
Chapter 15
Theory and Application of Multiple
Mapping Conditioning for Turbulent
Reactive Flows
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Abstract This chapter presents the basic theory and conceptual evolution of the
multiple mapping conditioning (MMC) framework, and presents recent applications
for turbulent reactive flows. MMC was initially formulated as a method that inte-
grates the probability density function (PDF) and conditional moment closure
(CMC) models through a generalisation of mapping closure. MMC models utilise a
reference space, whose PDF is prescribed a priori or which is simulated by some
means such as a Markov diffusion process. The turbulent fluctuations of all scalars
in this method are divided into major and minor groups, and the former are
associated with the reference space via a mapping function. The reference space
describes a low-dimensional manifold which can fluctuate in any given way, while
the fluctuations of the (real) scalars are fully or partially confined relative to that
reference space. The dimensionality of the reference space is usually small. For
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example, in non-premixed combustion a reference space emulating the mixture
fraction usually suffices. There are both conditional and probabilistic conceptual-
isations of MMC and both deterministic and stochastic mathematical formulations.
In the past decade, an extension of probabilistic MMC has emerged that is known
as generalised MMC that removes some of the formality of the original formulation
and extends the type and usage of the reference variables. Generalised MMC is
commonly associated, although not exclusively, with large eddy simulations (LES).
This chapter reviews the conceptual and theoretical advances in MMC since its
original formulation and also reviews some of the recently published applications of
MMC in turbulent reactive flows.

Keywords MMC ⋅ Reactive flows ⋅ RANS ⋅ LES ⋅ PDF method
Mixing model

Nomenclature

rm Characteristic scale in physical space
fm Characteristic scale in reference space
WI Chemical reaction rate
Qα Conditional expectation
U Conditional velocity
D Diffusion coefficient
Bkl Diffusion coefficient
dp, qx, i Distance between particle in physical space
AK Drift coefficient
Z ̃LES Filtered LES mixture fraction
XI Mapping function
Z Mixture fraction
S*I Mixing operator
MW Molecular weight
ns Number of chemical species
nm Number of dimensions of manifold
Np Number of particles
Pξ Pdf of reference space
P Probability density function (PDF)
Y(x, t) Reactive scalar space
Nij Scalar dissipation
Y Scalar, reactive scalar species mass fraction
T Temperature
Cmin Timescale ratio
v Velocity vector
wp Weight of particle p
w*
I Wiener processes
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Greek symbols

ρ Density
τmin Minor dissipation timescale
ξ Reference variable
τϕ Scalar mixing timescale
ξ′′ Subgrid fluctuation

15.1 Introduction

In the past few decades, several turbulent combustion models have been developed
and demonstrated for both premixed and non-premixed turbulent flames (Veynante
and Vervisch 2002). In most practical combustion systems, these two distinct areas
are not encountered and combustion occurs under partially premixed conditions.
The probability density function (PDF) method (Pope 1985) is one of the few
models which, although initially developed for non-premixed combustion, is gen-
eral enough in its formulation to be applicable to all combustion regimes (Pei et al.
2015; Brauner et al. 2016; Cao et al. 2007; Lindstedt and Vaos 2006). This is
because the reaction rate term appears naturally in closed form, whereas in other
combustion models some form of approximation is needed for the average or
filtered reaction source. There is a caveat, however. The mixing term in the gov-
erning equation for the PDF is unclosed and not all of the mixing models which
have been developed are applicable to all combustion regimes. Additionally, a
disadvantage of the conventional PDF method is that the cost of computation is
relatively large and for realistic systems involving hundreds of species, the appli-
cation of PDF methods can become impractical. Addressing these issues is a
motivation for the ongoing development of the multiple mapping conditioning
models (Klimenko and Pope 2003).

Conditional moment closure (CMC) (Klimenko and Bilger 1999) is a
well-known turbulent combustion model whereby the reaction rate closure is
obtained by formulating the governing equations in terms of the conditional
expectations of reactive scalars. In its simplest form, known as first-order CMC, the
scalar quantities (species mass fraction and temperature) are assumed to fluctuate
jointly with the fluctuation of one key quantity (normally the mixture fraction for
non-premixed combustion) and the fluctuations around the conditional means are
neglected. This model is computationally efficient relative to the PDF method while
it lacks the ability to predict cases where the above assumption is invalid, for
example, in partially premixed combustion where parameterisation by the mixture
fraction breaks down. To address this extensions have been developed, like con-
ditioning on multiple variables (Kronenburg 2004) or making second-order
approximations to the conditional reaction rates (Mastorakos and Bilger 1998),
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but these increase complexity by requiring closure of additional terms and they also
increase the computational cost.

Since 2003 the multiple mapping conditioning (MMC) framework has emerged
(Klimenko and Pope 2003). It may be seen as a logical extension of the conven-
tional PDF method and conditional moment closure (CMC) through the generali-
sation of the mapping closure concept (Girimaji 1992; Pope 1991). MMC models
utilise a reference space, whose PDF is either prescribed a priori or which is
simulated by some means such as a Markov diffusion process. The turbulent
fluctuations of all scalars in this method are divided into major and minor groups,
and the former are associated with the reference space via a mapping function. For
model simplicity and computational tractability, the dimensionality of the reference
space is usually small. For example, in non-premixed combustion a reference space
made of a single variable emulating the mixture fraction usually suffices. The
reference space therefore describes a low-dimensional manifold which can fluctuate
in any given way, while the fluctuations of the (real) scalars are fully or partially
confined relative to that reference space. According to the MMC governing equa-
tions, the small-scale (micro) mixing occurs locally in the reference space, and
provided that the reference space adequately describes the accessed composition
space, the mixing will effectively be local in composition which is a desirable
property. There are both conditional and probabilistic forms of MMC (Klimenko
and Pope 2003; Klimenko 2005). The conditional form is associated with either a
deterministic or stochastic computational implementation of the model and assumes
that the minor scalars can fluctuate only jointly with the major scalars such that their
conditional fluctuations are negligibly small. Probabilistic MMC is associated only
with the stochastic form and allows the minor scalars to fluctuate relative to the
major scalars, although these conditional fluctuations are still expected to be small.
In this way, the MMC model becomes a full PDF model with MMC playing the
role of a mixing model that is local in a reference space. In the past decade, an
extension of probabilistic MMC has emerged that is known as generalised MMC
(Klimenko 2005; Cleary and Klimenko 2009; Sundaram et al. 2016). This approach
removes some of the formality of original MMC and extends the type and usage of
the reference variables to incorporate non-Markov variables and variables that are
used for purposes other than localisation of the mixing operation.

