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Abstract. The Chan-Vese model using variational level set method (VSLM)
has been widely used in image segmentation, but its efficiency is a challenge
problem due to high computation costs of curvature as well as the Eiknal
equation constraint. In this paper, we propose a continuous Max-Flow
(CMF) method based on discrete graph cut approach to solve the VSLM for
image segmentation. Firstly, we recast the original Chan-Vese model to a
continuous max-flow problem via the primal-dual method and solve it using the
alternating direction method of multipliers (ADMM). Then, we use the pro-
jection method to recover the continuous level set function for image segmen-
tation expressed as a signed distance function. Finally, some numerical
examples are presented to demonstrate the efficiency and accuracy of the pro-
posed method.
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1 Introduction

Image segmentation is of great importance in image analysis, which has found a lot of
applications in the fields of computer vision, medical imaging processing, remote
sensing imaging analysis, etc. Its task is to divide an image into different parts
according to image features without vacuum and overlapping. It can be accomplished
by variational methods through minimizing a specific energy functional. Among of the
existing approaches, the Mumford-Shah model [1] is a fundamental approach, but it is
difficult to solve due to different space definitions of variables. The Chan-Vese model
[2] can overcome this problem based on a reduced Mumford-Shah model and varia-
tional level set method (VLSM) [3, 4] with the concept of total variation (TV) [5].
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The Chan-Vese model not only can solve a lot of problems of two-phase image
segmentation, but also has become fundamental approach to various variational
multi-phase image segmentation models [6]. Moreover, its idea can be extended to solve
the related variational multi-phase image segmentation models, thus have received a lot
of attentions recently. For the problem of two-phase segmentation X ¼ X1 [ X2,
X1 \ X2 ¼ ;, the Chan-Vese model based on the reduced Mumford-Shah model can
be described as

Min
c1;c2;/

Z
X
Q1H /ð Þdxþ

Z
X
Q2 1� H /ð Þð Þdxþ c

Z
X
d /ð Þ r/j jdx

� �
ð1Þ

where, Q1 ¼ a1 c1 � fð Þ2, Q2 ¼ a2 c2 � fð Þ2, c1 and c2 represent piecewise constant
approximations of the original image f in regions X1 and X2 respectively. The function
/ xð Þ denotes a level set function. H /ð Þ, d /ð Þ are Heaviside function and Dirac
function of / xð Þ. H /ð Þ, 1� H /ð Þ are characteristic functions of X1 and X2 respec-
tively. If / xð Þ is defined as a signed distance function, it must fulfill the following
Eiknal equation

r/j j ¼ 1 ð2Þ

Equations (1) and (2) constitute a constrained optimization problem. After c1 and
c2 are estimated, / xð Þ can be obtained by solving the following gradient descent
equation [2]

@/
@t ¼ r � r/

r/j j
� �

þ Q2 � Q1ð Þ
� �

d /ð Þ x 2 X

r/ �~n ¼ 0 x 2 @X

(
; ð3Þ

@w
@t þ sign /ð Þ rwj j � 1ð Þ ¼ 0

w 0; xð Þ ¼ / t; xð Þ
�

: ð4Þ

In order to avoid the re-initialization process of (4), [7] has augmented the con-
straint (2) into (1) via the penalty function method as below:

Min
/

Z
X
Q1H /ð Þdxþ

Z
X
Q2 1� H /ð Þð Þdxþ c

Z
X
d /ð Þ r/j jdxþ h

2

Z
X

r/j j � 1ð Þ2dx
� �

;

ð5Þ

Thus, (3), (4) can be replaced with

@/
@t ¼ r � r/

r/j j
� �

þ Q2 � Q1ð Þ
� �

d /ð Þþ h D/�r � r/
r/j j

� �� �
x 2 X

r/ �~n ¼ 0 x 2 @X

(
: ð6Þ
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But the computation of the curvature in (6) using finite difference scheme is highly
complex. The Split Bregman projection (SBP) method designed by [8] can circumvent
this difficulty by making use of a generalized thresholding formula and projection
method in the alternating optimization process. The alternating iterative formulation
can be presented as below.

