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Chapter 7
Amphibian Zic Genes

Christa Merzdorf and Jennifer Forecki

Abstract Studies in Xenopus laevis have greatly contributed to understanding the 
roles that the Zic family of zinc finger transcription factors play as essential drivers 
of early development. Explant systems that are not readily available in other organ-
isms give Xenopus embryos a unique place in these studies, facilitated by the recent 
sequencing of the Xenopus laevis genome. A number of upstream regulators of zic 
gene expression have been identified, such as inhibition of BMP signaling, as well 
as calcium, FGF, and canonical Wnt signaling. Screens using induced ectodermal 
explants have identified genes that are direct targets of Zic proteins during early 
neural development and neural crest specification. These direct targets include Xfeb 
(also called glipr2; hindbrain development), aqp3b (dorsal marginal zone in gas-
trula embryos and neural folds), snail family members (premigratory neural crest), 
genes that play roles in retinoic acid signaling, noncanonical Wnt signaling, and 
mesoderm development, in addition to a variety of genes some with and many with-
out known roles during neural or neural crest development. Functional experiments 
in Xenopus embryos demonstrated the involvement of Zic family members in left-
right determination, early neural patterning, formation of the midbrain- hindbrain 
boundary, and neural crest specification. The role of zic genes in cell proliferation 
vs. differentiation remains unclear, and the activities of Zic factors as inhibitors or 
activators of canonical Wnt signaling may be dependent on developmental context. 
Overall, Xenopus has contributed much to our understanding of how Zic transcrip-
tional activities shape the development of the embryo and contribute to disease.
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7.1  Introduction

The Zic family of zinc finger proteins plays multiple roles during early development. 
In this chapter, we will examine how studies with Xenopus laevis embryos have 
contributed to our understanding of zic genes and their activities. Although com-
plete gene knockout in early developmental stages of Xenopus is difficult, partly 
because maternal mRNAs can persist past MBT (Blum et al. 2015), gene expression 
levels can easily be altered in Xenopus embryos using morpholino oligonucleotides 
or injection of mRNAs. Further, Xenopus embryos readily lend themselves to physi-
cal manipulation. Therefore, studies in Xenopus laevis have contributed much to our 
understanding of the functional roles of zic genes during neural induction, early 
neural patterning, and formation of the neural crest. In addition, microarray screens 
have identified a number of direct targets of Zic proteins, prompting a number of 
new and ongoing studies. Due to years of study, a large body of knowledge has been 
amassed on Xenopus embryo development, gene regulation, and cell fate mapping, 
which helps put the roles of zic genes into context.

7.1.1  Experimental Approaches Unique to Xenopus

7.1.1.1  Ectodermal Explants (Animal Caps)

Ectodermal explants (animal caps) allow researchers to study gene expression in 
cells that are competent to respond to neural induction. At the same time, these 
explants allow the study of gene regulation free from the variety of inductive sig-
nals that characterize gastrulation and neural induction. For animal cap experi-
ments, two-cell embryos are typically injected with mRNAs or other molecules 
into the animal hemisphere of both blastomeres. After maturing to late blastula 
(stage 9), ectodermal explants are harvested from the animal hemisphere of the 
embryos. The explants form characteristic balls, which can be aged to gastrula and 
neurula stages (using intact sibling embryos for staging), at which point they are 
processed in assays to determine gene expression (Sive et al. 2007). Ectodermal 
explants have been used extensively to identify gene regulatory relationships 
between zic and other genes, which can then be tested in whole embryos. In addi-
tion, ectodermal explants make Xenopus embryos uniquely suited to identify or 
confirm genes that are direct targets of transcription factors active during early 
development. A hormone-inducible transcription factor is constructed by fusing the 
glucocorticoid receptor domain (hGR) to the transcription factor, and mRNA for 
this inducible construct is injected into the embryos. The hGR domain forms a 
complex with endogenous HSP90, thus retaining the transcription factor in the 
cytoplasm (Kolm and Sive 1995; Mattioni et al. 1994). Treatment with the hormone 
dexamethasone allows the hGR-bound transcription factor to detach and enter the 
nucleus. In order to identify direct transcriptional targets, the hormone-inducible 
transcription factor is activated in the presence of protein synthesis inhibitors. More 
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detail is provided below in the description of two screens for direct targets of Zic1 
(Cornish et al. 2009; Plouhinec et al. 2014).

