
Chapter 3
Turbulent Combustion Simulations with
High-Performance Computing

Hemanth Kolla and Jacqueline H. Chen

Abstract Considering that simulations of turbulent combustion are computation-

ally expensive, this chapter takes a decidedly different perspective, that of high-

performance computing (HPC). The cost scaling arguments of non-reacting tur-

bulence simulations are revisited and it is shown that the cost scaling for reacting

flows is much more stringent for comparable conditions, making parallel computing

and HPC indispensable. Hardware abstractions of typical parallel supercomputers

are presented which show that for design of an efficient and optimal program, it is

essential to exploit both distributed memory parallelism and shared-memory paral-
lelism, i.e. hierarchical parallelism. Principles of efficient programming at various

levels of parallelism are illustrated using archetypal code examples. The vast array

of numerical methods, particularly schemes for spatial and temporal discretization,

are examined in terms of tradeoffs they present from an HPC perspective. Aspects

of data analytics that invariably result from large feature-rich data sets generated by

combustion simulations are covered briefly.

Keywords Direct numerical simulation ⋅ High performance computing ⋅ Parallel

computing ⋅ Hierarchical parallelism

3.1 Introductory Remarks

Arguably, the raison d‘être of turbulent combustion simulations has been to inform

the design of energy conversion devices, predominantly those in the power gen-

eration and transportation sectors (reciprocating and air-breathing engines). While

combustion simulations have addressed alternative applications (e.g. atmospheric

chemistry, chemical engineering and manufacturing processes), the overwhelming

H. Kolla (✉)

Scalable Modeling and Analysis, Sandia National Laboratories, Livermore, CA, USA

e-mail: hnkolla@sandia.gov

J. H. Chen

Reacting Flow Research, Sandia National Laboratories, Livermore, CA, USA

e-mail: jhchen@sandia.gov

© Springer Nature Singapore Pte Ltd. 2018

S. De et al. (eds.), Modeling and Simulation of Turbulent Combustion, Energy,

Environment, and Sustainability, https://doi.org/10.1007/978-981-10-7410-3_3

73

74 H. Kolla and J. H. Chen

majority of simulation efforts have been devoted to this endeavour due to the obvi-

ous technological incentives and imperatives. Given such a scenario, a question that

arises at the outset is

What is the role of direct numerical simulations (DNS) of turbulent combustion?

This question is pertinent since the largest, state-of-art, DNS to date are still in

domains that are orders of magnitude smaller in scale (device size) or conditions

(Reynolds, Damköhler numbers) compared to real devices. The answer to this ques-

tion establishes the scope and ambition of combustion DNS and, more importantly,

its envelope of feasibility.

This chapter is structured in the hope that the reader will arrive, step-by-step, at

a comprehensive and nuanced answer to this question. The first section will discuss,

using simple dimensional scaling arguments, the computational cost of combustion

DNS. The next section will cover aspects of parallel high-performance computing

(HPC) and the choices available to exploit multiple levels of parallelism in a typical

supercomputer. These choices are invariably interlinked to the governing equations

and numerical aspects, which can guide the design of a high-fidelity combustion

code which will be the focus of the following section. The final section will cover

aspects of data analytics which are essential in making sense of the large volumes of

data generated by combustion DNS.

3.2 Computational Cost of Combustion DNS

It is perhaps prudent to establish what the term “direct numerical simulations” means

in the context of turbulent combustion. DNS, as has come to be accepted by conven-

tion, may best be described

a simulation methodology where all the relevant scales in the continuum regime

are sufficiently resolved on the computational grid.

Note the carefully worded qualifiers. The scales that are resolved are in the ‘con-

tinuum regime’ and not anything smaller such as, for instance, those described by

the kinetic theory of gases (e.g. mean free paths). Note also that the scales being

resolved on the computational grid implies that the spatial grid resolution is smaller

than the smallest (continuum scales) of motion. These thumb rules for what qualifies

as DNS can be attributed to early simulations of non-reacting turbulent flow when

DNS was pioneered as a means to understand and quantify multiscale statistics of tur-

bulence. For reactive flows, the definition of DNS extends to all scales, or more aptly

spatial gradients, relevant to fluid motion (velocity) and reacting scalars (tempera-

ture and species mass fractions). It is worth pointing out that many practical devices

of interest have flows that defy such an easy characterization. The most prominent

examples, relevant to combustion devices, are turbulent spray flames and flames with

soot. Mutliphase turbulent flows, whether reacting or non-reacting, introduce scales

of interaction between the liquid and gas phases that are prohibitively expensive

to resolve. Likewise, the physical processes governing soot straddle the continuum

3 Turbulent Combustion Simulations with High-Performance Computing 75

regime. Soot formation occurs at molecular scales with soot precursors understood

to be a few aromatic molecules, while they can grow, by agglomeration, to sizes that

are larger than the smallest continuum flow scales (Raman and Fox 2016).

With this context, let us revisit some scaling arguments that determine the com-

putational cost of DNS. The cost scaling is simply determined by the ratio of the

largest to smallest spatio-temporal scales and the requirement that the computational

domain be at least as large as the largest length scale, the so-called integral length

scale 𝛬, while the grid resolution has to be at least as small as the smallest length

scale, the Kolmogorov length scale 𝜂. This ratio dictates the minimum number of

grid points required per spatial dimension, N, which scales with the Reynolds num-

ber, Re, as

N ∼ 𝛬

𝜂
∼ Re3∕4. (3.1)

The total number of grid points for a three-dimensional simulation thus scales as

N3 ∼ Re9∕4. (3.2)

Combustion exacerbates the cost scaling in two principal ways. First, chemical

reactions introduce spatial scales which, under most conditions of practical interest,

are finer than turbulent flow scales. Consider, for illustrative purposes, the some-

what benign conditions of an atmospheric pressure methane–air turbulent flame at

a Reynolds number of 10,000 and an integral length scale of 0.1 m (10 cm). The

Kolmogorov scale 𝜂 = 𝛬∕Re3∕4 = 10−4 m. A reasonable estimate for a chemical

length scale, 𝛿, is the ratio of thermal diffusivity to kinematic viscosity which, under

these conditions, is 𝛿 ∼ 10−5 m. The grid points requirement must now be revised

to account for the fact that grid resolution must be smaller than 𝛿,

N ∼ 𝛬

𝜂

𝜂

𝛿
⟹ N3 ∼ Re9∕4

(
𝜂

𝛿

)3
. (3.3)

Second, combustion considerably increases the number of solution variables and

associated number of partial differential equations (PDEs). For non-reacting turbu-

lent flows, the solution state comprises five variables: three components of veloc-

ity and any two of energy/enthalpy, pressure and density, and these are obtained as

solutions of five PDEs governing conservation of mass, momentum and energy. The

thermodynamic equation of state provides the additional constraint. For turbulent

reacting flows, the solution state must be expanded to include details of the chemical

composition in the form of species mass fractions, Yi. For the simplest fuel, hydro-

gen, nine species sufficiently describe the oxidation mechanism (Burke et al. 2012),

whereas for hydrocarbons this number is much larger. For the simplest hydrocarbon,

methane, the mechanisms can be, depending on the conditions, as small as involving

13 species (Sankaran et al. 2007) or as large as 53 species (GRI-Mech 2017). Hence,

for the methane–air turbulent flame example considered above, for the widely used

GRI-Mech mechanism, the additional cost factor due to chemical reactions, assum-

ing the cost scales linearly with number of PDEs, is

76 H. Kolla and J. H. Chen

(
𝜂

𝛿

)3
× 53 + 5

5
≈ 1.16 × 104. (3.4)

These cost considerations dictate that turbulent combustion DNS is only feasible

with high-performance parallel computing. For the same reasons, combustion DNS

have, up to now, only been possible for small ‘postage-stamp-sized’ computational

domains and are unable to approach sizes anywhere close to real devices. Only in

recent years, thanks to the exponential growth in computing power, have DNS begun

to approach laboratory-scale flames. Figure 3.1 shows a historical trend of DNS sim-

ulations performed with the Sandia code S3D (Chen et al. 2009) for five represen-

tative simulations. Plotted on the y-axis is the computational problem size in log-

arithmic scale, defined as the product of the total number of grid points and the

number of solution variables, and the x-axis shows the year when each simulation

was performed. The figure shows a trend where the computational problem size has

increased exponentially with time, indicating that state-of-art DNS simulations have

kept pace with the increase in computational power. In spite of requiring such mas-

sive computational resources, the largest DNS simulations have only been able to

approach Re ∼ O(104), whereas the Re values in practical devices are at least an

order of magnitude higher, suggesting that DNS is still quite some way away from

approaching real device conditions.

