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Abstract Raw seismic signals contain noise which corrupts the real seismic data.
To overcome this type of interference in the seismic data, preprocessing is done
using the FIR bandpass filter. A new method is proposed in this paper for non-
parametric estimation of seismic signals. Minimum variance spectral estimation is
an eminent spectrum analysis process that offers a high-frequency resolution in
comparison with remaining nonparametric methods. Here, an assured band of fre-
quencies is allowed for processing from supplied data to nullify the unwanted
signals. Minimum variance algorithm is used to find out the spectrum of the seismic
signal and to improve the resolution of the signals.

Keywords Stochastic signal processing ⋅ Adaptive signal processing
Seismology ⋅ Applied statistics

1 Introduction

The process of sharing any data of intent among individuals is termed as com-
munication. The transfer of such signals from one place to another may vary in
distance through a diverse means of media. The signals that can be construed
mathematically are called deterministic signals [1]. Noise, being one such random
signal, is ubiquitous and has many forms. Spectral estimation is the process in
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which frequency of a signal is defined cardinally. On filtering a process with a
group of cramped bandpass filters, the power spectrum is resolved.

Spectral estimation essentially converges on assessing noise with great resolu-
tion [2]. To accomplish this obligation, there is a necessity of enhancing the signal
detection and attaining a consistent measure of the signal with resolution [3].
Seismic waves are used to determine topology of the subsurface layers for better
identification of their boundaries [4]. Due to the asymmetry in the layers of the
earth, seismic waves are reflected in distinct directions initiating multipath propa-
gation. Earthquake’s origin is determined by the seismic data of that earthquake
recorded from at least three diverse receiver positions [5, 6].

1.1 Seismic Signal Processing

Enhancement in the raw seismic source by nullifying the noise improves the
authenticity of the seismic signals replicating the seismic event parameters [7]. At
the end of any seismic propagation, the seismic waves have minute energy that can
be lost at the reception end due to the noise intervention. Considering the random
noise as additive white Gaussian noise, it can be attenuated easily through seismic
data processing methods. Here, stacking overcomes most of the random noise,
thereby improving the SNR by a factor of

p
Q, where Q is equivalent to the number

of stacked traces.
Coherent noise is mainly caused by ground roll, consistently scattered waves,

etc. The seismic data recorded contains ground roll noise. As a part of surface
waves, they have high amplitudes. Implementing the bandpass filters in this per-
spective improves the SNR by reducing this noise [5]. In succeeding section,
nonparametric minimum variance spectral estimation process is interpreted.

1.2 Minimum Variance

The minimum variance spectral estimation is the modification of maximum like-
lihood technique proposed by Capon to interpret two-dimensional power spectral
density [8]. Capon’s estimator can be interpreted as a set of filters which are
optimized to reduce their response of frequency outside the circle of interest and the
width of each filter depends on the information [2, 9]. Thus, the pattern of the filter
depends on opted frequency range and information adaptiveness [10].

Here, assumptions are not made unlike the parametric spectral estimation
methods [11]. During the propagation of the signal, additive noise dominates the
information at low-energy components ensuing into mislaid features. The key
concept of minimum variance is to restrict entire output filter’s energy [12].
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By calculating the filter bank from its own signal, capon’s method determines the
signal power.

Periodogram has high sidelobes rising ambiguity in the amplitude response of
the obtained signal [13]. Minimum variance method is used to reduce the sidelobes
in turn enlightening resolution and diminishing variance over periodogram. During
the signal propagation, there is a chance of system degradation due to several
factors intruding the user signal [10].

The minimum variance spectrum estimation technique includes these subsequent
steps as follows:

1. Create a set of bandpass filters gi nð Þ, in order to discard the maximal extent of
power outside the confined band and thereby achieve distortion less propagation
at a given frequency ωi.

2. Measure power for every output process yi nð Þ by filtering x nð Þ with all filters
available in the given set.

3. Initiate bpx ejωið Þ equivalent to the power estimated in the second step divided by
filter bandwidth.

The minimum variance spectrum approximation for the given signal isbpMV = p+1
eHR− 1

x e, where Rx is the p × p autocorrelation matrix.

Depending on the filter length (p), the resolution and variance of the minimum
variance method vary accordingly. For better resolution, bandwidth of the filter
should be small that can be attained only when p is large [3]. In the second section,
mathematical modeling of minimum variance algorithm is described. Later in the
third section, simulation and results of minimum variance method are explained. In
the final section, the paper is concluded by summarizing the minimum variance
technique.

