
Multi Release Reliability Growth
Modeling for Open Source Software
Under Imperfect Debugging

Diwakar and Anu G. Aggarwal

Abstract In recent years, Open Source Software have gain popularity in the field
of the Information technology. Some of its key features like source code avail-
ability, cost benefits, external support, more reliability and maturity have increased
its use in all the areas. It has been observed that that people interests are shifting
from closed source software to open source software due to size and complexity of
real life application. It has become impractical to develop a reliable and completely
satisfied Open source software product in a single development life cycle, therefore,
the successive improved version or releases are developed. These successive ver-
sions are designed to meet technological arrangements, dynamic customer needs
and to penetrate further in the market. But it also give rise to new challenges in the
terms if deterioration in the code quality due to modification/addition in the source
code. Sometimes new faults generated due to add-ons and also the undetected faults
from the previous release become the cause of difficulty in updating the software. In
this paper, an NHPP based software reliability growth model is proposed for
multi-release open source software under the effect of imperfect debugging. In the
model, it has been assumed that the total number of faults depends on the number of
faults generated due to add-ons in the existing release and due to the number of
faults left undetected during the testing of the previous release. Data of the three
releases of Apache, an OSS system have been taken for the estimation of the
parameters of the proposed model. The estimation result for proposed model has
been compared with the recently reported multi release software reliability model
and the goodness of fit results shows that the proposed model fits the data more
accurately and hence proposed model is more suitable reliability model for OSS
reliability growth modeling.

Keywords NHPP � Multi-release � Open source software � Imperfect debugging

Diwakar (&) � A. G. Aggarwal
Department of Operational Research, University of Delhi, Delhi, India
e-mail: Diwakar.du.aor@gmail.com

A. G. Aggarwal
e-mail: anuagg17@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
P. K. Kapur et al. (eds.), System Performance and Management Analytics,
Asset Analytics, https://doi.org/10.1007/978-981-10-7323-6_7

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7323-6_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7323-6_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7323-6_7&domain=pdf

Notations

m tð Þ Expected number of faults removed in the time interval (0, t]
ai Fault content at starting of ith release
ai Constant rate at which new faults are introduced in ith release
bi A constant in the fault detection rate for ith release
Fi tð Þ Cumulative distribution function for testing phase of ith release
ki Shape parameter for Weibull cdf for ith release
si Time for the ith release

1 Introduction

Open source software (OSS) have become very popular nowadays. OSS are the
software whose source code is freely available to user for use, distribution,
reproduction and modification as per the user needs under the licensing policies of
OSS [1]. Open source software are developed by a single developer or a group of
software developers initially but as the attractiveness of the software increases its
users and volunteers also increases throughout the whole world. In recent years,
people have become more reliant on OSS for their need. The reliability of the
software is defined as the probability of the failure free software for a given interval
of time in a specific environment [2, 3]. Software reliability is a very important
attribute of the software quality, together with functionality, usability, performance,
maintainability, capability, installation and documentation [4]. The proponent of the
closed source software believe that hackers can easily incorporate the malicious
files in the OSS as the source code is freely and easily available [5] but it is for the
same fact that the OSS are more reliable than closed source software as thousands
of volunteer are involved in the testing process of the OSS.

In software development process, due to availability of limited time and
resources, it is not possible to detect all the faults of the software or to develop
complete and reliable software in single development cycle [6]. Then, there is a
need of up-gradation of the software and develop successive release by adding new
functionalities which also helps in competing with other projects and capturing
market. But up-gradation of the software is a very difficult task because
up-gradation leads to additional faults in the software therefore there is an increase
in failure rate after the up-gradation which then decreases gradually due to fault
debugging process [6]. To estimate the mean number of faults detected for closed
source software, multi up-gradation SRGM was proposed earlier by Kapur et al.
[7, 8]. Recently, a number of multi release SRGM’s have been proposed in the
litrature for OSS. In 2011, Li et al. [9] proposed a multi attribute utility theory based
optimization problem to determine optimal time for releasing next version of OSS.
Yang et al. [10] discussed a multi release SRGM for OSS by incorporating fault

78 Diwakar and A. G. Aggarwal

detection process and fault correction process. Aggarwal et al. [11] proposed a
discrete model for OSS which has been released into the market a number of times.

In this paper, we proposed an imperfect debugging based SRGM for OSS model
with multiple releases. In the proposed model, bugs introduced during the addition
of new add-ons to the current release and some undetected bugs of previous release
are considered. This paper is divided into four sections. In Sect. 2, we discuss a
multi release SRGM for OSS under the effect of imperfect debugging. In Sect. 3,
we present parameter estimation results corresponding to three release fault data
sets of Apache project. Finally the conclusions have been drawn in Sect. 4.