/kþ 1;~wkþ 1
� �

¼ Arg Min
/;~w: ~wj j¼1

R
X Q1H /ð Þdxþ R

X Q2 1� H /ð Þð Þdx
þ c

R
X d /ð Þ ~wj jdxþ h

2

R
X ~w�r/�~bkþ 1
��� ���2dx

8<
:

9=
;;

ð7aÞ

~bkþ 1 ¼~bk þr/k �~wk; ~b0 ¼ ~w0 ¼~0: ð7bÞ

A similar alternating direction method of multipliers projection (ADMMP) method
is proposed in [8], which is given by

/kþ 1;~wkþ 1� �
¼ Arg Min

/;~w: ~wj j¼1

R
X Q1H /ð Þdxþ R

X Q2 1� H /ð Þð Þdx
þ c

R
X d /ð Þ ~wj jdxþ R

X~s
k � ~w�r/ð Þdxþ h

2

R
X ~w�r/j j2dx

( )
:

ð8aÞ

~skþ 1 ¼~sk þ h ~wkþ 1 �r/kþ 1� �
: ð8bÞ

The SBP method and ADMMP method are motivated by the SB method and
ADMM method for the equivalent model of Chan-Vese model [9]

Min
c;kðxÞ2 0;1f g

Z
X
Q1kdxþ

Z
X
Q2 1� kð Þdxþ c

Z
X
rkj jdx

� �
: ð9Þ

After c is estimated, k can be obtained via the fast SB method [10], and ADMM
method [11] which were originally proposed to solve TV models for image restoration.

Another fast method to solve (9) is the graph cut approach [12] which recasts it to a
Max-Flow/Min-Cut problem on a graph [13]. Also its continuous Max-Flow coun-
terpart was proposed by [14–16] to avoid graph construction and complex data
structures. In this paper, we will design the Continuous Max-Flow (CMF) method for
(1) to provide a new fast implementation of it and lay the foundation for multi-phase
image segmentation, 3D image segmentation, etc.

The paper is organized as follows. Section 2 briefly introduces the Continuous
Max-Flow method for Chan-Vese model of convex optimization. The CMF method for
classic Chan-Vese model under VSLM framework is designed in Sect. 3. In Sect. 4,
the numerical experiments are conducted to compare the proposed method with some
current fast approaches. Finally, concluding remarks and outlook are given in Sect. 5.

234 G. Hou et al.



2 The Continuous Max-Flow Method for Equivalent
Chan-Vese Model

As one can see that (9) is a minimization problem with two variables, it can be tackled
using the alternating optimization strategy. After c is estimated, another sub-problem of
minimization on k is as follows.

Min
kðxÞ2 0;1f g

Z
X
Q1kdxþ

Z
X
Q2 1� kð Þdxþ c

Z
X
rkj jdx

� �
: ð10Þ

The procedure of convex optimization to solve it is based on the relaxation of
k 2 0; 1f g to k 2 0; 1½ �, and the thresholding formula for the final results. The relaxified
version of (10) can be transformed into the Max-Min problem [14–17] as below.

Max
pt :0� pt �Q1

Max
ps:0� ps �Q2

Max
~P:~pj j � c

Min
kðxÞ2 0;1½ �

R
X ptkdxþ

R
X ps 1� kð Þdxþ R

X r �~pkdx
¼ R

X psdxþ
R
X pt � ps þr �~pð Þkdx

( )
: ð11Þ

Due to the following dual formulas

Z
X
Q1kdx ¼ Max

pt :0� pt �Q1

Z
X
ptkdx; ð12aÞ

Z
X
Q2 1� kð Þdx ¼ Max

ps:0� ps �Q2

Z
X
ps 1� kð Þdx; ð12bÞ

c
Z
X
rkj jdx ¼ Max

~P:~pj j � c

Z
X
r �~pkdx: ð12cÞ

Then, (11) can become the following Continuous Max-Flow optimization problem

Max
ps

Z
X
psdx; ð13aÞ

s:t: pt � ps þr �~p ¼ 0; 0� pt �Q1; 0� ps �Q2; ~pj j � c: ð13bÞ

which can be solved via the ADMM method as given by

pkþ 1
t ; pkþ 1

s ;~pkþ 1
� �

;

¼ Arg Max
pt :0� pt �Q1
ps :;0� ps �Q2

~p:~pj j � c

R
X ps þ kk pt � ps þr �~pð Þ � l

2 pt � ps þr �~pj j2
� �

dx; ð14aÞ

kkþ 1 ¼ kk � l pkþ 1
t � pkþ 1

s þr �~pkþ 1� �
: ð14bÞ

where l is a penalty parameter, k is a Lagrangian multiplier.
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3 The Continuous Max-Flow Method for the Chan-Vese
Model

For the classic Chan-Vese model (1), (2) under the VLSM, after c has been estimated, it
can be transformed into the following constrained optimization problem