Fig. 3.1 Historical trend showing five representative simulations performed with the DNS code

S3D over the last 20 years. The computational problem size is shown on a logarithmic scale on

the Y-axis and the year corresponding to each simulation is on the X-axis. From left to right, the

simulations correspond to a 2D turbulent premixed methane–air flame (Echekki and Chen 1996), b
2D turbulent auto-igniting stratified hydrogen–air flame (Echekki and Chen 2002), c 3D rectangular

slot-jet turbulent Bunsen premixed methane–air flame (Sankaran et al. 2007), d 3D temporally

evolving rectangular jet turbulent premixed hydrogen–air flame, and e a 3D reactivity controlled

compression ignition (RCCI) flame of primary reference fuel (Treichler et al. 2018)

3 Turbulent Combustion Simulations with High-Performance Computing 77

3.3 HPC and Hierarchical Parallelism

Having established that turbulent combustion simulations are infeasible without

large computational resources, it is necessary to examine the intersection of HPC and

CFD simulations. In particular, it is critical to appreciate that achieving efficiency in

HPC and parallel computing requires, unfortunately, that one pay attention to numer-

ous aspects of modern parallel computers. In an ideal world, principles governing

parallel computing are simple, flexible, robust and mature enough that a program-

mer requires little or no knowledge of the hardware or software architecture details

to write an efficient program, allowing him/her to focus efforts on the algorithmic

and physics aspects of the computer program. In reality, however, the situation is the

opposite and writing an efficient and performant parallel program involves a careful

structuring and organization of the code within the confines and constraints imposed

by the system. The payoff, or conversely the penalty, is that a carefully optimized

code can often be orders of magnitude faster than a naively written one. It is also

worth pointing out that even LES and URANS simulations are tackling problems

large enough as to require HPC resources and the principles outlined in this section

apply to these as well.

Just by considering an abstract model of typical parallel supercomputer, it

becomes apparent that a program has to expose various levels of parallelism, i.e.

hierarchical parallelism. Without being simplistic, at a high level, a parallel com-

puter can be thought of as a set of inter-connected computing nodes that can com-

municate with each other through a network. Each node comprises some memory

that is private to it and some computing elements that share this memory. Accessing

data from the memory of another node requires communicating via the network. This

picture establishes the concepts of distributed versus shared-memory parallelism.
1

The detail to bear in mind is that it is much quicker and more efficient to access

shared node-local memory than accessing the memory of another node via network

communication.

3.3.1 Distributed Memory Parallelism

At the highest level, utilizing a set of nodes requires decomposing a computational

problem into subsets that can each be assigned to a different node. Each node can

make progress on its respective subset, communicating with other node(s) to share

data as and when necessary. The chief principles guiding the design for distributed

memory parallelism are as follows:

1. Balanced computational load: It is desirable to decompose the problem such

that the computational load is divided as equitably as possible among the nodes.

1
This distinction is also referred to sometimes as internode versus intra-node or node-level paral-

lelism.

78 H. Kolla and J. H. Chen

If the load is not balanced, the progress on the overall problem might be limited

by the node(s) with the largest load.

2. Maximize computation-to-communication ratio: It is desirable to decompose

the problem such that the computational load associated with the subset on each

node is much larger than the amount of communication that need be performed

with other nodes.

3. Minimize global communication: It is desirable to devise the algorithms such

that the need for global communication, i.e. data aggregation involving all nodes,

is minimized or even eliminated if possible.

These principles reflect the constraint that network communication is an expensive

proposition and both the number of messages and their sizes must be reduced to the

extent possible.

For illustration, consider a general prototype 1D PDE of form

u̇ = F(u′, u′′), (3.5)

where the dot denotes a time derivative and the single and double primes denote

first and second spatial derivatives, respectively. This PDE, with suitable initial and

boundary conditions, is to be solved on a discretised 1D computational domain of

N grid points. Considering the computational cost arises mainly due to N being

large, the most natural choice for decomposing this problem is to divide the grid

points among the available nodes (P), an approach commonly referred to as domain
decomposition. Each node is then responsible for solving the equation over N∕P
grid points, as shown schematically in Fig. 3.2. The computational work at each grid

point involves evaluating the spatial derivatives and assembling them to advance the

solution in time. The spatial derivative evaluation will necessarily require informa-

tion from neighbouring grid points and for grid points at the edges of each subset

N∕P, these grid points reside on the adjacent node, which have to be exchanged by

internode communication. The grid points that need to be exchanged are referred

to as ghost points, and the number of ghost points and the direction of internode

exchange are stipulated by the specifics of the spatial discretization scheme such as

node k node k-1 node k+1

left
ghost

right
ghost

Fig. 3.2 Schematic showing a typical domain decomposition of a 1D computational domain. The

dashed line denotes node boundaries and each node is assigned a subset of the computational grid

points. The grid points at the edge of the node boundaries, ghost points, need to be communicated.

On node k, the left ghost points are required by node k − 1 while the right ghost points by k − 1.

Conversely, node k requires the right ghost points of k − 1 and left ghost points of k + 1

3 Turbulent Combustion Simulations with High-Performance Computing 79

the stencil width and whether it is central or one-sided differencing. The principles

listed above translate to the following:

∙ If the same computations are performed at each grid point, balanced computa-

tional load translates to the condition that N is exactly divisible by P. If it is not,

then some nodes end up with a larger subset of the domain, and greater load, than

others.

∙ Maximizing computation-to-communication ratio translates to the condition that

the ratio of the number of ghost points to the number N∕P be minimized. In the

example depicted in Fig. 3.2, N∕P = 8 while the number of ghost points on each

node is 4 (2 at either edges). It is easy to conceive of a situation where the number

of ghost points is greater than N∕P, which is undesirable since each node might

have to communicate with more than one adjacent node in each direction, increas-

ing the number of communication messages.

∙ Minimizing global communication translates to the condition that for advancing

the solution on its share of grid points each node needs to communicate only with

a small subset of the other nodes, and not all.

An example of an algorithm that requires global communication arises in early DNS

codes which transformed the Navier–Stokes equations from physical space to the

wavenumber space and solved for the Fourier modes of the velocity components.

The nonlinear convective term poses a problem since it represents a multiplication in

the physical space and hence a convolution in the wavenumber space, which requires

an integral over all the Fourier modes, or information over all the grid points.

In many circumstances, it becomes possible to optimize beyond these three princi-

ples and, in particular, for each node to completely hide the apparent cost of, or delay

due to, communication with a fairly simple rearranging of the computational work.

For node k in Fig. 3.2, it is possible to further distinguish the grid points as interior
(blue) points versus the ghost points (blue-red). Recognizing that computations for

the interior points require data that is completely local to node k, an algorithm could

start the computations on the interior points without waiting on the messages from

the neighbouring nodes to arrive. If N∕P is large enough relative to the number of

ghost points, these computations take longer than the time it takes for the messages to

arrive and the computations on the ghost points can begin as soon as those on the inte-

rior points are completed. With such a rearrangement each node is kept busy doing

computational work all the time. This principle is generally referred to as hiding com-
munication latency and is an aspirational goal of all distributed networked systems,

of which parallel computers are just one example. However, from a programmer’s

perspective, designing for these principles requires a protocol that enables all types

of internode communications and, more importantly, a robust implementation of the

protocol which can be accessed from within common programming languages (e.g.

C, C++ and Fortran). The most popular and widely used communication protocol for

parallel scientific computing is the Message Passing Interface (MPI) (Gropp et al.

