
A DPSO-Based NN-PID Controller
for MIMO Systems

Tarun Varshney, Ruchi Varshney and Nitin Singh

Abstract The neural networks are generally trained using the standard back
propagation (BP) algorithm and its variants. In the BP algorithm, the initial weights
are generated randomly which affects the convergence of algorithm, and hence, the
algorithm is prone to the problem of local optima. In the proposed work, dynamic
particle swarm optimization (DPSO) has been used to initialize the weights of the
NN-PID controller for multiple input multiple output (MIMO) systems. The results
obtained using the proposed DPSO-based NN-PID controller were compared with
the other existing NN-PID control techniques. Simulation results show that the
performance of the BP algorithm was significantly improved with the use of DPSO
algorithm for initializing the weights.

Keywords Particle swarm optimization ⋅ Dynamic particle swarm
optimization ⋅ Neural network ⋅ Back propagation ⋅ PID controller

1 Introduction

The simplicity of the PID controllers makes it an excellent choice for applications in
the control systems, but the tuning of its parameters is still a cumbersome process.
The tuning of parameters also does not guarantee satisfactory performance due to
process changes and aging effect. This requires the controller parameters to be

T. Varshney (✉)
Department of Electrical Engineering, Surendera Group of Institutions,
Sri Ganganagar, India
e-mail: t_varshney@yahoo.com

R. Varshney
Department of Electronics & Communication, MIT, Moradabad, India
e-mail: ruchi25varshney@gmail.com

N. Singh
Department of Electrical Engineering, MNNIT, Allahabad, India
e-mail: nitins@mnnit.ac.in

© Springer Nature Singapore Pte Ltd. 2018
G. M. Perez et al. (eds.), Ambient Communications and Computer Systems,
Advances in Intelligent Systems and Computing 696,
https://doi.org/10.1007/978-981-10-7386-1_46

535

tuned regularly to get the satisfactory performance from the controller, which is a
time consuming and impractical approach. Most of the real industrial systems are
nonlinear and multi-input and multi-output in nature. These nonlinearities and the
interactive behavior among the variables make the limited use of conventional PID
controller. The neural networks (NNs) are the powerful tools in controlling such
systems due to their universal function approximation capabilities, learning, and
generalization properties [1]. The NNs can be used in one of the two ways, either
the parameters of PID controller can be adjusted using them [2, 3] or it can act as
intelligent controller used for modifying the parameters by using some rules, similar
as the idea of an control engineer.

There exist various articles in the literature that used BP algorithm for updating
the weights of the NNs, but due to the inherent limitation of the algorithm it suffers
from the problem of slow convergence and local optima [4, 5]. Researchers have
suggested possible ways to make it faster to overcome the problem of slow con-
vergence [6, 7]. A momentum term has been included in the weight updating
method to accelerate the learning procedure. The initial weights in the standard BP
and its variants are generated randomly. The sensitivity of these algorithms for the
initial weight is very high; therefore, initial weights choice could affect the con-
vergence rate of the algorithm.

Particle swarm optimization (PSO) is similar to other metaheuristics-based
algorithms, e.g., genetic algorithm, differential evolution algorithm. In general, the
computation power required by these algorithms is huge which motivates the
researchers to develop the efficient optimization techniques. PSO is also an evo-
lutionary algorithm which is based on social behavior of animals such as bird
flocking, fish schooling, and swarm theory. In this algorithm, in every iterations, the
velocity updating of the particle is dependent on three factors, i.e., previous
velocity, cognition component, and social component. The idea of PSO is easier to
understand, and it has been used for finding the optimal solution to various complex
problems [8, 9]. It has motivated the researchers to use it as a tool for optimizing the
parameters of NN [10–12].

DPSO is a variant of PSO which is proposed by Nitin Saxena [13], it meets the
two prime objectives of the population-based algorithm, i.e., the speed of the
convergence and the mechanism for avoiding the local minima, which is difficult to
achieve because of contradiction in both the objectives. The basic PSO [14] updates
the velocity of the particles by using the global best which also influences the
position of the particles and leads to faster convergence, due to which it becomes
vulnerable to the problem of local optima especially in the case of multimodal
problems [15, 16]. The DPSO variant overcomes the problem of stagnation and
local optima and at the same time maintains the fast convergence rate.