Min
/

R
X Q1H /ð Þdxþ R

X Q2 1� H /ð Þð Þdxþ c
R
X rH /ð Þj jdx	 


s:t: r/j j ¼ 1

(
: ð15Þ

In order to solve it, [2] has introduced the regularized Heaviside function He /ð Þ and
the regularized Dirac function de /ð Þ as

He /ð Þ ¼ 1
2
þ 1

p
arctan

/
e

� �
; ð16aÞ

de /ð Þ ¼ 1
p

e

/2 þ e2
: ð16bÞ

Here e is a small positive parameter and He /ð Þ 2 0; 1½ �. Let k ¼ He /ð Þ, then (15)
becomes

Min
k2 0;1½ �

R
X Q1kdxþ

R
X Q2 1� kð Þdxþ c

R
X rkj jdx	 


s:t:
k ¼ He /ð Þ
r/j j ¼ 1

�
8><
>: : ð17Þ

The first formulation is just the relaxified version of (10), so its solution can be
obtained via the CMF method as (14a), (14b) i.e.

pkþ 1
t ; pkþ 1

s ;~pkþ 1� � ¼ Arg Max
pt : 0� pt �Q1

ps : 0� ps �Q2

~p : ~pj j � c

Z
X

~ps þ kk pt � ps þr �~pð Þ � l
2
pt � ps þr �~pj j2

� �
dx

ð18aÞ

kkþ 1 ¼ kk � l pkþ 1
t � pkþ 1

s þr �~pkþ 1� �
; kkþ 1 2 0; 1½ �: ð18bÞ

In fact, (18a) can be divided into the following sub-problems of minimization in
terms of alternating optimization respectively,

pkþ 1
t

� � ¼ Arg Max
pt :0� pt �Q1

Z
X

kk pt � pks þr �~pk� �� l
2

pt � pks þr �~pk�� ��2� �
dx; ð19aÞ
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pkþ 1
s

� � ¼ Arg Max
ps:0� ps �Q2

Z
X

ps þ kk pkþ 1
t � ps þr �~pk� �� l

2
pkþ 1
t � ps þr �~pk�� ��2� �

dx;

ð19bÞ

~pkþ 1� � ¼ Arg Max
~p:~pj j � c

Z
X

kk pkþ 1
t � pkþ 1

s þr �~p� �� l
2

pkþ 1
t � pkþ 1

s þr �~p�� ��2� �
dx:

ð19cÞ

And their solutions are given by

~pkþ 1
t ¼ pks �r �~pk þ kk

l

pkþ 1
t ¼ Max 0;Min ~pkþ 1

t ;Q1
� �� �

(
; ð20aÞ

~pkþ 1
s ¼ pkþ 1

t þr �~pk� �þ 1�kk

l

pkþ 1
s ¼ Max 0;Min ~pkþ 1

s ;Q2
� �� �

(
; ð20bÞ

�rkk þ lr pkþ 1
t � pkþ 1

s þr � ~~pkþ 1
� �

¼ 0 x 2 X

kk � l pkþ 1
t � pkþ 1

s þr � ~~pkþ 1
� �

¼ 0 x 2 @X

8<
:

~pkþ 1 ¼ ~~pkþ 1

Max 1; ~~pkþ 1j jð Þ

8>>><
>>>:

: ð20cÞ

Also, the solution of (18b) is given by

~kkþ 1 ¼ kk � l pkþ 1
t � pkþ 1

s þr �~pkþ 1
� �

kkþ 1 ¼ Max 0;Min ~kkþ 1; 1
� �� �(

: ð21Þ

One can see that the constraints in (17) can recast the continuous level set function
as a signed distance function. It can be implemented by the ADMMP method as

ð/kþ 1; ~wkþ 1Þ
¼ Arg Min

/;~w

1
2

R
X k� Heð/Þð Þ2dxþ R

X~r
k � ~w�r/ð Þdxþ l0

2

R
X ~w�r/j j2dx

n o
;

s:t: ~wkþ 1
�� �� ¼ 1

8>><
>>:

ð22aÞ

~rkþ 1 ¼~rk þ l0 ~wkþ 1 �r/kþ 1� �
: ð22bÞ

Now, by applying the alternating optimization strategy to (22a), we can obtain
/kþ 1 using the standard variational method while fixing ~wk as

He /ð Þ � kð Þde /ð Þþr �~rk � l0r � r/�~wk
� � ¼ 0

�~rk þr/�~wk
� � �~n ¼ 0

�
: ð23Þ
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Finally, (23) can be solved through Gauss-Seidel scheme approximately. Then, we
can get ~wkþ 1 while fixing /k as

~rk þ l0 � ~~wkþ 1 �r/kþ 1
� �

¼ 0

~wkþ 1 ¼ ~~wkþ 1

Max ~~wkþ 1j j;1ð Þ

8<
: : ð24Þ

Now we summarize the algorithm introduced in this section as follows.

