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Abstract
In nature, plants are surrounded by a number of biotic and abiotic environmental 
stresses. Biotic ecosystems contain a wide variety of bacteria, viruses, fungi, 
nematodes, mites, insects, mammals, and other herbivorous animals, greatly 
responsible for heavy reduction in crop productivity. Henceforth, to cope up 
from these biotic stresses, the plant defense mechanism increasingly requires the 
availability of large numbers of phytochemicals. Chemodiversity in plants offers 
a valuable source; for example, nitrogen-containing secondary metabolites, pre-
viously regarded as waste products, are now recognized for their resistant activ-
ity against herbivores, pests, pathogens, and diseases. In this chapter, I have 
described the increasing role of nitrogen-containing secondary metabolites dur-
ing plant defense. These metabolites impose their effects by acting as deterrence/
antifeedant, toxicity, or precursors to physical defense systems. Many special-
ized herbivores and pathogens do not merely circumvent the deterrent or toxic 
effects of secondary metabolites but actually utilize these compounds as host 
recognition signals and/or nutrients. This is true for both cyanogenic glucosides 
and glucosinolates which are discussed in detail. Their biochemical and molecu-
lar mechanism of action is compared and contrasted.
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14.1	 �Introduction

The term chemodiversity, generally, leaves aside larger molecules, which involve in 
vital primary metabolic functions and form the majority of the organic body mass of 
living beings. Thus, small molecules that often have a defensive or offensive signal-
ing function mainly contribute to the chemodiversity. Since the beginning, humans 
have utilized the plants, one of the most prolific sources of biochemical diversity, for 
its own benefits. Since ancient times, plants have provided mankind with cures for 
health problems and continue to be the most capable pool of bioactive chemicals for 
the development of modern drugs (Dias et  al. 2012; Cragg and Newman 2013; 
Harvey et al. 2015). More than 20,000 natural molecules have been studied so far, 
and numerous have been used as novel anticancer, antibiotic, anti-inflammatory or 
anti-pain agents, etc. In the previous few decades, plants have turned into a critical 
source for the discovery of novel and unique pharmaceutical compounds (Cordell 
2000; Farnsworth 1988; Newman et al. 2000). Plants are reported to have high che-
modiversity including more than 21,000 alkaloids, 700 nonprotein amino acids 
(NPAAs), 200 cyanogenic glycosides (CGs) and glucosinolates, >20,000 terpenoids, 
>10,000 polyphenols, >1500 polyacetylenes and fatty acids, 750 polyketides, and 
200 carbohydrates (Wink 2008, 2013; Theis and Lerdau 2003).

Approximately 450 million (M) years ago, plants began to inhabit the terrestrial 
earth during the mid-Ordovician period and over the subsequent 40 M years spread 
across the earth surface. The evolution of species-specific metabolic systems from 
core metabolic pathways of aquatic ancestors was one of the reasons behind the 
success of early land plants, as they were able to synthesize the structurally and 
functionally diverse chemicals to cope with frequent biotic and abiotic ecological 
pressures (Weng et al. 2012). Several of these chemicals, such as cuticular compo-
nents and phenolic compounds, are universal in all land plants and, therefore, pro-
vide indispensable physical and chemical protection against desiccation and UV 
radiation (Fig. 14.1). Other classes of specialized metabolites, including those that 
contribute to plant-specific flavors, colors, and scents, frequently occur in a lineage-
specific manner and play specialized roles for the host species in their natural habi-
tat (Weng et al. 2012). Present knowledge of secondary metabolism and its evolution 
in the plant has been primarily driven by studying of angiosperms or flowering 
plants, ranging from well-studied model species, such as rice and Arabidopsis 
(Romeo 2004; D’Auria and Gershenzon 2005), to the reference species including 
medicinal plants with remarkable pharmaceutical properties, e.g., Vinca minor, 
Catharanthus roseus, and Rauvolfia serpentina (Facchini and De Luca 2008; De 
Luca et al. 2012; Patra et al. 2013). These studies revealed massive chemical diver-
sity in flowering plants and provide deep insight on their widespread speciation and 
global domination over the last 170 M years following the Permian-Triassic extinc-
tion event (Wikström et al. 2001). The vast expansion of plant chemodiversity asso-
ciated with secondary metabolites reflects the tremendous adaptability of 
land-dwelling plants. For example, plant hormones regulate various aspects of plant 
growth and development in response to environmental cues, whereas phenolic and 
waxy cuticles act as UV protectant and prevent excessive water loss. Plant polymers 
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including lignin and sporopollenin provide mechanical support, gamete protection, 
and wound healing. New metabolic pathways continuously arose throughout ter-
restrial plant evolution, resulting in a contemporary collection of secondary metabo-
lites. Therefore, some of these specialized metabolites are common across various 
taxonomic groups, while others were found in some limited species.

14.2	 �Secondary Metabolites Are Divided into Three Major 
Groups

On the basis of their chemical nature, plant secondary metabolites can be divided 
into three chemically distinct groups: terpenes, phenolics, and nitrogen-containing 
compounds.

14.2.1	 �Terpenes

Terpenes (also known as terpenoids) constitute the largest class of secondary metab-
olites. Plants and other natural sources are reported to produce more than 30,000 
terpenoids (Bohlmann et al. 1998).

In plants, terpenes are biosynthesized in at least two different pathways. The main 
and well-studied biosynthetic route is known as the mevalonic acid (MA) pathway.