1994). MPI is, strictly speaking, a community standard (MPI Forum 2017) for an

interface that provides a communication protocol for parallel computing, but it is

80 H. Kolla and J. H. Chen

not the only one. It just is the most successful standard and has become synonymous

with parallel computing and is supported by all major vendors of supercomputers.

3.3.2 Node-Level Parallelism

In some respects, distributed memory parallelism is easy to reason about and design

for since the basic architecture of distributed supercomputers at the system level

have changed very gradually over the decades. On the other hand, node architectures

have been continuously and rapidly changing, making node-level parallelism much

harder to expose in a program. Recall that we defined a computational node, rather

loosely, as an entity containing some private memory which is shared among certain

computational elements. This definition is simplistic and in reality a typical compu-

tational node has a rather complex memory hierarchy, ranging from main memory
(also known as random access memory or RAM), cache memory and processor reg-
isters. The computational element is typically a processor core that performs the

computational operations on data accessed from said memory hierarchy. Registers

are smallest in capacity (often large enough to hold only a handful of numbers),

closest to the core and fastest to access, whereas main memory is largest in capacity,

farthest from the core and the slowest to access. Node architectures have gradually

progressed in complexity from containing single-core CPUs, multicore (10s) CPUs,

multiple multicore CPUs, to a hybrid multicore CPU together with many-core (100s)

CPUs and GPUs. The memory hierarchy, complexity and management have also

increased with the growing number of units on each node, although the memory-to-

core ratio is decreasing. This makes optimizing for node-level parallelism arduous

but necessary.

The performance of a program in a shared-memory environment hinges almost

entirely on optimal utilization of the memory hierarchy, so some context is necessary.

The purpose of main memory is to provide storage for the entire duration of a running

program. Hence, it is usually large, but accessing it is time-consuming (compared to

the speed with which arithmetic operations can be performed by the processor). This

is ameliorated by cache memory whose purpose is to provide storage for frequently

accessed variables by a program. Cache memory is comparatively much faster to

access but has limited capacity which is usually not large enough to provide storage

for an entire program.
2

In that regard, cache memory acts as an intermediate buffer,

but the cache access patterns of a program have an outsized impact on its perfor-

mance. And finally registers are the memory locations that hold the actual variables

feeding the arithmetic operations of the processor and the results. As a consequence,

the design of an efficient program must pay careful attention to the following:

2
Early computer architectures had just a single level of cache between the processor and main mem-

ory. However, with the number of processors and their speed, increasing dramatically the current

architecture has multiple (upto 3) cache levels. Furthermore, in multicore architectures, some levels

of caches are not shared amongst all cores on a node, but subsets of them.

3 Turbulent Combustion Simulations with High-Performance Computing 81

∙ Data storage and layout in memory: Most scientific codes operate on arrays

of numbers. Practically, in all programming languages, these arrays are stored

in contiguous memory.
3

However, multidimensional arrays are also stored as

though they were 1D arrays (vectors) by stretching out the dimensions succes-

sively. The scheme depends on whether the arrays are stored in row- or column-

major order which can be different for different programming languages, e.g. For-

tran is column-major order, while C/C++ are row-major order.

∙ Memory access: Since most scientific programs spend a bulk of the time per-

forming operations on loops over arrays, knowledge of data layout in memory can

be leveraged to significantly improve their performance. This arises from a con-

cept known as locality of reference (Denning 2005) which establishes that when

a memory location, an element i of a multidimensional array, is accessed (refer-

enced) in a program, it is highly likely that it will be accessed again in the near

future (temporal locality) and highly likely that nearby memory locations—array

elements close to i—will be accessed in the near future (spatial locality). Hence,

aligning the access pattern of the array elements in the program with the underly-

ing memory layout significantly improves performance.

These considerations inform the principles for designing a program for optimal per-

formance. The principles, which are not necessarily mutually exclusive and some-

times even conflicting, can be organized along the various levels of the memory

hierarchy as described below. This discussion is kept simple so as to be accessible to

someone without a background in computer science. An interested reader will read-

ily find, upon even a cursory search, a wealth of articles that expound these topics in

greater depth and nuance.

3.3.2.1 Vectorization

Vectorization pertains to the fact that modern processor architectures are primed to

execute an instruction on multiple data elements (vectors) very efficiently, a concept

known as Single Instruction Multiple Data (SIMD). Consider an example Fortran

code that adds two arrays a and b, and stores the results in array c:

do i = 1,N
c(i) = a(i) + b(i)

enddo

Behind the scenes, this code is transformed by the compiler to a set of instructions

on the processor that comprise a sequence involving reading the elements of a and

b from memory, performing the addition operation and storing the result element c
in memory. This sequence can be sped up significantly if it is performed on blocks

3
This is a bit of an illusion. What a program addresses is not directly the physical location of memory

but what is known as virtual memory. All arrays are stored contiguously in virtual memory, i.e. the

memory addresses of successive elements of an array are contiguous in the virtual address space.

The translation of the virtual address space to physical memory addresses is handled by memory

management layer of an operating system.

82 H. Kolla and J. H. Chen

of the arrays being operated on, rather than one element at a time. This is enabled

by a combination of processor registers that are large enough to hold multiple data

elements and processor instruction sets that support simultaneous execution of the

instruction on all elements held in the register.

Modern compiler technology is sophisticated enough that if the loops are straight-

forward to vectorize, and the corresponding instruction set is supported on a given

architecture, compilers can automatically vectorize relevant portions of the code.
4

However, even simple missteps can prevent loops from being vectorized, resulting

in significant performance penalty. Consider, instead, the case of adding 2D arrays

in the following example:

do i = 1,N
do j = 1,M

c(i,j) = a(i,j) + b(i,j)
enddo

enddo

Because of the way Fortran arrays are stored in memory, array elements along the

first index i will be contiguous. However, the inner loop in this example is over

the index j and successive elements of j, not being contiguous in memory, do not

constitute blocks of vectors that can be fetched from memory efficiently. A compiler

will attempt and fail to vectorize this code. Just by reordering the loops, making

the j loop as the outer and i loop as the inner, the code can be vectorized with-

out affecting correctness. There are other common pitfalls, e.g. placing conditional

statements (e.g. if, while) inside the nested loops, introducing data dependencies

on successive elements of the vectors, etc., that prevent a straightforward vectoriza-

tion. The Intel compiler user guide has a very useful and explanatory page on tips for

writing vectorizable codes (Programming Guidelines for Vectorization 2017). Vec-

torization as a programming practice was pioneered in the early decades of parallel

computing (1970s–1990s) when the architecture of supercomputers was dominated

by vector processors. In subsequent decades, with the changing complexion of com-

puting and the rise of personal desktop computers, vector processors gave way to

scalar processors and vectorization was not as critical for performance. The archi-

tectures are changing once again and with increasing number of computing elements

on a given node, it has become necessary once again to optimize for data parallelism

through vectorization.

4
The Intel compiler suite has a very useful compiler option that generates a detailed vectorization

report. When turned on, it generates output to a file that lists every portion of the code that was

attempted to be vectorized by the compiler, whether the vectorization was successful and what, if

anything, prevented a loop from being vectorized.

3 Turbulent Combustion Simulations with High-Performance Computing 83

3.3.2.2 Cache Utilization

As described earlier, caches are memory layers that provide fast access of data to the

processor cores to operate on. Most scientific computing applications, and certainly

CFD codes, suffer from having low computational intensity which is defined as the

ratio of number of arithmetic operations performed per units of memory accessed

per operation. This would not be an issue if memory bandwidth—the rate at which

memory can be accessed or transferred—outpaces the rate of performing operations,

i.e. FLOPS. Unfortunately, the opposite is true and the performance of virtually all

scientific codes is memory bandwidth limited. The purpose of cache is to relieve

the bandwidth pressure on main memory by providing an intermediate location that

stores the variables frequently accessed by a program. Accordingly, memory access

patterns within a program can benefit greatly by optimizing the utilization of cache

resulting in improved performance.

Consider a simple example of performing an outer product of two vectors a and

b, of lengths N and M, respectively, resulting in an N × M matrix c:

do j = 1,M
do i = 1,N

c(i,j) = a(i) * b(j)
enddo

enddo

At the point of execution of these loops, all the elements for the innermost-i-loop

will be fetched from main memory to cache. Even accounting for the fact that these

elements are contiguous in memory, if N is too large, the cache might not be large

enough to hold all the elements, resulting in poor cache reuse. Each block of a that

fits in cache will be fetched from main memory, operated on and purged before mov-

ing on to the next block.