2 Modeling Software Reliability

For last few decades, several mathematical models have been proposed that
describe the reliability growth of the software during testing process such as Goel
and Okumoto [12], Yamada et al. [13]. In most of the models the software failure
occurrence has been represented by Non-Homogenous Poisson Process (NHPP).
The main focus of NHPP models is to determine the mean value function or the
expected number of failure occurrences during a time interval.

Most of the NHPP models are based on the following assumption

• Failure occurs independently and randomly over time.
• Initially fault content in the software is finite.
• The efforts to remove underlying faults once a failure has occurred starts

immediately.
• During testing and debugging process no new faults are introduced (i.e. perfect

debugging).

But in case of imperfect debugging, the last assumption does not hold good.
There is a possibility that some new faults may be added when detected faults are
removed\corrected.

2.1 Model Development

In this section, an NHPP based SRGM is proposed to model reliability growth
phenomena for an OSS incorporating imperfect debugging.

a. A general NHPP model

Letus assume that the counting process {N(t), t � 0} is a Non-Homogenous
Poisson Process, under, these assumption, m(t), the mean value function for the
fault removal process may be represented by the following differential equation.

Multi Release Reliability Growth Modeling for Open Source … 79

k tð Þ ¼ dm tð Þ
dt

¼ b tð Þ a tð Þ � m tð Þ½ � ð1Þ

The mean value function for cumulative number of failure, m(t) can be repre-
sented as

m tð Þ ¼ e�B tð Þ
Z t

0
a xð Þb xð ÞeB xð Þdx

� �
ð2Þ

where B tð Þ ¼ R t
0 b xð Þdx.

b. Weibull model

In the case of open source software, when new software is released over the market,
the fault removal rate of the OSS is quite distinct from that of the closed source
software. In contrast to the closed source software system, OSS are released over
the internet with little testing. Once it is released large number of volunteers and
enthusiastic testers report bugs through bug tracking system which affect the reli-
ability and attraction of the OSS [14]. Therefore, the fault removal rate (FRR) for
OSS initially increases due to growth in the users population but later on decreases
as newer versions come into the market and the attractiveness of the present release
decreases. Its users shift their loyalty to the other versions/OSS. In order to
incorporate such type of increasing and decreasing FRR in the model building [15],
we use Weibull distribution function to describe fault removal process (FRP).
Weibull distrubution is flexible distribution which may change its shape depending
upon different values of its shape parameter (here k) see in Fig. 1. For example,

• When k > 0, the rate corresponding to weibull distribution is increasing. In the
context of OSS it may represent the phenomenon when more and more users are
getting attached to OSS system and as result increasing numbers of faults are
being reported through its bug tracking system.

Fig. 1 CDF for weibull
distribution

80 Diwakar and A. G. Aggarwal

• When k = 1, this indicates constant rate of failure and it represent the case when
an OSS has reached it maturity level with respect to its number of users.

• When k < 1, here failure rate is decreasing, this may occur when users are
shifting due the availability of newer version on the internet.

The following differential equation using Weibull model may be formulated to
measure the expected number of faults removed,

dm tð Þ
dt

¼ btk a� m tð Þð Þ ð3Þ

Under the initial condition that, m tð Þ ¼ 0 at t ¼ 0, the above differential equation
gives the following result

m tð Þ ¼ a 1� e�bt
kþ 1
kþ 1

h i
¼ aF tð Þ ð4Þ

where m tð Þ represents expected mean number of faults removed and F tð Þ ¼
1� e�bt

kþ 1
kþ 1

h i
is CDF of weibull distribution with shape parameter kð[0Þ, also

known as weibull slope. Let us assume that the debugging process is not perfect
over t, some new faults are introduced in the code during correction efforts [5].
Therefore the fault content of the software at time t is given as…

a tð Þ ¼ aþ am tð Þ ð5Þ

Here a is the constant rate at which new faults are introduced. Then, the Weibull
model for open source software under the effect of imperfect debugging will be

m tð Þ ¼ a
1� a

1� e�b 1�að Þtkþ 1
kþ 1

h i
: ð6Þ

2.2 Multi Release Model with Imperfect Debugging

Let us assume a�i ¼
ai

1� ai
and Fi tð Þ ¼ 1� e�bi 1�aið Þ t�si�1ð Þki þ 1

ki þ 1 ð7Þ

where Fi tð Þ is the CDF of weibul model for ith release. The mathematical
expression for fault removal under imperfect debugging for the ith release can be
shown as.

mi tð Þ ¼ a�i þ a�i�1 � mi�1 si�1ð Þ� �� �
Fi tð Þ for si�1 � t\si ð8Þ

The mathematical expressions for the number of faults removed during different
releases are given as follows:

