substantially different conditions.

Accordingly, over the past years, alternative approaches were developed by plac-

ing the focus of modeling on the conditioned velocities 𝐮̄u and 𝐮̄b. The reader inter-

ested in a review of such models is referred to (Sabelnikov and Lipatnikov 2017).

At the moment, there is no model that is widely recognized to be able to predict

the flux 𝜌𝐮′′c′′ under substantially different conditions, including transition from

𝜌𝐮′′c′′ ⋅ ∇c̃ > 0 to 𝜌𝐮′′c′′ ⋅ ∇c̃ < 0. Nevertheless, certain progress in validation of
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recently proposed models was made. For instance, the following simple closure rela-

tion (Lipatnikov et al. 2015c; Sabelnikov and Lipatnikov 2011)

(1 − c̄)∇ ⋅ 𝐮̄u ≈ (−0.18 + 0.35𝜎) (1 − c̄)1∕2

(1 + u′∕SL)1∕2
u′
SL

𝜔̇c (6.55)

was validated against experimental and DNS data associated with the countergradi-

ent turbulent transport in premixed flames, see Figs. 6.2, 6.3 and 6.4, respectively.

Numerical results reported in Figs. 6.2, 6.3 and 6.4 were obtained by simulat-

ing flames described by statistically 1D transport equations. In such a case, a single

scalar Eq. (6.55) allows us to evaluate a single conditioned velocity ūu, followed

by calculation of a single component of the turbulent flux vector 𝜌u′′c′′ using Eq.

(6.41). However, a single scalar Eq. (6.55) is not sufficient to obtain two or three

components of the conditioned vector 𝐮̄u in a statistically 2D or 3D case, respec-
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Fig. 6.3 Turbulent scalar fluxes measured (symbols) by a Li et al. (1994) and b Stevens et al.

(1998) and computed (lines) by Lipatnikov et al. (2015c) using Eqs. (6.41) and (6.55)
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tively. In recent 2D RANS simulations (Yasari and Lipatnikov 2015) of open conical

rim-stabilized (Bunsen) methane–air flames that were experimentally investigated by

Frank et al. (1999) and Pfadler et al. (2008), the problem was resolved by invoking the

gradient diffusion closure of the tangential (to the mean flame brush) component of

the flux vector 𝜌𝐮′′c′′, i.e., the tangential flux vanished in that model. In line with

the former measurements (Frank et al. 1999), the simulations (Yasari and Lipat-

nikov 2015) yielded reduction of the magnitude of the countergradient flux followed

by transition to gradient diffusion at 𝛷 = 0.7 when 𝛷 was decreased from 𝛷 = 1
to 0.6. In line with the latter measurements (Pfadler et al. 2008), the simulations

(Yasari and Lipatnikov 2015) yielded the countergradient flux in the radial (almost

normal to the mean flame brush) direction in all studied flames, with the magnitude

of the flux being weakly decreased with increasing the inlet mass flow rate, but being

significantly increased by the equivalence ratio in the lean flames.

Thus, the aforementioned RANS tests of Eq. (6.55) yielded encouraging results,

but further studies aimed at validating and applying this simple model are definitely

required.

6.3.2.3 Flame-Generated Turbulence

The problem of flame-generated turbulence was raised by Karlovitz (1951) and by

Scurlock and Grover (1953) and was studied in many subsequent papers reviewed

elsewhere (Lipatnikov and Chomiak 2010). This problem is commonly considered to

be of paramount importance, because turbulence eventually generated due to thermal

expansion in a premixed flame was hypothesized to significantly increase the burning

rate (Karlovitz et al. 1951).

In principle, both countergradient turbulent flux and flame-generated turbulence

are caused by the same physical mechanisms. First, the jump in the locally normal

velocity at a flamelet contributes not only to an increase in |𝐮̄b| when compared to

Fig. 6.4 Turbulent scalar

fluxes obtained by

processing DNS data

(symbols) and computed

(lines) using Eq. (6.55)

(Lipatnikov et al. 2015c).
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|𝐮̄u|, as discussed in the previous section, see points A and B in Fig. 6.1, but also to an

increase in the magnitude of velocity fluctuations due to fluctuations in the direction

of the normal vector 𝐧 and, hence, in the direction of the local velocity jump. This

physical mechanism was highlighted by Karlovitz et al. (1951).

Second, preferential acceleration of the burned gas by combustion-induced pres-

sure gradient not only contributes to an increase in |𝐮̄b| when compared to |𝐮̄u|, as

discussed in the previous section, but also generates a shear flow behind flamelets,

because some product volumes, e.g., see point A
′

in Fig. 6.1, are accelerated dur-

ing a longer time interval when compared to other product volumes, see point B.

Subsequently, the shear flow generates turbulence. This physical mechanism was

highlighted by Scurlock and Grover (1953).

Although both the countergradient turbulent transport and flame-generated turbu-

lence are governed by basically the same mechanisms, as discussed above, models of

the latter phenomenon have yet been developed substantially worse when compared

to models of the former phenomenon. In particular, within the RANS framework,

flame-generated turbulence is still addressed mainly using Eq. (6.50) and devel-

oping closure relations for various terms on the RHS. However, such efforts have

not yet yielded a widely recognized model whose predictive capabilities were well

documented against a representative set of experimental or DNS data obtained

from substantially different flames under substantially different conditions. Accord-

ingly, in RANS simulations of premixed turbulent flames, the problem of flame-

generated turbulence is often ignored by invoking a turbulence model, e.g., the k-

𝜀 one (Launder and Spalding 1972), that was developed and validated in the non-

reacting constant-density case.

6.3.2.4 Can We Properly Characterize Turbulence in a Flame?

It is also worth stressing that appropriateness of the Reynolds stresses 𝜌u′′i u
′′
j for

characterizing turbulence in premixed flames may be put into question (Lipatnikov

2009a, 2011a; Lipatnikov and Chomiak 2010; Sabelnikov and Lipatnikov 2017). For

instance, Eq. (6.43) clearly shows that 𝜌u′′i u
′′
j is controlled not only by the Reynolds

stresses (u′iu
′
j)u and (u′iu

′
j)b conditioned to unburned and burned mixtures, respec-

tively, but also by the unburned–burned intermittency term, which involves differ-

ences in velocities conditioned to the unburned and burned mixtures, see the last

term on the RHS. If this difference is on the order of 𝜏SL, then, the last term on the

RHS scales as (𝜏SL)2 and can be much larger than two other terms in the case of a

weak turbulence, i.e., u′∕SL = O(1). However, this term is not associated with turbu-

lence, because the local normal velocity jump at a flamelet is controlled by the local

combustion-induced pressure gradient and, therefore, does not change the local vor-

ticity
3 ∇ × 𝐮. On the contrary, turbulence is considered to be inherently rotational

3
If the curl operator is applied to the Navier–Stokes equations, then, the pressure gradient term

vanishes, because ∇ × ∇q ≡ 0 for any scalar quantity q.
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3D flow. Therefore, the irrotational velocity jump and the local turbulence generation

appear to be two fundamentally different phenomena, which should be characterized

by different quantities.

Accordingly, the conditioned Reynolds stresses (u′iu
′
j)u and (u′iu

′
j)b are often

considered to be fundamentally more proper characteristics of turbulence in the

unburned and burned gases, respectively, within a premixed flame brush. For

instance, the physical mechanism highlighted by Scurlock and Grover (1953), i.e.,

generation of turbulence by shear caused by the preferential acceleration of light

products by the combustion-induced bulk pressure gradient, is clearly associated

with generation of turbulence in the burned gas. However, a physical mechanism of

eventual influence of turbulence generated behind flamelets on the flamelet propa-

gation into the unburned reactants has not yet been revealed.

Local variations in turbulence characteristics just upstream of flamelets appear to

be of much more importance when discussing eventual self-acceleration of premixed

flames due to combustion-induced turbulence. From this perspective, the Reynolds

stresses (u′iu
′
j)u conditioned to the unburned mixture appear to be the best turbulence

characteristics within a premixed flame brush at first glance and such a standpoint

is shared by many experts. Nevertheless, this standpoint can be disputed. Due to

random motion of an interface that separates two fluids, a statistical sub-ensemble

over that a conditional average is taken depends on 𝐱 and t, as is well known

in the theory of intermittent flows (Kuznetsov and Sabelnikov 1990; Libby 1975;

Townsend 1976). Consequently, the conditioned second moments differ from their

mean counterparts even in the case of self-propagation of a passive interface in a

constant-density flow, whereas it is the mean moments that characterize turbulence

that is not affected by the interface propagation.

For combustion applications, this feature of conditionally averaged second

moments follows straightforwardly from Eq. (6.43), which shows that (u′iu
′
j)u differs

from u′iu
′
j even in the constant-density case, but it is the latter quantity that properly

characterizes turbulence in such a case. The same feature of conditionally averaged

second moments was also demonstrated by analyzing simple model problems (Lipat-

nikov 2009a, 2011a) and was recently shown in a 3D DNS study of self-propagation

of an infinitely thin and dynamically passive interface in constant-density turbu-

lence (Yu et al. 2014, 2015). The DNS also indicated that quantities controlled by

velocity gradients were significantly less sensitive to averaging method. In particu-

lar, the mean and conditioned total strains S2 = SijSij or enstrophies 𝜔
2 = (∇ × 𝐮)2

were almost equal to one another in all simulated cases, thus, implying that (S2)u
or (𝜔2)u is a proper characteristic of turbulence in reactants at least in the case of a

constant density. Here, Sij = (𝜕ui∕𝜕xj + 𝜕uj∕𝜕xi)∕2 is the rate-of-strain tensor.

All in all, the problem of characterizing turbulence within a premixed turbulent

flame brush strongly requires further research. It is worth noting that this unresolved

fundamental problem reduces the importance of another unresolved problem, i.e.,

modeling of 𝜌u′′i u
′′
j and (u′iu

′
j)u or (u′iu

′
j)b in premixed turbulent flames. Indeed, if
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neither of these second moments properly characterizes flame-turbulence interac-

tion, then, modeling of these second moments appear to be of secondary importance.

6.3.2.5 Flow Perturbations Upstream of a Flame. Hydrodynamic
Instability

As already noted, perturbations of the incoming flow of unburned reactants appear

to be required in order for thermal expansion effects cause self-acceleration of the

flame. Such a kind of flow perturbations is well known in the theory of laminar

combustion and causes the hydrodynamic instability of laminar premixed flames,

which was theoretically discovered by Darrieus (1938) and Landau (1944). In honor

of these two scientists, the instability is often called the DL instability.