Accordingly, optimizing the code for cache reuse requires a modification using

a concept called cache blocking. Effectively, reorganizing loops and breaking them

down further into blocks large enough to fit in cache, and reusing the block sized data

as much as possible while it resides in cache, pays dividends. In the above example,

let us assume that it is known that the cache is large enough to hold B elements of a

vector. With this knowledge, rearranging the loops and having the inner most loop

span blocks of size B, as shown below,

do j = 1, M, B
do i = 1, N

do jj = j, j+B-1
c(i,jj) = a(i) * b(jj)

enddo
enddo

enddo

ensures that (1) the chunk of vector b accessed in the inner most jj loop fits in cache

and (2) this chunk is reused for each evaluation of the i loop, increasing cache reuse.

A careful reader will notice in the above example that, in the process of reordering

nested loops for cache blocking, we have reintroduced an inefficiency. The inner-

84 H. Kolla and J. H. Chen

most loop index jj is not the fastest varying dimension for the matrix c and the

above code will result in cache write misses. A reordering of the loops that respects

both contiguous memory access and does cache blocking for this example can be

performed as follows:

do i = 1, N, B
do j = 1, M

do ii = i, i+B-1
c(ii ,j) = a(ii) * b(j)

enddo
enddo

enddo

This is a somewhat simplistic example illustrating the principle of cache blocking.

For operations on multidimensional arrays, e.g. matrix–matrix multiplication, cache

blocking can be done in one or two dimensions and the code with reordered loops

becomes considerably larger (and less easy to read).

3.3.2.3 Shared-Memory Multiprocessing

At the highest level of a node virtually all computing platforms, and even most desk-

tops, have multicore processors (and often multiples of them). While vectorization

and cache utilization can be seen as optimizations necessary at a per-core level, at

the node level it becomes necessary to fully utilize the multiple cores for good per-

formance. Usually, multicore architectures have multiple cache levels, with at least

one level of cache that is closest to each individual core, and at least one level that

is shared by the multiple cores.
5

This allows a programmer to divide computational

work among the multiple cores and have them execute in parallel.

By far the most common programming model for shared-memory multiprocess

parallelism, and certainly the most accessible for common programming languages,

is Open Multiprocessing (OpenMP) (Open Multi-Processing 2017). OpenMP pro-

vides a simple and easy way to extract parallelism by allowing a programmer to view

the multiple cores as a set of threads that can each work on independent subsets of a

problem concurrently. It extends the concept of multi-threading to multicore archi-

tectures and provides a core set of constructs that enable the creation of multiple

threads, specifying a block of work for each thread, providing access to data vari-

ables which may be private to each thread or shared amongst the threads and syn-

chronizing threads. To illustrate the use of OpenMP, consider the earlier example of

5
The term multiprocessing is itself very general, simply referring to a system with multiple proces-

sors. The multicore nodes commonly found today may be thought to belong a subset known as

symmetric multiprocessors (SMP) which strictly means that all the processors share all the mem-

ory and I/O resources equally and are orchestrated by one instance of an operating system kernel.

The reality may be somewhere in between. Most modern node architectures have multiple sets of

multicore CPUs, and they are not all exactly equal since at least one or more layers of memory

hierarchy are not equally shared by all the cores. They are better described by a category known as

non-uniform memory access (NUMA) nodes.

3 Turbulent Combustion Simulations with High-Performance Computing 85

adding two arrays. This example code can be parallelized using OpenMP directives
as follows:

!$OMP PARALLEL DO
do i = 1,N

c(i) = a(i) + b(i)
enddo
!$OMP END PARALLEL DO

To speed up this portion of the code, one compiles the program by providing a com-

piler flag that ensures the spawning of multiple threads, launching each one on a

separate processor at runtime. Each thread/processor executes this loop on the sub-

set of the i index range assigned to it, thereby speeding up the program.

While this simple example illustrates the principle, the speedup achievable by

such a multi-threading model is often hampered by other aspects. Behind the scenes,

OpenMP follows a fork-join model. Typically, a program has a single master thread

running which then spawns multiple worker threads upon encountering the directive

OMP PARALLEL DO. The worker threads execute the block of code that follows

and are destroyed at the directive OMP END PARALLEL DO with control pass-

ing back to the single master thread from thereon. There is a cost associated with

the spawning and destroying of multiple threads by the master thread and this cost

may not outweigh the benefits if the portion of the multi-threaded code is too light-

weight. Moreover, the speedup of an overall larger program might still be limited

by the portions of it that cannot be parallelized over multiple threads (so-called

serial portion of a code), a phenomenon known as Amdahl’s law. Also, OpenMP

provides constructs for having variables shared amongst all threads versus keeping

them private to each thread. The lifetime of a variable is clearly defined by such

attributes and ignoring these rules can easily lead to erroneous code. In the above

example, the subsets of the arrays a, b and c which fall within the index range

for each thread are private to it and no other threads read/modify them. If a vari-

able needs to be accessed by all threads, e.g. a global constant, then it needs to

be declared as a shared variable and multiple copies of it are made, one for each

thread. If shared variables are created indiscriminately, then this can cause an undue

increase in memory footprint. At the same time, one needs to be careful about mod-

ifying the values of shared variables inside the multi-threaded portion of the code.

Since each thread runs in parallel, the exact order in which the threads finish is

undetermined. As a result, if more than one thread modifies the value of a shared

variable differently, the final value might depend on whichever threads finishes last,

a phenomenon known as data race. In general, OpenMP places the heavy burden

of ensuring correctness on the application programmer. As a result, getting appre-

ciable speedup in large programs without disrupting correctness proves challeng-

ing.

Of course no discussion on multiprocessing is complete without covering Graph-
ics Processing Units (GPUs), the latest class of computing processors that are hav-

ing a large impact on scientific computing. GPUs are best described as an array of

streaming multiprocessors where each multiprocessor is designed to efficiently exe-

cute a large number of threads. Each multiprocessor further organizes the large num-

86 H. Kolla and J. H. Chen

ber of threads into smaller thread groups that can execute one common instruction.
6

By efficiently switching context between multiple thread groups, a multiprocessor

can ensure apparent concurrent progress on a rather large number of threads. Con-

ceptually, this may be seen as extending the principle of SIMD to Single Instruc-
tion Multiple Thread (SIMT), although from the perspective of a programmer this is

purely a matter of nuance. For efficient use of GPUs, it is desirable to organize the

computational kernels into a hierarchy of thread groups such that at the finest level

of this hierarchy, all the threads are performing the same computation. Often the

starting point for such an organization is to transform loop computations into thread

groups/blocks. However, the level of parallelism required to get the most out of a

GPU is rather large (∼1000s of threads) and one might be hard pressed to express

such large loops for a majority of a program. Moreover, the available memory on a

GPU is smaller on a per-thread basis making the efficient use of its capacity difficult.

This requires going beyond simple ‘data-level parallelism’, which is the subject of

the next subsection.

Finally, while the concepts listed above are illustrative, using them in concert

for a complex program requires considerable effort, often using trial and error. A

pragmatic approach is to identify the portions of a code that may be the most time-

consuming, and reasoning about how they could be improved for a given platform.

The solution could involve some combination of the approaches above and at dif-

ferent levels. For instance, one could employ multi-threading at a high level and get

further speed up by vectorizing or cache blocking the lower levels of nested loops.

This effort is made further challenging by the fact that a solution that works best

for one platform might not carry over easily to a different platform due to a slight

difference in the node-level architecture. The best programs parametrize their codes

for the various levels of parallelism such that the parameters reflect the specifics of

the architecture. But such a straightforward solution might elude all but the simplest

codes.