7.1.1.2  Keller Explants

Keller open-faced explants are derived from the dorsal marginal zone of early gas-
trula embryos (Keller and Danilchik 1988). They comprise prospective mesoderm 
and ectoderm and allow powerful studies of the genes involved in regulating conver-
gent extension movements (Keller et al. 1992). With regard to zic genes, this system 
is being used to study the role of aqp3b, a direct target of Zic1, in convergent exten-
sion (See and Merzdorf unpublished). Keller explants have also been used to study 
neural induction free from vertical signals, since the signals that pass from the 
mesoderm to the ectoderm portion of the explant are limited to planar signals. This 
system demonstrated that calcium transients are required for induction of zic3 
expression (Leclerc et al. 2003). With the identification of direct targets of Zic1 that 
play roles in noncanonical Wnt signaling (Cornish et al. 2009), Keller explants may 
help understand the roles that these genes play in convergent extension.

7.2  Zic Family Genes and Their Expression in Xenopus 
Embryos

7.2.1  Comparison of Zic Genes in the Allotetraploid Genome 
of Xenopus laevis

The genomes of both Xenopus species are nearly complete (Hellsten et al. 2010; 
Session et al. 2016). Xenopus zic genes show the same chromosomal arrangement 
as Zic genes in mouse and humans, with zic genes clustered on the same chromo-
some in a head-to-head orientation: zic1 with zic4, zic2 with zic5, and zic3 on a 
different chromosome (Grinberg and Millen 2005; Aruga et al. 2006). In addition to 
the zinc finger (ZF) DNA-binding domain, the Zic-Opa (ZOC) and zinc finger- 
nucleocapsid (ZF-NC) domains (both N-terminal to the zinc fingers) are conserved 
between Xenopus and mammalian zic genes (ZOC is present only in zic1-3) 
(Houtmeyers et al. 2013).

Xenopus laevis and Xenopus tropicalis both have five zic genes, but due to the 
allotetraploid nature of X. laevis, its genome possesses two versions of each zic 
gene, one on either a longer or shorter chromosome. The zic genes are therefore 
named zic.S and zic.L. Table 7.1 shows the results of comparing nucleotide sequences 
of S and L zic gene-coding regions and the amino acid sequences of S and L Zic 
proteins. The S and L variants were also compared to the X. tropicalis versions of 
each Zic protein (Table 7.1) (Ricker et al. unpublished). The amino acid sequence 
identities indicate that the S and L versions of X. laevis Zic proteins are about 
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equally divergent from each other as they are from the Zic proteins in X. tropicalis. 
The differences include substitutions and small gaps spanning up to three consecu-
tive amino acids. Outside of the coding region, in the 5′UTR and 3′UTR, the 
sequences are more divergent between the S and L versions. The untranslated 
regions of the X. tropicalis zic genes are significantly different from the UTRs of the 
X. laevis zic genes.

The presence of two versions for each zic gene in X. laevis allowed each gene to 
diverge and possibly even perform different functions. For example, the Zic1 direct 
target gene aqp3b is the L version of the X. laevis aqp3 gene. It is expressed at gas-
trula and neurula stages, while aqp3a, the S version of the gene, is not expressed 
during early development (Cornish et  al. 2009). In adult frogs, the tissues that 
express the two aqp3 genes vary, although the composite of the expression patterns 
is similar to the overall expression pattern of the single Aqp3 gene in mice (Cornish 
et al. 2009; King et al. 2004). Thus, the individual roles of the S and L copies of each 
zic gene may vary but, taken together, may perform similar  functions as a single 

Table 7.1 Nucleotide and amino acid sequence identity between Xenopus laevis Zic.S and Zic.L 
versions and Zic proteins in X. tropicalis