As discussed in many combustion textbooks (Law 2006; Lipatnikov 2012; Poinsot

and Veynante 2005; Williams 1985; Zel’dovich et al. 1985), the physical mechanism

of the DL instability is as follows. Due to flow acceleration in the direction normal

to a laminar flame, the flow velocity vector changes its direction when crossing the

flame, with the magnitude of 𝐮 ⋅ 𝐧∕|𝐮| being larger on the burned side of the flame

(or |𝐮 ⋅ 𝐧|∕|𝐮| = 1 on both sides of the flame if the vectors 𝐮 and 𝐧 are parallel to one

another). Such a change in the flow velocity vector direction is illustrated in insert

associated with point B in Fig. 6.5. Accordingly, if the flame surface is subject to

infinitesimal perturbations, see solid line in Fig. 6.5, then, the flame induces diver-

gence (convergence) of the unburned (burned) mixture flow upstream (downstream)

of convex (toward the unburned gas, see arc AB) elements of the flame surface, see

fluid tubes bounded by flow lines A
′
A and B

′
B (AA

′′
and BB

′′
, respectively). Con-

sequently, the flow velocity of unburned gas at the convex flame surface decreases,

whereas the flame speed SL is assumed to be constant within the framework of the

DL theory. Similarly, the flame induces convergence (divergence) of the unburned

(burned) mixture flow upstream (downstream) of concave elements (arc BC) of the

flame surface, see fluid tubes bounded by flow lines C
′
C and B

′
B (CC

′′
and BB

′′
,

respectively), and the flow velocity of unburned gas at the concave flame surface

increases. As a result, convex (arc AB) and concave (arc BC) bulges are character-

ized by |𝐮u ⋅ 𝐧| < SL and |𝐮u ⋅ 𝐧| > SL, respectively. Therefore, the bulges grow, the

amplitude of the flame surface perturbation increases, and the flame becomes unsta-

ble. This instability is the classical example of self-acceleration of a flame due to

perturbations of the incoming flow of unburned reactants, caused by thermal expan-

sion in the flame.

Flamelets in a turbulent flow may also be subject to such a local DL instability,

which results in increasing flamelet surface area and, hence, turbulent burning rate.

However, such effects appear to be of substantial importance only in weak turbu-

lence, i.e., if a ratio of u′∕SL = O(1) (Boughanem and Trouvé 1998; Chaudhuri et al.

2011; Fogla et al. 2017; Lipatnikov and Chomiak 2005c). Nevertheless, the govern-

ing physical mechanism of the DL instability, i.e., acceleration of unburned mix-

ture flow due to combustion-induced pressure gradient, may manifest itself in other

phenomena, e.g., the growth of the so-called unburned mixture fingers that deeply
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Fig. 6.5 Physical

mechanism of the DL

instability

Fig. 6.6 Unburned mixture fingers in bluff body stabilized conical lean premixed turbulent flames.

Adapted from the paper by Chowdhury and Cetegen (2017)

intrude into combustion products (Lipatnikov et al. 2015b). A recent image of such

fingers is shown in Fig. 6.6. The latter manifestation of the DL mechanism differs

from the hydrodynamic instability of laminar flames, caused by the same mecha-

nism, because the magnitude of pressure gradient within a premixed turbulent flame

brush may be much larger than the magnitude of pressure gradient in unburned gas

in the vicinity of a weakly wrinkled laminar premixed flame.

Moreover, pressure perturbations induced due to thermal expansion in flamelets

may rapidly propagate upstream of the flame brush and change the incoming velocity

field (Sabelnikov and Lipatnikov 2017). Such effects require thorough investigation.
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6.3.2.6 Summary

Modeling of the influence of premixed combustion on turbulence and turbulent trans-

port is the weakest point of the contemporary theory of turbulent combustion. While

certain promising approaches to modeling turbulent transport in premixed flames

were recently put forward, other fundamental issues such as

∙ selection of proper turbulence characteristics in flames,

∙ modeling of these turbulence characteristics, and

∙ eventual self-acceleration of premixed flames due to combustion-induced pertur-

bations of the incoming flow of unburned reactants

have not yet been resolved even in a first approximation.

In applied CFD research into turbulent combustion, these fundamental issues are

commonly disregarded and turbulence is modeled invoking methods developed and

validated in studies on non-reacting constant-density flows.

While such a practical solution appears to be justified unless the aforementioned

issues are resolved, it is still unclear why results of such applied simulations agreed

with experimental data in a number of studies.

One possible answer consists in (i) highlighting a crucial role played by the lead-

ing edge of a premixed turbulent flame brush in its propagation and (ii) assuming that

effects of combustion on turbulence are weak at the leading edge. However, this sub-

ject is beyond the scope of the present chapter and the interested reader is referred to

a review paper (Lipatnikov and Chomiak 2005c), a monograph (Lipatnikov 2012),

and recent papers (Kha et al. 2016; Kim 2017; Sabelnikov and Lipatnikov 2013,

2015; Venkateswaran et al. 2015).

6.3.3 Effects of Turbulence on Combustion: Problems,
Physical Mechanisms, and Models

A major challenge of premixed turbulent combustion modeling within the RANS

framework stems from (i) highly nonlinear dependencies of the rates of reactions that

control heat release on the temperature and (ii) large magnitude of the temperature

fluctuations in a turbulent flow. Accordingly, 𝜔̇c depends on c in a highly nonlinear

manner and is subject to large fluctuations in c, from zero to unity and back.

To illustrate the problem, let us compare exp (−𝛩∕T) and exp
(
−𝛩∕T

)
in a

point where the probabilities of finding unburned and burned mixtures are equal

to 0.5, i.e., the probability of finding the intermediate temperatures is assumed to

be negligible in the considered example. In the case of Tu = 300 K, Tb = 2200 K,

and 𝛩 = 20000K, we have T = 1250 K and exp
(
−𝛩∕T

)
= 1.1 × 10−7, whereas

exp (−𝛩∕T) ≈ 0.5exp
(
−𝛩∕Tb

)
= 5.6 × 10−5, i.e., the former exponential term is

lower than the latter term by a factor os 500!
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Obviously, such a huge difference cannot be modeled by expanding exp (−𝛩∕T)
into the Taylor series with respect to T ′∕T , followed by averaging, e.g.,

exp
(
−𝛩

T

)
= exp

{

−𝛩

T

[

1 − T ′

T
+

(
T ′

T

)2

−
(
T ′

T

)3

+
(
T ′

T

)4
}

+⋯

]

= exp
(
−𝛩

T

)⎡
⎢
⎢
⎣
1 + 3

2

(
T ′

T

)2

− 13
6

(
T ′

T

)3

+ 73
22

(
T ′

T

)4

+…
⎤
⎥
⎥
⎦
. (6.56)

In the considered example (c̄ = 0.5, Tu = 300 K, Tb = 2200 K, T = 1250 K, and

𝛩 = 20000K), the odd moments (T ′∕T)2n+1 vanish, whereas the even moments

(T ′∕T)2n are equal to [(Tb − Tu)∕2T]2n = 0.762n. Here, n ≥ 1 is an integer num-

ber. Consequently, the use of the first-order terms in the above Taylor series does

not allow us to increase exp (−𝛩∕T) by a required factor of 500 when compared

to exp
(
−𝛩∕T

)
. Thus, standard perturbation methods cannot be used to predict

the influence of strong turbulent fluctuations in the temperature (or the combustion

progress variable c) on reaction rates that depend on T (or c) in a highly nonlinear

manner, e.g. 𝜔̇c(c). To resolve the problem, RANS models of premixed turbulent

combustion are commonly developed by highlighting a few of many physical mech-

anisms of flame–turbulence interaction.

6.3.3.1 Physical Mechanisms

When discussing physical mechanisms of the influence of turbulence on premixed

combustion, there are several levels of simplifications, which are illustrated in

Fig. 6.7.

Fig. 6.7 Various effects

associated with the influence

of turbulence on premixed

combustion
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At the first, simplest level, the influence of turbulence on premixed combustion

is solely reduced to wrinkling an infinitely thin flame front by turbulent eddies, see

Fig. 6.7a, with the front speed with respect to the unburned gas being assumed to be

constant and equal to SL. The first models of that kind were put forward by Damköh-

ler (1940) and Shelkin (1943) and, since that, this physical mechanism is taken into

account by the vast majority of premixed turbulent combustion models. At this level

of simplifications, turbulent burning velocity is solely controlled by an increase in

the mean area Af of the flame-front surface (wrinkled solid line in Fig. 6.7a) when

compared to the area A0 of a mean flame surface (dashed straight line), i.e.,

Ut = SL
Af

A0
. (6.57)

An increase in u′ results in increasing the mean dissipation rate 𝜀 ∝ u′3∕L, decreas-

ing the Kolmogorov length 𝜂 = (𝜈3∕𝜀)1∕4 and time 𝜏
𝜂
= (𝜈∕𝜀)1∕2 scales, and increas-

ing the magnitude 𝜏
−1
𝜂

of the highest local stretch rate, which is generated by the

Kolmogorov eddies (Pope 2000). Because the local area of the flame-front surface

is increased by the local turbulent stretch rates, an increase in u′ results in increasing

Af and Ut. A recent DNS study (Yu et al. 2015) of propagation of an infinitely thin

interface in constant-density turbulence characterized by 0.5 ≤ u′∕SL ≤ 10 showed

a linear dependence of Ut on u′, in line with pioneering predictions by Damköhler

(1940) and Shelkin (1943).

At the second, more sophisticated level, the local burning rate is still assumed

to be unperturbed
4

and controlled by SL, but finite thickness of flamelets is taken

into account, see Fig. 6.7b, thus, introducing several new effects. In particular, the

smallest scale wrinkles of an infinitely thin interface are smoothed out in the case of a

flamelet of a finite thickness, cf. ellipse A in Fig. 6.7a and its counterpart in Fig. 6.7b.

A recent DNS study (Yu and Lipatnikov 2017a) showed that such a smoothing mech-

anism results in decreasing Ut and bending of the computed Ut(u′)-curves, with the

magnitudes of both effects being increased with decreasing L∕𝛿L.

Moreover, if heat losses play a role, a flamelet of a finite thickness may be

quenched by strong turbulent stretching (Bradley et al. 1992). Such effects are

often taken into account by multiplying the RHS of Eq. (6.57) with a stretch factor

Gs = 1 − ℙq, where ℙq is the probability of local combustion quenching by turbulent

stretching. The reader interested in modeling this probability is referred to Bradley

et al. (2005).

Furthermore, if the rms turbulent velocity u′ is increased, the Kolmogorov length

scale 𝜂 is decreased and the Kolmogorov eddies may penetrate into the flamelet

4
In the case of a single-step chemistry, the local burning rate in an adiabatic laminar premixed flame

is not affected by the flame curvature or the local strain rate if (i) the activation temperature of the

combustion reaction is asymptotically high, i.e., 𝛩∕Tb ≫ 1, and (ii) the mixture is equidiffusive,

i.e., DF = DO = 𝜅, e.g., see a review paper by Clavin (1985).
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preheat
5

zones and perturb their structure, thus, making the flamelet approxima-

tion wrong in such a case. If u′ is further increased, the Kolmogorov eddies may

become very small and may be able to penetrate even into the reaction zones, thus,

intensifying mixing in these zones. By considering the case of L∕𝛿L ≪ 1, Damköh-

ler (1940) assumed that the influence of turbulence on premixed combustion might

solely be reduced to an increase in the diffusivity within the flame. Accordingly,

turbulent burning velocity may be determined using results of the thermal laminar

flame theory (Zel’dovich et al. 1985) and substituting the molecular diffusivity with

the turbulent one, i.e.,

Ut = SL

√
Dt

𝜅
∝ SL

√
Ret (6.58)

This scaling is supported by recent DNS data (Yu and Lipatnikov 2017b) obtained

from a number of premixed turbulent flames characterized by high Karlovitz and low

Damköhler numbers.

On the contrary, if flamelet thickness is sufficiently large, the smallest turbu-

lent eddies may disappear in the flamelet preheat zones due to increased viscous

dissipation and dilatation (Poinsot et al. 1991; Roberts et al. 1993). In such a case,

the smallest eddies do not affect Ut, i.e., the considered dissipation and dilatation

effects are somehow similar to the smoothing effect discussed earlier.

Finally, if flamelets of a finite thickness are convected close to one another, they

preheated zones may overlap, thus, heating the unburned gas and, subsequently,

increasing the local burning rate (Poludnenko and Oran 2011).