Fig. 14.1  Functional diversity of plant secondary metabolites
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In the MA pathway, three molecules of acetyl-CoA are joined together in a step-
wise manner to form MA. This key six-carbon intermediate then undergoes differ-
ent chemical modifications like pyrophosphorylation and decarboxylation to 
produce isopentenyl diphosphate (IPP). Finally, IPP acts as a building block of ter-
penes. The second route of terpene biosynthesis is known as methylerythritol-4-
phosphate (MEP) pathway, which operates in plastids (Tholl and Lee 2011; 
Lichtenthaler 1999). Glyceraldehyde-3-phosphate and two carbon atoms derived 
from pyruvate condense to form the five-carbon intermediate, 1-deoxy-d-xylulose 
5-phosphate. The 1-deoxy-d-xylulose 5-phosphate further rearranged and reduced 
to MEP, which eventually converted into IPP.

Terpenes are the structurally diverse class of secondary metabolites from hemi- 
to polyterpenes (Table 14.1). All terpenes are originated from the union of five-
carbon elements (also referred to as C5 units) that have the branched carbon skeleton 
of isopentane. The basic structural elements of terpenes are also known as isoprene, 
and, thus, terpenes are sometimes also called as isoprenoids. The terpenes can be 
classified in different groups on the basis of a number of C5 units they comprised of 
(Table  14.1). For instance, 10-carbon terpenes, which contain two C5 units, are 
called monoterpenes, while 15-carbon terpenes (three C5 units) are sesquiterpenes. 
In spite of structural similarities, terpenes can be synthesized in different compart-
ments in the cell. For instance, nowadays it is believed that sesquiterpenes and trit-
erpenes are synthesized through the cytosolic MA pathway, whereas mono-, di-, 
and tetraterpenes are derived from the chloroplastic MEP pathway (Thimmappa 
et al. 2014).

Terpenes have roles in both primary and secondary metabolism. Certain terpenes 
have been well studied for their functions in plant growth or development and there-
fore can be considered as primary rather than secondary metabolites. For instance, 
the gibberellins, an important group of phytohormones which are essential for 
numerous growth and developmental processes in plants including seed germina-
tion, leaf expansion, stem elongation, pollen maturation, trichome development, 
and the induction of flowering (Achard and Genschik 2009), are diterpenes. 
Brassinosteroids, also a class of plant hormones with growth-regulating functions 
such as activation of the cell cycle during seed germination (Zadvornova et  al. 
2005), control of cell cycle progression (González-García et al. 2011), and induc-
tion of exaggerated growth of hydroponically grown plants (Arteca and Arteca 

Table 14.1  Important molecules of terpenoids

Number of carbon Name Example
C5 Hemiterpene Isoprene, prenol, isovaleric acid
C10 Monoterpene Limonene, eucalyptol, pinene
C15 Sesquiterpene ABA (abscisic acid)
C20 Diterpene Gibberellin
C25 Sesterterpenes Ophiobolin A, ceroplastol
C30 Triterpene Brassinosteroids, squalene, lanosterol
C40 Tetraterpene Carotenoids, lycopene
C>40 Polyterpenes Ubiquinones, rubber, cytokonines, vitamin E
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2001), are derived from triterpenes. Terpenes are toxins and also act as a feeding 
deterrent to many herbivorous insects and mammals (Gershenzon and Croteau 
1992). For instance, pyrethroids, a monoterpene ester reported from Chrysanthemum 
species, show remarkable insecticidal activity (Mori 2012). Monoterpenes accumu-
late in resin ducts found in the needles, twigs, and trunk of conifers, such as Douglas-
fir, lodgepole pine, Pinus contorta, Picea engelmannii×glauca, and Abies 
lasiocarpa×bifolia, and are toxic to numerous insects, including bark beetles, a 
serious pest of conifer species throughout the planet (Trapp and Croteau 2001).

Essential oils, which lend a characteristic odor to their foliage, are mixtures of 
volatile monoterpenes and sesquiterpenes. Essential oils have been broadly used for 
bactericidal, virucidal, fungicidal, insecticidal, medicinal, and cosmetic applications 
(Isman 2000). Recently they are also used in pharmaceutical, sanitary, cosmetic, 
agricultural, and food industries (Holley and Patel 2005). Mentha piperita, Citrus 
limon, Ocimum basilicum, and Salvia officinalis are some well-known plants that 
contain essential oils. Essential oils are frequently found in glandular hairs and serve 
to repel the potential herbivores even before they take a trial bite. Caryophyllene, a 
sesquiterpene, is a common constituent of the essential oil of numerous plants includ-
ing Piper nigrum and Syzygium aromaticum. Caryophyllene is known to possess 
anti-inflammatory, antimicrobial, anticarcinogenic, antibiotic, antioxidant, and local 
anesthetic properties (Legault et al. 2013; Kuwahata et al. 2012; Lee et al. 2005).

14.2.2	 �Phenolic Compounds

Plants produce a large variety of secondary metabolites that contain a phenol group: 
one or more hydroxyl functional groups on benzene rings (Randhir et  al. 2004). 
These substances are classified as phenolic compounds or phenolics. The structures 
of these phenolics may range from simple phenolic molecule to complex high-
molecular-weight polymer (Velderrain-Rodriguez et al. 2014). Phenolic compounds 
are found in nearly all the plant kingdom and located in nearly all plant parts. Main 
classes of phenolic compounds reported in higher plants are given in Table 14.2.

Shikimic acid and malonic acid are two basic pathways involve in the biosynthe-
sis of phenolic compounds in plants. The shikimic acid pathway is involved in bio-
synthesis of most plant phenolics. Shikimic acid pathway converts simple 
carbohydrate precursors derived from glycolysis and the pentose phosphate path-
way (PPP) into the three aromatic amino acids: phenylalanine, tyrosine, and trypto-
phan. Phenylalanine acts as a precursor of biosynthesis of most abundant classes of 
secondary phenolic compound in the plant.