3.3.3 Data, Task and Hybrid Parallelism

The entire preceding discussion, starting from distributed memory parallelism using

domain decomposition to shared-memory parallelism using multiprocessing, was

illustrated using examples of data-level parallelism, i.e. computations that can be

performed in parallel on multiple data elements, which in the case of CFD invari-

ably become solution variables at the computational grid points. As the discussion

on GPUs illustrated, with the increasingly complex node-level architectures, data

parallelism is no longer sufficient to fully utilize HPC computing resources. An alter-

6
NVIDIA, which has pioneered use of GPUs for scientific computing, has developed a full-fledged

programming model—CUDA—that provides constructs for the thread hierarchy. The smallest

group of threads that execute a common instruction is called a warp and from a performance per-

spective having all threads in a warp do the same computation without diverging is critical.

3 Turbulent Combustion Simulations with High-Performance Computing 87

native paradigm, task parallelism, is becoming increasingly important. Simply put,

task parallelism is orthogonal to data parallelism and can be thought of as inde-

pendent sets of computation that can be performed on the same data element. The

term independent here refers to concept that the sets of computation have inputs

and outputs that do not depend on each other. An example from a combustion per-

spective would be the computations of viscosity, thermal conductivity and species

diffusivities. These quantities are required for different conservation equations, and

their computations are independent and can be performed in parallel. Yet, it is fairly

common for programmers to express these operations in sequence in a code since

that is what all the widely used programming languages enable. Programming lan-

guages/models that allow expressing task parallelism are far less common. As the

GPU discussion illustrates, to get the best performance, one might be required to

exploit both data and task parallelism, i.e. hybrid parallelism. For the GPU exam-

ple, this maybe accomplished by launching, on each multiprocessor, separate thread

groups for independent tasks but have each thread within a group perform the same

task on multiple data elements.

A fairly recent, and radical, development in parallel computing is the concept of

asynchronous many-task (AMT) programing models and runtimes (Bennett et al.

2015). In this paradigm, a programmer is not required to manually reason about,

and order, computational kernels in a program for parallel execution of independent

tasks. Rather, the programmer is required only to specify tasks and their inputs and

output dependencies. The runtime does the analysis of determining when a certain

task is ready to be executed, based on whether its input dependencies are satisfied,

and issues the task for execution on the next available resource. In such a paradigm,

there is no notion of synchronous or ‘in-order’ execution, as would happen in com-

mon programming languages like C/C++/Fortran, and the actual order of execution

only respects the data dependencies of the tasks as specified by the programmer. Tre-

ichler et al. (2018) describe the implementation of a combustion DNS code in one

such AMT runtime “legion” (Legion 2017). Bennett et al. (2015) report a systematic

comparative study of a few state-of-art AMT runtimes.

3.4 Physics and Numerical Aspects

A discussion on the physics and numerical aspects of computational combustion was

deliberately set to follow the section on HPC aspects. Historically, combustion codes

have been developed based on the classes of problems one was interested in solving,

which establishes the framework for the set of physics and associated numerics. Con-

siderations of HPC usually follow later. In inverting the perspective, we hope to give

an appreciation for what implications the physics/numerics choices have on parallel

computing and in particular which choices are conducive for HPC and which might

be inhibiting. It is not the intent of this section to be a comprehensive survey of

numerical methods for CFD of reacting flows, which would be a vast undertaking.

Rather, we intend to present step-by-step the choices confronted as viewed through

88 H. Kolla and J. H. Chen

the lens of HPC. In the discussion to follow, we limit ourselves to gas-phase turbulent

reacting flows and do not consider aspects of multiphase reacting flows.

3.4.1 Governing Equations and Constitutive Laws

As mentioned in Sect. 3.2, a reacting flow system is described by a set of variables

that are governed by conservation laws in the form of PDEs. These are typically the

conservation of mass, momentum, energy, species concentrations and a thermody-

namic equation of state. The governing equations are complemented by constitu-

tive laws for molecular transport (mass diffusion for species concentrations, thermal

diffusion and viscosity), thermodynamic quantities (specific heat at constant pres-

sure/volume) and chemical kinetics. Within this framework, there is some flexibility,

depending on the conditions, in choosing the form of governing equations one wishes

to solve. For instance, the energy equation could be transformed into an equation for

enthalpy or temperature. Likewise, for species concentrations one could choose mass

fractions or mole fractions. Poinsot and Veynante (2012) give an excellent overview

of the governing equations for reacting flows, various equivalent forms and simpli-

fications.

The first choice to be made is the size of the chemical system. As mentioned in

Sect. 3.2, this has a direct bearing on the size of the resulting system of equations and

the computational cost. For higher hydrocarbons, as may be relevant for transporta-

tion systems, the number of species in a mechanism can be extremely large, e.g. 2885

species (11754 elementary reaction steps) for a diesel surrogate mechanism (Pei et al.

2015), so as to be prohibitively expensive. Large chemical mechanisms also involve

a relatively large fraction of intermediate species that are extremely shortlived (fast

chemical timescales) which makes the PDEs very stiff, compounding the problem.

Hence, some sort of mechanism reduction is almost always necessary, and a reduced

mechanism must be judiciously chosen such that it includes the chemical pathways

relevant for the phenomenon under study, and it remains valid for the conditions

(pressure, temperature and equivalence ratios) of the simulation. As an example, the

RCCI simulation (Treichler et al. 2018) of a primary reference fuel (a blend of iso-

octane and n-heptane) targeted the study of ignition timing in a turbulent mixture

undergoing piston compression. The mechanism, chosen to be valid under the range

of pressures and mixture stratifications expected in the simulation and retain the key

elementary steps governing ignition chemistry, contained 116 transported species,

55 species treated with a quasi-steady-state assumption (QSSA) and 861 elemen-

tary reaction steps (Luong et al. 2013), itself reduced from a much larger detailed

mechanism with 874 species and 3796 elementary steps (Curran et al. 2002).

For engineering simulations—LES or RANS—such detailed mechanisms may be

unnecessary and they could be significantly reduced while still preserving the fidelity

required to predict engineering quantities of interest. An excellent example of this is

a two-step reduced six species chemical mechanism for kerosene–air premixed com-

bustion by Franzelli et al. (2010). Even for DNS, the purpose is sometimes to for-

3 Turbulent Combustion Simulations with High-Performance Computing 89

mulate, test and validate models for turbulence–chemistry interactions and a simple

description of the combustion chemistry suffices. For premixed combustion, under

certain assumptions (Bray and Libby 1976), global single-step irreversible reaction

mechanism; unity Lewis numbers of reactant and product species; and adiabatic flow

and constant pressure combustion, it is possible to represent the entire thermochemi-

cal system by a single reacting scalar, a progress variable. DNS of turbulent premixed

flames using just a progress variable-based description have made major contribu-

tions to the understanding and modelling of turbulence–chemistry interactions, as

detailed in chapter [refer Prof. Nilanjan Chakraborty].

For thermodynamic quantities, the widely accepted practice, established by the

authors of the CHEMKIN package (Kee et al. 1990), is to evaluate them as polyno-

mials of temperature. This may seem like the more expensive approach compared

to the simplification of assuming these quantities to be temperature-independent.

However, this is one example where, from the perspective of computational cost,

such a simplification may be unnecessary. Univariate polynomial evaluations have

a high computational intensity, i.e. they require a lot of FLOPS per byte of data

accessed and they are generally favourable from the perspective of easing memory

bandwidth pressure. As a result, opting for the more compute-intensive option of

temperature polynomials might incur no penalty on computational performance. The

same argument applies to transport properties. Evaluating them as polynomials of

temperature, as established by the TRANSPORT package (Kee et al. 1986), might

not incur significant penalty on the computational cost. However, for multi-species

mixtures, there still is a choice between evaluating the transport properties using

a mixture-averaged or a full multicomponent formulation for the molecular trans-

port coefficients. The mixture-averaged formulation is effectively a weighted sum of

the transport coefficients of the individual components, evaluated as polynomials of

temperature, weighted by their concentrations. The full multicomponent formulation

requires inverting a matrix of dimensions equal to the number of components, which

can be extremely expensive. While it is well known that for laminar flames the two

formulations yield considerably different results, a recent DNS of a temporally evolv-

ing turbulent stratified jet flame (Bruno et al. 2015) observed that, statistically, the

quantitative differences between a mixture-averaged and multicomponent diffusion

formulation were negligible in the turbulent flame. While this may be encouraging, it

is not conclusive and it is fair to expect the differences between the two formulations

to be regime dependent and greater for systems with a large number of species.