Thus, even this brief overview shows that, if a finite thickness of flamelets is taken

into account, various physical mechanisms of flame–turbulence interaction may be

highlighted. Accordingly, in the literature, a number of different expressions for Ut
and the mean rate 𝜔̇c may be found, as will be illustrated later.

When compared to models that address an infinitely thin flame front, the following

feature of models that allow for a finite flamelet thickness appears to be of paramount

importance, especially for engine applications. Even if the former models yield dif-

ferent expressions for Ut, all these expressions may be subsumed to Ut = u′f (SL∕u′)
for dimensional reasoning, because these models consider SL to be a single dimen-

sional combustion characteristic. Here, f is an arbitrary function with its derivative

f ′ ≥ 0 in order for an increase in SL to result in increasing or constant Ut. Therefore,

if the pressure is increased and u′ retains the same value, then, these models yield

a decreasing or constant Ut, because SL is decreased with increasing p for a typical

hydrocarbon–air mixture.

However, as reviewed elsewhere (Lipatnikov 2012; Lipatnikov and Chomiak

2002, 2010), there is a large body of experimental data that cogently show an

increase in Ut by p. This well-documented effect may play an important role in pis-

5
Within the framework of the classical thermal theory of laminar premixed combustion (Zel’dovich

et al. 1985), a laminar flame consists of a preheat zone, where the reaction rate vanishes, and a

significantly thinner reaction zone which heat release is localized to.
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ton engines where the pressure strongly varies during the combustion phase, but, as

argued above, this effect cannot be predicted by a model that deals with infinitely

thin flame fronts.

On the contrary, a model that allows for a finite flamelet thickness and yields

an increase in Ut by L∕𝛿L may predict the increase in Ut by the pressure. Indeed,

𝛿L ∝ 𝜅∕SL ∝ p−1∕p−s is decreased with increasing pressure, because the power

exponent s in SL ∝ p−s is significantly smaller than unity, e.g. s ≈ 0.5 or 0.25 for

methane or heavier paraffins, respectively. Thus, dependence of turbulent burning

rate on flamelet thickness is of substantial importance, especially for CFD research

into burning in piston engines.

At the third level of simplification, see Fig. 6.7c, not only a finite flamelet thick-

ness, but also differences in (i) DF and DO (the so-called preferential diffusion

effects) and (ii) Le and unity (the so-called Lewis number effects) are taken into

account. Discussion of such effects is beyond the scope of the present chapter and

the interested reader is referred to review paper (Lipatnikov and Chomiak 2005c)

and monograph (Lipatnikov 2012). Here, it is worth noting that, if the molecular

diffusivity of the deficient reactant, e.g. hydrogen in a lean H2/air mixture, is sig-

nificantly higher than the diffusivity of another reactant, then, local burning rate

in positively curved
6

flamelets may be significantly increased by the preferential

diffusion and Lewis number effects, cf. ellipse B and its counterpart in Figs. 6.7b

and 6.7c, respectively. The opposite change in the local burning rate is observed

(in the considered case of a lean H2/air mixture) in negatively curved flamelets, cf.

ellipse C and its counterpart in Figs. 6.7b and 6.7c, respectively.

As reviewed elsewhere (Kuznetsov and Sabelnikov 1990; Lipatnikov 2012; Lipat-

nikov and Chomiak 2005c), the preferential diffusion and Lewis number effects play

a very important role in premixed turbulent combustion even at high u′∕SL and Ret.
In particular, such effects appear to be of great importance when burning renewable

fuels such as syngas (Venkateswaran et al. 2011, 2013, 2015).

An important role played by molecular transport even at DF∕Dt ∝ Re−1t ≪ 1
might appear to be surprising at first glance. However, it is worth remembering

that combustion is localized to thin reaction zones, where a small molecular dif-

fusivity, e.g. DF, is multiplied with a large spatial gradient, e.g., ∇YF. Accordingly,

in these zones, the molecular transport and reaction terms are of the same order,

in line with the thermal theory of laminar premixed combustion (Zel’dovich et al.

1985). Consequently, the preferential diffusion and Lewis number effects may sub-

stantially change the local temperature and mixture composition in reaction zones,

thus, strongly affecting the local 𝜔̇c. In the Favre-averaged transport Eq. (6.27), the

mean molecular transport term may be significantly smaller than the mean reaction

term, because flamelet preheat zones do not contribute to the latter term, but con-

tribute to the former term, with the reaction and preheat zone contributions to the

mean molecular transport term counterbalancing one another to the leading order.

Nevertheless, the mean reaction rate may straightforwardly depend onDF∕DO and/or

6
Curvature is considered to be positive or negative if the curvature center is in burned or unburned

gas, respectively.
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Le, because molecular transport plays an important role in the reaction zones, as

noted above.

Finally, it is worth noting that, in the case of single-step chemistry, a single com-

bustion progress variable does not allow us to characterize mixture composition if

DF ≠ DO or Le ≠ 1. At least two (if DF ≠ DO and Le = 1 or DF = DO and Le ≠ 1) or

three (if DF ≠ DO and Le ≠ 1) scalar quantities are required to properly characterize

the mixture composition in such a case. However, if c̄ is considered to be the prob-

ability of finding combustion products, a single combustion progress variable and a

single transport Eq. (6.27) may be used to simulate premixed turbulent combustion

by invoking the two-fluid or BML approximation. In order for such simulations to

allow for the preferential diffusion and Lewis number effects, these effects should

be properly addressed by the invoked closure relation for 𝜔̇c. An example of such a

model will be given in Sect. 6.4.2.

6.3.3.2 Some Approaches to Modeling

The contents of this section are restricted to models developed to obtain a closure

relation solely for the source term 𝜔̇c in Eq. (6.27), whereas a closure relation for the

scalar flux 𝜌𝐮′′c′′ is assumed to be provided by another model. The most widely used

models of the mean rate 𝜔̇c belong to one of the following three groups; (i) algebraic

models, (ii) models that deal with an extra transport equation for the mean Flame

Surface Density (FSD) |∇c|, (iii) models that deal with an extra transport equation

for the mean Scalar Dissipation Rate (SDR) 𝜒 = 2𝜌̄−1𝜌D∇c′′ ⋅ ∇c′′.

Algebraic Models

In the literature, there is a number of different algebraic closure relations for 𝜔̇c,

which were obtained invoking different assumptions. All such models may be sub-

sumed to

𝜔̇c =
𝜌̄Ω
𝜏f

, (6.59)

where a flame time scale 𝜏f is introduced for dimensional reasoning and Ω =
Ω(c̃, 𝜌̄∕𝜌u) is a function of the normalized density and the mean combustion progress

variable c̃ or c̄. Since such models usually invoke the BML approach and, in partic-

ular, 𝜌̄c̃ = 𝜎
−1

𝜌uc̄, the knowledge of 𝜌̄∕𝜌u and c̃ is equivalent to the knowledge of

𝜌̄∕𝜌u and c̄ within the framework of these models.

Examples of expressions for the time scale 𝜏f and function Ω(c̃, 𝜌̄∕𝜌u), asso-

ciated with various models, are given in Table 6.1, where 𝜏t = L∕u′ is a turbu-

lence time scale, Da = 𝜏t∕𝜏c is the Damköhler number, 𝜏c = 𝛿L∕SL is the laminar

flame time scale, C1, C2, and C3 are model constants (values of C1 are different

for different models) provided in the cited papers, and the functions Γ(u′∕SL,L∕𝛿L),
I0(Re

1∕2
t ∕Da), and F (Ret) are also provided in the cited papers, as well as the length

scale L̂y.
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Table 6.1 Algebraic models

𝜏
−1
f Ω References

C1Γ𝜏−1t c̄(1 − c̄) Bailly et al. (1997)

C1𝜏
−1
t 𝜌̄c̃(1 − c̃)∕𝜌u Bray (1980)

C1I0SL∕L̂y c̄(1 − c̄) Bray (1990)

F
SL
u′
𝜏
−1
t c̄(1 − c̄) Lindstedt and Váos (1999)

C1

[
SL∕u′ +

(
1 + Da−2

)−1∕4]2
𝜏
−1
t 𝜌̄c̃(1 − c̃)∕𝜌u Schmidt et al. (1998)

C1
(
1 + C2SL∕u′

)
(C3Da−1 + 1)𝜏−1t 𝜌̄c̃(1 − c̃)∕𝜌u Swaminathan and Bray (2005)

Table 6.1 clearly shows that different model expressions are associated with differ-

ent levels of simplifications. For instance, one of the oldest expressions for 𝜏f , see the

second row in Table 6.1, involves neither laminar flame speed nor the laminar flame

thickness. This model is based on an assumption that burning rate is controlled by

turbulent mixing rate and, therefore, 𝜏f scales as 𝜏t. However, such a model cannot

predict the well-documented and practically important increase in turbulent burning

velocity by the pressure (provided that u′ and L are not affected by p).

Certain models yield an increase in the burning rate by SL, but do not involve the

thickness 𝛿L, e.g., see the fourth row in Table 6.1. Other models involve both SL and

𝛿L, but the influence of the thickness of 𝜔̇c vanishes if Da ≫ 1, e.g., see the fifth and

sixth rows in Table 6.1. Consequently, at high Damköhler numbers, these models

yield a decrease in the burning rate with increasing pressure (due to a decrease in

SL), contrary to a large amount of experimental data that show an increase in Ut by

p (Lipatnikov 2012; Lipatnikov and Chomiak 2002).

As far as capability for predicting the increase in Ut by p is concerned, the expres-

sions listed in the first and third rows in Table 6.1 do yield the correct trend. There-

fore, these expressions appear to be most promising. Nevertheless, it is worth stress-

ing that neither of the algebraic models has yet been validated in a solid manner, i.e.,

by retaining the model constant(s) unchanged, against a wide set of experimental

data obtained from substantially different flames under substantially different con-

ditions. While the model addressed in the second row in Table 6.1 was applied to

simulating various experiments, significant changes in the model constant C1 were

required to reach an agreement with data obtained from different flames.

Flame Surface Density Models

The most FSD models are based on assumptions that (i) the mass rate 𝜔̇c of product

creation per unit volume is equal to a product of the mean flamelet surface area per

this unit volume, i.e., the mean flame surface density Σ, and the mean mass rate

𝜌uūc of product creation per the unit area of the flame surface, and (ii) the latter

mass rate is approximately equal to 𝜌uSL. The former assumption neglects eventual

correlations between Σ and 𝜌uuc. The latter assumption neglects perturbations of the

local flamelet structure and the local burning rate by turbulent eddies and, therefore,

may be valid in sufficiently weak turbulence only.
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The foundations of the FSD approach can be illustrated by rewriting Eq. (6.23)

as follows:
𝜕

𝜕t
(𝜌c) + ∇ ⋅ (𝜌𝐮c) = 𝜌Sd|∇c| (6.60)

where Sd defined as follows:

Sd ≡ ∇ ⋅ (𝜌D∇c) + 𝜔̇c

𝜌|∇c|
(6.61)

is the so-called displacement speed in the case of a finite flamelet thickness.
7

The

displacement speed is the speed of motion of an iso-scalar surface with respect to

the local flow. Indeed, using Eq. (6.2), Eq. (6.60) reads

𝜕c
𝜕t

=
(
Sd + 𝐧 ⋅ 𝐮

)
|∇c| (6.62)

in the case of a finite flamelet thickness.