Phenolic compounds play a vital role in growth and reproduction of plants, pro-
viding protection against pathogens and herbivores (Bravo 1998). Phenolic com-
pounds are also involve in providing the color and sensory characteristics of fruits 
and vegetables (Alasalvar et al. 2001), in absorbing harmful ultraviolet (UV) radia-
tion, and in reducing the growth of nearby competing plants. Phenolic compounds 
also have a wide range of physiological properties, such as antiallergenic, antiath-
erogenic, anti-inflammatory, antimicrobial, cardioprotective, and vasodilatory 
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effects (Benavente-Garcia et al. 2000; Manach et al. 2005; Middleton et al. 2000; 
Puupponen-Pimiä et al. 2001; Samman et al. 2001).

Lignin is formed from three different phenylpropanoid alcohols, namely, 
coniferyl, coumaryl, and sinapyl. The physical toughness of lignin acts as a herbi-
vore deterrent, while its chemical durability makes it relatively indigestible to her-
bivore and insect pathogens (Lattanzio et al. 2006; Rosenthal and Berenbaum 2012). 
The flavonoids, one of the largest classes of plant phenolics, are involved in pigmen-
tation and defense (Treutter 2005). Tannins, a mainly constituent of woody plants, 
are general toxins that significantly reduce the growth and survivorship of many 
herbivores and also act as feeding repellents (Barbehenn and Peter Constabel 2011). 
Protocatechuic acid prevents smudge in onions, a disease caused by the fungus 
Colletotrichum circinans, and prevents spore germination and growth of other fungi 
as well (Kakkar and Bais 2014).

Table 14.2  Main classes of phenolic compounds in higher plants

Classes and subclasses Examples of specific compounds Natural sources
Non-flavonoid compounds
Phenolic acids Hydroxybenzoic acids; 

hydroxycinnamic acids
Macrotyloma uniflorum

Benzoic acids Gallic acid; protocatechuic acid Quercus infectoria, Hibiscus 
sabdariffa, Vitex agnus-castus4-hydroxybenzoic acid

Hydroxycinnamic acid Coumaric acid; caffeic acid; 
ferulic acid; sinapic acid

Arachis hypogaea, Eucalyptus 
globulus, Citrus limon

Hydrolyzable tannins Pentagalloylglucose Rhus chinensis
Stilbenes Resveratrol Fallopia japonica
Lignans Secoisolariciresinol; 

matairesinol; lariciresinol; 
pinoresinol

Linum usitatissimum, Sesamum 
indicum

Flavonoid compounds
Condensed tannins or 
proanthocyanidins

Procyanidin, prodelphinidins Vitis vinifera

Anthocyanidins Pelargonidin; cyanidin; malvidin Geranium dissectum, 
Philodendron bipinnatifidum

Flavanols Catechins; gallocatechins Uncaria rhynchophylla, 
Camellia sinensis

Flavanones Naringenin; hesperetin Citrus × paradisi, Mentha 
aquatica

Flavones Apigenin; luteolin Petroselinum crispum, Apium 
graveolens, Ambrosia 
psilostachya

Flavonols Kaempferol; quercetin; myricetin Aloe vera, Coccinia grandis
Isoflavones Daidzein; genistein; glycitein Pueraria mirifica
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14.2.3	 �Nitrogen-Containing Compounds

A large number of plant secondary metabolites have nitrogen as part of their struc-
ture. They are synthesized from common amino acids. Nitrogen-containing second-
ary metabolites can be categorized into four categories: alkaloids, cyanogenic 
glycosides, glucosinolates, and nonprotein amino acids.

14.2.3.1	 �Alkaloids
Alkaloids are typically defined as plant-derived pharmacologically active basic 
compounds, which synthesized from amino acids and may contain one or more 
heterocyclic nitrogen atoms. The alkaloids are an extremely heterogeneous group of 
more than 15,000 nitrogen-containing secondary metabolites. The alkaloids include 
more than 150 families and found in around 20% of the vascular plant species. 
Alkaloids in plants are common in families of seed-bearing vascular plants or 
angiosperms, e.g., Magnoliaceae, Solanaceae, Papaveraceae, Leguminosae, 
Ranunculaceae, Rubiaceae, and Apocynaceae. The alkaloidal plant species may 
contain single or multiple alkaloids. For example, Catharanthus roseus contains 
130 terpenoid indole alkaloids, including anticancerous vinblastine, and their syn-
thesis can be regulated by multiple pathways (van Der Heijden et al. 2004; Patra 
et al. 2013). The alkaloids can accumulate in a different part of the plants including 
leaf, epidermal and hypodermal cells, bundle sheaths, and latex vessels. Alkaloids 
are usually synthesized from one of a few common amino acids, such as lysine, 
tyrosine, or tryptophan. However, the basic carbon skeleton of some alkaloids may 
contain a component derived from the terpene pathway also. Table 14.3 lists the 
major alkaloid types, their amino acid precursors, and natural plant sources. 
Alkaloids usually occur as salts of organic acids, such as acetic, malic, lactic, citric, 
and oxalic, in plants, while some basic alkaloids, like nicotine, also occur freely in 
nature (Ramawat et al. 2009). Very often, the alkaloids are biosynthesized in a par-
ticular plant organ but accumulate in another. For example, in tobacco, nicotine is 
synthesized in roots but is translocated to and stored in leaves (Shoji et al. 2000; 
Yazaki 2005; Morita et  al. 2009). The alkaloids may be divided into three sub-
classes: proto-alkaloids, true alkaloids, and atypical alkaloids. Proto-alkaloids and 
true alkaloids are directly derived from amino acids, while atypical alkaloids are 
derived from sources other than amino acids, e.g., terpenoid-containing alkaloids.