3.4.2 Compressible Versus Low-Mach Formulations

A large subset of turbulent combustion applications occur in low-speed subsonic

flows. Under such conditions, the timescales pertaining to advection are much larger

compared to that of acoustic propagation and yet stability considerations of time

advancement schemes will dictate that the time step be limited by the acoustic

timescale. Even though the density is varying in the domain, its change arises to

90 H. Kolla and J. H. Chen

leading order due to the temperature change from combustion and not due to ther-

modynamic compression/expansion. Representing such a system by a conventional

compressible formulation will require needlessly small time steps.

An elegant solution that takes advantage of the separation of the acoustic and

advective timescales is the low-Mach formulation for reactive flows (Tomboulides

et al. 1997; Najm and Knio 2005; Nonaka et al. 2012), which filters out the acoustic

waves by decomposing pressure into a thermodynamic and a hydrodynamic part

p(x, t) = ptherm(t) + phydro(x, t). (3.6)

The equation of state involves only the thermodynamic pressure, ptherm, which is

assumed to equilibrate in the whole domain instantly and hence is a function only of

time, while the momentum equation involves only the gradient of the hydrodynamic

pressure, phydro. In terms of the formulation, this decomposition transforms the con-

tinuity equation and the equation of state into a constraint on velocity divergence

that requires solving an elliptic equation with spatially variable coefficients. From

an HPC perspective, this maybe seen as a drawback of this approach. An elliptic

PDE has the attribute that the solution at every point in the domain is influenced

by every other point. Solving such a PDE, in a distributed memory setting, requires

an all-to-all exchange of information which is communication intensive. In prac-

tice, sophisticated algorithms are used to solve elliptic PDEs in an efficient way but

effectively the global information exchange has to happen in one form or another.

In contrast, this is avoided in a compressible formulation since the flow of informa-

tion by acoustic propagation is resolved and the domain of influence for the PDE

solution at any grid point is localized. The choice then is between a compressible

formulation that restricts the time steps and increases the time to solution but with

a simpler algorithm (and code) versus the low-Mach formulation that allows large

time steps but at the expense of a much more complicated numerical algorithm and

code.

3.4.3 Spatial and Temporal Discretizations

The most consequential design choice for any CFD program, the one that establishes

the entire numerical, algorithmic and computational framework for a code, is the

choice of spatial and associated temporal discretizations for the PDEs. Here too, the

landscape is vast and we do not attempt an exhaustive discussion. Rather, we focus

on the prominent classes of numerical methods that have emerged for reactive flow

problems and assess their pros and cons from an HPC perspective.

The choice of the spatial discretization is guided first and foremost by what kind

of simulations one wishes to perform and what accuracy is required. For simulations

that are fundamentaly of academic interest and whose aim to investigate and quan-

tify the multiscale nature of turbulence–chemistry interactions, the computational

domains can be kept simple but a high accuracy is desired for spatial derivatives.

3 Turbulent Combustion Simulations with High-Performance Computing 91

Finite-difference schemes are a natural choice. Early DNS codes for incompress-

ible turbulence were based on spectral or pseudo-spectral methods
7

which solve the

Fourier modes of velocity. The transformation of Navier–Stokes equations to the

Fourier space allows one to precisely control the range of wavenumbers that can

be resolved and hence the Reynolds numbers that are affordable, but these methods

are limited to periodic spatial domains. High-order accurate spatial finite-difference

schemes (Lele 1992; Kennedy and Carpenter 1994) emerged from this need to per-

form DNS in physical space but with targeted spectral-like accuracy. These schemes

are simple to implement and offer a high order of accuracy at relatively modest

computational expense and combustion DNS codes have successfully implemented

schemes that are up to tenth-order accurate (Jenkins and Cant 1999). But the main

concern is that the formulation of these schemes is not mathematically conserva-

tive and choosing a scheme of modest-order accuracy might violate domain-wide

global conservation laws. Finite-volume discretization, on the other hand, is con-

servative by construction and preserves domain-wide conservation. However, finite-

volume schemes become increasingly difficult to formulate for higher order accuracy

and require large stencil widths increasing the computational cost. Of a secondary

concern is the ability to handle irregular geometry domains. The finite-difference

approach, being of the method of lines mould, is restricted to only simple compu-

tational domains, purely rectangular domains with structured meshes. The finite-

volume method, in principle, can handle complex geometries with tetrahedral mesh

elements, but the difficulties in formulating high-order accurate schemes for tetrahe-

dral elements become more severe. Multi-block body-fitted curvilinear meshes also

allow one to handle modestly complex geometries but these are usually preferred for

engineering, as opposed to academic simulations and finite-volume methods are a

better choice since ensuring conservation is more important than resolving spatial

gradients with high fidelity.

From an HPC perspective, the choice of temporal discretization and the overall

time advancement scheme has a much larger bearing. The main issue confronting

turbulent combustion simulations is that there are four relevant timescales governed

by the distinct physical processes: convection, acoustics, diffusion and chemistry,

and they can be different by orders of magnitude. The choice of which timescales to

resolve explicitly, which to handle implicitly and how to couple them all consistently

determines the overall temporal discretization framework. The previous section

already elucidated the choice between resolving and filtering acoustic timescales

when they are much smaller than convective timescales. For convective–diffusive–

reactive flows, three classes of temporal schemes are apparent: fully explicit schemes,

coupled implicit–explicit (IMEX) schemes and decoupled operator splitting schemes:

∙ Fully explicit schemes represent the brute force approach and the time step is cho-

sen to be smaller than the smallest relevant timescale. These schemes are relatively

7
The difference between spectral and pseudo-spectral methods lie in how the nonlinear convective

term was handled. In the spectral method, all computations were in the wavenumber space, but

pseudo-spectral methods use an intermediate step to transform the velocity Fourier modes to phys-

ical space, compute the convective term in the physical space and transform it back to the Fourier

space.

92 H. Kolla and J. H. Chen

straightforward to implement and the spatial domain of influence is nearest neigh-

bour, i.e. advancing the solution in time at a grid point requires information only

from the grid points in the immediate vicinity. From a distributed memory per-

spective, this is extremely attractive since the time advancement algorithm for a

set of grid points assigned to a node requires communication only with a handful

of other nodes that contain the adjacent grid points. Widely used classes of explicit

methods (e.g. Runge–Kutta and Adams–Bashforth) differ in terms of the number

of stages involved in an overall time step and the storage required for the interme-

diate solution. The former determines the computational cost of the scheme and

the latter determines the memory footprint.

∙ Coupled implicit–explicit schemes (IMEX) schemes allow one to choose much

larger time steps, by treating the fast processes implicitly. The low-Mach formu-

lation can be construed as being explicit for convective and implicit for acoustic

processes. The term coupled refers to the fact that all the physical processes are

considered together in time advancing each PDE, which makes it easier to reason

about the temporal order of accuracy, compared to the decoupled schemes (see

below). However, the implicit treatment incurs the cost that the spatial domain

of influence is no longer nearest neighbour and this manifests itself as a global

linear system of form A𝜙n+1 = B𝜙n + d, where 𝜙 is the solution vector at all the

grid points with superscript n denoting the time, A and B are matrices (usually

sparse) that contain the coefficients of the discretization, and d is the vector con-

taining the spatial boundary conditions. Solving such systems requires sophisti-

cated linear system solvers (e.g. multi-grid methods and Krylov methods) whose

implementation is fairly involved.

∙ Operator split methods (Strang 1968) also use a combination of implicit and

explicit schemes, but they decouple physical processes and consider the time

advancement due to the various processes one at a time. A typical implemen-

tation for reacting flow (Najm and Knio 2005) involves advancing the solution

state by the diffusion terms for one half time step, followed by a full time step

advancement by the reaction terms and finally another half step advancement by

the diffusion terms. This offers the advantage that a different solver, best suited

for the relevant terms, can be used for each stage. The terms treated implicitly

will still require sophisticated solvers and in addition operator split methods intro-

duce splitting errors requiring special numerical treatment to preserve consistency

across the physical processes. The end result is a temporal scheme that requires

a fairly complicated algorithm even for guaranteeing modest orders of temporal

accuracy (Descombes et al. 2014).