The Favre-averaged Eq. (6.60) reads

𝜕

𝜕t
(𝜌̄c̃) + ∇ ⋅ (𝜌̄𝐮̃c̃) = −∇ ⋅ 𝜌𝐮′′c′′ + 𝜌Sd|∇c|. (6.63)

Subsequently, if we assume that equality of 𝜌Sd = 𝜌uSL holds not only in the unper-

turbed laminar flame, but also in turbulent flames, then, we arrive at

𝜕

𝜕t
(𝜌̄c̃) + ∇ ⋅ (𝜌̄𝐮̃c̃) = −∇ ⋅ 𝜌𝐮′′c′′ + 𝜌uSL|∇c|. (6.64)

Comparison of Eqs. (6.27) and (6.64) shows

∇ ⋅ (𝜌D∇c) + 𝜔̇c = 𝜌uSL|∇c| (6.65)

or

𝜔̇c ≈ 𝜌uSL|∇c| (6.66)

if the molecular transport term is neglected at high Reynolds numbers. Equation

(6.66) is the cornerstone of the FSD approach, as the straightforward relation between

FSD Σ and |∇c| is well established, as reviewed elsewhere (Poinsot and Veynante

2005; Veynante and Vervisch 2002).

Transport equations for Σ were derived using different methods (Candel and

Poinsot 1990; Pope 1988; Trouvé and Poinsot 1994; Vervisch et al. 1995; Zimont

2015). After averaging such equations involve a set of unclosed terms that should be

modeled. There are different models of that kind, but all of them may be subsumed

7
A product of 𝜌|∇c| is mathematically meaningless in the case of an infinitely thin flame front,

because both 𝜌 and |∇c| are discontinuous at the front.
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Table 6.2 Flame surface density models

Source term P Sink term D Model

C1

(
𝜀̃

𝜈

)1∕2
Σ C2SL

2+e−C3R

3(1−c̄)
Σ
2
, where

R = (1−c̄)𝜀̃
SLΣk̃

Cant et al. (1990)

C1
𝜀̃

k̃
Σ C2

SL
1−c̄

Σ
2

CFM (Candel et al. 1990;

Fichot et al. 1993)

C1
𝜀̃

k̃
Σ C2

SL+C3u′

1−c̄
Σ
2

CFM1 (Candel et al. 1990;

Duclos et al. 1993)

C1Γ
𝜀̃

k̃
Σ C2

SL+C3u′

1−c̄
Σ
2

CFM2a (Boudier et al. 1992)

C1Γ
𝜀̃

k̃
Σ C2

SL+C3u′

c̄(1−c̄)
Σ
2

CFM2b (Duclos et al. 1993)

C1
𝜀̃

k̃
Σ if Da ≥ C2 C3

SL
1−c̄

Σ
2

Cheng and Diringer (1991)

C1

(
𝜀̃

𝜈

)1∕2
Σ C2

𝜌uSL
𝜌̄c̄(1−c̄)

Σ
2

Choi and Huh (1998)

C1
u′

lr
Σ C2

𝜌uSL
𝜌̄c̄(1−c̄)

Σ
2

Lee et al. (1998)

to

𝜕Σ
𝜕t

+ ∇ ⋅
(
𝐮̃Σ

)
= ∇ ⋅

(
𝜈t

Sct
∇Σ

)
+P −D , (6.67)

with the source P and consumption D terms being specified in Table 6.2. Here, Sct
and Cj are constants, which may be different for different models, k̃ and 𝜀̃ are the

Favre-averaged turbulent kinetic energy and its dissipation rate, respectively, 𝜈t is

the turbulent viscosity given by a turbulence model, Γ = Γ(u′∕SL,L∕𝛥L) is the so-

called efficiency function
8

introduced by Meneveau and Poinsot (1991), and lr is a

dimensional constant (a length scale).

While the FSD models are widely used in applied CFD research into premixed tur-

bulent combustion in engines, there is a need for thoroughly validating such models

against a wide set or representative experimental data obtained from various well-

defined simple flames under substantially different conditions.

Moreover, the FSD models suffer from fundamental limitations. In particular,

first, the validity of the cornerstone Eq. (6.65) and its simplified version given by

Eq. (6.66) may be put into question even in weakly turbulent flames commonly

associated with the flamelet combustion regime and minor perturbations of local

flamelet structure and burning rate 𝜌uc by turbulent eddies. For instance, dashed

line in Fig. 6.8 shows that a ratio of 𝜔̇c∕(𝜌uSL|∇c|) is significantly increased by c̄ at

c̄ < 0.2 and 0.8 < c̄. At low c̄, variations in a ratio of (∇ ⋅ (𝜌D∇c) + 𝜔̇c)∕(𝜌uSL|∇c|),
see solid line, are less pronounced, but they are still substantial at 0.8 < c̄. Therefore,

neither Eq. (6.65) nor Eq. (6.66) holds under conditions of this DNS study (Lipat-

8
There is the same function in Table 6.1 also.
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Fig. 6.8 Ratios of

𝜔̇c∕(𝜌uSL|∇c|) (dashed line)

and

(∇ ⋅ (𝜌D∇c) + 𝜔̇c)∕(𝜌uSL
|∇c|) (solid line) obtained in

a DNS study (Lipatnikov

et al. 2017) of weakly

turbulent premixed burning

associated with the flamelet

combustion regime (Peters

2000)

nikov et al. 2017) in spite of the facts that (i) these conditions are well associated

with the flamelet regime of premixed turbulent combustion and (ii) at least one of

the two aforementioned equations is commonly assumed to be valid in the flamelet

combustion regime.

Second, closure relations summarized in Table 6.2 involves the unperturbed lam-

inar flame speed SL, but do not allow for the influence of local flamelet perturbations

on the balance of the mean FSD within a premixed turbulent flame brush. However,

the already cited DNS study (Lipatnikov et al. 2017) shows that such an influence is

of substantial importance and should be addressed properly.

Scalar Dissipation Rate Models

The SDR models are based on the following linear relation:

𝜔̇c =
𝜌̄𝜒

2cm − 1
, (6.68)

where

cm =
c𝜔̇c

𝜔̇c

(6.69)

is commonly assumed to be a constant larger than 0.5.

Within the framework of the BML approach, Eqs. (6.68) and (6.69) can be derived

straightforwardly (Bray 1979). First, multiplication of Eq. (6.23) with c yields

𝜕

𝜕t
(
𝜌c2

)
+ ∇ ⋅

(
𝜌𝐮c2

)
= 2c∇ ⋅ (𝜌D∇c) + 2c𝜔̇c (6.70)

using Eq. (6.2). Second, the Favre-averaged Eq. (6.70) reads
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𝜕

𝜕t
(
𝜌̄c̃2

)
+ 𝜕

𝜕t

(
𝜌c′′2

)
+ ∇ ⋅

(
𝜌̄𝐮̃c̃2

)
+ ∇ ⋅

(
𝐮̃𝜌c′′2

)
+ 2∇ ⋅

(
c̃𝜌𝐮′′c′′

)

+∇ ⋅ 𝜌𝐮′′c′′2 = 2c̃∇ ⋅ (𝜌D∇c) + 2c′′∇ ⋅ (𝜌D∇c) + 2c̃𝜔̇c + 2c′′𝜔̇c. (6.71)

Third, multiplication of Eq. (6.27) with c̃ yields

𝜕

𝜕t
(
𝜌̄c̃2

)
+ ∇ ⋅

(
𝜌̄𝐮̃c̃2

)
+ 2c̃∇ ⋅ 𝜌𝐮′′c′′ = 2c̃∇ ⋅ (𝜌D∇c) + 2c̃𝜔̇c. (6.72)

Fourth, subtraction of Eq. (6.72) from Eq. (6.71) results in

𝜕

𝜕t

(
𝜌c′′2

)
+ ∇ ⋅

(
𝐮̃𝜌c′′2

)

= −2𝜌𝐮′′c′′ ⋅ ∇c̃ − ∇ ⋅ 𝜌𝐮′′c′′2 + 2c′′∇ ⋅ (𝜌D∇c) + 2c′′𝜔̇c. (6.73)

Fifth, within the framework of the BML approach, we have

𝜌𝐮′′c′′2 = 𝜌u(1 − c̄)
(
𝐮̄u − 𝐮̃

)
c̃2 + 𝜌bc̄

(
𝐮̄b − 𝐮̃

)
(1 − c̃)2

= 𝜌̄c̃ (1 − c̃)
[
c̃
(
𝐮̄u − 𝐮̃

)
+ (1 − c̃)

(
𝐮̄b − 𝐮̃

)]

= 𝜌̄c̃ (1 − c̃)
[
c̃𝐮̄u + (1 − c̃) 𝐮̄b − 𝐮̃

]

= 𝜌̄c̃ (1 − c̃)
[
c̃𝐮̄u + (1 − c̃) 𝐮̄b − (1 − c̃) 𝐮̄u − c̃𝐮̄b

]

= 𝜌̄c̃ (1 − c̃)
(
𝐮̄b − 𝐮̄u

)
(1 − 2c̃) = 𝜌𝐮′′c′′ (1 − 2c̃) . (6.74)

Sixth, substitution of Eqs. (6.37), (6.41), (6.69) and (6.74) into Eq. (6.73) yields

(1 − 2c̃) 𝜕

𝜕t
(𝜌̄c̃) + (1 − 2c̃) ∇ ⋅ (𝜌̄𝐮̃c̃)

= − (1 − 2c̃) ∇ ⋅ 𝜌𝐮′′c′′ + 2c′′∇ ⋅ (𝜌D∇c) + 2(cm − c̃)𝜔̇c (6.75)

using Eq. (6.15). Seventh, subtraction of Eq. (6.27) multiplied with (1 − 2c̃) from

Eq. (6.75) results in

(
2cm − 1

)
𝜔̇c = −2c′′∇ ⋅ (𝜌D∇c) + (1 − 2c̃) ∇ ⋅ (𝜌D∇c)

= 2𝜌D∇c ⋅ ∇c′′ − 2∇ ⋅ (𝜌c′′D∇c) + (1 − 2c̃) ∇ ⋅ (𝜌D∇c)
= 𝜌̄𝜒 + 2𝜌D∇c′′ ⋅ ∇c̃ − 2∇ ⋅ (𝜌c′′D∇c) + (1 − 2c̃) ∇ ⋅ (𝜌D∇c). (6.76)

At Ret ≫ 1 and Da ≫ 1, instantaneous variations in c are localized to thin

flamelets characterized by large (when compared to |∇c̃|) spatial gradients |∇c|.
Consequently, the first term on the RHS of Eq. (6.76) scales as 𝛿

−2
L and domi-

nates, whereas other terms scale as 𝛿
−1
t 𝛿

−1
L . Therefore, by neglectingO(𝛿−1t 𝛿

−1
L )-order

terms, we arrive at Eq. (6.68).
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Equations (6.68) and (6.69) offer an opportunity to evaluate the mean rate 𝜔̇c by

studying a transport equation for the Favre-averaged scalar dissipation rate 𝜒 . Such

an approach was pioneered by Borghi (1990) who derived a transport equation for

𝜒̄ in the case of a constant density. Subsequently, Swaminathan and Bray (2005)

derived a transport equation for 𝜒 in the case of variable density. In both cases, the

transport equations involve a number of terms that require closure relations.

Models of these terms were developed by a few research groups, as reviewed else-

where (Chakraborty et al. 2011). In all applications of these models, cm was assumed

to retain the same value in the entire flame brush and this assumption was supported

in a recent DNS study (Lipatnikov et al. 2015a). However, cm is not a constant and

may depend e.g. on the choice of a combustion progress variable (Lipatnikov et al.

2015a).