14.2.3.1.1	 Proto-alkaloids
These are nitrogen-containing alkaloids which originated from amino acids. Proto-
alkaloids include mescaline, adrenaline, and ephedrine.

14.2.3.1.2	 True Alkaloids
These alkaloids, generally, contain a heterocyclic ring with nitrogen, derived from 
amino acids and always basic in nature. These alkaloids are toxic and normally 
present in plants as salts of organic acids, e.g., nicotine, morphine, and codeine.
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14.2.3.1.3	 Atypical Alkaloids
These are alkaloid-like compounds that do not derive from amino acids. The atypi-
cal alkaloids include terpene-like alkaloids, steroid-like alkaloids, and purine-like 
alkaloids such as caffeine, theobromine, ephedrine, colchicine, erythromycin, and 
taxol. These are less commonly found in nature.

14.2.3.2	 �Cyanogenic Glycosides (CGs)
CGs are a group of nitrile-containing plant secondary metabolites that produce cya-
nide following their enzymatic breakdown. There are approximately 25 known CGs 
which occur in at least 2600 plant species, such as members of Fabaceae, Rosaceae, 
Leguminosae, Linaceae, and Compositae family, of which a number of species are 
used as food including apples, apricots, cherries, peaches, plums, quinces, cassava, 
peas, beans, barley, and sorghum (Eisler 1991; Haque and Bradbury 2002; Ganjewala 
et  al. 2010; Vetter 2000). Chemically, CGs are glycosides of α-hydroxynitriles 
which are stored in cell vacuoles (Vetter 2000; Fleming 1999). The CG content in 
plant discourages feeding by insects and other herbivores. Most of the CGs are 
believed to be derived from L-valine, L-isoleucine, L-leucine, L-phenylalanine, 
L-tyrosine, and cyclopentenyl-glycine, a nonprotein amino acid. In plants, CG bio-
synthesis occurs in three steps (Vetter 2000). In the first step, two successive 
N-hydroxylations of amino group of parent amino acid are catalyzed by an enzyme 
of cytochrome P450 family which, finally, converted into aldoxime. The second 
step includes conversion of aldoxime into cyanohydrin by another cytochrome P450 
enzyme. In the final step, cyanohydrins get glycosylated by a soluble enzyme 

Table 14.3  Example of some true alkaloids and their natural sources

Alkaloid class Example Natural occurrence
Biosynthetic 
precursor

Pyrrolidine Stachydrine, hygrine Erythroxylum coca, Aspartate
Leonurus japonicus

Piperidine Coniine, piperine, solenopsin Piper nigrum Lysine
Psilocaulon absimile
Petrosimonia 
monandra
Conium maculatum

Tropane Atropine, racemic, 
hyoscyamine

Atropa belladonna Aspartate
Hyoscyamus niger
Mandragora 
officinarum

Isoquinoline Papaverine, narcotine, 
berberine

Papaver somniferum Tyrosine
Argemone mexicana

Quinolizidine Lupinine Lupinus albus Lysine
Indole Reserpine, ergatomine Ipomoea violacea Tryptophan

Turbina corymbosa
Pyrrolizidine Heliotridine Adenostyles alliariae Aspartate

Cordia myxa
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UDP-glucosyltransferase. CGs play pivotal roles in organization of chemical 
defense system in plants and in plant-insect interactions (Zagrobelny et al. 2004).

14.2.3.3	 �Glucosinolates
Glucosinolates (also known as mustard oil glycosides) are the second class of gly-
coside after CGs. Glucosinolates are sulfur- and nitrogen-containing plant second-
ary metabolites common in the agriculturally important Brassicaceae family. 
Glucosinolates degrade to produce the compounds responsible for the smell and 
taste of vegetables such as cabbage, broccoli, and radishes, which act as toxin and 
herbivore repellents. More than 130 glucosinolates have been identified in plants 
(Radojčić Redovniković et  al. 2008). The glucosinolate biosynthesis comprises 
three steps: amino acid chain elongation, conversion of the amino acid moiety to the 
glucosinolate core structure, and subsequent side chain modifications. The struc-
tural diversity of glucosinolates arises from side chain elongation of the amino acid 
precursors and from various secondary modifications including oxidation, desatura-
tion, hydroxylation, methoxylation, sulfation, and glucosylation. Most glucosino-
lates in the member of the Brassicaceae are synthesized from methionine that is 
modified by the sequential addition of one to nine additional methylene groups to its 
side chain (Graser et  al. 2000). Glucosinolates are stored in the intact plant dis-
cretely from the enzymes (myrosinase) that hydrolyze them, and they are brought 
into contact with the hydrolyzing enzymes only when the plant is crushed because 
of wounding and insect or pathogen attack. Loss of cellular integrity triggers the 
binary glucosinolate-myrosinase system and causes the generation of thioglucose, 
sulfate, and an unstable intermediate which spontaneously rearranges into several 
degradation products which can include nitriles, epithionitriles, isothiocyanates, 
oxazolidine-2-thiones, and thiocyanates (Radojčić Redovniković et al. 2008).