On a concluding note, the choice of temporal scheme should be guided by the separa-

tion of the timescales, if any, in the target simulation. If all the timescales are compa-

rable, it is best to use fully explicit methods due to their simplicity, ease of implemen-

tation and desirability from a distributed memory perspective. If the timescales are

disparate, the combined implicit–explicit schemes may be a better option for reasons

described above. Moreover, a fairly elaborate set of linear system solvers, which are

usually required for the implicit schemes, are available as open libraries which have

3 Turbulent Combustion Simulations with High-Performance Computing 93

been designed and specifically optimized for HPC (PETSC 2017; Trilinos Home

Page 2017).

3.4.4 An Exemplar Combustion DNS Code: S3D

The preceding discussion highlights the various factors, by no means exhaustive, that

guide the design of a combustion code. To illustrate how they are all put together

we present an exemplar code S3D (Chen et al. 2009), developed at the Combustion

Research Facility, Sandia National Laboratories. S3D is a massively parallel solver

developed for performing DNS of multi-species gas-phase turbulent reacting flows.

It employs explicit high-order accurate central difference schemes for spatial dis-

cretization and explicit multi-stage low storage Runge–Kutta scheme for temporal

discretization (Kennedy and Carpenter 1994). It interfaces with the CHEMKIN and

TRANSPORT library routines for incorporating detailed finite-rate chemical kinet-

ics and mixture-averaged molecular transport properties. The longstanding version

of the code, written in Fortran 90, uses MPI-based distributed domain decomposi-

tion. More recently, it has been refactored for heterogeneous architectures using a

hybrid MPI+OpenACC implementation and also a radical task-based programing

model called Legion (Treichler et al. 2018). Over the years, S3D has performed tur-

bulent combustion DNS simulations of remarkable scale and chemical complexity.

Due to its simplicity and ease of use, it has been ported to a variety of supercomputer

architectures with excellent parallel scalability and performance. Moreover, it has

served as a vehicle that enabled various other facets of HPC research: data analytics

and visualization (Ye et al. 2016), data compression (Austin et al. 2016), large-scale

parallel I/O (Schendel et al. 2012) and HPC resilience (Gamell et al. 2017).

3.5 Data Analyses

While performing massive turbulent combustion simulations is challenging in its

own right, the effort does not end there. Turbulent combustion is the classic mul-

tiscale multi-physics scientific application and accordingly its simulations generate

large volumes of data rich in information. Extracting insight buried in these data sets

is also often a large computational undertaking. The recent S3D simulation shown in

Fig. 3.1 has a computational problem size of 1.8 × 1011. If the data are represented

by double-precision floating-point numbers (8 bytes), this translates to each snapshot

of this data set having a file size of 1.44 TB! Considering a few hundred time snap-

shots are required for capturing the temporal evolution, the total data size approaches

PetaBytes, which is well beyond the capacity of even modest computing clusters, let

alone desktop computers.

The only pragmatic approach for analysing such volumes of data is to perform the

analysis in place, i.e. the same computing resource where the data is generated. This

94 H. Kolla and J. H. Chen

dictates the use parallel computing for the analyses as well and domain decomposi-

tion serves as a good strategy for distributed parallelism. Below are some commonly

recurring motifs for combustion data analyses:

∙ Descriptive statistics: Statistical moments (mean, variance, covariance, etc.) gath-

ered over ensembles in the ‘homogeneous’ dimensions. For temporally evolving

simulations, homogeneous dimensions are the spatial dimensions that are periodic

while for statistically stationary simulations time is a homogeneous dimension. In

either case, gathering statistics requires global communication and aggregation of

data in space and/or time.

∙ Feature-based analyses: Often, it is of interest to hone in on specific features of

the turbulent flames (ignition kernels, extinction regions, iso-surfaces/iso-volumes

of reacting scalars, strain-/vorticity-dominated regions, etc.). Feature identifica-

tion, extraction and tracking is a broad topic requiring specialized algorithms for

different types of features (e.g. Marching cubes algorithm for iso-surface construc-

tion) and these need to be further implemented in a parallel setting. An example of

an iso-surface based analysis is the geometric flame thickness studied in Chaud-

huri et al. (2017).

∙ Phase-space analyses: It is sometimes required to transform from a space–time

domain to the solution variables domain (phase-space). Examples of analyses in

such transformed domains include constructing joint/conditional/marginal prob-

ability distribution functions (PDFs), trajectories in phase space, empirical low-

dimensional chemical manifolds, etc.

∙ Fourier spectral analyses: Assessing classical hypotheses borne out of the spec-

tral view of the turbulence energy cascade requires constructing energy (Kolla

et al. 2014) and dissipation spectra (Kolla et al. 2016) of velocities and reactive

scalars. Fast Fourier transforms are integral to this which are challenging in a dis-

tributed data set since they are communication intensive and extremely expensive.

∙ Filtering and multiscale analyses: In multiscale settings, it is sometimes desir-

able to extract scale-specific features and statistics. Examples of such analyses

include wavelet transforms, bandpass filtering, explicit spatial filtering in the vein

of LES, etc.

It is obvious that the space for analyses is rather broad and in some sense more

diverse, in terms of algorithmic needs and implementations, compared to the PDE

solution algorithms. Another concept, which takes the idea of in-place analyses even

further, is in-situ analysis which refers to a paradigm where the analyses and solver

are much more tightly integrated and the data is being analysed as it is generated.

Looking towards the future, and extrapolating the rate at which the scale of com-

bustion simulations is growing, generating and saving such volumes of data seems

unsustainable. It appears that in-situ analyses will play a much bigger role in the

overall workflow and the final data sets generated will have to be reduced by orders

of magnitude. A good example of what such a workflow might look like is presented

by Bennett et al. (2012).

3 Turbulent Combustion Simulations with High-Performance Computing 95

Acknowledgements This work was supported by Sandia National Laboratories, a multi-mission

laboratory managed and operated by National Technology and Engineering Solutions of Sandia,

LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of

Energys National Nuclear Security Administration under contract DE-NA-0003525. The authors

acknowledge the support of the Exascale Computing Project (ECP), Project Number: 17-SC-20-

SC, a collaborative effort of two DOE organizations—the Office of Science and the National

Nuclear Security Administration—responsible for the planning and preparation of a capable exas-

cale ecosystem including software, applications, hardware, advanced system engineering and early

testbed platforms to support the nations exascale computing imperative. Helpful comments and

inputs from Dr. Xinyu Zhao (University of Connecticut), Dr. Giulio Borghesi (Sandia National

Labs) and Dr. Aditya Konduri (Sandia National Labs) are gratefully acknowledged.

References

GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech

Legion: a data-centric parallel programming system. http://legion.stanford.edu

MPI forum. http://mpi-forum.org

Open multi-processing. http://www.openmp.org

PETSc web page. http://www.mcs.anl.gov/petsc

Programming guidelines for vectorization. https://software.intel.com/en-us/node/695829

Trilinos home page. https://trilinos.org

Austin W, Ballard G, Kolda T (2016) Parallel tensor compression for large-scale scientific data.

In: IPDPS’16: Proceedings of the 30th IEEE international parallel and distributed processing

symposium, pp 912–922. https://doi.org/10.1109/IPDPS.2016.67

Bennett J, Abbasi H, Bremer PT, Grout R, Gyulassy A, Jin T, Klasky S, Kolla H, Parashar M,

Pascucci V, Pebay P, Thompson D, Yu H, Zhang F, Chen J (2012) Combining in-situ and in-

transit processing to enable extreme-scale scientific analysis. In: International conference on

high performance computing, networking, storage and analysis (SC)

Bennett J, Clay R, Baker G, Gamell M, Hollman D, Knight S, Kolla H, Sjaardema G, Slatten-

gren N, Teranishi K, Wilke J, Bettencourt M, Bova S, Franko K, Lin P, Grant R, Hammond S,

Olivier S, Kale L, Jain N, Mikida E, Aiken A, Bauer M, Lee W, Slaughter E, Treichler S, Berzins

M, Harman T, Humphrey A, Schmidt J, Sunderland D, McCormick P, Gutierrez S, Schulz M,

Bhatele A, Boehme D, Bremer PT, Gamblin T (2015) ASC ATDM Level 2 Milestone #5325:

asynchronous many-task runtime system analysis and assessment for next generation platforms.