The discussed SDR approach definitely requires more validation studies. In par-

ticular, capabilities of the SDR models for predicting an increase inUt by the pressure

should be tested. The point is that equations written in the bottom row in Table 6.1

were obtained using a SDR model (Swaminathan and Bray 2005), but these equa-

tions appear to yield a wrong trend, i.e., a decrease inUt with increasing p, ifDa ≫ 1.

Moreover, since Eq. (6.68) was derived within the framework of the BML par-

adigm, the SDR approach seems to be best justified in the flamelet combustion

regime. However, DNS data obtained from weakly turbulent flames associated with

the flamelet combustion regime (Lipatnikov et al. 2015a) and plotted in Fig. 6.9a

show that a ratio of 𝜔̇c∕(𝜌̄𝜒) is increased by c̄, whereas cm evaluated using Eq. (6.69)

is close to 0.9 in the largest parts of all three flame brushes, see Fig. 6.9b. Therefore,

Fig. 6.9 does not support Eq. (6.68), with the differences between the model and

DNS results being most pronounced at the trailing and, especially, leading edge of

the mean flame brush. Inability of Eq. (6.68) to yield the correct value of the mean

rate 𝜔̇c at c̄ ≪ 1 is a serious limitation, because the leading edge of a premixed tur-

bulent flame brush may play a crucial role in the flame propagation, as discussed in

detail elsewhere (Kuznetsov and Sabelnikov 1990; Lipatnikov 2012; Lipatnikov and

Chomiak 2005c; Sabelnikov and Lipatnikov 2013, 2015; Zel’dovich et al. 1985).

Thus, as far as models that invoke an extra transport equation for Σ or 𝜒 are

concerned, a basic weak point of such models consists of the fact that neither the

linear Eq. (6.66) nor the linear Eq. (6.68) is a sufficiently precise closure relation

even under conditions that are well associated with its derivation.

Alternatively, transport equations for 𝜔̇c and 𝜔̇c can be derived straightforwardly.

Such an approach was recently put forward and already yielded encouraging results

(Sabelnikov et al. 2016, 2017). Nevertheless, discussion of this new approach is

beyond the scope of the present chapter, because a completely closed transport equa-

tion for 𝜔̇c has not yet been elaborated.
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Fig. 6.9 a Ratios of 𝜔̇c∕(𝜌̄𝜒) and b cm obtained from three statistically planar 1D flames in a

DNS study (Lipatnikov et al. 2015a) of weakly turbulent premixed burning associated with the

flamelet combustion regime (Peters 2000). Flames H, M, and L are characterized by the density

ratio 𝜎 = 7.53, 5.0, and 2.5, respectively

6.4 Turbulent Flame Closure and Flame Speed Closure
Models

The goal of the present section is to discuss (i) the so-called Turbulent Flame Closure

(TFC) model of the influence of turbulence on premixed burning and (ii) its extension

known as Flame Speed Closure (FSC) model. These models are selected for a more

detailed discussion, because they have yet been validated using a significantly wider

set of experimental data obtained from well-defined simple cases when compared

to any competing model developed for RANS simulations of premixed turbulent

combustion.

6.4.1 Equations

TFC Model

The foundations of the TFC model were laid in the pioneering work by Prudnikov

(1960, 1964). Subsequently, the model was developed by Zimont (1979). The final

version of the TFC model, which is implemented in various commercial CFD codes,

was presented by Karpov et al. (1996) and Zimont and Lipatnikov (1995).

The TFC model deals with the following closed transport equation

𝜕

𝜕t
(𝜌̄c̃) + ∇ ⋅ (𝜌̄𝐮̃c̃) = ∇ ⋅ [𝜌̄(𝜅 + Dt)∇c̃] + 𝜌uUt |∇c̃| , (6.77)

i.e., the model provides the following joint closure relation
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− ∇ ⋅ 𝜌𝐮′′c′′ + 𝜔̇c = ∇ ⋅ [𝜌̄(𝜅 + Dt)∇c̃] + 𝜌uUt |∇c̃| (6.78)

for the two terms on the RHS of Eq. (6.27). The molecular heat diffusivity 𝜅 of the

mixture is commonly neglected when compared to the turbulent diffusivity Dt when

using the TFC model.

Equation (6.77) was in fact introduced into the combustion literature by Prudnikov

(1960, 1964), but he wrote it in another form and applied it solely to statistically pla-

nar 1D flame that propagated in frozen turbulence. In the same 1D case, Eq. (6.77)

was derived by Lipatnikov and Chomiak (2005a, b) by assuming that the mean struc-

ture of a developing premixed turbulent flame was self-similar,
9

in line with various

experimental data analyzed elsewhere (Lipatnikov 2012; Lipatnikov and Chomiak

2000b, 2001, 2002, 2004; Prudnikov 1964).

Equation (6.77) yields permanent growth of the mean thickness 𝛿t of the statisti-

cally planar 1D flame, whereas turbulent burning velocity does not depend on time

to the leading order (Prudnikov 1964). Such an intermediately asymptotic regime of

premixed turbulent combustion pointed out by Prudnikov (1964), Kuznetsov (1975),

Clavin and Williams (1979), and Zimont (1979) was later called “intermediate steady

propagation (ISP) flames” (Zimont 2000).

In order to be consistent with this basic peculiarity of Eq. (6.77), a model for the

turbulent burning velocity Ut, required to close the approach, should also address

the ISP flames. To the best of the present author’s knowledge, the sole model that

satisfies this basic requirement has yet been developed by Zimont (1979), who has

theoretically obtained the following expression:

Ut,ISP = Au′Da1∕4 = Au′
(

𝜏t

𝜏c

)1∕4

= Au′3∕4S1∕2L L1∕4𝜅−1∕4
u , (6.79)

with Ut = Ut,ISP being substituted into the second term on the RHS of Eq. (6.77)

within the framework of the TFC model. Here, A is a single model constant. Equa-

tion (6.79) was derived under the following constraints (Zimont 1979, 2000); (i) the

turbulent Reynolds number Ret = u′L∕𝜈u ≫ 1, (ii) the Damköhler number Da ≫ 1,

(iii) the Karlovitz number Ka ∝ (u′∕SL)2Re
−1∕2
t > 1, and (iv) the flame-development

time 𝜏t < tfd ≪ 𝜏tDa3∕2. Subsequent tests of the TFC model have shown that it works

well in a wider range of conditions, e.g., (ii
′
) Da > 1 and (iii

′
) u′ > SL.

The reader interested in further discussion of the foundations of the TFC model is

referred to Lipatnikov (2012), Lipatnikov and Chomiak (2002) and Zimont (2000).

To the best of the present author’s knowledge, in all RANS applications of the

TFC model, (i) the turbulent diffusivity Dt in the first term on the RHS of Eq. (6.77)

was associated with the fully developed turbulent diffusivity Dt,∞ yielded by a tur-

bulence model, e.g.

Dt,∞ =
C

𝜇

Sct
k̃2
𝜀̃

(6.80)

9
This feature of premixed turbulent burning will be discussed in Sect. 6.4.4.
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if the k-𝜀 model (Launder and Spalding 1972) is invoked, and (ii) the mean den-

sity was evaluated using Eq. (6.35). Here, C
𝜇
= 0.09 is a constant of the k-𝜀 model

(Launder and Spalding 1972) and Sct is a turbulent Schmidt number. Note that

Eq. (6.35) is valid not only within the framework of the BML paradigm, but also

in a general case provided that c = (T − Tu)∕(Tb − Tu), 𝜌T = 𝜌uTu, and, therefore,

1 + (𝜎 − 1)c = 𝜌u∕𝜌. Indeed, Favre averaging of the latter equality results in Eq.

(6.35).

FSC Model

The FSC model is strongly based on the TFC model and involves Eqs. (6.77)–(6.79).

In addition, the FSC model extends the TFC model in order to simulate an early stage

of premixed turbulent flame development and weakly turbulent flames, as discussed

in the rest of the present section.

Within the framework of the FSC model, growth of turbulent diffusivity and burn-

ing velocity during an early stage of premixed flame development is addressed fol-

lowing the classical theory of turbulent mixing by Taylor (1935), which yields the

following well-known expression (Brodkey 1967; Hinze 1975)

Dt = Dt,∞
[
1 − exp

(
−𝜃fd

)] ≡ Dt,∞f1(𝜃fd) (6.81)

for developing turbulent diffusivity in the simple case of a single point source of

admixture. Subsequently, the following expression

Ut = Ut,ISF

{
1 + 𝜃

−1
fd

[
exp

(
−𝜃fd

)
− 1

]}1∕2 ≡ Ut,ISFf2(𝜃fd) (6.82)

for developing turbulent burning velocity was derived (Lipatnikov and Chomiak

1997) by combining the Taylor theory and the aforementioned model of Ut,ISF by

Zimont (1979). Here, 𝜃fd = tfdu′
2∕Dt,∞ = tfd∕𝜏L is the normalized flame-

development time tfd, 𝜏L is the Lagrangian time scale of the turbulence, while Ut,ISF
and Dt,∞ are modeled using Eqs. (6.79) and (6.80), respectively.

The two extra terms f1(𝜃fd) and f2(𝜃fd), which pertain to the FSC model and

describe the development of turbulent diffusivity and burning velocity, respectively,

do not involve an empirical or tuning parameter. Both time-dependent terms tend to

unity as 𝜃fd → ∞, i.e., the FSC Eqs. (6.81) and (6.82) reduce to the TFC Eqs. (6.80)

and (6.79), respectively, in this limiting case.

The flame-development time can easily be determined in the case of unsteady

combustion initiated by a single spark. In such a case, tfd is simply counted from the

ignition instant. When modeling a statistically stationary premixed turbulent flame,

tfd is still a meaningful quantity. Indeed, a statistically stationary flow can be a devel-

oping process, with the development occurring as a fluid particle is convected by the

mean flow. Statistically stationary turbulence behind a grid develops, i.e., decays

in the direction of the mean flow. A statistically stationary mixing layer develops,

i.e., grows in the direction of the mean flow. Similarly, a statistically stationary pre-

mixed turbulent flame develops, i.e., both flame speed and mean flame brush thick-
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ness grow in the direction of the mean flow. In these cases, the turbulence (layer, or

flame, respectively) development time is a meaningful quantity, which is equal to the

time required in order for a fluid particle to be convected from the grid (cross section

associated with start of the mixing, or cross section where the flame is stabilized,

respectively) to the considered point.

It is worth noting that development of turbulent burning velocity can also be of

importance for thermoacoustic applications, e.g., (Lipatnikov and Sathiah 2005).

In the simplest case of a statistically planar, 1D flow with frozen turbulence char-

acteristics, the burning velocity Ut yielded by the TFC model scales as u′Da1∕4 and

vanishes as u′ → 0. Accordingly, the source term on the RHS of Eq. (6.77) also van-

ishes in this limiting case, i.e., the TFC model cannot be applied to such a weakly

turbulent flame. To resolve the problem, the following laminar-like source term

QL = 𝜌̄(1 − c̃)
tch(1 + Dt∕𝜅b)

exp
(
−𝛩

T̃

)
(6.83)

was incorporated (Lipatnikov and Chomiak 1997, 2000a, 2002) into the RHS of Eq.