Gene 
name Sequence source

CDS 
nucleotide 
identity

Amino acid identity 
between S and L gene 
versions

Amino acid identity 
between S and L 
genes and X. 
tropicalis zics

zic1.S NM_001090330.1 95% 98%: 98%
zic1.L Sequence predicted 

from genome
7 aa substitutions (1 in 
ZF)

99%

zic2.S NM_001085959.1 94% 96%: 96%
zic2.L NM_001087724.1 11 aa substitutions (4 in 

ZF); 4 gaps in Zic2.S and 
4 gaps in Zic2.L

95%

zic3.S NM_001087619.1 96% 97%: 98%
zic3.L Sequence predicted 

from genome
13 aa substitution (2 in 
ZF)

98%

zic4.S Sequence predicted 
from genome

94% 92%: 93%

zic4.L NM_001127780.1 33 aa substitutions (2 in 
ZF); 5 gaps in Zic4.S and 
4 gaps in Zic4.L

93%

zic5.S NM_001085657.1 95% 93%: 91%
zic5.L Sequence predicted 

from genome
29 aa substitutions (4 in 
ZF); 3 gaps in Zic5.S and 
4 gaps in Zic5.L

93%

The nucleotide sequences of the coding regions and the amino acid sequences of the X. laevis zic 
genes on the S and L chromosomes were compared using Blastn and Blastp, respectively, to deter-
mine their sequence identity. The number of amino acid differences is indicated and gaps comprise 
maximally three consecutive amino acids. The S and L versions in X. laevis are as different from 
each other as they are from the X. tropicalis versions of each zic gene
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copy in other species. Finally, while X. tropicalis is a useful model, to date it has not 
been used to study the roles of zic genes.

7.2.2  Expression of Zic Genes in Xenopus Embryos

The gene expression patterns of zic genes in Xenopus embryos overlap extensively 
(Fujimi et al. 2006, 2012), which is also the case for zic genes in other vertebrates, 
for example, mouse and chick embryos (Nagai et al. 1997; Furushima et al. 2000; 
Gaston-Massuet et al. 2005; McMahon and Merzdorf 2010). Despite the overlap, 
there are significant differences in the expression domains of zic genes.

7.2.2.1  Blastula Embryos

The zic2 gene is the only maternally expressed zic gene in Xenopus embryos (Nakata 
et al. 1998). The expression of zic1, zic3, and zic4 begins at stage 9, after midblas-
tula transition, although the expression of zic4 is initially very low (Fig. 7.1a). The 
zic5 gene is not expressed in blastula embryos. In situ hybridization shows that in 
late blastula embryos (stage 9.5), zic1, zic2, and zic3 are expressed in the dorsal 
marginal zone in both ectoderm and mesoderm (Fig. 7.1b). There does not appear 
to be significant expression of these zic genes in the roof of the blastocoel.

7.2.2.2  Gastrula Embryos

As gastrulation begins, the zic1-3 genes are strongly expressed in the prospective 
neural ectoderm and moderately expressed in the mesoderm (stages 10.5 and 11; 
Fig. 7.1b). zic4 expression is quite low, and zic5 expression begins in late gastrula 
embryos (Figs 7.1a and 7.2). In late gastrula embryos (stage 11.5), zic1, zic2, zic3, 
and zic5 are expressed to varying degrees in a broad region of the prospective neural 
ectoderm (Fig. 7.2), while zic4 expression is extremely weak. These expression pat-
terns are consistent with the significant roles that the zic1-3 genes play during early 
stages of development and show that zic genes are among the earliest genes 
expressed in response to neural induction.