MMC adequately integrates the PDF and CMC approaches. It exploits the
advantages of both the methods and reduces some of their complications. As a
result, it is proving useful for modelling various combustion regimes including
non-premixed atmospheric (Devaud et al. 2013; Ge et al. 2013; Straub et al. 2016;
Varna et al. 2017; Vogiatzaki et al. 2011, 2015; Wandel and Lindstedt 2013) and
high pressure engine-like conditions (Salehi et al. 2017), premixed combustion
(Sundaram and Klimenko 2017), partially premixed combustion (Galindo et al.
2017) and aerosol nucleation (Neuber et al. 2017; Vo et al. 2017). This book
chapter presents a review of MMC and the evolution in its conceptualisation. In the
subsequent sections, a description of the basic concepts and theory will be pre-
sented including its different formulations. Results from the recent literature are
reviewed. At the end of this chapter, conclusions are drawn. This work may be read
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in conjunction with book chapter by Cleary and Klimenko (2011), in which case
Sect. 15.2 of the present work may be skipped over, whereas the reviewed appli-
cations in Sect. 15.3 contain new research conducted since the earlier book chapter
was published. The model derivations are not included here, and readers are
directed towards the original publications, especially, those by Klimenko and
co-workers (Klimenko and Pope 2003; Sundaram et al. 2016; Klimenko 2005,
2007, 2009a, b; Klimenko and Cleary 2010), if details of the derivations are sought
after.

15.2 Concepts and Theory

In this section, we present the concepts underpinning MMC, starting with the
governing equations for scalar transport and their joint PDF. We then introduce the
idea of a reference space and review the mapping closure concept, which together
provides closures to the MMC governing equations which are subsequently pre-
sented in both their deterministic and stochastic forms. Finally, the concepts and
theory of generalised MMC are explored.

15.2.1 Scalar Transport Equations the MMC Concept

The transport equation for the ns-dimensional reacting scalar space
Y x, tð Þ= Y1,Y2, . . . , YI , . . . ,Ynsð Þ is given by

∂ρYI
∂t

+∇. ρvYIð Þ−∇. ρD∇YIð Þ=wI , ð15:1Þ

where v= v x, tð Þ is the fluid velocity, D is the diffusion coefficient which for our
present purposes is assumed to be equal for all species, ρ is the density, and wI is
the rate of production of species I. Both ρ and wI are usually known functions of
species mass fractions, YI , temperature (or enthalpy) and pressure.

In a turbulent flow, the stochastic distribution of the composition can be given by
the one-time, one-point Favre joint PDF, PY y; x, tð Þ. In the limit of high Reynolds
number, the PDF transport equation is

∂ρ ̄PY

∂t
+∇. ρ ̄uPYð Þ+ ∂WIρ ̄PY

∂yI
+

∂
2NIJρ ̄PY

∂yIyJ
=0, ð15:2Þ

where the conditional expectations of velocity, production term, scalar dissipation
and density are
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u y; x, tð Þ≡ ⟨ρvjY = y⟩ ̸ρY ð15:3Þ

WI y; x, tð Þ≡ ⟨ρwI jY = y⟩ ̸ρY ð15:4Þ

NIJ y; x, tð Þ≡ ⟨ρD
∂YI
∂xk

∂YJ
∂xl

jY = y⟩ ̸ρY ð15:5Þ

and

ρY y; x, tð Þ≡ ⟨ρjY = y⟩ ð15:6Þ

Here, the upper case subscripts I, J, and K run over ns species and the lower case
subscripts run over the orthogonal spatial dimensions. The lower case vector y is the
sample space for Y.

The above PDF is defined for the ns-dimensional composition space, but in
MMC the range of turbulent fluctuations is confined (fully or partially, depending
on the interpretation of MMC that is taken) to a reduced nm-dimensional manifold
where nm < ns corresponds to number of major species who subset is denoted Ym.
The remaining subset of size nα = ns − nm is referred to as the set of minor species
denoted Yα. Lower case Roman and Greek symbols are used to denote members of
the major and minor species subsets, respectively. Major species are permitted to
fluctuate in any physically realisable way, while the minor species are either
(i) assumed to fluctuate jointly with the major species so that conditional fluctua-
tions ⟨Y

0
αjYm = ym⟩=0, or (ii) have finite but (usually) small conditional fluctua-

tions. In either interpretation the reduced PDF of the major species should satisfy
the equation

∂ρ ̄PYm

∂t
+∇. ρ ̄uPYmð Þ+ ∂Wiρ ̄PYm

∂yi
+

∂
2Nijρ ̄PYm

∂yiyj
=0 ð15:7Þ

In the former interpretation, which is known as conditional MMC, the minor
species are fully described by their conditional expectations
Qα ym; x, tð Þ= ⟨YαjYm = ym⟩ satisfying

∂Qα

∂t
+ u∇Qα +Wi

∂Qα

∂yi
−Nij

∂
2Qα

∂yiyj
=Wα ð15:8Þ

The full PDF is then approximated as

PY =PYm .δ Q− yαð Þ ð15:9Þ

In the latter interpretation, which is known as probabilistic MMC, the minor
species fluctuations are not formally neglected but advantage is taken of the greater
accuracy and lower computational cost that is afforded in the modelling by keeping
the fluctuations of the minor species close to those of the major species.
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The selection of the major species is nearly always case dependent. If the wrong
or too few major species are chosen then the assumption that the conditional
fluctuations of the minor species are small may be invalidated. If too many major
species are chosen then the computational cost may be high. A broad definition is
given to what may constitute a major species. It may be one of the key chemical
species such as a product gas like carbon dioxide, or it may be a derived quantity
like the mixture fraction which is useful in non-premixed combustion, the reaction
progress variable which may be useful in premixed combustion or, even, combi-
nations of the above and scalar dissipation which may be useful in partially pre-
mixed combustion (Kronenburg and Cleary 2008).