Algorithm A. Fast algorithm based on the CMF for the Chan-Vese model
Set the starting values 1

sp , 1
tp , 1p and 1λ , let 1k = and start k th−

iteration, which includes the following steps, till converge:
1) Compute 1k

tp
+ according to (20a);

2) Compute 1k
sp

+ according to (20b);
3) Compute 1kp + according to (20c);
4) Compute 1kλ + according to (21);
The constraints in (16) can be realized by the ADMMP method as:
5) Compute 1kφ + according to (23);
6) Compute 1kw + according to (24);

Let 1k k= + return to the 1k + iteration till converge.

4 Numerical Experiments

In this section, we present some numerical experiments to compare the effectiveness
and efficiency of our proposed continuous max-flow method with the current fast
algorithms (SBP, ADMMP) through the segmentation of three classic images. The
experiments are implemented on PC (Intel (R) Core (TM) i5 Duo CPU @3.30 GHz
3.30 GHz; memory: 4 GB; code running environment: Matlab R2010b). Figure 1
shows the three images for segmentation. The segmentation results using SBP,
ADMMP and the CMF method are shown in Figs. 2, 3, and 4. Here, we draw a red
outline to represent the segmented contour.

(a)           (b) (c) 

Fig. 1. Tested images for image segmentation: (a) liver image, (b) cameraman image,
(c) irregular graphic picture.
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One can observe from Fig. 2 that the blood vessels of liver are more accurately
separated by the proposed CMF method than SBP, ADMMP (see the middle blood
vessels of liver). Figure 3 demonstrates that the cameraman and the background are
separated more clearly by the proposed CMF than the SBP, ADMMP (see the right of
the cameraman image). The results in Fig. 4 shows that the CMF method provides
better segmentation of irregular picture components than the SBP and ADMMP
methods (see the edge of the irregular graphic picture).

(a)           (b)      (c) 

Fig. 2. Segmentation results of Fig. 1(a) by (a) SBP, (b) ADMMP, (c) CMF, respectively.
(Color figure online)

(a)                (b) (c) 

Fig. 3. Segmentation results of Fig. 1(b) by (a) SBP, (b) ADMMP, (c) CMF, respectively.
(Color figure online)

(a)               (b)         (c) 

Fig. 4. Segmentation results of Fig. 1(c) by (a) SBP, (b) ADMMP, (c) CMF, respectively.
(Color figure online)
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To further illustrate the effectiveness of CMF method, the processing result using
level set function of the three tested images are compared, as shown in Figs. 5, 6 and 7,
respectively. It can be seen that all the three method achieve good performance on liver
image, cameraman image and irregular graphic picture.

In order to compare the efficiency of the proposed CMF with the SBP and
ADMMP, we list the numbers of iterations and CPU time of them in Table 1. It can be
seen that our proposed method CMF needs much fewer iterations and CPU time, which
proves that the computational efficiency of CMF method is faster than the current fast
SBP method and ADMMP method.

(a)             (b) (c) 

Fig. 5. The result of level set function of Fig. 1(a) by (a) SBP, (b) ADMMP, (c) CMF,
respectively.

(a)                (b)         (c) 

Fig. 6. The result of level set function of Fig. 1(b) by (a) SBP, (b) ADMMP, (c) CMF,
respectively.

(a)                 (b)    (c) 

Fig. 7. The result of level set function of Fig. 1(c) by (a) SBP, (b) ADMMP, (c) CMF,
respectively.
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5 Conclusions and Future Topics

Graph cut is a fast algorithm for the min-cut on graphs in computer vision, it is dual to
the max-flow method on networks. The continuous max flow method inspired by its
discrete counterpart has been proposed to solve some variational model in image
processing. In this paper, we design the continuous max flow method for classic
Chan-Vese model for image segmentation under the framework of variational level set
with constraints of Eiknal equations. Firstly, the Chan-Vese model is transformed into a
max-min problem by using dual formulations, based on it, the continuous max flow
method is proposed using the alternating direction method of multipliers. Then, the
Eiknal equation is solved by introducing an auxiliary variable and ADMM method.
Numerical experiments demonstrate that this method is better than the current fast
methods in efficiency and accuracy. The investigations in this paper can be extended to
the problems of multiphase image segmentation and 3D image segmentation naturally.
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