Multi Release Reliability Growth Modeling for Open Source … 81

For release 1
When first release of the software comes in the market at time s1, it is tested before
being introduced into the market. In the testing process, testing team tries to detect
and correct maximum number of the bugs of the software. But practically it is not
possible to detect all the faults of software, so testing team can detect only a finite
number of bugs in the software which are less than the total fault content of the
software [7]. The following equation represents the number of faults removed
during testing of release 1.

m1 tð Þ ¼ a�1F1 tð Þs0 � t\s1

For release 2
Improved technology, rising competition and dynamic nature of market makes rise
to the need of software up-gradation. Addition of new features and functions to the
existing version of software can increase the probability of survival and adoption in
the market. When new code is added some new faults are introduced into the code.
These additional faults along with the fault content of previous release are corrected
during the testing of second release with a new FDR [7]. Considering s1; s2½ Þ is the
time interval for testing and at time s2 testing of release 2 is stopped and launched
into the market. Then, the number of faults removed can be represent as

m2 tð Þ ¼ a�2 þ a�1 � m1 s1ð Þ� �� �
F2 tð Þs1 � t\s2

For release 3
In this release, the faults due to add-ons and left over fault content of release 2 are
considered for removal process. Here we assume that during the testing of release 3
the faults of current version and just previous version are removed, do not take into
consideration the undetected faults of version 1, which may be present in the code
of version 3. It help us to keep the model simple and easy for parameter estimation.
Let s3 be launched time for release 3. Then FRP for release 3 is given by

m3 tð Þ ¼ a�3 þ a�2 � m2 s2ð Þ� �� �
F3 tð Þs2 � t\s3

In the same manner, we can model FRP for the subsequent releases of the OSS.
In the next section we discuss how to validate model to the real life application.

3 Data Set and Analysis

Data sets for three versions of Apache are considered for the validation of the
proposed model. The data sets of Apache 2.0.35 (first release), Apache 2.0.36
(second release) and Apache 2.0.39 (third release) are used for the estimation of
model parameters [9]. During 43 days of testing for first release (Apache 2.0.35) 74

82 Diwakar and A. G. Aggarwal

faults were detected. For the second releases (Apache 2.0.36) testing was carried
out for 103 days and 50 faults were detected. For release third (Apache 2.0.39)
during 164 days 58 faults were detected.

For estimation of the parameters of the proposed model, the Least Square
Estimation Method is used. In the field of Software Reliability Least Square
Estimation Method is one of the commonly used methods [3]. SPSS, ‘The
Statistical Package for Social Sciences’ software is applied for estimation of
parameters ai; bi; ai and ki of ith release from the data sets. The estimated param-
eters of each release are demonstrated in Table 1. The proposed model is then
compared with the Amir Garmabaki et al. reliability model [6]. For comparison
purpose we have selected Amir et al. reliability model [6] because it proposes a
multi release open source software reliability model under perfect debugging
conditions. In our model we have incorporated error generation in the modeling
framework. By comparing these two models, we can analyze the benefit of
imperfect debugging based models. For comparison we have used important criteria
(Coefficient of Multiple Determination R2ð Þ and Mean Square Error (MSE)), the
goodness of fit analysis results are given in Table 2. From the result it may be
observed that the proposed model provides better fit to the data in comparison to
Amir et al. reliability model. The values of MSE and Ad-R2 corresponding to the
proposed models are better than Amir et al. reliability model [6]. The goodness of fit
of our model may be further judge by looking Figs. 2, 3 and 4. It may be observed
that estimated value is quite near to actual value for all the three releases. From the
Table 1 we may observed the value of parameter a is highest for release 1 of
Apache software as compared to other two versions. It indicates higher rate of error
generation for the initial release as compared to subsequent releases. It may occur
due to the fact that when the project is new then chances of introducing additional
faults during debugging efforts are higher.

Table 1 Parameter estimation results

Parameters Releases

Apache 2.0.35 Apache 2.0.36 Apache 2.0.39

a 73.995 49.991 58.134

b 0.050 0.033 0.027

a 0.082 0.038 0.065

k 0.162 0.046 0.137

Table 2 Comparison criteria results

Releases Models MSE Ad-R2

Apache 2.0.35 Proposed model 3.62 0.993

Amir et al. [6] 3.68 0.992

Apache 2.0.36 Proposed model 5.28 0.989

Amir et al. [6] 5.45 0.986

Apache 2.0.39 Proposed model 0.84 0.995

Amir et al. [6] 0.70 0.995

Multi Release Reliability Growth Modeling for Open Source … 83

• Coefficient of Multiple Determination R2ð Þ
It shows how much proportion of the variation of the data get explained by the

regression model and it measure of the goodness of fit of the model, higher the
value of R-squared, More the model fits to data.