7.2.2.3  Neurula Embryos

During neurula stages, all five zic genes are expressed in the neural plate border. 
Only zic2 and zic3 are expressed within the neural plate. zic3 is found in the 
midbrain- hindbrain region, and zic2 is expressed at the midline of the neural plate 
(Fujimi et al. 2006) and in the progenitor cells located between the stripes of pri-
mary neurons (Brewster et al. 1998). At the neural plate border, zic1-3 are strongly 
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Fig. 7.1 Expression of zic genes in Xenopus embryos. (a) Expression of zic1-5 determined by 
RT-PCR in unfertilized eggs (e) and Xenopus embryos at different developmental stages, including 
pre-MBT blastula (stage 6), post-MBT blastula (stage 9), late gastrula (stage 12), mid-neurula 
(stage 15), and tailbud stages (stage 19 and older). zic2 is expressed both maternally and through-
out early development. zic1 and zic3 are first detected at stage 9. The expression of zic3 peaks in 
late gastrula/early neurula, while zic1 expression remains strong. Weak expression of zic4 is first 
detected at stage 9 and continues until tailbud (stage 22 and later stages), when it is more strongly 
expressed. Weak expression of zic5 is detected by late gastrula (stage 12), and it is strongly 
expressed in neurula stages and beyond. (b) Expression of zic1-3 by in situ hybridization in whole 
embryos. Dorsal is to the right. zic2 mRNAs are more extensively present at stage 9.5, likely due 
to residual maternal mRNA. During late blastula (stage 9.5) and throughout gastrula (stages 10.5- 
12), the zic1-3 genes are expressed in the dorsal ectoderm and in the involuting mesoderm. zic3 is 
also expressed in the ventral and lateral involuting mesoderm (Fujimi et al. 2012; Kitaguchi et al. 
2000). During neurula (stage 14) zic1-3 are expressed in the neural plate and to some extent in the 
notochord (Reproduced from Fujimi et al. 2012 with permission of the publisher)
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Fig. 7.2 Expression of zic genes in gastrula, neurula, and tailbud Xenopus embryos. The expres-
sion of the zic1-5 genes was determined by in situ hybridization in whole embryos. During gastru-
lation (a: stage 11.5), all zic genes with the exception of zic4 are expressed in the presumptive 
neural plate. During neurula (stages 15 and 19) and tailbud (stages 23 and later stages), all zic 
genes show expression in the dorsal neural tube. Other tissues also show zic gene expression, 
including the hyoid and branchial crest (black arrow), eye (red arrowheads), somites (green arrow-
heads), lateral mesoderm (blue arrowheads), and olfactory placode (white arrowheads) (Reproduced 
from Fujimi et al. 2006 with permission of the publisher)
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expressed in wide regions, while zic4 and zic5 are more restricted to the regions of 
the neural folds (Fig.  7.2b). zic1-3 and zic5 are expressed strongly in anterior 
regions. After closure of the neural tube, all zic family members continue to be 
expressed in the dorsal neural tube (Fig.  7.2c). Thus, zic genes are expressed in 
areas required for neural patterning, neural crest specification, and neural tube 
closure.

7.2.2.4  Tailbud Stage Embryos

During tailbud and later stages, zic1 is strongly and zic4 is weakly expressed in the 
dorsal neural tube along the entire embryo (Fig. 7.2A, D d–g). zic2, zic3, and zic5 
are expressed more strongly in the anterior and posterior regions of the dorsal neural 
tube (Fig. 7.2B, C, E d–g). In tailbud stage embryos, zic1, zic2, and zic5 show some 
expression in the region of the eye, both zic1 and zic4 are expressed in the somites 
(Nakata et al. 2000), and zic3 is uniquely expressed in caudal lateral plate meso-
derm (Fig.  7.2). Thus, zic gene expression patterns overlap extensively but also 
show unique aspects. Some of these correlate to known differences in zic gene func-
tion, although many of these differences in expression are not yet understood.

7.3  Upstream Regulators of Zic Gene Expression

Xenopus zic genes are expressed extensively during early development (Figs. 7.1 
and 7.2), and a number of mechanisms are known to regulate zic gene expression.