15.2.2 Reference Variables and Mapping Closure

Equations (15.7) and (15.8) contain conditional velocity u and the conditional
scalar dissipation Nij which are unclosed. The closure is achieved in MMC through
the use of a reference space. Although the utilisation of a reference space is not a
new idea in turbulent combustion modelling (Girimaji 1992, 1993; Pope 1991;
Chen et al. 1989), MMC takes it a step further generalising the concept for both
homogeneous and inhomogeneous flow conditions. In the original version of MMC
formulated by Klimenko and Pope (2003), the reference space is linked to the major
scalar space although it is stochastically independent of it to satisfy the indepen-
dence and linearity principles, that is, required of good PDF mixing models
(Subramaniam and Pope 1998). Generalised MMC (Klimenko 2005; Cleary and
Klimenko 2009; Sundaram et al. 2016) broadens the concept further and allows
additional reference variables that may be separate from the major species space but
are useful quantities for emulating the turbulent distributions of the reactive scalars.

Mapping functions, XI ξ; x, tð Þ, provide a one-to-one transformation between the
reference space, ξ= ξ1, ξ2, . . . , ξk , . . . , ξnr

� �
, and the reactive scalars, YI . Since

mapping functions are the function of stochastic variables they are stochastic
quantities themselves. They are characterised by a probability density function, PX ,
which is a model for PY . The advantage is that, unlike the unclosed transport
equation for PY given by Eq. (15.2), the transport equation for PX is in closed form
due to the known PDF of the reference space, Pξ. This is the essence of mapping
closure. Pξ is known either because it is prescribed as in the original derivation of
Klimenko and Pope (2003) or simulated independently of Y (Cleary and Klimenko
2009; Varna et al. 2017; Wandel and Lindstedt 2009).

Mapping functions are non-decreasing functions of their arguments at any given
time. The general concept of a mapping function is explained by Vogiatzaki (2010)
for a single reference variable, ξ, emulating a single major scalar, Y =Z (i.e. the
mixture fraction) in a non-premixed jet flame. Figure 15.1a shows the mapping
functions (solid lines) in reference space, along with the standard Gaussian PDF of
the reference space, Pξ (dashed line). The black, green and red lines describe the
evolution of mapping functions in reference space for rich, lean and shear layer
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regions, respectively. Figure 15.1b presents the corresponding mixture fraction
PDFs, PZ . In MMC, for each physical location, a mapping function is calculated
that has as input the reference space and as output the range of the expected values
of the species under consideration. Knowing both the reference space PDF and the
values of the mapping function, the PDF of the physical scalar can then be cal-
culated according to the mapping closure methodology.

15.2.3 Deterministic MMC

The deterministic form of the transport equation for the temporal and spatial evo-
lution of the mapping functions XI ξ; x, tð Þ is (Klimenko and Pope 2003)

∂XI

∂t
+U.∇XI +Ak

∂XI

∂ξk
−Bkl

∂
2XI

∂ξkξl
=WI , ð15:10Þ

where the subscript I represents all scalars (both major and minor) while k and
l represent the major scalars only. This deterministic version of the model equations
is associated only with the conditional perspective of MMC.

The above equation introduces the conditional (on reference space) velocity
U ξ; x, tð Þ, a drift coefficient Ak ξ; x, tð Þ, a diffusion coefficient Bkl ξ; x, tð Þ and the
conditional reaction rate WI =WI X ξð Þð Þ. The adjoint transport equation with the
one-point, one-time joint PDF of the stochastic reference field is given by

Fig. 15.1 a Mapping functions (solid lines) at different radial locations and the (static) reference
variable Gaussian distribution (dashed line) over reference space. b Corresponding PDF’s of
mixture. Figure is from Vogiatzaki (2010)
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∂ρ ̄Pξ

∂t
+∇. ρ ̄UPξð Þ+ ∂Akρ ̄Pξ

∂ξk
+

∂
2Bklρ ̄Pξ

∂ξkξl
=0 ð15:11Þ

Equations (15.10) and (15.11) combined are formulated for compliance of the
MMC model with Eq. (15.8) for the marginal PDF of the major species and
Eq. (15.9) for the conditional expectation of minor species. A detailed examination
of this compliance may be found in Klimenko and Pope (2003). Depending on the
number of reference variables (for the present this is equal to the number of major
scalars), MMC can be construed as a PDF or a CMC model. If nr = ns, then MMC
becomes a complete joint PDF model; if nr < ns then we have only nr independent
scalars whose evolution maps to the nr-dimensional marginal PDF of the major
scalars, while the remaining ns − nr minor scalars are the dependent variables which
are tackled through conditioning methods. It is, however, important to note that a
single transport equation, Eq. (15.10), exists for all species, both major and minor.
In deterministic MMC, the computational cost is directly linked to the number of ref-
erence variables. When a single reference variable such as mixture fraction is used, MMC
is similar to first-order CMC although, as demonstrated below, it has a closed-form model
for conditional scalar dissipation rate and the PDF of the mixture may be derived from the
simulations rather than being an input quantity as it is in CMC. Likewise, the compu-
tational cost of MMC with a single reference variable will be comparable to that of
first-order CMC. Moreover, by virtue of being expressed as a function of the independent
joint Gaussian reference space, the deterministic MMC formulation presented above is
valid for any number of reference variables, whereas specific CMC models need to be
formulated as additional conditioning variables are added.