(6.77), which reads

𝜕

𝜕t
(𝜌̄c̃) + ∇ ⋅ (𝜌̄𝐮̃c̃) = ∇ ⋅ [𝜌̄(𝜅 + Dt)∇c̃] + 𝜌uUt |∇c̃| + QL (6.84)

within the framework of the FSC model. Here, tch and 𝛩 are the time scale and

activation temperature, respectively, of a single reaction that combustion chemistry

is reduced to, and the Favre-averaged temperature can easily be evaluated using

the ideal gas state equation, e.g., 𝜌̄T̃ = 𝜌uTu. In intense turbulence associated with

Ret → ∞, a ratio of Dt∕𝜅b → ∞ and, therefore, QL vanishes. In this limiting case,

the sole difference between the FSC and TFC models is associated with the two

time-dependent terms on the RHSs of Eqs. (6.81) and (6.82).

If the laminar flame speed is known, then, the extra source term QL given by

Eq. (6.83) does not involve a tuning parameter, because the time scale tch can easily

be determined within the framework of the FSC model before running simulations

of turbulent combustion. Indeed, if a value of 𝛩 is set, then, tch can be evaluated

by (i) applying the FSC model to a planar 1D flame in the case of u′ = 0 and (ii)

finding tch such that the computed flame speed is equal to SL, which is the key input

parameter of both the TFC and FSC models. Because the computed flame speed

scales as (𝜅u∕tch)1∕2 (Zel’dovich et al. 1985) if u′ = 0, the pre-calculation of tch based

on a known SL requires only two iterations.

If (i) the simplest case of a statistically planar, 1D flame that propagates in frozen

turbulence is addressed, (ii) the problem is considered in a coordinate framework

that moves at a speed equal to Ut in the direction from the burned to the unburned

gas, and (iii) 𝜅 + Dt and tch(1 + Dt∕𝜅b) are substituted with 𝜅
′

and t′ch, respectively,

then, Eqs. (6.83) and (6.84) reduce to the basic equation of the thermal laminar flame

theory (Zel’dovich et al. 1985). Consequently, the flame speed is equal to SL in that

coordinate framework (Lipatnikov and Chomiak 1997, 2002). Coming back to the
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coordinate framework attached to the mean flow of the unburned gas, we see that the

flame speed is equal to Ut + SL and tends to SL as u′ → 0. Moreover, when u′ → 0,

the turbulent diffusivity Dt → 0 and the FSC Eq. (6.84) reduces to a well-known

simple balance equation that models a laminar premixed flame in the case of a single-

step chemistry (Zel’dovich et al. 1985). Thus, the extra source term QL results solely

from the linear interpolation between the latter balance equation valid at u′ = 0 and

the TFC balance equation valid at Ka > 1 or at least u′ > SL.

It is worth noting that the use of the extra source term QL allows us not only

apply the FSC model to weakly turbulent combustion, but also resolves the following

problem, which may be of substantial importance in applications. The point is that

Eq. (6.77) admits a trivial solution of c̃(𝐱, t) =const if boundary conditions are set

using ∇c̃. Accordingly, in order for simulations to yield c̃ = 1 somewhere at each

instant, at least one boundary condition should be c̃ = 1. On the contrary, due to the

extra source QL, Eq. (6.84) is compatible with both types of boundary conditions.

Side by side with the advantages discussed above, the use of QL > 0 has disad-

vantages. First, the RHS of Eq. (6.83) is a highly nonlinear function of the mean tem-

perature T̃ . Accordingly, if the term QL plays a substantial role, it should be resolved

using a significantly finer mesh when compared to a mesh required to numerically

solve Eq. (6.77).

Second, as discussed in Sect. 6.4.3, the TFC Eq. (6.77) admits an exact analytical

solution in a statistically planar 1D case if Dt and Ut are assumed to be constant. This

exact solution allows us to easily reveal certain basic features of the TFC model. Such

a method of a qualitative analysis cannot be applied straightforwardly to Eq. (6.84)

with QL > 0. Nevertheless, because numerical simulations indicate that the basic

features of the TFC and FSC models are similar (with a single exception discussed

later), investigation of the basic features of the TFC model sheds some light on the

basic features of the FSC model also.

Finally, it is worth noting that the influence of the extra source term QL on the

computed heat-release rate and mean flame brush thickness is reduced with increas-

ing u′. Accordingly, this term may be skipped in simulations of sufficiently intense

turbulence provided that the boundary conditions involve c̃ = 1 somewhere.

6.4.2 Extensions

When performing the first tests of the TFC model (Karpov et al. 1996; Zimont

and Lipatnikov 1993, 1995), it was extended by invoking submodels of two well-

documented effects that are not addressed by the TFC model. Such a method allowed

those researchers to extend the domain of applicability of the TFC model and to test

it against a significantly wider set of experimental data. The same two submodels

may also be incorporated into the FSC model. It is worth stressing, however, that the

two submodels invoked to extend the TFC or FSC model are totally independent and

may be either switched on or switched off when necessary.
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Local Flame Quenching

In order to address local combustion quenching by intense turbulent stretching,

which is discussed in detail elsewhere (Abdel-Gayed et al. 1984; Bradley 1992,

2002; Bradley et al. 1992; Bray 1987; Bray and Cant 1991; Lipatnikov 2012; Lipat-

nikov and Chomiak 2005c), a stretch factor Gs = (1 − ℙq) may be incorporated into

Eq. (6.79), which reads

Ut,ISP = Au′3∕4S1∕2L L1∕4𝜅−1∕4
u (1 − ℙq), (6.85)

where

ℙq = 1 − 1
2
erfc

{

− 1
√
2𝜎

𝜀

[

ln
𝜀q

𝜀̃
+

𝜎
2
𝜀

2

]}

(6.86)

is the probability of local combustion quenching by turbulent strains, erfc is the com-

plementary error function, 𝜎
2
𝜀

= 0.26 ln (L∕𝜂), 𝜂 = (𝜈3u∕𝜀)
1∕4

is the Kolmogorov

length scale, 𝜀q = 15𝜈uṡ2q, and ṡq is a critical stretch rate associated with the local

combustion quenching. Equation (6.86) was invented by Bray (1987).

Due to strong sensitivity of a stretched laminar premixed flame to the flame topol-

ogy and transient effects (Lipatnikov and Chomiak 2005c), a model capable for

predicting ṡq in turbulent flows has not yet been developed. Accordingly, the crit-

ical stretch rate is in fact an unknown input parameter of the quenching submodel

given by Eq. (6.86). Therefore, the use of that submodel makes simulation results

dependent on a tuned value of ṡq, whereas the original TFC model involves a single

unknown input parameter, i.e., the constant A in Eq. (6.79), which may be set equal

to the same value A = 0.5 for various significantly different flames. In all simulations

discussed in the following, ℙq = 0 unless the opposite is stated.

Preferential Diffusion and Lewis Number Effects

Discussion of effects that stem from differences in molecular transport coefficients

of fuel, oxygen, and heat is beyond the scope of the present chapter and the inter-

ested reader is referred to books (Kuznetsov and Sabelnikov 1990; Lipatnikov 2012),

a review article (Lipatnikov and Chomiak 2005c), and recent papers (Goulier et al.

2017; Venkateswaran et al. 2011, 2013, 2015). Here, it is worth only noting that such

effects could be addressed by the TFC or FSC model by substituting the standard

chemical time scale 𝜏c in Eq. (6.79) with a time scale that characterizes local burn-

ing rate in critically perturbed laminar flames. Following Kuznetsov and Sabelnikov

(1990), Zimont and Lipatnikov (1993, 1995) used a time scale that characterized

burning rate in critically strained planar laminar flames. Subsequently, Karpov and

Lipatnikov (1995, 1997) suggested to use another time scale that characterized burn-

ing rate in critically curved spherical laminar flames. In particular, that time scale

was invoked in a validation study by Karpov et al. (1996), which will be discussed

later.
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6.4.3 Features

Let us consider a statistically planar 1D flame that propagates in homogeneous tur-

bulence from left to right and does not affect the turbulence, i.e., u′, L, and Dt are

assumed to be independent of the spatial coordinate x. Then, one can easily check by

substitution (Lipatnikov 2009b) that Eqs. (6.34) and (6.77) have the following exact

analytical solution for the Reynolds-averaged combustion progress variable

c̄ = 1
2
erfc

(
𝜉

√
𝜋

)
=

√
1
𝜋 ∫

∞

𝜉

√
𝜋

e−𝜁
2d𝜁, (6.87)

where

𝜉 =
x − xf (t)

𝛿(t)
, (6.88)

xf (t) = xf ,0 + ∫
t

0
Utd𝜁, (6.89)

xf ,0 is an initial flame position,

𝛿
2
t = 4𝜋 ∫

t

0
Dtd𝜁, (6.90)

and the mean flame brush thickness is defined using the maximum gradient method,

i.e.,

𝛿t ≡ 1
max {|𝜕c̄∕𝜕x|}

. (6.91)

Indeed, substitution of Eq. (6.87) into the state Eq. (6.34) and the mass balance Eq.

(6.15) results in

− 1
𝜌u − 𝜌b

d𝜌̄
d𝜉

= 𝜌̄
2

𝜌u𝜌b

dc̃
d𝜉

= dc̄
d𝜉

= −e−𝜋𝜉
2

(6.92)

and

d
d𝜉

(𝜌̄ũ) =
(
Ut + 𝜉

d𝛿t
dt

)
d𝜌̄
d𝜉

, (6.93)

respectively. Integrating the latter equation from 𝜉 to infinity and using Eq. (6.92),

we obtain

− 𝜌̄ũ = Ut(𝜌u − 𝜌̄) +
d𝛿t
dt ∫

∞

𝜉

𝜁
d𝜌̄
d𝜁

d𝜁 = Ut(𝜌u − 𝜌̄) +
d𝛿t
dt

𝜌u − 𝜌b

2𝜋
e−𝜋𝜉

2
(6.94)

in the framework linked with the unburned gas, i.e., ũ(𝜉 → ∞) → 0. Substitution of

Eqs. (6.87) and (6.94) into Eq. (6.77) yields
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− 𝜌̄𝜉
d𝛿t
dt

dc̃
d𝜉

− 𝜌uUt
dc̃
d𝜉

−
d𝛿t
dt

𝜌u − 𝜌b

2𝜋
e−𝜋𝜉

2 dc̃
d𝜉

=
Dt

𝛿t

d
d𝜉

(
𝜌̄
dc̃
d𝜉

)
− 𝜌uUt

dc̃
d𝜉

. (6.95)

Using Eq. (6.92), we obtain

1
2
d𝛿2t
dt

𝜌b

𝜌̄2
dc̄
d𝜉

(
−𝜌̄𝜉 +

𝜌u − 𝜚b

2𝜋
dc̄
d𝜉

)

= Dt
d
d𝜉

(
𝜌b

𝜌̄

dc̄
d𝜉

)
= Dt

𝜌b

𝜌̄2

[
(𝜌u − 𝜌b)

dc̄
d𝜉

− 2𝜋𝜉𝜌̄
]
dc̄
d𝜉

, (6.96)

which is valid if Eq. (6.90) holds. Thus, Eqs. (6.87)–(6.90) satisfy Eq. (6.77) sup-

plemented with the state Eq. (6.35) and the mass balance Eq. (6.15).

It is worth noting that, in the above equations, the burning velocity Ut may be

evaluated using either Eq. (6.79) within the framework of the TFC model or Eq.

(6.82) associated with the FSC model. Similarly, the diffusivity Dt may either be

constant within the framework of the TFC model or depend on flame-development

time, e.g. see Eq. (6.81) associated with the FSC model.