R2 ¼ 1� residual SS
corrected SS

Fig. 2 Goodness of fit for first release

Fig. 3 Goodness of fit for release 2

84 Diwakar and A. G. Aggarwal

• Mean Square Error

It is the mean of the square of the difference between the expected values and the
observed value,

MSE ¼
Xk
i¼1

m0 tið Þ � yið Þ
k

Here, k represents the number of observation. Better the goodness of fit to data if
the MSE is lower. Figures 2, 3 and 4 shows the Goodness of fit for the three release
of Apache respectively.

4 Conclusion

In this era of Information technology OSS represents a paradigm shift in the
software development life cycle. Unlike in closed source software where testing is
performed by a group of testers, OSS is tested by millions of spontaneous volun-
teers during its operational phase. In this paper, we use Weibull probability dis-
tribution function to model FRP of OSS so as to represents the initial increase and
finally decrease in the bug reporting of OSS. As the entire bug reporting are not
valid. Therefore the concept of imperfect debugging has been incorporated in model
building. Proposed model has been validated on a 3 releases fault data sets of
well-known OSS namely, Apache. The results on compared with other well-known
model [6] to illustrate the accuracy of model and goodness of fit. In future we may
extend the model to relate growth in the user population to the faults removed
during debugging process.

Fig. 4 Goodness of fit for release 3

Multi Release Reliability Growth Modeling for Open Source … 85

References

1. Anant, K. S. & Still, B. (2009) Handbook of research on open source software technological.
Economic and Social Perspectives.

2. Pham, H. (2006). System Software Reliability. Verlag.
3. Kapur, P. K., Pham, H., Gupta, A., & Jha, P. (2011). Software reliability assessment with OR

Application. Berlin: Springer.
4. https://users.ece.cmu.edu/*koopman/des_s99/sw_reliability/.
5. Shyur, H. J. (2003). A stochastic software reliability model with imperfect–debugging and

change point. Journal of Systems and Software, 66, 135–141.
6. Amir, S., Garmabaki, H., Barabadi, A., Yuan, F., Lu, J., & Ayele, Y. Z. (2015). Reliability

modeling of successive release of software using NHPP. In Industrial Engineering and
Engineering Management (IEEM), 2015 IEEE International Conference. pp 761–765.

7. Kapur, P. K., Singh, O., Garmabaki, A. S., & Singh, J. (2010). Multi Up-gradation software
reliability model with imperfect debugging. International Journal of System Assurance
Engineering and Management 1, 299–306. 2010/12/01.

8. Kapur, P. K., Tandon, A., & Kaur, G. (2010).Multi Up-gradation Software Reliability Model.
In Reliability, Safety and Hazard (ICRESH), 2010 2nd International Conference. pp. 468–
474.

9. Li, X., Li, Y. F., Xie, M., & Ng, S. H. (2011). Reliability analysisand optimal
version-updating for open source software. Information and Software Technology, 53, 929–
936.

10. Yang, J., Liu, Y., Xie, M., & Zhao, M. (2016). Modeling and analysis of reliability of multi
release open source software incorporating both fault detection and correction processes. The
Journal of System and Software, 115, 102–110.

11. Aggarwal, A. G., Nijhawan, N. (2017). A discreate modeling framework for multi release
open source software system. Accepted for publication in International Journal of Innovation
and Technology Management. World Scientific.

12. Goel, A. L., & Okumot, K. O. (1979) Time-dependent error detection rat e model for
software reliability and other performance measures. In Reliability, IEEE Transactions on,
Vol. 28. pp. 206–211.

13. Yamada, S., Ohba, M., & Osaki, S. (1983). S-shaped reliability growth modeling for software
error detection Reliability. IEEE Transactions, 32, 475–484.

14. Raymond, E. S. (2001). The Cathedral & then bazaar: Musings on Linux and open source by
an accident revolutionary. Sebastopol: O’Reilly Media, inc.

15. Garmabaki, A. H., Kapur, P., Aggarwal, A.G., & Yadaval, V. I. (2014) The impact of bugs
reported from operational phase on successive software releases. In International Journal of
Productivity and Quality Management, Vol. 14. pp. 423–440.

86 Diwakar and A. G. Aggarwal

https://users.ece.cmu.edu/%7ekoopman/des_s99/sw_reliability/

	7 Multi Release Reliability Growth Modeling for Open Source Software Under Imperfect Debugging
	Abstract
	1 Introduction
	2 Modeling Software Reliability
	2.1 Model Development
	2.2 Multi Release Model with Imperfect Debugging

	3 Data Set and Analysis
	4 Conclusion
	References