The coefficients U, Ak and Bkl are now described. They have to be specified
consistently with the transport equation for Pξ. Although other formulations are
possible, we limit ourselves here to the version described in Klimenko and Pope
(2003) corresponding to a jointly standard Gaussian distribution for Pξ with zero
mean and unity variance:

Pξ ξð Þ=G ξ1ð ÞG ξ2ð ÞG ξ3ð Þ . . .G ξnr
� �

, ð15:12Þ

G ξkð Þ= 1ffiffiffiffiffi
2π

p exp −
ξ2k
2

� �
. ð15:13Þ

This distribution complies with Eq. (15.11) provided that (Klimenko and Pope
2003)

U ξ; x, tð Þ=U 0ð Þ +U 1ð Þ
k ξk , ð15:14Þ

Ak ξ; x, tð Þ= −
∂Bkl

∂ξl
+Bklξl +

1
ρ ̄
∇. ρ ̄U 1ð Þ

k

� �
. ð15:15Þ
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The conditional velocity is linearly dependent on the reference space which is a
common practice in conditional moment methods (Klimenko and Bilger 1999).
Following mapping, closure convention Bkl is modelled independent of ξ leading to

U 0ð Þ = v ̃ ð15:16Þ

U 1ð Þ
k ⟨ξkXi⟩=gv′Y 0

i ð15:17Þ

Bkl x, tð Þ⟨∂Xi

∂ξk

∂Xj

∂ξk
⟩=Nĩj. ð15:18Þ

The quantities in angular brackets are average values obtained by convolution
with Pξ and Nĩj is the unconditional Favre-averaged scalar dissipation. Herein is the
biggest advantage of using the mapping closure concept. Equations (15.16)–(15.18)
show that the turbulence-chemistry interactions are closed using unconditional
Favre-averaged quantities whereas external models for the conditional quantities are
conventionally required to close the transport equation for the joint PDF and CMC.

15.2.4 Stochastic MMC

The solution to the Eq. (15.10) through a finite difference method, while practical
for nr ∼ 1 (Devaud et al. 2013; Vogiatzaki et al. 2009), becomes computationally
expensive for nr ≫ 1. The stochastic form of MMC can be derived based on the use
of Lagrangian notional particles (Klimenko and Pope 2003):

dx* =U ξ*, x*, t
� �

dt, ð15:19Þ

dξ*k =A0
k ξ*, x*, t
� �

+ bkl ξ*, x*, t
� �

dω*
l , ð15:20Þ

dX*
I = W*

I + S*I
� �

dt, ð15:21Þ

⟨S*I jξ* = ξ, x* = x⟩=0. ð15:22Þ

In the above set of equations,

A0
k =Ak +

2
Pξ̃

∂BklPξ

∂ξl
, ð15:23Þ

bklbli =2Bkl. ð15:24Þ

Stochastic quantities that are associated with the evolution of notional particles
are denoted by the asterisks. Equation (15.19) accounts for the transport in physical
space, where the location of the particle is represented by x* and dω*

i is the
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increment of a Wiener process with zero mean and variance equal to dt. Equa-
tions (15.20) and (15.21) govern the transport in the reference space and compo-
sition space, respectively. W*

I is the chemical source term and S*I is a mixing
operator which simulates the conditional scalar dissipation. As stated in
Eq. (15.22), the application of mixing does not alter the conditional expectations.
The purpose of S*I is to keep the values of X*

I close to its conditional mean value

X*̄
I = ⟨X*

I jξ* = ξ, x* = x⟩. It is specific to MMC and ensures that mixing is local in
both reference and physical spaces. It controls the dissipation of minor fluctuations
and for this reason, may be referred to as the minor mixing operator (Sundaram
et al. 2016). The dissipation of major fluctuations is simulated through Eq. (15.20)
that is closed with Eqs. (15.23) and (15.24) which are linked to Favre mean
quantities via Eq. (15.18). Under the conditional MMC perspective, fluctuations of

X*
I relative to X ̄*I are constrained as much as possible and are treated as stochastic

error whose impact on the conditional means diminishes with increasing number of
notional particles. Under the conditional perspective, the stochastic formulation is
equivalent to the deterministic formulation. The alternative probabilistic perspective
treats the fluctuations as modelling quantities that allow PX obtained by a solution
to Eqs. (15.19)–(15.22) to emulate PY , even if the number of reference scalars is
small. This latter view is especially relevant to the generalised form of MMC
discussed below.

Mixing models are needed for the mixing operator, S*I . Since it controls only the
minor fluctuations the choice of mixing model is not expected to have a significant
impact on the results. Here, we present the modified Curl’s model (Janicka et al.
1979) version of the minor mixing operator which has been most commonly used in
practical stochastic MMC simulations. An overview of other mixing models may be
found in Celis and da Silva (2015). The MMC-Curl mixing operator which involves
an interaction between particles grouped into pairs (denoted by p and q) that are
local in reference space and mixed over a time step duration of Δt (Straub et al.
2016):

X*, p t+Δtð Þ=X*, p tð Þ+ λ Xp, q tð Þ−X*, p tð Þ� �Δt
τϕ

ð15:25Þ

X*, q t+Δtð Þ=X*, q tð Þ+ λ Xp, q tð Þ−X*, q tð Þ� �Δt
τϕ

ð15:26Þ

In the above, λ=1− exp − wp+wq

W
N
2

	 