This paper presents the use of DPSO algorithm for optimizing the free parameters
of NN, i.e., weights. The use of evolutionary programming technique along with NN
overcomes the issue of convergence in the NN-PID controller for MIMO systems.
Rest of the paper is organized as follows: Sect. 2 describes the structure of NN-PID
controller, and further, the input–output relationship of P, I, and D neurons has been
defined, Sect. 3 briefs about the concept of classical back propagation algorithm and

536 T. Varshney et al.

BP algorithm with momentum constant, Sect. 4 describes the PSO algorithm and its
shortcomings, Sects. 5 and 6 describe the DPSO algorithm and procedure of weight
optimization using DPSO algorithm, Sect. 7 shows the simulation results, and
finally, paper is finished by a conclusions are drawn in last section.

2 NN-Based MIMO PID Controller

The structure of the NN-based PID controller for the MIMO systems is shown in the
Fig. 1 [4]. For nth order system, the whole network is divided into n subnet where each
subnet has one input, hidden and output layer. The input layer has two neurons, and
the hidden layer has three neurons that mimic the behavior of Proportional, Integral,
and Derivative actions and considered as P-neuron, I-neuron, and D-neuron,
respectively, and finally, the output layer has one neuron. The input–output charac-
teristics of the P-neuron, I-neuron, and D-neuron are defined as follows:

A. P-neuron

The input for jth P-neuron at instant k is as follows:

upj kð Þ = ∑
N

i=1
wij ⋅ xi kð Þ ð1Þ

where i (1, 2), j (= 1, 2, 3), xi(k) are the outputs of N-connected input nodes in input
layer and wij is the weight matrix between input and hidden layer. The relationship
between input and output of P-neuron is given as (2)

xpj kð Þ= upj kð Þ ð2Þ

where xPj(k) is the output of P-neuron.

M
IM

O
 C

O
U

PL
ED

 S
YS

TE
M

r1

r2

rn

y1

y2

y n

U1 y1

U2 y2

Un

i j k h

y n

wij

wjk

Fig. 1 NN-PID controller for
MIMO-coupled systems

A DPSO-Based NN-PID Controller for MIMO Systems 537

B. I-neuron

Similarly, relationship of input and output of I-neuron is defined as

xIj k+1ð Þ= xIj kð Þ+ uIj kð Þ ð3Þ

where xIj(k) is the I-neuron output.

C. D-Neuron

With compliance to derivative action, the characteristic of D-neuron is defined as

xDj kð Þ= uDj kð Þ− uDj k− 1ð Þ ð4Þ

where xDj(k) is the D-neuron output.
Consequence the output of subnet Un is as follows:

Un =wn
jk ⋅X ð5Þ

where X = x1px
1
1x

1
D xnPx

n
1x

n
D

h i
and wn

jk is the network weights between hidden

and output layer for nth subnet.

3 Comparative Study

In order to validate the results obtained from the proposed DPSO-based NN-PID
controller for MIMO systems, the following algorithms have been considered for
comparison.

A. BP algorithm

The main objective of BP learning algorithm in the NN-PID controller for
MIMO systems is to minimize the function given by (6)

J = ∑
n

h=1
Eh =

1
n
∑
n

h=1
∑
n

h=1
ih kð Þ− oh kð Þ½ �2 ð6Þ

where ih(k) and oh(k) are input and output of the system, respectively. Standard BP
algorithm is used for modifying the weights of this controller. After the forward
pass, the weights between hidden layer and output layer are modified by:

wsjh n+1ð Þ=wsjh nð Þ− η
∂J

∂wsjh
ð7Þ

538 T. Varshney et al.

where

∂J
∂wsjh

= −
2
n
∑
n

k=1
ih kð Þ− oh kð Þ½ � oh k+1ð Þ− oh kð Þ

uh kð Þ− uh k− 1ð Þ xsj kð Þ= −
2
n
∑
n

k=1
∂h kð Þxsj kð Þ ð8Þ

where η represents the learning rate, the serial number of output variables is given
by h (= 1, 2…n), serial number of hidden neurons in every subnet is given by
j (= 1, 2, 3), the serial number of the subnet is given by s (= 1, 2…n), the training
step instant is k, and output of hidden layer neuron is given as xsj. The weights
updating law between the input and hidden layer is given by:

wsij n+1ð Þ=wsij nð Þ− η
∂J
∂wsij

ð9Þ

where

∂J
∂wsij

= −
1
n
∑
n

h=1
∑
n

k=1
∂h kð Þwshj

usj k+1ð Þ− usj kð Þ
ssj kð Þ− ssj k− 1ð Þ xsi kð Þ= −

1
n
∑
n

k=1
∂sj kð Þxsi kð Þ

where the serial number of input neurons in every subnet is i (= 1, 2) and xsi is the
output of input layer’s neurons.