14.2.3.4	 �Nonprotein Amino Acids (NPAAs)
There are common 20 amino acids, also referred to as protein amino acids, which 
are incorporated into proteins by plants and animals. Nonetheless, several plants 
also contain unusual amino acids, called NPAA, that are not incorporated into pro-
teins. Instead, these NPAAs are present in the free form and act as defensive mole-
cules. Many NPAAs are very similar in structure to protein amino acids and, 
therefore, have similar properties. NPAAs can mimic the behavior of standard 
amino acids and, thus, can act as metabolic antagonists or inhibitors. For instance, 
canavanine and azetidine-2-carboxylic acid have structure much like that of argi-
nine and proline, respectively. About 900 NPAAs have been isolated from plants. Of 
these, some 250 are found, particularly, within a small subset of plant families 
including the Hippocastanaceae, Leguminosae, Sapindaceae, Aceraceae, and 
Cucurbitaceae (Wink 2011).
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14.2.4	 �Role of Nitrogen-Containing Secondary Metabolites 
in Plant Defense

Plants have a range of defense mechanisms, which occur soon after the pathogen 
attack that leads to the formation of a wide range of phytochemicals and by-products 
including nitrogen-containing secondary metabolites. These chemicals help the 
plant to respond to the incompatible interaction and finally help them to cope up 
with adverse conditions (Dixon 2001).

14.2.4.1	 �Alkaloids
Alkaloids are a diverse group of secondary metabolites with a variety of targets and 
biological activities including interference with neurotransmitters, disruption of 
DNA replication, and inhibition of protein synthesis (Mithöfer and Boland 2012). 
Alkaloids are produced by a large number of higher plant species and mostly 
involved in defense-related functions such as inhibition of competitors and herbi-
vore deterrents (Roberts 2013). The inhibitory effects of alkaloids on glycosidase 
and trehalose metabolism deter herbivores, and the capability to quench singlet 
reactive oxygen confers protection against this toxic photosynthetic by-product 
(Mithöfer and Boland 2012; González-Lamothe et al. 2009). Alkaloids also act as 
phytoanticipins and phytoalexins and, naturally protect the plants from disease 
(González-Lamothe et al. 2009). The α-tomatine, for example, is a spirosolane-type 
alkaloid that occurs in tomato plants and possesses antimicrobial, antifungal, and 
anti-inflammatory activities (Friedman 2002; Chiu and Lin 2008; Ito et al. 2007; 
Morrow et al. 2004; Simons et al. 2006; Thorne et al. 1985). Several potently anti-
bacterial alkaloids have been identified in the different classes of alkaloid including 
indole, indolizidine, isoquinoline, aaptamine, piperazine, quinoline, quinolone, 
aaptamine-indole, bisindole, and indole-quinoline in plants like Zanthoxylum tetra-
spermum, Prosopis glandulosa, Clausena heptaphylla, and Teclea afzelii (Maneerat 
et al. 2012; Chakraborty et al. 1995a, b; Samoylenko et al. 2009; Nissanka et al. 
2001; Iwasa et al. 2001; Kuete et al. 2008; Wang et al. 2013).

Alkaloids have toxic and repellent effects on a wide range of generalist herbi-
vores in order to reduce or prevent damage to plants (van Dam et al. 1995; Hartmann 
1999; Hartmann and Ober 2000; Ober 2003). Sugar-mimic alkaloids act as inhibi-
tors of several sugars and glycosidase-metabolizing enzymes leading to toxic effects 
on the insect. Morus species are a good example of plants that contain sugar-mimic 
alkaloids. Leaves exude of Morus species rich in sugar-mimic alkaloids, 1,4-dideox
y-1,4-imino-d-arabinitol and 1-deoxynojirimycin, which are toxic to the Samia 
ricini (also known as eri silkworm), a generalist herbivore, but not to the domesti-
cated silkworm, Bombyx mori, a mulberry specialist (Hirayama et al. 2007). Yasuda 
et al. (2002) reported 13 sugar-mimic alkaloids from the pods of Angylocalyx pyn-
aertii, a member of Leguminosae (Yasuda et al. 2002). The nature of toxicity and 
target of plant alkaloid can be diversified but frequently involves in cell signaling 
disruption (Mithöfer and Boland 2012). Sanguinarine ((13-methyl[1,3]
benzodioxolo[5,6-c]-1,3-dioxolo[4,5]phenanthridinium), a benzophenanthridine 
alkaloid, mainly found in the Papaveraceae family, which includes Sanguinaria 
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canadensis, Argemone mexicana, and Chelidonium majus, is shown to have antioxi-
dant, antitumor, antibacterial, and anti-inflammatory properties (Chaturvedi et al. 
1997). Sanguinarine is also reported to suppress cyclooxygenase, lipoxygenase, 
cholinesterase, Na+/K+-ATPase, cAMP- and Ca2+-dependent protein kinase, NF-κB 
activation, nitric oxide synthase, and mitogen-activated protein kinase phosphatase-
1 activities (Jeng et al. 2007; Vavrečková et al. 1996; Ulrichová et al. 1983; Seifen 
et al. 1979; Wang et al. 1997; Chaturvedi et al. 1997; Huh et al. 2006; Vogt et al. 
2005). Sanguinarine inhibits choline acetyltransferase, an enzyme that catalyzes the 
biosynthesis of the neurotransmitter acetylcholine, and, finally affect neurotrans-
mission. Nicotine, mostly found in leaves of Nicotiana species, binds to nicotinic 
acetylcholine receptors and blocks or displaces the endogenous neurotransmitters. 
Nicotine acts as either an agonist or antagonist targeting nicotinic acetylcholine 
receptors in insects, causing continual stimulation of the parasympathetic nervous 
system which finally leads to paralysis and death of insect (Dewey and Xie 2013).