≈ wp+wq

W
N
2 where wp,wq and W are the

weights of particles p and q and their sum, respectively. The number of particles per
CFD cell is N. The quantity τϕ is the scalar mixing timescale as found in con-
ventional PDF methods (Pope 1985) and is here termed as the major dissipation
timescale. As already stated, the particle pairs in MMC are not randomly selected
but rather are selected such that they are local to each other in reference space.
Therefore, all particles at a location (typically within one CFD cell) are sorted by
their reference value and stored in an array. Two neighbouring particles within this
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array are selected as a pair to be mixed. This mixing rule ensures localness in
composition space. The mixing operator for the selected particle pair can now be
written as

S*I =
dX*, k

dt
≈λ

Xp, q −X*, k

τmin
ð15:27Þ

The minor mixing timescale, τmin, controls the conditional fluctuations of scalars
around the conditional mean. The timescales have the following relation

τmin =Cmin.τϕ ð15:28Þ

Wandel and Klimenko (2005) used the DNS study of Mitarai et al. (2003) for a
homogeneous turbulent reacting flow with one-step irreversible chemistry to
demonstrate how the ratio of the minor to major dissipation timescales controls the
conditional fluctuations. A ratio of O 100ð Þ yields rapid dissipation of the minor
fluctuations and the model closely resembles first-order CMC. A ratio of 8 was
identified to produce the correct level of conditional fluctuations in their homo-
geneous turbulence test case and recently Straub et al. (2016) corroborated that
finding against data for the Sandia D–F laboratory flame series.

15.2.5 Generalised MMC

The term generalised MMC was first coined by Klimenko (2005) to name a form of
MMC which relaxed some of the strictness implied by the original MMC model
derived by Klimenko and Pope (2003), in particular by the dividing reference space
into conditioning variables and non-conditioning variables. Conditioning reference
variables emulate certain Lagrangian characteristics of turbulent flows and are used
to localise the mixing in the space of the major species manifold. Non-conditioning
reference variables assist the emulation of the turbulent quantities but are not used
for localisation of mixing. Conditioning variables localise the mixing and imply a
significant computational cost, whereas non-conditioning variables assist the sim-
ulations only and do not imply a major additional burden. As examples of gener-
alised MMC, Klimenko (2005) suggested: (i) MMC with multiple dissipation-like
non-conditioning variables whose purpose is to emulate a stochastic MMC diffu-
sion coefficient, Bkl; (ii) MMC with velocity-like non-conditioning variables; and
(iii) MMC with mixture fraction and dissipation-like reference variables obtained
with the help of LES of the flow field.

Cleary and Kronenburg incorporated multiple dissipation-like reference vari-
ables in the deterministic context (Cleary and Kronenburg 2007). However, by its
nature, the deterministic form of MMC implies conditioning must occur on all
reference variables and that many dissipation-like variables were required to
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emulate the spectrum of its fluctuations effectively at substantial computational
cost. Generalised MMC is, therefore, best implemented in stochastic form.

Wandel and Lindstedt have developed and validated generalised MMC with
velocity-like reference variables obtained from a stochastic binomial Langevin
simulation (Wandel and Lindstedt 2013; Wandel and Lindstedt 2009; Wandel
2013). A comprehensive comparison of results for a turbulent mixing layer (Wandel
and Lindstedt 2009) and the Sandia Flame E (Wandel and Lindstedt 2013) indicate
good performance of the model.

Klimenko’s initial model for MMC in the context of LES involved a single
conditioning reference variable ξ= ξ ̃+ ξ′′, which emulates the stochastic mixture
fraction, Z. Here ξ ̃=ZL̃ES is the filtered LES mixture fraction field and ξ′′ emulates
the subfilter fluctuations of that mixture fraction that are modelled using multiple
non-conditioning dissipation-like reference variables (similar to option (i) intro-
duced above). This MMC-LES model would be suitable for a conventional
stochastic Monte Carlo simulation, where there are many notional particles in each
LES grid cell. Such an approach would come at a very large computational cost. An
alternative much lower cost method based on a sparse stochastic implementation
was subsequently developed (Cleary and Klimenko 2009, 2011; Cleary et al. 2009;
Vo et al. 2017). In sparse methods, the number of notional particles to simulate the
reacting scalar field is less than the number grid cells for the LES simulation of the
flow field. At the larger scale separating mixing particles, the subgrid fluctuations ξ′′

now play only a minor role and can be neglected. The model formulation remains
much the same as Eqs. (15.19)–(15.22), except that Eq. (15.20) is replaced by.

dξ*k = dZ ̃*LES ð15:29Þ

For the mixing operation particles mix in pairs that are selected according to a
minimisation of the square distance in an extended space comprised of ξ and x:

d
2̂
p, q = ∑

3

i=1

ffiffiffi
3

p dp, qx, i

rm

� �
+

dp, qf

fm

 !
ð15:30Þ

Here, dp, qx, i and dp, qf are the distance between mixing particles in physical space
and reference mixture fraction space, respectively, and rm and fm are characteristic
scales in those spaces.

The advent of sparse methods and the use of non-Markov reference variables
(i.e. in sparse MMC-LES the traced filtered mixture fraction from the LES replaces
the stochastically modelled reference variable) has resulted in an extended inter-
pretation of what constitutes generalised MMC. Here, we repeat verbatim the
statements made in Cleary and Klimenko (2011):

The following three points summarise the essential features of a good gener-
alised MMC model:
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• The conditioning reference variables should emulate as closely as possible the
Lagrangian properties of the key major species to ensure accurate evaluation of
conditional species expectations without compromising the independence of the
reference space. This can be done with the assistance of non-conditioning
reference variables.

• The surrogate mixing operator, SI , should set the dissipation of minor fluctu-
ations to correspond to the dissipation of physical conditional fluctuations. (Due
to the independence of reference and composition scalar fields, minor fluctua-
tions and conditional fluctuations are not the same thing but they are linked).