B. BP algorithm with momentum term

The standard BP algorithm despite its popularity has the major drawback of slow
convergence rate. To improve the convergence rate, several modifications several
modifications have been suggested by researchers. One of the modifications is the
addition of the momentum term into standard BP algorithm. The modified weight
updating rules [17] are as follows

wsjh n+1ð Þ=wsjh nð Þ− η
∂J
∂wsij

+ α wsjh nð Þ−wsjh n− 1ð Þ� � ð10Þ

wsij n+1ð Þ=wsij nð Þ− η
∂J
∂wsij

+ α wsij nð Þ−wsij n− 1ð Þ� � ð11Þ

where α is the momentum constant which lies between 0 and 1 which represents a
rational changes in previous weight to current weight into the current weight
change. The addition of this term helps to smoothen the path of decent by con-
trolling the extreme change in the gradient.

A DPSO-Based NN-PID Controller for MIMO Systems 539

4 PSO Algorithm

The objective of any optimization algorithm is to calculate or determine the optimal
(i.e., best suited) solution for the given problem under a given set of constraints.
Kennedy and Eberhart in the mid-1990s proposed an algorithm which does not
require any gradient information and rather works by emulating the collective
behavior of bird flocking, particles, and socio-cognition [18] which was named as
PSO [18, 19].

PSO is a multi-agent parallel search technique, in which particles are considered
as conceptual entities which fly through the multi-dimensional search space. Indi-
vidual particle in the swarm can be defined on the basis of its position and velocity.

The initial values for pxbestj and gxbest are taken as pxbestj 0ð Þ and gxbest 0ð Þ for
all the particles. The velocity and new position of jth particle in the swarm can be
calculated using (12) and (13) after each particle knows the best individual particle
position in the swarm.

vk+1
j =w+ vkj + c1τ1 pxbestj − xkj

� �
+ c2τ2 gxbest− xkj

� �
ð12Þ

xk+1
j = xkj + vk+1

j ð13Þ

where vkj and xkj are the velocity and position of the jth particle at time k, respec-
tively. The individual best position of the jth particle and the global best position of
the jth particle in the swarm is given as pxbestj and gxbest, respectively. τ1 and τ2
are uniformly distributed numbers within interval [0 1] that determines the impact
of pxbestj and gxbest on the velocity update formula. c1 and c2 are constant terms,
namely “self-confidence” and “swarm-confidence”, respectively. Initial values of c1
and c2 are considered as c1 = c2 = 2. w is the inertial weight and can be determined
using (14).

w=wmax − wmax −wminð ÞNum ̸Nummax ð14Þ

where wmin and wmax are the minimum and maximum values of the w, Nummax is
the maximum iteration time of the algorithm, and Num is the current iteration of the
algorithm.

5 DPSO Algorithm

The new variant of PSO was proposed by Nitin Saxena [13] which overcomes the
two prime objectives of the population-based algorithm, i.e., the speed of the
convergence and the method for avoiding the local minima, which is difficult to
achieve because of contradiction in both the objectives. The basic PSO [14] updates

540 T. Varshney et al.

the velocity of the particles by using the global best (gbest) which also influences
the position of the particles and leads to faster convergence, due to which it
becomes vulnerable to the problem of local optima specially in the case of multi-
modal problems [15, 16]. Researchers have come up with solution to this problem
and proposed various variants of PSO which enhances the performance of algo-
rithm by balancing the parameters [13, 20].

The DPSO variant overcomes the problem of stagnation and local optima and at
the same time maintains the fast convergence rate. DPSO does it by keeping the
track of the change in the personal best positions of the particles, i.e., pbest, the
algorithm tracks time for which the position pbest is not updated and at the same
time it also keeps a track of the iteration for which the gbest had not changed. If the
pbest and gbest do not change for a predefined number of iterations, then they are
replaced by the best positions that they have attained previously.