Toxic effects of plant alkaloids on bacterial and fungal activities have been 
shown in a number of studies. Quinolizidine alkaloids (QAs) which frequently 
occur in members of Fabaceae family, like Lupinus, Baptisia, Thermopsis, Genista, 
Cytisus, Echinosophora, and Sophora, are involved in plant protection against 
insect pests (Philippi et al. 2015; Wang et al. 2000; Zhao et al. 1998). QAs extracted 
from Lupinus angustifolius and Genista vuralii have shown to have antibacterial 
properties (Erdemoglu et al. 2007, 2009). The antifungal properties of alkaloids also 
have been proved for several plant-associated fungi by bioassay experiments 
(Wippich and Wink 1985; Ma et al. 1999; Zhao et al. 1998; Zhou et al. 2003). The 
antifungal alkaloids are reported from different plants, such as Corydalis incisa, 
Corydalis ambigua, Dictamnus dasycarpus, and Veratrum taliense, which are 
reported to be effective against a wide range of phytopathogenic fungi including 
Cladosporium cucumerinum, Erysiphe graminis, Cladosporium herbarum, 
Phytophthora capsici, and Rhizoctonia cerealis.

14.2.4.1.1	 Cyanogenic Glycosides
CGs can act as a defense molecule both against herbivory and phytopathogens. In 
general, an inverse correlation is frequently reported between the degree of herbi-
vore pressure and the CG content in plant (Schappert and Shore 1999; Gleadow and 
Woodrow 2000; Ballhorn 2011). Dhurrin (4-hydroxymandelonitrile-β-d-glucoside) 
is a well-studied CG, reported to be present in several plant species including 
Sorghum bicolor. Dhurrin acts as an oviposition activator for the pests such as 
Atherigona soccata and Chilo partellus (Alborn et al. 1992). Efficient hydrolysis of 
dhurrin and, subsequent, release of cyanide are essential to deter insect herbivory in 
Sorghum bicolor (Krothapalli et al. 2013). Larvae of Phyllotreta nemorum eat 80% 
less tissue of the dhurrin-overproducing transgenic Arabidopsis plant compared to 
wild-type (Tattersall et al. 2001). The CG content, the rate of HCN release, and the 
susceptibility of the attacker to HCN are three main factors which determine the 
effectiveness of CGs against attackers (Ballhorn et al. 2005; Kadow et al. 2012). 
Many organisms, including humans, have mechanisms to detoxify and excrete 
HCN; therefore, HCN poisoning occurs only when the rate of detoxification is 

14  Explorations of Plant’s Chemodiversity: Role of Nitrogen-Containing Secondary…



320

lesser than the rate of intake. Depending on the insect species, CGs can act both as 
feeding deterrents or phagostimulants. For instance, CG acts as a feeding stimulant 
for Spodoptera eridania larvae as it prefers to graze on CG-containing plants, such 
as Phaseolus lunatus, and grows better when cyanide is present in their diet 
(Brattsten et al. 1983). In contrast, Prunus dulcis plants with a high concentration of 
CGs are resistant to larvae of Capnodis tenebrionis (Malagon and Garrido 1990). 
Ellsbury et al. (1992) studied the variation in feeding damage to Trifolium repens 
(white clover) by larvae of Hypera postica (alfalfa weevils) (Ellsbury et al. 1992). 
They found that larvae of Hypera postica preferred leaflets of Trifolium repens with 
less or no CG content. Although all CGs have a potential danger through the pro-
duction of HCN, there are differences in the sensitivity of different animal species. 
CG content of Prunus padus, also known as bird cherry, triggers the anorexia, 
weakness, depression, stupor, circling, bruxism, excessive salivation, and tenesmus 
in herbivores which, finally, leads to death (Sargison et  al. 1996). CGs are also 
reported to have the antifungal properties. For instance, CGs can inhibit the growth 
of some fungi, such as Magnaporthe oryzae (also known as blast fungus), in dose-
dependent manner (Seo et al. 2011).

CGs can be harmful to human also. Different types of CGs may be found in vari-
ous cyanogenic food plants, for example, taxiphyllin in bamboo shoots and linama-
rin and lotaustralin in cassava (Organization 2013). The tubers of cassava which is 
used as staple food in many tropical countries, such as the Pacific Island countries, 
Latin America, Africa, and regions of Asia, contain high levels of CGs. Although 
traditional tuber processing methods, such as grating, grinding, soaking, and drying, 
caused the removal or degradation of a major fraction of the CGs present in cassava 
tubers. However, partial paralysis of the limbs caused by chronic cyanide poisoning 
is still widespread in cassava-eating regions. Tropical ataxic neuropathy and konzo 
are some health-related issues that can be caused by continuous dietary exposure to 
CGs (Tylleskär et al. 1992; Ernesto et al. 2002; Oluwole et al. 2000).

14.2.4.1.2	 Glucosinolates
Most of the glucosinolates in plants are involved in responses to external or environ-
mental stimuli. Glucosinolates are also involved in communicating and activating a 
variety of information relating to plant defense against insects, bacteria, and fungi. 
Depending on developmental stage and environmental condition, glucosinolate pat-
tern varies between species and ecotypes as well as between and within individual 
plants. Environmental conditions such as temperature and light (Hasegawa et al. 2000; 
Engelen-Eigles et al. 2006), changes in nutritional status (Kaur et al. 1990; Underhill 
et al. 1980), biotic (e.g., fungal infection and insect damage), and abiotic (e.g., wound-
ing) (Halkier and Gershenzon 2006; del Carmen et al. 2013) stress can alter the glu-
cosinolate profile significantly. A change of the glucosinolate profile by several 
environmental factors has supported the idea regarding possible roles of glucosino-
lates in the plant defense against insects, herbivores, and microbial pathogens.