• The conditioning reference variables should be selected so that minor fluctua-
tions are not too large. This ensures that scalar dissipation is predominantly
modelled by diffusion in reference space (here, Eq. (15.20) or its replacement
Eq. (15.29)) rather than by the surrogate mixing operator, SI .

Also to this effect, Sundaram et al. (2016) have list five propositions on the
nature of generalised MMC.

15.3 Applications of MMC

Different versions of MMC have been used to simulate conditions ranging from
non-premixed to premixed (including partially premixed) combustion regimes
within the context of RANS and LES. In these models, a reference variable is used
to imitate mixture fraction and/or progress variable. In deterministic MMC models,
additional reference variables are used to imitate scalar dissipation and/or sensible
enthalpy. A few examples, focusing particularly on the more recent cases, are
reviewed in this section.

15.3.1 Deterministic MMC Applications

In deriving MMC for the first time Klimenko and Pope (2003) validated the
deterministic version of the model against DNS data for the three stream mixing
problem. Kronenburg and Cleary examined MMC for DNS cases of homogeneous,
isotropic decaying turbulence using multiple reference variables (Kronenburg and
Cleary (2008), Cleary and Kronenburg (2007a, b)); namely mixture fraction, nor-
malised sensible enthalpy and scalar dissipation. The transient flame-phenomena,
such as, extinction and reignition are captured to some extent. The first application
of the deterministic MMC approach to laboratory jet diffusion flames with complex
hydrocarbon chemistry is reported in Vogiatzaki et al. (2009a, b). A single refer-
ence variable was used to emulate the mixture fraction, and very good agreement
with the experimental data may be observed. The most recent application of
deterministic MMC is by Devaud et al. (2013) who implemented it into an LES
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code to simulate a lifted jet diffusion flame in a vitiated coflow. They also used a
single reference variable to emulate the subfilter distribution of mixture fraction.
Figure 15.2 shows the time-averaged radial profiles of mixture fraction and its rms.
There is overall good agreement with the experimental data.

15.3.2 Stochastic MMC Applications

As already mentioned, the first implementation of stochastic MMC was done by
Wandel and Klimenko (2005) who validated it against the DNS data of Mitarai
et al. (2003) for a homogeneous turbulent reacting flow with one-step irreversible
chemistry. The first application to jet diffusion flames is reported in Vogiatzaki et al.
(2011). The flame under consideration was the well-known Sandia flame D. In their
formulation, they employed a single Markov reference variable mapped to the
mixture fraction. Micro-mixing involved the interaction by exchange with the mean

Fig. 15.2 Radial profile of mean mixture fraction and rms. Symbol represents experimental data,
dashed lines LES solution and solid lines corresponds to MMC. Figure is from Devaud et al.
(2013)
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(IEM) mixing model (Dopazo and Obrien 1974). An additional minor dissipation
timescale (τmin) has been introduced within the MMC formulation that controls the
fluctuations of the scalars around the conditional mean. Figure 15.3 shows the
mixture fraction profiles in the reference space at different axial locations for three
different minor timescales τmin = τD, 0.7τD and 0.5τD, where τD is the physical
dissipation timescale. It is evident that conditional fluctuations decrease with a
decrease in the minor timescale. A similar observation can also be made for the
reactive scalars, such as temperature and species mass fractions that are shown in
Fig. 15.4. The MMC results with the three different values of τmin are also com-
pared with results from a conventional PDF-IEM simulations (i.e. without locali-
sation of mixing in a reference space and, importantly, without the additional
controlling parameter τmin). While the MMC with τmin = τD produces reasonably
accurate scatter plots the conventional PDF-IEM yields only very low levels of
conditional fluctuations.

Subsequently, Vogiatzaki et al. (2015) investigated the sensitivity of stochastic
MMC to different numbers of notional particles per grid cell and to different
micro-mixing models. They tested Np = 20, 50 and 100 and both Curl’s and IEM
variants of MMC in RANS of Sandia Flame F. Figures 15.5 and 15.6 show scatter

Fig. 15.3 Profiles of the mixture fraction at various axial locations over the reference space.
a First row τmin = τD b Middle row τmin =0.7τD c Bottom row τmin =0.5τD. Figure is from
Vogiatzaki et al. (2011)
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Fig. 15.4 Scatter plots of temperature, mixture fractions of CH4, CO over the mixture fraction
space at x/D = 15. Figure is from Vogiatzaki et al. (2011)

Fig. 15.5 Scatter plots of temperature over the mixture fraction space at x/D = 7.5 and 15 for
MMC-IEM with three different particle number densities. Figure is from Vogiatzaki et al. (2015)
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plots of temperature versus mixture fraction for different Np in both MMC-IEM and
PDF-IEM simulations. The MMC method is noticeably less sensitive to a number
of particles used per CFD cell with little difference in the results above Np = 50 and
even Np = 20 is not much different.

Fig. 15.6 Scatter plots of temperature over the mixture fraction space at x/D = 7.5 and 15 for
PDF-IEM with three different particle number densities. Figure is from Vogiatzaki et al. (2015)

Fig. 15.7 Conditional
temperature at different axial
locations. Square symbols
represent experimental data,
red solid lines are PDF-Curls
solutions, blue dotted lines are
for MMC with Cmin = 0.25,
black dashed line for
Cmin = 0.30, pink dashed line
for Cmin = 0.35. Figure is
from Straub et al. (2016)
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Straub et al. (2016) also conducted stochastic MMC-RANS for Sandia Flame
D-F to examine the effect of variation of the minor mixing timescale. Figure 15.7
represents the conditional temperature profiles of Sandia Flame F at three different
axial locations. Results from a PDF-modified Curl’s simulation are also included.
Cmin = 0.30 gives the best agreement with the experimental data for Sandia
Flame F and that value is close to that proposed by Wandel and Klimenko
(Cmin = 0.25) for DNS of a homogenous reacting flow. Other values of Cmin clearly
show the underprediction (Cmin = 0.35) and overprediction (Cmin = 0.25) of con-
ditional temperature (Wandel and Klimenko 2005). Readers should note that dif-
ferent definitions of Cmin have been used in Straub et al. (2016) and Wandel and
Klimenko (2005). Modified Curl’s mixing model, which is known to overpredict
the level of conditional fluctuations on account of the non-local nature of its mixing,
fails to predict the flame reignition at z ̸D=30.