7.3.1  Inhibition of BMP Signaling

The inhibition of bone morphogenetic protein (BMP) signaling is critical for neural 
induction (Sasai et al. 1996; Sasai and De Robertis 1997) and plays an early role in 
regulating zic gene expression. Signaling by BMP specifies ventral, non-neural fates 
and represses neural genes in Xenopus and other vertebrates. Thus, BMP signaling 
represses the expression of the zic1, zic2, and zic3 genes (Gamse and Sive 2001; 
Nakata et al. 1997). Conversely, the inhibition of BMP signaling, often mediated by 
Noggin and Chordin, is essential for dorsal determination and specification of neu-
ral fate. Accordingly, misexpression of noggin (Mizuseki et al. 1998; Gamse and 
Sive 2001) or FRL-1 (Yabe et al. 2003), which also represses BMP signaling, results 
in an increase in zic gene expression. Indeed, the promoter of zic1 contains a 215 bp 
BMP inhibitory response module (BIRM) (−2.7 to −2.5 kb 5′ to the transcription 
start site). The BIRM is required for transcription of the zic1 gene in the absence of 
BMP signaling in animal cap-based reporter assays (Tropepe et  al. 2006). The 
BIRM contains consensus binding sites for several transcription factors, including 
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one Smad binding site and binding sites for the Ets, Oct, Lef/Tcf, and Sox transcrip-
tion factors. Mutations in most of these putative transcription factor binding sites 
eliminate the ability of the BIRM to respond to Noggin, suggesting that multiple 
signals must cooperate to mediate zic1 transcription in response to BMP inhibition. 
A dominant interfering Smad is able to induce expression of zic1 in the absence of 
translation (Marchal et al. 2009), indicating direct regulation. However, mutation of 
the putative Smad binding site within the BIRM does not activate reporter gene 
expression (Tropepe et al. 2006). Thus, the inhibition of BMP signaling is required 
for zic gene expression, but which region of the zic gene directly responds to lack of 
BMP signaling, or exactly how the BIRM is responsive to suppression of BMP 
signaling remains to be answered.

7.3.2  Siamois and Twin

Organizer-specific transcription factors, such as Siamois and Twin, are responsible 
for the expression of BMP antagonists, including noggin and chordin. These BMP 
antagonists are secreted from the organizer (dorsal mesoderm) and block BMP in 
the neural ectoderm, which results in the upregulation of zic genes, as described 
above. Accordingly, zic genes are expressed in a wide domain in the neural ecto-
derm during gastrula stages (Fig. 7.2). Klein and Moody (2015) examined whether 
the expression of neural genes could be induced directly by organizer transcription 
factors, in addition to the indirect induction by BMP inhibitors. They found that in 
late blastula embryos, ectopic expression of the organizer genes siamois and twin 
induced ectopic zic2 expression directly, in the absence of translation. Later in 
development, as gastrulation begins, zic2 is present in the involuting dorsal meso-
derm at moderate levels, with stronger expression in the neural ectoderm (Fujimi 
et al. 2012), while Siamois and Twin are limited to the dorsal mesoderm. This lack 
of overlap suggests that zic2 expression in neural ectoderm is now regulated indi-
rectly through induction of BMP inhibitors by Siamois and Twin. The significance 
for this bimodal regulation needs to be explored further. However, the direct induc-
tion of zic2 by Siamois and Twin may serve to bias the dorsal region of the late 
blastula/early gastrula toward neural induction, and further studies demonstrated 
that maternal zic2 is able to exert this bias as well (Gaur et al. 2016). This is sup-
ported by the finding that Zic1 is able to sensitize the future neural ectoderm for 
neural induction (Kuo et al. 1998).

7.3.3  Calcium Signaling

Calcium signaling helps mediate the activity of BMP inhibitors during neural induc-
tion. Noggin causes an increase in calcium transients in the prospective neural ecto-
derm, and experimentally increasing calcium demonstrated that it is a potent inducer 
of early neural genes and a repressor of epidermal genes (Moreau et  al. 2008; 
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Leclerc et al. 2006). Thus, calcium signaling is required for neural ectoderm forma-
tion and is required for zic3 gene expression. Blocking L-type calcium channels 
with specific antagonists in gastrula stage embryos and in Keller open-faced explants 
results in a reduction of zic3 expression (Leclerc et al. 2000, 2003). The xPRMT1b 
gene, which codes for an arginine methyltransferase, is upregulated by Noggin in a 
calcium-dependent manner, and xPRMT1b can induce the expression of zic3 (Batut 
et al. 2005). Thus, xPRMT1b appears to be a link between early calcium transients 
resulting from BMP inhibition and the expression of neural genes during neural 
induction, including zic genes.