2 Mathematical Modeling

Let x nð Þ be a wide-sense zero-mean immobile arbitrary mode with Px ejωð Þ as power
spectrum and let gi nð Þ be a perfect bandpass filter by center frequency ωi and
bandwidth Δ,

Gi ejω
� ��� ��= 1 ; ω−ωij j<Δ ̸2

0 ; otherwise

�
ð1Þ

In the output yi nð Þ by filtering x nð Þ with gi nð Þ, the power spectrum is determined
to be

Pi ejω
� �

=Px ejω
� �

Gi ejω
� ��� ��2 ð2Þ
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and the power is specified as

E yi nð Þj j2
n o

=
1
2π

Zπ

− π

PiðejωÞdω=
1
2π

Zπ

− π

Px ejω
� �

Gi ejω
� ��� ��2dω

=
1
2π

∫
ωi+Δ ̸2

ωi−Δ ̸2

PxðejωÞdω
ð3Þ

If Δ is small enough so that Px ejωð Þ is almost steady throughout the filter’s
passband, then power in output process is approximately

E yi nð Þj j2
n o

≈Px ejωi
� � Δ

2π
ð4Þ

Therefore, it is possible to estimate the power spectral density at the given
condition ω=ωi from the noise removal scheme by assessing the power in (n) and
distributing the spectrum through the controlled frequency limit ranging about
Δ ̸2π,

bpx ejωi
� �

=
E yi nð Þj j2
n o
Δ ̸2π

ð5Þ

The periodogram produces an estimate of the power spectrum in a similar
fashion. Specifically, x nð Þ is made noise resistant through a set of bandpass filters,
hi nð Þ, where

Hi ejω
� ��� ��= sin N ω−ωið Þ ̸2½ �

N sin ω−ωið Þ ̸2½ � ð6Þ

and the power in every filtered signal is calculated through a single-point model
average,

bE yi nð Þj j2
n o

= yi N − 1ð Þj j2 ð7Þ

On separating the power approximation with the means of the controlled fre-
quency limit range Δ=2π ̸N, the periodogram is designed.

In this technique, all the noise-reducing filters available remain identical, altering
in terms of the middle frequency. So, they are known for noncontingent nature to
the given information. All the random signals have a nonuniform representation all
over the path of propagation. So, they are present in the sidelobes of the bandpass
filter as well. As the sidelobes are not a desired feature for an efficient technique,
their presence is not entertained to overcome the power seepage glitches that occur
falsehood in the power approximations. Adaptiveness to the filter removes the
sidelobe signals by using the circle of interest for accepting the spectrum of the

168 Md. Basha Saheb et al.



confined band. This feature makes the complete finest design of the spectral esti-
mation technique.

To estimate the power spectral density of input signal at frequency, ωi, let gi nð Þ
be a compound p order FIR bandpass filter. To safeguard the changes in the input
power at the given frequency ωi, Gi ejωð Þ is forced to attain a unity gain at the
condition ω=ωi,

GiðejωiÞ= ∑
p

n=0
gi nð Þe− jnωi =1 ð8Þ

Let gi be the vector of filter coefficients gi nð Þ,
gi = gi 0ð Þ, gi 1ð Þ, . . . , gi pð Þ½ �T ð9Þ

and let ei be the vector of complex exponentials ejkωi ,

ei = 1, ejωi , . . . , ejpωi
� �T ð10Þ

The constraint on the frequency response given in Eq. (8) may be written in
vector form as follows:

gHi ei = eHi gi =1 ð11Þ

Now, for the power spectrum of x nð Þ at frequency ωi to be measured as accurate
as possible, the set of filters must deny the power outside the circle of interest.
Therefore, criterion is used for designing the bandpass filter for minimizing the
power with respect to the linear constraints of the output process as given in
Eq. (11). The power in yi nð Þ may be indicated through the autocorrelation matrix
Rx by

E yi nð Þj j2
n o

= gHi Rxgi ð12Þ

The approach for designing the apt filter has got some challenging limitations.
To overcome these problems, minimizing Eq. (12) satisfies the condition with
respect to the linear constraints given in Eq. (11). The key for this complication is

gi =
R− 1
x ei

eHi R− 1
x ei

, ð13Þ

where the smallest amount of E yi nð Þj j2
n o

is equivalent to

min
gi

E yi nð Þj j2
n o

=
1

eHi R− 1
x ei

ð14Þ
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Thus, Eq. (13) defines the best filter to approximate the input power at frequency
ωi, and Eq. (14) gives power in yi nð Þ, which is used as the estimate, bσ2x ωið Þ, of the
input power at frequency ωi. However, the above equations are derived at a fixed
frequency ωi, although these equations were derived for a specific frequency ωi;
since this frequency was arbitrary, then these equations are valid for all ω [14].
Thus, the desired filter to approximate the input power at frequency ω is

g=
R− 1
x e

eHR− 1
x e

ð15Þ

whereas power estimate is given by

bσ2x ωð Þ= 1
eHR− 1

x e
; e= 1, ejω, . . . , ejpω

� �T ð16Þ

Having designed the bandpass filter bank and estimated the distribution of power
in x nð Þ as a function of frequency, we may now approximate the power spectrum by
separating the power approximate by the confined frequency set. Even if distinct
conditions are present to describe a range of frequencies, using the appropriate
value for Δ generates exact white noise power spectral density [14]. Since the
minimum variance approximation of power in white noise is