Quite recently, Varna et al. (2017a, b) implemented a RANS-based stochastic
MMC for the Sandia D–F series, where the static standard Gaussian reference
variable proposed by Klimenko and Pope (2003) is replaced by a spatially and
temporally evolving reference variable having the same mean and variance as the
real mixture fraction while remaining stochastically independent of it. The adapted
model is conceptually simpler than the original MMC formulation, but some terms
are eliminated and the model does not directly account for the small-scale balance
between diffusion and reaction. Consequently, the model overcomes the numerical
instabilities found in the original formulation of MMC (Vogiatzaki et al. 2011).
Figure 15.8 shows the conditional temperature profiles in Flame F for different
values of the target correlation coefficient which corresponds to the correlation

Fig. 15.8 Conditional temperature profiles at x/D = 7.5 (left), x/D = 15 (centre) and x/D = 30
(right). Blue, red and green lines correspond to target correlation parameters of rt = 0.948, 0.935
and 0.912, respectively. Figure is from Varna et al. (2017)
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between the reference and real mixture fractions and is linked to the ratio of the
minor to major timescales.

15.3.3 Sparse MMC-LES Applications

Sparse MMC-LES is cost-effective in comparison to the conventional intensive
stochastic simulations of the filtered density function. Using the Sandia flame series
as a benchmark, Ge et al. (2013) demonstrated high-quality MMC-LES predictions
are possible with as low as 1 Lagrangian particle per 27 Eulerian cells (1L/27E). Due
to the significant reduction in the number of particles relative to intensive methods,
sparse MMC-LES appears to be particularly useful in applications involving detailed
chemical kinetics of complex fuels. Salehi et al. (2017) applied MMC-LES to the
simulation of transient autoignition of n-dodecane under high pressure, engine rele-
vant conditions. Figure 15.9 shows the change in vapour penetration length over time
for a non-reacting case at 900 K for two threshold values of mixture fraction. The
threshold value of mixture fraction (Zth = 0.1%) prescribed by engine combustion
network (ECN) slightly overpredicts the penetration length after 0.5 ms. The other
threshold value of mixture fraction used in simulations is more consistent with the
experimental data. The ignition delay time and lift-off length for an autoigniting case
are plotted in Fig. 15.10 for different values of the chamber ambient temperature and
oxygen volume fraction. The ignition delay times and their trends with variations in
the ambient conditions are satisfactorily predicted and the observed discrepancies are
largely ascribed to the limitations of the available chemical mechanisms. While the
results are less accurate, the lift of length trends are also predicted well. The results
are comparable with the predictions of other turbulent combustion models as shown
in Figs. 15.10d and f.

Sundaram et al. (2016) also tested the sparse MMC-LES method for a lifted
flame series, specifically the case of a lifted hydrogen flame in a vitiated coflow and
examined the sensitivity to the localisation parameter fm in Eq. (15.30). The results

Fig. 15.9 Vapour
penetration depth over time
for two different definition of
the vapour penetration length.
Figure is from Salehi et al.
(2017)
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are shown in Fig. 15.11 indicate that the lift-off height varies almost linearly with fm
and the fm =0.08 yields a good match with the experimentally observed lift-off
value. This value of fm is somewhat higher than the fm =0.03 that is suggested by
previous studies of piloted jet flames (Ge et al. 2013).

Recently, Galindo et al. (2017) applied sparse MMC-LES to turbulent piloted
flames with varying extent of inlet inhomogeneity exhibiting multimode combus-
tion behaviour. The prevailing mode of combustion changes from premixed to
non-premixed mode from the nozzle exit to downstream locations and also radially,

Fig. 15.10 Ignition delay time and lift-off length over ambient temperature and oxygen volume
fraction (Salehi et al. 2017)

Fig. 15.11 Lift-off height
variation with the change in
localisation parameter fm.
Figure is from Sundaram et al.
(2016)
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where a premixed flame was experimentally observed between the pilot and the
main jet with a diffusion flame observed at greater radial locations. Using mixture
fraction as the single reference variable, the modelling examined the extent to
which the MMC-LES model is applicable to flames displaying the premixed
flame-like structure close to the nozzle exit. The conditional profiles of mean and
rms of temperature and CO mass fraction for both homogeneous (flame H) and
inhomogeneous (flame I) inlet cases are shown below in Fig. 15.12. The condi-
tional temperature statistics are very well predicted for the homogeneous case while
the conditional mean of CO mass fractions is significantly underpredicted close to
the nozzle exit but improves further downstream where good agreement with the
data is observed. For the inhomogeneous inlet case, at x/D = 1, the model having
only a mixture fraction like reference variable approached but could not completely
capture the premixed flame structure. The accuracy of the predictions improves
downstream where the combustion mode changes from premixed to non-premixed
combustion.