This analytical solution reveals three important features of the TFC model. First,

different terms on the RHS of Eq. (6.77) control different flame characteristics. The

second spatial derivative in the turbulent diffusion term controls the shape of the

spatial profile of c̄. The turbulent diffusivity in the same term controls the growth of

the mean flame brush thickness 𝛿t, but does not affect the flame propagation speed,

which is solely controlled by the gradient source term. On the contrary, the source

term affects neither the mean flame structure nor the thickness 𝛿t.

Second, the TFC model predicts self-similarity of the mean structure of a devel-

oping premixed turbulent flame, i.e., spatial profiles of c̄(x, t) collapse to the same

curve c̄(𝜉) if the spatial distance is normalized using the growing mean flame brush

thickness, see Eq. (6.88).

Third, Eq. (6.90) yields a permanently growing mean flame brush thickness.

6.4.4 Validation

Let us begin with assessing the analytical results given by Eqs. (6.87) and (6.90).

The self-similarity of the mean structure of a developing premixed turbulent flame is

well documented in various experiments analyzed elsewhere (Lipatnikov and Cho-

miak 2000b, 2001, 2002, 2004), see also recent papers (Tamadonfar and Gülder

2014, 2015), with the measured self-similar profiles of c̄(𝜉) being well fitted with

Eq. (6.87), e.g., see Fig. 6.10.

As far as development of mean flame brush thickness is concerned, substitution

of a constant Dt ∝ u′L associated with the TFC model into Eq. (6.90) yields

𝛿t ∝
√
u′Lt, (6.97)
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whereas substitution of Eq. (6.81) associated with the FSC model into Eq. (6.90)

results in

𝛿
2
t

4𝜋u′2𝜏2L
= 𝜃fd

[
1 − 1

𝜃fd

(
1 − e−𝜃fd

)
]

(6.98)

and, hence, 𝛿t ∝ u′tfd at 𝜃fd = tfd∕𝜏L = tfdu′
2∕Dt,∞ ≪ 1 and 𝛿t = 2u′𝜏L

√
𝜋𝜃fd ∝√

u′Ltfd at 𝜃fd ≫ 1. Consequently, the former model yields a significantly larger 𝛿t
during an earlier stage of the flame development, but the mean flame brush thick-

nesses obtained using the two models are almost equal to one another at large 𝜃fd,

cf. solid and dashed lines in Fig. 6.11a.

Figure 6.11b indicates that results calculated using Eq. (6.98), see solid line, agree

with various experimental data, see symbols, substantially better than results calcu-

lated using Eq. (6.97), see dashed line. Qualitatively, the TFC model yields square-

root dependence of the mean flame brush thickness on the flame-development time,

whereas the FSC model predicts the linear dependence of 𝛿t ∝ u′tfd at tfd ≪ 𝜏L. The

latter prediction is validated not only by the data plotted in Fig. 6.11b, but also by

numerous other data obtained from various flames, e.g., see recent papers (Chowd-

hury and Cetegen 2017; Kheirkhah and Gülder 2013, 2014, 2015; Sponfeldner et al.

2015; Tamadonfar and Gülder 2014, 2015). Indeed, those data show (i) the linear

dependence of 𝛿t on the distance from the flame-holder and, hence, on the flame-

development time and (ii) and an almost linear increase in 𝛿t by u′.

-1 0 1

normalized distance

0

0.2

0.4

0.6

0.8

1

m
ea

n 
co

m
bu

st
io

n 
pr

og
re

ss
 v

ar
ia

bl
e

3 ms
4 ms
5 ms
6 ms
7 ms
8 ms
3 ms
4 ms
5 ms
6 ms
7 ms
8 ms

0

normalized distance

0

0.2

0.4

0.6

0.8

1

m
ea

n 
co

m
bu

st
io

n 
pr

og
re

ss
 v

ar
ia

bl
e 30 mm

40 mm
50 mm
60 mm
20 mm
40 mm
60 mm
150 mm
350 mm
550 mm
0.25
0.50
0.75
1.00

(a) (b)

Fig. 6.10 Self-similar profiles of the mean combustion progress variable. a Data obtained by

Renou et al. (2002) from expanding statistically spherical lean (𝛷 = 0.27) H2-air (open symbols)

and stoichiometric C3H8-air (filled symbols) flames under the room conditions at different instants

after spark ignition, specified in legends. Curve shows results computed using Eq. (6.87). b Data

obtained by Gouldin and Miles (1995) from lean (𝛷 = 0.68) C2H6-air V-shaped flames (open tri-

angles), by Namazian et al. (1986) from lean (𝛷 = 0.8) C2H6-air V-shaped flames (open squares,

diamonds, and circles), by Sjunnesson et al. (1992) from lean (𝛷 = 0.6) C3H8-air confined flames

stabilized with a bluff body (filled squares, diamonds, and circles), and by Wu et al. (1990) from

lean (𝛷 = 0.8) H2-air jet flames (filled triangles). Dimensional or normalized distances from flame

stabilization points are specified in legends. Curve shows results computed using Eq. (6.87)



6 RANS Simulations of Premixed Turbulent Flames 227

0 5 10 15
normalized time

0

1

2

3

4

5

6

no
rm

al
iz

ed
 m

ea
n 

fl
am

e 
tc

hi
kn

es
s

FSC
TFC

0 0.4 0.8 1.2
normalized time

0

0.4

0.8

1.2

no
rm

al
iz

ed
 m

ea
n 

fl
am

e 
tc

hi
kn

es
s

1.6
3.1
C1
C2
C4
C5
B 
C
D
E

TFC

FSC

(a) (b)

Fig. 6.11 Normalized mean flame brush thickness 𝛿t∕
√
2𝜋L versus normalized flame-

development time 𝜃fd . a, b Dashed and solid lines show results calculated using Eqs. (6.97) and

(6.98) associated with the TFC and FSC models, respectively. b Crosses and pluses show data

obtained by Atashkari et al. (1999) from expanding statistically spherical CH4-air flames at two

different values of u′∕SL specified in legends. Filled diamonds, triangles, circles and squares show

data obtained by Renou et al. (2002) from expanding statistically spherical stoichiometric CH4-air

(C2, u′∕SL = 0.92 and C5, u′∕SL = 1.38) and C3H8-air (C1, u′∕SL = 0.85 and C4, u′∕SL = 1.28)

flames. Open diamonds, triangles, circles, and squares show data obtained by Goix et al. (1990)

from open V-shaped lean (𝛷 = 0.2) H2-air flames B, C, D, and E stabilized in different turbulent

flows

Fig. 6.12 Growth of the

normalized mean flame

brush thickness with the

normalized distance from the

combustor inlet. Reprinted

from the paper by Griebel et

al. (2007)

It is worth noting that certain data obtained from V-shaped (Kheirkhah and Gülder

2013, 2014, 2015) or Bunsen (Tamadonfar and Gülder 2014, 2015) statistically sta-

tionary flames indicate an increase in a flame thickness 𝛥t by SL, with 𝛥t being mea-

sured along a normal to the burner axis, rather than along a normal to the mean flame

position. Since Ut is increased by SL, an acute angle 𝜑 between the aforementioned

axis and the mean flame surface is also increased by SL. This effect can result in

increasing 𝛥t ≈ 𝛿t∕ cos𝜑 even if 𝛿t is constant.

Experimental data obtained from long flames and associated with a long flame-

development time show the square-root dependence of 𝛿t on the distance from the

flame-holder, e.g., see Fig. 6.12, in line with the TFC Eq. (6.97) or the FSC Eq.

(6.98).
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Let us consider results of testing the TFC and FSC models in RANS simulations

of well-defined simple cases.

The TFC model has been shown to predict;

∙ The effects of mixture composition (the equivalence ratio and various fuels such

as methane, ethane, propane, etc.) on turbulent burning velocities obtained from

statistically spherical, premixed turbulent flames expanding in a fan-stirred bomb

at various u′, e.g., see Fig. 6.13a. Comparison of curves shown in dashed (ℙq = 0)

and solid (0 < ℙq < 1) lines in Fig. 6.13a indicates that the submodel for the

quenching probability ℙq given by Eq. (6.86) affects the computed results only at

high u′. As far as the increasing branches of the measured and computed curves,

associated with moderate turbulence, are concerned, the obtained good agree-

ment between the experimental and the numerical data does not result from tun-

ing of ṡq in Eq. (6.86). In the case of the stoichiometric C3H8-air mixture, results

computed either settingℙq = 0 or using Eqs. (6.85) and (6.86) are almost the same.

Accordingly, solely the former results are shown in a dashed line in this case.

∙ Mean structure of an open, Bunsen, premixed turbulent flame (Dinkelacker 2002).

∙ Profiles of the mean combustion progress variable in two open, swirl-stabilized

flames (Dinkelacker 2002).

∙ Burning velocities obtained from slightly lean (𝛷 = 0.9) CH4-air Bunsen flames

under normal and elevated pressures provided that a ratio of u′∕SL is markedly

lager than unity, cf. filled and open symbols at (u′∕SL)(p0∕p) ≥ 0.6 in Fig. 6.13b. If

the ratio of u′∕SL is low, the TFC model underpredicts the measured data, because

Ut,ISP given by Eq. (6.79) tends to zero at u′ → 0.

∙ Mean structure of a statistically stationary, oblique, confined, lean (𝛷 = 0.8) CH4-

air turbulent flame stabilized by a hot jet in intense turbulence (Ghirelli 2011;

Yasari et al. 2015; Zimont et al. 2001), cf. dashed lines and symbols in Fig. 6.15d.

∙ Mean shape of open, V-shaped, lean (𝛷 = 0.5, 0.58, and 0.7) CH4-air turbulent

flames (Dinkelacker and Hölzler 2000; Ghirelli 2011; Moreau 2009).

∙ Influence of bulk flow velocity, turbulence generation method, and pressure, on the

mean axial length and the mean axial thickness of confined preheated (Tu = 673
K) lean (𝛷 = 0.5) CH4-air turbulent flames stabilized due to abrupt expansion of

a channel at elevated pressures, cf. symbols and dashed lines in Fig. 6.13c and d.

∙ Axial profile of the Reynolds-averaged combustion progress variable in such a

flame, see Fig. 6.13e.

∙ Mean shape of a lean (𝛷 = 0.7) CH4-air V-shaped flame, see Fig. 6.13f.

Moreover, the TFC model was successfully applied to RANS simulations of pre-

mixed and partially premixed turbulent combustion in engines, e.g., see (Polifke et al.

2002; Zimont et al. 1998).

Thus, the predictive capabilities of the TFC model were quantitatively validated

by several independent research groups in RANS simulations of a wide set of sub-

stantially different, well-defined, simple premixed turbulent flames. Nevertheless,

certain experimental results were not predicted in the numerical studies cited above.

First, to obtain a decrease in Ut by u′ in intense turbulence, Eqs. (6.85) and (6.86)

with unknown input parameter ṡq were invoked, with ṡq being tuned. Accordingly,
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Fig. 6.13 Some examples of validation of the TFC model with A = 0.5 in RANS simulations of

various experiments. a Dependencies of turbulent burning velocity Ut on the rms turbulent veloc-

ity u′ measured (symbols) by Karpov and Severin (1980) and computed (curves) by Karpov et

al. (1996). Crosses show data obtained from C3H8-air flames. Other symbols show data obtained

from C2H6-air flames. Equivalence ratio is specified in figure legends. Solid and dashed lines show

results computed invoking Eq. (6.85) with a tuned ṡq and Eq. (6.79), respectively. b Normalized

turbulent burning velocities measured (open symbols) by Kobayashi et al. (1996) and computed

(filled symbols) by Muppala and Dinkelacker (2004) at three different pressures specified in the

legends. Both Ut∕SL and u′∕SL are multiplied with p0∕p in order for the scales of the data obtained

at different pressures to be comparable. p0 = 0.1 MPa. c, d The mean centerline flame position

(filled symbols) and the mean centerline flame brush thickness (open symbols) versus pressure and

inlet bulk velocity, respectively. Different symbols show experimental data obtained by Siewert

(2006) utilizing different grids in order to generate turbulence. Results computed by Yasari et al.