Technical report SAND2015-8312, Sandia National Laboratories, Albuquerque, NM

Bray K, Libby PA (1976) Interaction effects in turbulent premixed flames. Phys Fluids 19(11):1687–

1701

Bruno C, Sankaran V, Kolla H, Chen J (2015) Impact of multi-component diffusion in turbulent

combustion using direct numerical simulations. Combust Flame 162:4313–4330

Burke M, Chaos M, Ju Y, Dryer F, Klippenstein S (2012) Comprehensive H2∕O2 kinetic model for

high-pressure combustion. Int J Chem Kinet 44:444–474

Chaudhuri S, Kolla H, Dave H, Hawkes E, Chen J, Law C (2017) Flame thickness and conditional

scalar dissipation rate in a premixed temporal turbulent reacting jet. Combust Flame 184:273–

285

Chen JH, Choudhary A, de Supinski B, DeVries M, Hawkes ER, Klasky S, Liao WK, Ma KL,

Mellor-Crummey J, Podhorszki N, Sankaran R, Shende S, Yoo CS (2009) Terascale direct

numerical simulations of turbulent combustion using S3D. Comput Sci Discov 2:015001

Curran H, Gaffuri P, Pitz W, Westbrook C (2002) A comprehensive modeling study of iso-octane

oxidation. Combust Flame 129:253–280

Denning P (2005) The locality principle. Commun ACM 48(7):19–24

http://www.me.berkeley.edu/gri_mech
http://legion.stanford.edu
http://mpi-forum.org
http://www.openmp.org
http://www.mcs.anl.gov/petsc
https://software.intel.com/en-us/node/695829
https://trilinos.org
https://doi.org/10.1109/IPDPS.2016.67

96 H. Kolla and J. H. Chen

Descombes S, Duarte M, Dumont T, Laurent F, Louvet V, Massot M (2014) Analysis of operator

splitting in the non-asymptotic regime for nonlinear reaction-diffusion equations. Application to

the dynamics of premixed flames. SIAM J Numer Anal 52:1311–1334

Echekki T, Chen J (1996) Unsteady strain rate and curvature effects in turbulent premixed methane-

air flames. Combust Flame 106:184–202

Echekki T, Chen J (2002) High-temperature combustion in autoigniting non-homogeneous hydro-

gen/air mixtures. Proc Combust Inst 29:2061–2068

Franzelli B, Riber E, Sanjose M, Poinsot T (2010) A two-step chemical scheme for kerosene-air

premixed flames. Combust Flame 157:1364–1373

Gamell M, Teranishi K, Mayo J, Kolla H, Heroux M, Chen J, Parashar M (2017) Modeling and

simulating multiple failure masking enabled by local recovery for stencil-based applications at

extreme scales. IEEE Trans Parallel Distrib Syst

Gropp W, Lusk E, Skjellum A (1994) Using MPI: portable parallel programming with the message-

passing interface. Scientific and engineering computation series. MIT Press

Jenkins K, Cant R (1999) Direct numerical simulation of turbulent flame kernels. In: Knight

D, Sakell L (eds) Proceedings of the second AFOSR conference on DNS and LES. Kluwer

Kee R, Rupley F, Miller J (1990) The CHEMKIN thermodynamic data base. Technical report

SAND-87-8215B, Sandia National Laboratories

Kee RJ, Dixon-Lewis G, Warnatz J, Coltrin ME, Miller JA (1986) A Fortran computer code package

for the evaluation of gas-phase multicomponent transport properties. Technical report SAND86-

8246, Sandia National Laboratories

Kennedy C, Carpenter M (1994) Several new numerical methods for compressible shear-layer sim-

ulations. Appl Numer Math 14:397–433

Kolla H, Hawkes E, Kerstein A, Chen J (2014) On velocity and reactive scalar spectra in turbulent

premixed flames. J Fluid Mech 754:456–487

Kolla H, Zhao XY, Chen J, Swaminathan N (2016) Velocity and reactive scalar dissipation spectra

in turbulent premixed flames. Combust Sci Technol 188:1424–1439

Lele S (1992) Compact finite-difference schemes with spectral like resolution. J Comput Phys

103:16–42

Luong M, Luo Z, Lu T, Chung S, Yoo C (2013) Direct numerical simulations of the ignition of lean

primary reference fuel/air mixtures under HCCI condition. Combust Flame 160:2038–2047

Najm H, Knio O (2005) Modeling low Mach number reacting flow with detailed chemistry and

transport. J Sci Comput 25:263–287

Nonaka A, Bell J, Day M, Gilet C, Almgren A, Minion M (2012) A deferred correction coupling

strategy for low Mach number flow with complex chemistry. Combust Theory Model

Pei Y, Mehl M, Liu W, Lu T, Pitz W, Som S (2015) A multi-component blend as a diesel fuel

surrogate for compression ignition engine applications. J Eng Gas Turbines Power (GTP-15-

1057)

Poinsot T, Veynante D (2012) Theoretical and numerical combustion, chapter 1. Edwards

Raman V, Fox RO (2016) Modeling of fine-particle formation in turbulent flames. Annu Rev Fluid

Mech 48:159–190

Sankaran R, Hawkes E, Chen J, Lu T, Law C (2007) Structure of a spatially developing turbulent

lean methane-air Bunsen flame. Proc Combust Inst 31:1291–1298

Schendel ER, Pendse SV, Jenkins J, Boyuka II DA, Gong Z, Lakshminarasimhan S, Liu Q,

Kolla H, Chen J, Klasky S, Ross R, Samatova NF (2012) ISOBAR Hybrid compression-I/O

interleaving for large-scale parallel I/O optimization. In: Proceedings of the 21st international

symposium on high-performance parallel and distributed computing, HPDC ’12. ACM, New

York, NY, USA, pp 61–72. https://doi.org/10.1145/2287076.2287086. http://doi.acm.org/10.

1145/2287076.2287086

Strang G (1968) On the construction and comparison of difference schemes. SIAM J Numer Anal

5:503–517

Tomboulides A, Lee J, Orszag S (1997) Numerical simulation of Low-Mach number reactive flows.

J Sci Comput 12:139–167

https://doi.org/10.1145/2287076.2287086
http://doi.acm.org/10.1145/2287076.2287086
http://doi.acm.org/10.1145/2287076.2287086

3 Turbulent Combustion Simulations with High-Performance Computing 97

Treichler S, Bauer M, Bhagatwala A, Borghesi G, Sankaran R, Kolla H, McCormick P, Slaughter

E, Lee W, Aiken A, Chen J (2018) S3D-Legion: an exascale software for direct numerical sim-

ulation (DNS) of turbulent combustion with complex multicomponent chemistry. In: Straatsma

T, Williams KAT (eds) Exascale scientific applications scalability and performance portability,

chapter 12. CRC Press

Ye Y, Neuroth T, Sauer F, Ma KL, Borghesi G, Konduri A, Kolla H, Chen J (2016) In situ generated

probability distribution functions for interactive post hoc visualization and analysis. In: IEEE

sixth symposium on large data analysis and visualization (LDAV)

	3 Turbulent Combustion Simulations with High-Performance Computing
	3.1 Introductory Remarks
	3.2 Computational Cost of Combustion DNS
	3.3 HPC and Hierarchical Parallelism
	3.3.1 Distributed Memory Parallelism
	3.3.2 Node-Level Parallelism
	3.3.3 Data, Task and Hybrid Parallelism

	3.4 Physics and Numerical Aspects
	3.4.1 Governing Equations and Constitutive Laws
	3.4.2 Compressible Versus Low-Mach Formulations
	3.4.3 Spatial and Temporal Discretizations
	3.4.4 An Exemplar Combustion DNS Code: S3D

	3.5 Data Analyses
	References