Glucosinolates and their hydrolysis products evidently act as mediators in plant-
insect interactions. Glucosinolates can function as general poison and deterrent for 
generalist insects. Glucosinolates in Brassica show growth inhibition or feeding 
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deterrence to a wide range of general herbivores such as birds, land slugs, and gen-
eralist insects (Giamoustaris and Mithen 1995, 1996). Martin and Müller (2007) 
found that Sinapis alba (white mustard) respond to Athalia rosae (turnip sawfly) 
damage by systematically accumulating higher levels of glucosinolates and, thus, 
apparently increasing their resistance (Martin and Müller 2007). An increase in 
short-chain aliphatic methylsulfinyl glucosinolates in Arabidopsis thaliana in 
response to both specialist and generalist phloem-feeding aphids is also known 
(Mewis et al. 2005). Brassica napus lines with higher glucosinolate content are also 
reported to have less damage in response to generalists such as pigeons and slugs 
(Giamoustaris and Mithen 1995). Brassica juncea with high glucosinolate concen-
trations is less prone to damage caused by both crucifer specialist, Plutella xylo-
stella, and the generalist, Spodoptera eridania (Li et  al. 2000). Moreover, insect 
herbivore feeding may substantially increase the levels of glucosinolates in plants. 
In Arabidopsis, comparison of glucosinolate accumulation and expression of gluco-
sinolate biosynthetic genes in wild-type and mutant lines affected in defense signal-
ing indicated that feeding of the aphid generalist Myzus persicae (Sulzer), the aphid 
specialist Brevicoryne brassicae (L.), and the Spodoptera exigua Hübner, a lepi-
dopteran generalist, can increase the accumulation of aliphatic glucosinolate con-
tent (Mewis et al. 2006). The plant also alters the nature of glucosinolates in affected 
area to deter the herbivores. For instance, Myzus persicae feeds on Arabidopsis and 
causes an overall decrease in glucosinolate content, but the production of 4-methox
yindol-3-ylmethylglucosinolate is induced. This altered composition of glucosino-
late, finally, acts as a deterrent for herbivores (Kim and Jander 2007).

The role of glucosinolates in defense against pathogens is not well studied like 
for herbivores. However, there are several reports indicating glucosinolate and its 
hydrolysis products can be toxic to bacteria and fungi (Smolinska et al. 2003; Mari 
et al. 2002; Li et al. 1999). Brassica crops are used as a break crop. The glucosino-
lates and their hydrolysis products secreted from Brassica canola and Indian mus-
tard show inhibitory effects on soilborne fungal pathogen, Gaeumannomyces 
graminis var. tritici, which causes take-all of wheat (Angus et  al. 1994). The 
4-methylsulphinylbutyl isothiocyanate, a glucosinolate-derived isothiocyanates, is 
reported to have broad spectrum of antimicrobial activity. Growth of wide range of 
the fungi, such as Alternaria brassicicola, Plectosphaerella cucumerina, Botrytis 
cinerea, Fusarium oxysporum, and Peronospora parasitica, and bacteria, like 
Erwinia carotovora and Pseudomonas syringae, is inhibited by the presence of 
4-methylsulphinylbutyl isothiocyanate (Tierens et  al. 2001). Also, tryptophan-
derived indole glucosinolates are reported to enhance the resistance of Arabidopsis 
thaliana against fungi like Plectosphaerella cucumerina and Phytophthora brassi-
cae (Sanchez-Vallet et al. 2010; Schlaeppi et al. 2010).

Additionally, exogenous treatment of phytohormones like jasmonic acid (JA) 
and salicylic acid (SA), key signal regulators of plant defenses, to the plant also 
alters the glucosinolate profile which, again, proves the role of glucosinolates in 
plant defense. Previous studies showed that exogenous JA application can induce 
the accumulation of indole glucosinolate content in white mustard and oilseed rape 
(Bodnaryk 1994; Doughty et al. 1995). In addition, SA application is also reported 
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to alter glucosinolate accumulation in oilseed rape (Kiddle et al. 1994). The hydro-
lysis products of glucosinolate have negative effects on vertebrates too. A diet 
highly rich in glucosinolates can cause the growth depression, poor palatability, 
decreased food efficiency, hypertrophy and hyperplasia of the thyroid, and liver 
lesions and necrosis in vertebrates (Anilakumar et al. 2006).

14.2.4.1.3	 Nonprotein Amino Acids
NPAAs are commonly found in plants. NPAAs are present in widely consumed 
animal foods also. For instance, Medicago sativa is rich in canavanine, while Lens 
culinaris, a widely used edible pulse, contains homoarginine. In plants, NPAAs pos-
sess different roles including antiherbivory, antimicrobial, and allelochemical activ-
ity. The NPAA can protect the producer plants against stress, microorganisms, 
plants, insects, or higher animals including human (Bell 2003; McSweeney et al. 
2008). NPAAs exert their toxicity in several ways. Some block the synthesis or 
uptake of protein amino acids, while others can be misincorporated into proteins 
and, finally, lead to production of nonfunctional proteins.

The protein-synthesizing machinery of plants that produce NPAAs can discrimi-
nate between protein and NPAAs, and, therefore, they are not susceptible to the 
toxicity of NPAAs. For instance, Convallaria majalis produces an analog of the 
protein amino acid L-proline known as L-azetidine-2-carboxylic acid. Although 
Convallaria majalis can differentiate the L-proline and L-azetidine-2-carboxylic 
acid, it can be easily misincorporated in proteins of Vigna aureus, which does not 
synthesize azetidine-2-carboxylic acid, and strongly inhibit the growth of germinat-
ing seedlings (Fowden 1963).