(2015) using the TFC and FSC models are shown in dashed and dotted-dashed lines, respectively.

e Centerline profiles of the Reynolds-averaged combustion progress variable, measured (symbols)

by Siewert (2006) and computed by Yasari et al. (2015) using either the TFC (solid line) or FSC

(dashed line) model. f Mean surface of a V-shaped flame. Open and filled symbols show experi-

mental data obtained by Kheirkhah and Gülder (2013) from the left and right, respectively, branches

of the flame. Line show results computed by Verma and Lipatnikov (2016)
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Fig. 6.14 Values of A tuned in RANS simulations (Karpov et al. 1996; Zimont and Lipatnikov

1995) of experiments by Karpov and Severin (1980) versus the Lewis number. Open symbols show

results obtained using the original TFC model. Filled symbols show results obtained substituting the

standard chemical time scale 𝜏c in Eq. (6.79) with a chemical time that characterizes local burning

rate in extremely curved laminar flames

the so-extended TFC model cannot predict the decrease in Ut by u′ in intense tur-

bulence, but this phenomenon challenges all combustion models to the best of the

present author’s knowledge.

Second, the TFC model underpredicts Ut in weak turbulence, e.g., see Fig. 6.13b.

Moreover, Yasari et al. (2015) were not able to obtain reasonable agreement between

numerical and measured data when applying the TFC model to RANS simulations

of experiments with weakly turbulent Bunsen flames (Cohé et al. 2009; Pfadler et al.

2008), whereas the FSC model performs much better in these cases, as will be dis-

cussed later.

Third, in simulations of the flames investigated by Siewert (2006), the TFC model

(i) underpredicted the influence of variations in 𝛷 on the mean flame axial length

and (ii) yielded too narrow radial profiles of c̄(r) when compared to the measured

data (Yasari et al. 2015). In the cited paper, the observed difference between the

measured and computed results was attributed to the influence of heat release on the

turbulence and to eventual local combustion quenching.

Finally, it is worth noting that the original TFC model significantly underpredicts

turbulent burning velocities obtained by Karpov and Severin (1980) from expand-

ing, statistically spherical lean hydrogen flames. In particular, when the TFC model

was applied to RANS simulations of similar flames propagating in hydrocarbon–

air mixtures (Karpov et al. 1996; Zimont and Lipatnikov 1995), a reasonably good

agreement with the experimental data was obtained using the same A = 0.5 for var-

ious mixtures, but the agreement could be improved by slightly tuning the value of

A in certain cases. However, the values of A tuned in similar simulations of lean

hydrogen flames are significantly larger than 0.5 and are increased with decreasing

the Lewis number, see open symbols in Fig. 6.14. This trend vanishes if the standard
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chemical time scale 𝜏c in Eq. (6.79) is substituted with a chemical time that char-

acterizes local burning rate in extremely curved laminar flames, see filled symbols.

The reader interested in further discussion and substantiation of such a method is

referred to books (Kuznetsov and Sabelnikov 1990; Lipatnikov 2012) and a review

paper (Lipatnikov and Chomiak 2005c).

The FSC model has been shown to predict;

∙ Dependence of the mean growth rate of a statistically spherical flame kernel on

mixture composition, e.g. see Fig. 6.15a and b.

∙ Dependence of the mean growth rate of a statistically spherical flame kernel on

the rms turbulent velocity, e.g., see Fig. 6.15a and b.

∙ An increase in the observed turbulent flame speed as the flame kernel grows, e.g.,

see Fig. 6.15c.

∙ An increase in the observed turbulent flame speed by pressure, e.g., see Fig. 6.15c.

∙ Mean structure of a statistically stationary, oblique, confined, lean (𝛷 = 0.8) CH4-

air turbulent flame stabilized by a hot jet in intense turbulence, e.g., see Fig. 6.15d,

which also shows that results computed using the FSC model agree with the exper-

imental data better than results computed using the TFC model, cf. solid and

dashed lines, respectively.

∙ Mean shape of open, V-shaped, lean (𝛷 = 0.5, 0.58, and 0.7) CH4-air turbulent

flames, e.g., see Fig. 6.15e, which also shows that results computed using the FSC

model agree with the experimental data better than results computed using the

TFC model, cf. solid and dotted-dashed lines, respectively.

∙ Influence of bulk flow velocity, turbulence generation method, and pressure on the

mean axial length and the mean axial thickness of confined preheated (Tu = 673
K) lean (𝛷 = 0.5) CH4-air turbulent flames stabilized due to abrupt expansion of

a channel at elevated pressures, cf. symbols and dotted-dashed lines in Fig. 6.13c

and d. When simulating these experiments, the TFC and FSC models yielded very

close results, cf. dashed and dotted-dashed lines, respectively.

∙ Axial profile of the Reynolds-averaged combustion progress variable in such a

flame, see Fig. 6.13e.

∙ Mean structure of confined lean (𝛷 = 0.61) C3H8-air flames stabilized by a bluff

body, e.g. see Fig. 6.15f, which also shows that results computed using the FSC

model agree with the experimental data better than results computed using the

TFC model, cf. solid and dashed lines, respectively.

∙ Mean axial heights of the leanest CH4-air weakly turbulent Bunsen flames, mea-

sured by Pfadler et al. (2008) at various equivalence ratios or inlet mass flow rates,

with the TFC model yielding unsatisfactory results in this case (Yasari et al. 2015).

∙ Axial profiles of c̄(x) obtained by Cohé et al. (2009) from axisymmetric weakly

turbulent CH4/CO2/air Bunsen flames stabilized within a cylindrical high pressure

combustion chamber using an annular laminar stoichiometric methane–air pilot

flame, with the TFC model yielding unsatisfactory results in this case (Yasari et al.

2015).
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Fig. 6.15 Some examples of validation of the FSC model with ℙq = 0 in RANS simulations of

various experiments. a Increase in the mean radii of expanding statistically spherical CH4-air tur-

bulent flames. Symbols show Leeds experimental data (Bradley et al. 1994b) obtained at L = 20
mm and Tu = 328 K. Lines show results computed using the FSC model (Lipatnikov and Chomiak

1997; Lipatnikov et al. 1998). Equivalence ratio and u′ are specified in the legends. b Increase in

the mean radii of expanding statistically spherical C3H8-air turbulent flames. Symbols show Rouen

experimental data (Mouqallid et al. 1994) obtained at L = 5mm and Tu = 295K. Lines show results

computed using the FSC model (Lipatnikov and Chomiak 1997; Lipatnikov et al. 1998). Equiva-

lence ratio and u′ are specified in the legends. c Observed speeds dR̄f ∕dt of expanding, statistically

spherical, stoichiometric iso-octane/air turbulent flames versus the mean flame radius R̄f . Sym-

bols show Leeds experimental data (Bradley et al. 1994a) obtained at u′ = 2 m/s, L = 20 mm, and

Tu = 400 K. Lines show results computed using the FSC model (Lipatnikov and Chomiak 1997).

Pressure is specified in MPa in the legends. d Transverse profiles of c̃(y), computed by Yasari et

al. (2015) using the TFC model (dashed lines), the FSC model (solid lines), and the FSC model

with QL = 0 (dotted-dashed lines). Symbols show experimental data obtained by Moreau (1977)

at various distances x from the inlet, specified in legends. Circles, squares, and triangles show data

obtained from flames with 𝛷 = 0.83, 0.85, and 0.87, respectively. e Circles show an angle between

the mean flame surface and the burner axis, averaged over 15 ≤ x ≤ 45 mm in the experiments by

Dinkelacker and Hölzler (2000). Triangles and squares show the mean angle computed by Yasari

et al. (2015) using the TFC and FSC model, respectively. f Transverse profiles of the normalized

Reynolds-averaged temperature. Symbols show experimental data (Sjunnesson et al. 1992) obtained

from preheated (Tu = 600 K) lean (𝛷 = 0.61) C3H8-air flames at different distances from a bluff

body, specified in the legends. Data measured in the up and down halves of the channel are plotted in

open and filled symbols, respectively. Dashed and solid lines show results (Sathiah and Lipatnikov

2007) computed using the TFC and FSC models, respectively
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Thus, predictive capabilities of the FSC model were quantitatively validated in

RANS simulations of a wide set of substantially different, well-defined, simple pre-

mixed turbulent flames. Nevertheless, certain experimental results were not pre-

dicted in the numerical studies cited above.

First, as already noted, in the simulations of the flames investigated by Siew-

ert (2006), the FSC model (i) underpredicted the influence of variations in 𝛷 on

the mean flame axial length and (ii) yielded too narrow radial profiles of c̄(r) when

compared to the measured data (Yasari et al. 2015). In the cited paper, the observed

difference between the measured and computed results was attributed to the influ-

ence of heat release on the turbulence and to eventual local combustion quenching.

Second, in the simulations of the Bunsen flames investigated by Pfadler et al.

(2008), the FSC model substantially underpredicted the axial flame height at 𝛷 > 0.8
and underpredicted the axial flame thickness in all studied cases (Yasari and Lipat-

nikov 2015). In the cited paper, the observed difference between the measured and

computed results was also attributed to the influence of heat release on the turbu-

lence.

It is also worth noting that the aforementioned RANS simulations of expanding

and statistically stationary flames were performed using the FSC model with A = 0.4
and 0.5, respectively. In the former case, the value of A was reduced, because the use

of the extra term QL was expected to result in increasing computed turbulent flame

speed. Moreover, in the simulations by Sathiah and Lipatnikov (2007), the extra term

QL was skipped, but such a simplification appears to be justified in the case of a large

ratio of u′∕SL associated with that study.

Finally, it is worth noting that the FSC model was successfully applied to RANS

simulations of stratified turbulent combustion in research optical SI engines (Huang

et al. 2016; Wallesten et al. 2002).

6.5 Concluding Remarks

As shown in the present chapter, there are sufficiently advanced models, e.g., the TFC

or FSC one, of the influence of turbulence on combustion that allow us to reasonably

well predict mean turbulent burning rate, mean flame thickness and structure in var-

ious turbulent flows, for various fuels and equivalence ratios, at various pressures,

etc.

Nevertheless, even the most advanced models cannot predict a decrease in tur-

bulent burning velocity with increasing u′ in intense turbulence characterized by

u′∕SL ≫ 1 or Ka > 1. Such effects could be of great importance for burning of lean

mixtures characterized by a low SL.

Moreover, the influence of combustion-induced thermal expansion on turbulence

in flames is not yet well studied and this issue strongly challenges the combustion

community.

Furthermore, simulation of emissions from turbulent flames is a very important

subject, which has been attracting paramount attention. However, it is worth stress-

ing that the mean heat-release rate and the mean flame structure should be well pre-
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dicted in order for simulations of emissions to yield satisfactory results. Therefore,

at the present level of model development, the best way of attacking this problem

appears to consist in (i) computation of fields of the mean temperature, density, etc.,

by invoking an advanced model that does not address emissions, but can predict the

aforementioned fields, and (ii) subsequent simulation of emissions invoking another

model at a post-processing stage. The choice of an appropriate emission model is

beyond the scope of the present chapter.
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