The pbest and gbest are again monitored to see whether they are able to improve
the targets or not if they are able to improve the targets then the replaced values are
made permanent, otherwise the original previous values were restored. The repe-
tition of the process is done until the value reaches an optimum point or termination
condition is reached. Table 1 shows the different parameters of the DPSO
algorithm.

Table 1 Parameters used in DPSO algorithm

Symbol Description

m Size of the swarm (no. of particles)
Xi Vector representing position of the ith particle, i = 1 to m
Vi Vector representing velocity of the ith particle, i = 1 to m
pBesti Best position obtained by ith particle in the swarm
gBest Global best position obtained by the swarm
pBest_counti Count of iterations for which pBesti have not improved in consecutive

generations for particle i
pBest_iter_thresh Max count of iteration that ith particle waits for improvement in pBesti
pBest_tempi Temporarily altered vector of pBesti
pBest_chance_counti Count of iterations for which pBest_tempi do not improve in

following generations
pBest_chance_max Max count of repetitions that pBest_tempi will get to improve pBesti
gBest_h Vector which stores historical global best values of gBest
gBest_h_maxcount Max number of features permissible in gbest_h
gBest_count Count of iterations for which gBest does not improves in consecutive

generation for particle i
gBest_iter_thresh Count of iterations group wait for improvement in gBest (constant)
gBest_temp Provisionally updated vector of pBesti for particle i = 1 to m
gBest_chance_count Max count of iterations for which gBest_temp does not progress in

gBest_chance_max consecutive iterations
gBest_chance_max Max count of repetitions gBest_temp will get chance to improve gBest

A DPSO-Based NN-PID Controller for MIMO Systems 541

6 Procedure of Weight Initialization of NN-PID
Controller Using DPSO Algorithm

The procedure of weight optimization using DPSO is as follows:

1. Initialize randomly the location and speed of every element within the
n-dimensionally exploration space. The counter for pBest_counti and
pBest_chance_counti is set to 0 and −1, respectively. Similarly, the gBest_-
count and gBest_chance_count are initialized to 0 and −1 for counting the
successive generations for which gBest and gBest_temp have not improved.

2. The fitness of each particle is calculated, and the initial location vector is
assigned as pBesti and location creating best fitness value as gBest.

3. The speed of each particle is updated using the (12), and thereafter, the position
is updated using (13).

4. The most potential regions identified upti gBest_h_maxcount are identified in
the form of gBest and preserved as historic overall best as gBest_h.

5. The suitability of each element is computed again with the restructured loca-
tion; if it improves the personal best of particle, then pBesti get updated to the
Xi, and likewise, if the global best location of present reiteration is superior to
gBest, then it gets restructured.

6. If the pBesti are not improved from the previous generation, then the count
pBest_counti is incremented by 1 or else reset to 0. Likewise, if the gBest does
not improve from the previous generation, then the count gBest_count is
incremented by 1.

7. If for any particle the counts pBest_counti or gBest_count reache the threshold
values, i.e., pBest_iter_thresh and gBest_iter_thresh correspondingly, then go
to next step otherwise check for cessation condition.

8. If the elements whose pBest_counti and gBest_count have reached the
threshold, then their pBesti and gBest are restructured as pBest_tempi and
gBest_temp, respectively.

9. If the elements whose personal best, i.e., pBest, is restructured, their pBesti are
changed provisionally to pBest_tempi for pBest_chance_max number of iter-
ations and checked for improvement as compared to the value before
replacement, if it shows improvement, the value is made permanent otherwise it
is restored with the original value before exchange. Similarly, process is done
for the gBest, it is changed with the gBest_temp for gBest_chance_max
iterations.

10. The algorithm is terminated if the total number of iterations exceeds the
maximum allowed iterations otherwise the process is repeated from step 3.

542 T. Varshney et al.

7 Simulation, Results, and Discussion

In order to test the proposed approach, two case studies of discrete time nonlinear
interactive MIMO systems have been presented. All simulations have been per-
formed on MATLAB platform with Intel Core 2 duo processor running at
1.86 GHz and 1 GB of RAM.