E yi nð Þj j2
n o

= σ2x ̸ p+1ð Þ, it follows from Eq. (5) that the spectrum estimate is

bPx ejωi
� �

=
E yi nð Þj j2
n o
Δ ̸2π

=
σ2x

p+1
2π
Δ

ð17Þ

Therefore, if the bandwidth is given as

Δ=
2π
p+1

ð18Þ

the resultant bPx ejωð Þ= σ2x . Using Eq. (18) as the bandwidth of the filter g(n), the
power spectrum estimate becomes, in general,

bPMV ejω
� �

=
p+1

eHR− 1
x e

ð19Þ

which is the minimum variance spectrum estimate. Note that bPMV ejωð Þ is deter-
mined through the autocorrelation matrix Rx of the input signal [3].
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3 Simulation and Results

Step 1: The seismic signals used in this paper are attained from MATLAB file
present in [5], Book_Seismic_Data.mat through a geophone array in Southern
United States. This reference data is recorded from the man-made seismic waves to
idealistically represent the real-time earthquake scenario. Here, source is observed
to be a high-explosive material filled in about 100 feet below the earth surface by
making holes. There are 33 traces, each divided individually into 1500 samples
with sampling interval of 0.002 s. To analyze this spectrum, one of the traces is
considered among the supplied traces.

Step 2: The accuracy of the code written is assessed on comparing with the known
synthetic signal. Minimum variance algorithm is then determined to estimate the
harmonics of the earthquake recorded seismic data.

Step 3: Consider the input signal to be a tonal sinusoidal signal 0.98xe±j0.3π . The
produced signal is represented in Fig. 1 with a normalized frequency of 0.4π. The
considered signal is corrupted with white noise of variance 1.

Step 4: Power Spectral Density (PSD) of the synthetic signal is shown in Fig. 2.
The peak occurs at 0.4 normalized frequency as in Fig. 2. This makes it vivid that
the code taken is accurate and functioning well.

Step 5: In Fig. 3, trace 5 of the seismic signal data is shown.

Fig. 1 Synthetic signal
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Step 6: The bias observed in the given input signal is withdrawn by subtracting the
mean of the raw seismic signal to determine the detrended seismic signal as shown
in Fig. 4.

Step 7: The prescribed minimum variance algorithm is applied on the detrended
seismic signal and the PSD achieved out of it is represented in Fig. 5. From this
figure, the maximum peak is determined to be at 0.09375π normalized frequency.
The sampling frequency is calculated by using the sampling interval 0.002 s as

Fig. 2 Minimum variance
spectrum of synthetic signal

Fig. 3 Raw seismic signal

172 Md. Basha Saheb et al.



fs=1 ̸0.002= 500Hz

w=
2πf
fs

=0.09375π

=
2πf
500

=
2π
fs

f =0.09375π,

Fig. 4 Detrended seismic
signal

Fig. 5 Minimum variance
spectrum of detrended
synthetic signal
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where f is the frequency of the signal. It is given by,

Tonal frequency f =
500
2

* 0.09375

= 250 * 0.09375

= 25 * 0.9375= 23.4375Hz

Step 8: The considered seismic data has earthquake signal frequency ranging
between 15 and 60 Hz. For realization of bandpass filter, Finite Impulse Response
(FIR) order is taken as 8. Its frequency spectrum estimation is shown in Fig. 6.

Fig. 6 FIR bandpass-filtered
spectrum

Fig. 7 FIR bandpass-filtered
detrended synthetic signal
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Step 9: The convoluted output of the detrended seismic signal with the FIR
bandpass filter is shown in Fig. 7. This eliminates the unwanted signals existing
outside the order of the bandpass filter. Fast Fourier transform of bandpass-filtered
spectrum is represented in Fig. 8.

Step 10: PSD of the bandpass-filtered signal is determined using minimum variance
and it is shown in Fig. 9. The maximum peak is obtained at 0.09961π. By repeating
the process like step 7, the frequency of the signal is 24.9025 Hz.

Fig. 8 FFT of
bandpass-filtered seismic
signal

Fig. 9 Minimum variance
spectrum of the BPF
detrended seismic signal
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4 Conclusion

Spectral estimation technique offers good resolution and minimum variance. It
overcomes sidelobe leakage by making the filters’ data adaptive and avoid the
signals out of band. These features make minimum variance method efficient over
periodogram. By this technique, SNR is improved by reducing the noises like
ground roll noise using FIR bandpass filters and in turn retaining the desired seismic
data.
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