In the past couple of years, some interesting applications of MMC-LES to
particle and droplet synthesis processes in turbulent flows have been led by Kro-
nenburg and co-workers (Neuber et al. 2017; Vo et al. 2017). Silica nanoparticle
synthesis from silane in a temporal, counter-flowing, double shear layer is modelled
using a reduced chemical mechanism of 23 species extending to a single solid state
species (Vo et al. 2017). Differential diffusion is modelled in a simplified manner

Fig. 15.12 Conditional mean and rms of temperature and CO mass fraction. a homogeneous inlet,
b inhomogeneous inlet. Figure is from Galindo et al. (2017)
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through a diffusion coefficient weighted scaling of the mixing timescale for the solid
silica species. Model predictions are compared to DNS data showing good agree-
ment for the temporal evolution of the mixture fraction and the gaseous chemical
species whose reactive timescales are short. The silica is a kinetically limited
species with a much longer reaction timescale. As shown in Fig. 15.13 the con-
ditional mean of silica particle number density is predicted quite well while the
conditional rms is underpredicted by a large margin. The effects of differential
diffusion are evident in both the DNS and MMC-LES with the latter correctly
predicting the trend of increasing peak conditional silica number density when the
effects of differential diffusion are included. The conditional rms trend is also
predicted well when differential diffusion is added, although the quantitative dis-
agreement with the DNS remains large.

Neuber et al. (2017) modelled nucleation and subsequent growth of
dibutyl-phthalate (DBP) droplets in a turbulent jet. The droplet size distribution is
accounted for by the inclusion of discrete droplet sections in the PDF definition
such that the nonlinear interactions between turbulence and nucleation and growth

Fig. 15.13 Conditional mean and rms profiles for silica particle number density over mixture
fraction. Left side represents results without differential diffusion and right side represents results
with differential diffusion. Figure is from Vo et al. (2017)
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appear in the governing transport equations in closed form without need of addi-
tional filtering or modelling. Both sparse MMC-LES and conventional intensive
LES-PDF simulations are compared to experimental data and are shown to produce
almost identical results. On account of the sparse distribution of particles that is
made possible by the localness of the mixing model, MMC-LES reduces the
computational time by a factor of 9 in comparison to the LES-PDF simulations.
Figure 15.14 shows the droplet number density and mean diameter at x/D = 20 for
a range of dibutyl-phthalate (DBP) loadings. The droplet number predictions are
quantitatively and qualitatively reasonable in comparison to the experimental data
and are also consistent with the previous stochastic fields PDF simulations of
Garmory and Mastorakos (2008). The droplet size predictions are significantly
underpredicted by all reported models although it is mentioned that there are some
reservations about the consistency of the experimental data.

15.3.4 MMC for Premixed Combustion

There are fundamental difficulties that are specific to the modelling of premixed
flames using PDF-like methods. These are mainly due to the necessity of avoiding
mixing across the flame front. Failure to properly account for localness of mixing in
thin premixed flames leads to an inaccurate prediction of the flame propagation
speed. Refining the grid in the region of the flame is possible but it comes at a very
high-computational cost and consequently, alternative methods based on the arti-
ficial thickening of the flame to better match the computational grid have wide-
spread popularity (Kuenne et al. 2011).

Following on from earlier work (Sundaram et al. 2015) on combustor modelling,
Sundaram and Klimenko (2017) recently developed a general stochastic MMC
approach for the premixed regime and explored the possibility of using different

Fig. 15.14 Droplet number and count mean diameter over DBP loading. Exp (Gupta et al. 2011),
Garmory and Mastorakos (2008), PDF-LES and MMC-LES (Neuber et al. 2017). Figure is from
Neuber et al. (2017)
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types of reference variables whose job is to characterise the relative position of
stochastic particles with respect to the flame front. These reference variables include
the level set variable, a modified shadow position variable and a progress variable.
The model which is finally suggested by the authors for further investigation
combines the shadow position and progress variable in a two-stage mixing process
that involves both intensive particle distributions (for flame front characterisation)
and sparse particle distributions (for efficient computation of the detailed reactive
species). Their simulation results for an idealised 1-D planar flame in the thin
reaction zone regime with single step chemistry are shown in Fig. 15.15, where
physical space is denoted by the symbol, x, the reference shadow position is
denoted by the symbol, ξ, and the progress variable is denoted by ϕ. Figure 15.15a
shows the mapping of the physical space with the reference space and it correctly
produces very thin reaction zone in ξ space due to the localness of the first stage of
mixing. Figures 15.15b and c show the progress variable in physical and reference
spaces, respectively. In the physical space, significant scatter is observed while a
thin flamelet-like solution is obtained in the reference space. By design, the model
always produces the thin flame structure in reference space, whereas the degree of
flame thickening in physical space is controlled in the model by a localisation
parameter which can be adjusted to emulate the conditions that are observed in the
real flame.

Fig. 15.15 Simulation result for 1-D planer flame with premixed MMC. a Mapping of reference
space with physical space b particle distribution of progress variable in physical space and
c particle distribution of progress variable in reference space. Figure is from Sundaram and
Klimenko (2017)
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15.4 Conclusions

This chapter provides an overview on the relatively new MMC approach to tur-
bulent reacting flows. The basic concepts and theory of MMC along with recently
published application are presented here in a condensed form. MMC is an attractive
approach because it allows the coupling of different existing models into a single
methodological framework through the use of a reference space and the concept of
mapping functions. This allows the required extensibility for the modelling of
certain terms which are otherwise complicated to close. The MMC model may be
formulated both in deterministic and stochastic forms. In general, the deterministic
framework of MMC is a natural extension of CMC while the stochastic MMC can
be a complete joint PDF method. In the LES context, MMC has allowed the use of
sparse distributions of notional Lagrangian particles which reduce cost and allow
for, among other things, tractable computations of flames with complex chemistry.
Within both the RANS and LES contexts, MMC has been demonstrated to be an
accurate and computationally affordable approach. Model predictions are found to
be sensitive to the minor dissipation timescale, and the literature suggests ways in
which it can be formulated for accurate predictions of the conditional fluctuations.
MMC is also proving useful for regimes other than non-premixed combustion and
some recent applications to flames with inhomogeneous (partially premixed) inlets,
premixed flames and particle and droplet synthesis have been reviewed here.
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