Case Study I: A 2 × 2 discrete time nonlinear-coupled MIMO system [12] is
modeled as shown in (15) and (16). A negative unity feedback control topology has
been tested to track the set point changes.

y1 kð Þ= 1

1+ y1 k+1ð Þð Þ2 0.8y1 k− 1ð Þ+ u1 k− 2ð Þ+0.2u2 k− 3ð Þð Þ ð15Þ

y2 kð Þ 1

1+ y2 k− 1ð Þð Þ2 0.9y2 k− 1ð Þ+0.3u1 k− 3ð Þ+0.2u2 k− 2ð Þð Þ ð16Þ

The main objective is to design a NN-PID controller for the discrete time,
nonlinear, coupled MIMO system with faster convergence rate for the set point
changes.

The parameters of DPSO are initialized as follows:

• The population size is taken as 30
• Fix inertia weight (w) is taken as 0.783
• The acceleration coefficients c1 and c2 are taken as c1 = c2 = 1.367
• Maximum number of iterations is taken as 100
• Maximum number of gBest stored as history in gBest_h = 10*m, pBest_i-

ter_thresh = gBest_iter_thresh = 5*m (dimension).

A control topology with negative feedback has been implemented using NN-PID
controller where objective is to track the set point of 0.7 and 0.4 for input-1 and
input-2, respectively, with respect to time (seconds). Initially, weights have been
generated randomly between 0 and 1 and learning rate and momentum constant are
chosen, 0.40 and 0.04, respectively. Parameters of PID controller Kp1 = 0.10,
Ki1 = 0.05, Kd1 = 0.001 and Kp2 = 0.10, Ki2 = 0.05, Kd2 = 0.001 are chosen.

The training of the NN-PID controller is done using four different techniques.
Firstly, standard BP algorithm is used for initializing the network weights ran-
domly. Secondly, standard BP algorithm with random initialization is used but the
outputs of P-neuron, I-neuron and D-neuron have been multiplied by constant
factors of 1, 10, and 1.5, respectively. Thirdly, standard BP algorithm with
momentum constant with random initialization has been used, and finally, standard
BP algorithm with DPSO-based initialization has been chosen and tested.

Figures 2 and 3 show the step responses of the system for the input-1 and
input-2, and corresponding controlled inputs have been shown in Figs. 4 and 5. It is
evident from these figures that with the controlled inputs the proposed scheme
tracks the set point changes faster than the other existing techniques. Significant

A DPSO-Based NN-PID Controller for MIMO Systems 543

improvement is also seen in the square error convergence with the use of DPSO
algorithm for weight initialization which is shown in Fig. 6. The improvement in
rise time and settling time is also very clearly visible in the simulation results.

Case Study II: A 3 × 3 discrete time nonlinear-coupled MIMO system whose
input–output relation is given by (17)–(19)

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

y1

reference input r1
BP with random initialization
BP with initialization in specified region
BP alongwith momentum with random initialization
BP with DPSO based initialization

Fig. 2 System response for set point change in input 1 (case study I)

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

y2

reference input r2
BP with random initialization
BP with initialization in specified region
BP alongwith momentum with random initialization
BP with DPSO based initialization

Fig. 3 System response for set point change in input 2 (case study I)

544 T. Varshney et al.

y1ðkÞ=0.4y1ðk− 1Þ+ u1ðk− 1Þ
1+ u21ðk− 1Þ +0.2u31ðk− 1Þ+0.5u2ðk− 1Þ+0.3y2ðk− 1Þ

ð17Þ

y2ðkÞ=0.2y2ðk− 1Þ+ u2ðk− 1Þ
1 + u22ðk− 1Þ +0.4u32ðk− 1Þ+0.2u1ðk− 1Þ+0.3y3ðk− 1Þ

ð18Þ

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

C
on

tro
lle

d
in

pu
t u

1

BP with random initialization
BP with initialization in specified region
BP alongwith momentum with random initialization
BP with DPSO based initialization

Fig. 4 Controlled input 1 (case study I)

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

C
on

tro
lle

d
in

pu
t u

2

BP with random initialization
BP with initialization in specified region
BP alongwith momentum with random initialization
BP with DPSO based initialization

Fig. 5 Controlled input 2 (case study I)

A DPSO-Based NN-PID Controller for MIMO Systems 545

y3ðkÞ=0.2y3ðk− 1Þ+ u3ðk− 1Þ
1+ u23ðk− 1Þ +0.4u33ðk− 1Þ+0.4u2ðk− 1Þ+0.3y1ðk− 1Þ

ð19Þ

The objective here is same as the earlier case study. Set points of 0.2, 0.4, and
0.7 are used for input-1, input-2, and input-3, respectively. Initial weights have been