14.2.4.1.4	 Aliphatic NPAAs
β-methylamino-L-alanine (BMAA) is a derivative of the alanine with a methyl-
amino group on the side chain. BMAA is produced by the cyanobacteria in root 
nodules of cycads and has potent neurotoxic properties. BMAA is also accumulated 
in the seeds of cycads and causes amyotrophic lateral sclerosis/parkinsonism-
dementia (ALS/P-D) (Steele and Guzman 1987; Ince and Codd 2005). ALS is a rare 
group of progressive neurological disorders that mainly involve the neurons respon-
sible for controlling voluntary muscle movements such as chewing, walking, and 
breathing. Dencichine (β-N-oxalyl-l-α,β-diaminopropionic acid) is a hemostatic 
agent present in widely used traditional Chinese medicinal herbs, such as Panax 
species and Lathyrus sativus. Dencichine is a neuro-excitatory NPAA which causes 
the motor neuron disease, neurolathyrism, a condition with acute neurotoxic symp-
toms such as the inability to stand, neck stiffening, and head retraction (Campbell 
et  al. 1993). Canavanine, an arginine analog, is synthesized in some leguminous 
plants (Bell et al. 1978) and plays a pivotal role in plant chemical defense against 
insects (Rosenthal 2001). Canavanine functions as an allelopathic chemical and 
inhibits plant growth (Nakajima et al. 2001). Incorporation of canavanine in place 
of arginine produces structurally aberrant proteins which exhibit altered protein 
conformation and impaired function in insects, such as Manduca sexta and Heliothis 
virescens (Rosenthal and Dahlman 1986; Berge et al. 1986). Animals fed on seeds 
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of canavanine-containing plants developed hematological and serological abnor-
malities and induce antibody-mediated autoimmune phenomena (Bell 2003). 
Indospicine is a hepatotoxic NPAA found in Indigofera plant species. It accumu-
lates as the free amino acid in the tissues (like muscle) of grazing animals including 
the horse and acts as a competitive inhibitor of arginase and causes reproductive 
losses and severe to mild liver disease (Fletcher et al. 2015). Djenkolic acid com-
monly found in Archidendron pauciflorum causes djenkolism, an acute kidney mal-
function (Bunawan et  al. 2014; Bell 2003). L-methionine sulfoximine, 
seleno-cystathionine, selenomethionine, and dl-phosphinothricin are examples of 
other NPAAs of plant origin that are involved in plant defense (Bell 2003; Shaw 
et al. 1999; Schrauzer 2000; Kitajima and Chiba 2013; Tardito et al. 2012).

14.2.4.1.5	 NPAAs with Aromatic Skeletons
Plants produce several NPAAs with aromatic skeletons, such as L-3,4-
dihydroxyphenylalanine (L-DOPA) and m-tyrosine, that are involved in plant 
defense. L-DOPA is a compound with strong allelopathic activity. It is found in 
leaves and seeds of Mucuna pruriens (velvet bean) that has a nutritional quality 
similar to the soybean (Nishihara et al. 2005). L-DOPA acts as a precursor of many 
alkaloids, such as catecholamines and melanin, which are released into soils and 
inhibit the growth of nearby plants. L-DOPA is an important secondary metabolite 
for chemical defense against herbivores in plants (Huang et al. 2011; Van Alstyne 
et  al. 2006). Plants with high L-DOPA content are less prone to attack of small 
mammals or insects (Rehr et al. 1973). It is also a key chemical involving in sclero-
tization and melanization of insects which finally affects the development and 
immunity of insects (Gallot et al. 2010; Andersen 2010). The L-DOPA acts as a 
herbicide and suppresses the growth of several weed species such as Sinapis arven-
sis, Cirsium arvense, Papaver rhoeas, and Lamium amplexicaule (Topal and 
Kocaçalişkan 2006). m-Tyrosine is an example of another NPAA with aromatic 
skeletons with phytotoxic properties. It is exuded from the roots of fine fescue 
grasses and inhibits the growth of a wide range of neighboring plant and, therefore, 
grants a competitive advantage to fescue grasses (Bertin et al. 2007; Huang et al. 
2012). The toxicity of m-tyrosine is due to its misincorporation into cellular protein 
in place of protein amino acid phenylalanine (Gurer-Orhan et  al. 2006; Klipcan 
et  al. 2009). The m-tyrosine can also prevent the growth of bacteria including 
Escherichia coli and Bacillus species (Smith et  al. 1964; Aronson and Wermus 
1965).

14.2.4.1.6	 NPAAs with Cyclic and Heterocyclic Skeletons
The 5-hydroxytryptophan (5-HTP) is found in the seeds of Griffonia simplicifolia 
and has been associated with the insecticidal properties (Janzen et  al. 1977). 
Homoproline, a lysine-derived NPAA, is a critical regulator of systemic acquired 
resistance (SAR) and basal immunity to bacterial infection in plants including 
Arabidopsis thaliana and Nicotiana tabacum (Navarova et  al. 2012; Vogel-
Adghough et al. 2013). Homoproline signals the plants for effective biosynthesis of 
defense signal SA, accumulation of the phytoalexin camalexin, and expression of 
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defense-related genes. Mimosine and its derivatives (α-amino-β-(3-hydroxy-4-oxo-
1,4-dihydropyridin-1-yl)-propanoic acid), found in a leguminous Leucaena leuco-
cephala (Xuan et al. 2006), have a strong herbicidal impact on several plants namely 
Brassica rapa and Phaseolus vulgaris (Xuan et  al. 2006, 2016). Mimosine has 
insecticidal (Ishaaya et al. 1991) properties also and can inhibit the growth of first-
instar larvae of Tribolium castaneum. β-(Isoxazolin-5-on-2-yl)-alanine (BIA), 
found in Pisum, Lens, Lathyrus, and Vicia plant species (Lambein et al. 1990), is a 
potent growth inhibitor of several eukaryotic organisms, such as yeasts; unicellular 
green algae; phytopathogenic fungi, such as Botrytis cinerea, Pythium ultimum, and 
Rhizoctonia solani; and higher plants (Schenk et al. 1991).
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