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

M
ea

n
Sq

ua
re

 E
rro

r

BP with random initialization
BP with initialization in specified region
BP alongwith momentum with random initialization
BP with DPSO based initialization

Fig. 6 Convergence of mean square error (case study I)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

y1

reference input r1
BP with random initialization
BP with initialization in specified region
BP alongwith momentum with random initialization
BP with DPSO based initialization

Fig. 7 System responses for input 1 (case study II)

546 T. Varshney et al.

generated randomly between 0 and 1, and learning rate and momentum constant are
same as case study I. Controller parameters (Kp1 = 0.3, Ki1 = 0.15, Kd1 = 0.1,
Kp2 = 0.3, Ki2 = 0.15, Kd2 = 0.1, Kp3 = 0.3, Ki3 = 0.15, Kd3 = 0.1) have been
chosen, and ten hidden neurons have been determined by observing the perfor-
mance measure.

The parameters of DPSO algorithm that are adopted earlier remain unchanged. The
responses of the system for step change to all the inputs are shown in Figs. 7, 8, and 9.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

y2

reference input r2
BP with random initialization
BP with initialization in specified region
BP alongwith momentum with random initialization
BP with DPSO based initialization

Fig. 8 System responses for input 2 (case study II)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

y3

reference input r3
BP with random initialization
BP with initialization in specified region
BP alongwith momentum with random initialization
BP with DPSO based initialization

Fig. 9 System response for input 3 (case study II)

A DPSO-Based NN-PID Controller for MIMO Systems 547

The step response of the system to the controlled inputs is shown in Figs. 10, 11 and
12. It is observed from the results that with feasible-controlled inputs, the NN-based
PID controller trained with BP algorithm using DPSO-based weights initialization is
capable of tracking the set point changes faster with least steady error. The rise time
and settling time have also been significantly improved (Fig. 13).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

co
nt

ro
lle

d
in

pu
t u

1

BP with random initialization
BP with initialization in specified region
BP alongwith momentum with random initialization
BP with PSO based initialization

Fig. 10 Controlled input 1 (case study II)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

co
nt

ro
lle

d
in

pu
t u

2

BP with random initialization
BP with initialization in specified region
BP alongwith momentum with random initialization
BP with DPSO based initialization

Fig. 11 Controlled input 2 (case study II)

548 T. Varshney et al.

In the case study II, it is clearly observed that the transient response and rate of
convergence have been improved significantly with feasible-controlled inputs.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

co
nt

ro
lle

d
in

pu
t u

3

BP with random initialization
BP with initialization in specified region
BP alongwith momentum with random initialization
BP with DPSO based initialization

Fig. 12 Controlled input 3 (case study II)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

Sq
ua

re
 E

rro
r

BP with random initialization
BP with initailization in specified region
BP alongwith momentum with random initialization
BP with DPSO initialization

Fig. 13 Convergence of square errors (case study II)

A DPSO-Based NN-PID Controller for MIMO Systems 549

8 Conclusion

The structure of NN-based PID controller using P-neuron, I-neuron, and D-neuron
has been explored for controlling the nonlinear-coupled MIMO systems. The
training of the NN-based controller is done by using standard BP algorithm, and
with momentum term added to BP algorithm. The initial weights of the network
were chosen randomly. The convergence of the BP algorithm is further improved
by utilizing the DPSO algorithm for optimizing the weights of the NN-based PID
controller. The case studies of two discrete nonlinear-coupled MIMO systems are
presented, and the simulated results are fairly compared with the results of the other
existing techniques. On the basis of results, it is concluded that proposed approach
not only provides better control of the nonlinear-coupled MIMO systems but also
satisfies the minimum mean square error criteria with lesser settling and rise time.
The convergence rate of the proposed algorithm is found to be better than both
standard BP and BP with momentum term.

References

1. T. Varshney and S. Sheel, “Approximation of 2D function using simplest neural networks: A
comparative study and development of GUI system,” IEEE International conference on
Power, control and embedded system, MNNIT Allahabad, INDIA, 2010, pp. 1–4.

2. T. Varshney and S. Sheel, “A new online tuning approach for PID control of multivariable
systems using diagonal recurrent neural Network,” IEEE International Conference on Control
System, Computing and Engineering, (25–27 November 2011), Pinang, Malaysia,
pp 317–320.

3. T. Varshney and S. Sheel, “A Morlet wavelet neural network-based online identification and
control of coupled MIMO systems,” International Journal of Automation and Control, vol. 6,
no. 3/4, p. 246, 2012.

4. Huailin Shu, Xiucai Guo, and Hua Shu, “PID neural networks in multivariable systems,”
IEEE International Symposium on Intelligent Control, 2002, pp. 440–444.

5. N. Singh, D. K. Chaturvedi, and R. K. Singh, “A Modified Error Function GNN For Load
Frequency Control of Multi-area Power System,” in Proceedings of the 2010 International
Conference on Artificial Intelligence, ICAI 2010, July 12–15, 2010, Las Vegas Nevada, USA,
2 Volumes, 2010, pp. 353–359.

6. L. Behera, S. Kumar, and A. Patnaik, “On Adaptive Learning Rate That Guarantees
Convergence in Feedforward Networks,” IEEE Transactions on Neural Networks, vol. 17, no.
5, pp. 1116–1125, Sep. 2006.

7. S. Sheel, T. Varshney, and R. Varshney, “Accelerated learning in MLP using adaptive
learning rate with momentum coefficient,” IEEE International Conference on Industrial and
Informatics system, Peradeniya, Sri Lanka (August 8–11, 2007), pp 307–310.

8. Eberhart and Yuhui Shi, “Particle swarm optimization: developments, applications and
resources,” 2001, vol. 1, pp. 81–86.

9. R. A. Krohling and L. dos Santos Coelho, “Coevolutionary Particle Swarm Optimization
Using Gaussian Distribution for Solving Constrained Optimization Problems,” IEEE
Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol. 36, no. 6,
pp. 1407–1416, Dec. 2006.

550 T. Varshney et al.

10. J. L. Cao, J. M. Yin, J. S. Shin, and H. H. Lee, “BP network modified by particle swarm
optimization and its application to online-tuning PID parameters in idle-speed engine control
system,” in 2009 ICCAS-SICE, 2009, pp. 3663–3666.

11. J.-R. Zhang, J. Zhang, T.-M. Lok, and M. R. Lyu, “A hybrid particle swarm optimization–
back-propagation algorithm for feedforward neural network training,” Applied Mathematics
and Computation, vol. 185, no. 2, pp. 1026–1037, Feb. 2007.

12. C. Jin, S.-W. Jin, and L.-N. Qin, “Attribute selection method based on a hybrid BPNN and
PSO algorithms,” Applied Soft Computing, vol. 12, no. 8, pp. 2147–2155, Aug. 2012.

13. N. Saxena, A. Tripathi, K. K. Mishra, and A. K. Misra, “Dynamic-PSO: An improved particle
swarm optimizer,” IEEE Congress on Evolutionary Computation, Sendai, Japan, 2015,
pp. 212–219.

14. R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in
Proceedings of the sixth international symposium on micro machine and human science,
1995, vol. 1, pp. 39–43.

15. Jang-Ho Seo, Chang-Hwan Im, Chang-Geun Heo, Jae-Kwang Kim, Hyun-Kyo Jung, and
Cheol-Gyun Lee, “Multimodal function optimization based on particle swarm optimization,”
IEEE Transactions on Magnetics, vol. 42, no. 4, pp. 1095–1098, Apr. 2006.

16. J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 3, pp. 281–295, Jun. 2006.

17. M. Negnevitsky and M. Ringrose, “Accelerated learning in multi-layer neural networks,”
1999, vol. 3, pp. 1167–1171.

18. J. Kennedy, J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelligence. Morgan
Kaufmann, 2001.

19. T. Zeugmann et al., “Particle Swarm Optimization,” in Encyclopedia of Machine Learning, C.
Sammut and G. I. Webb, Eds. Boston, MA: Springer US, 2011, pp. 760–766.

20. Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” 1998, pp. 69–73.

A DPSO-Based NN-PID Controller for MIMO Systems 551

	46 A DPSO-Based NN-PID Controller for MIMO Systems
	Abstract
	1 Introduction
	2 NN-Based MIMO PID Controller
	3 Comparative Study
	4 PSO Algorithm
	5 DPSO Algorithm
	6 Procedure of Weight Initialization of NN-PID Controller Using DPSO Algorithm
	7 Simulation, Results, and Discussion
	8 Conclusion
	References