7.3.4  FGF Signaling

FGF signaling is required for neural ectoderm formation in a variety of vertebrates 
(Patthey and Gunhaga 2014; Aruga and Mikoshiba 2011). In Xenopus embryos, 
FGF signaling in conjunction with Noggin activates zic1 gene expression in ecto-
dermal explants (Gamse and Sive 2001). In embryos with blocked BMP signaling, 
inhibition of FGF signaling only slightly reduced the induction of zic1 expression 
but completely abolished the induction of zic3 expression (Marchal et  al. 2009). 
This suggests that FGF signaling increases the expression of zic1 from the level 
established by BMP inhibition, while both FGF signaling and BMP inhibition are 
required for zic3 gene expression. Further, zic3, but not zic1, is upregulated by FGF 
in the presence of cycloheximide, suggesting a direct mechanism for zic3 expres-
sion. Conversely, zic1, but not zic3, expression is activated by Noggin in the pres-
ence of cycloheximide (Marchal et  al. 2009). This suggests different regulatory 
mechanisms for the induction of these two zic genes, and it shows an important 
involvement for FGF signaling in their regulation.

7.3.5  Wnt Signaling

Wnt signaling contributes to early patterning of the neural ectoderm and promotes 
the expression of zic genes. During early anterior to posterior patterning in Xenopus 
embryos, wnt expression (in conjunction with Noggin) activates zic1 expression in 
the posterior portion of the presumptive neural plate (Gamse and Sive 2001). 
Consistent with this finding, the BIRM regulatory element upstream of zic1 con-
tains a Lef/Tcf binding site. Mutation of this Lef/Tcf site eliminates the ability of 
the BIRM to respond to Noggin in reporter assays (Tropepe et al. 2006), supporting 
a requirement for Wnt signaling in zic gene regulation in posterior regions of 
Xenopus embryos.
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7.3.6  FoxD4 and Other Factors

A regulator of zic gene expression in the early neural ectoderm is the forkhead tran-
scription factor FoxD4 (also called FoxD5), which is expressed in tissue destined to 
become the neural ectoderm (Yan et al. 2009). During early Xenopus neural ecto-
derm formation, inhibiting foxD4 expression causes a reduction of zic2 expression 
but expands the expression domains of both zic1 and zic3. Testing an activator con-
struct of FoxD4 (FoxD4 fused to the VP16-activating domain) and a repressor con-
struct of FoxD4 (FoxD4 fused to the EnR repressor domain) in whole embryos 
showed that FoxD4 acts as activator to induce zic2 expression but as repressor to 
repress zic1 and zic3 expression (Yan et al. 2009). The acidic blob region in the 
N-terminal domain of FoxD proteins is required for induction activity, while inter-
action with a co-repressor at a site in the C-terminal domain is required for repres-
sive activity (Pohl and Knochel 2005). Structure-function experiments indicate that 
the activating function of FoxD4 is a direct process, while its ability to inhibit genes 
requires intermediate factors. Further studies showed that the upregulation of zic1 
and zic3 expression as a result of inhibiting foxD4 expression can be rescued by zic2 
mRNA injections (Neilson et al. 2012). Thus, direct induction of zic2 may contrib-
ute to the inhibition of zic1 and zic3 expression during the formation of the neural 
plate. Interestingly, this interaction is different in gastrula embryos, when FoxD4 
has an activating effect on zic1 and zic3 expression (Yan et al. 2009). Thus, zic genes 
are regulated differently at different times during development, and individual zic 
genes are regulated by independent mechanisms.

Following the broad induction of zic gene expression by the inhibition of BMP 
signaling in conjunction with FGF and Wnt signaling, other factors help refine and 
limit the expression pattern of zic genes. A 5 kb region upstream from the transcrip-
tion start site of zic1 (a region containing the BIRM) encompasses additional bind-
ing elements that restrict zic1 expression, since loss of this region caused an 
expansion of zic1 expression (Tropepe et  al. 2006). Candidate transcriptional 
repressors that limit the expression of zic genes are the Msx1 and Dlx1 transcription 
factors. Both are direct targets of intermediate levels of BMP signaling and are 
expressed in the epidermal-neural boundary region. Both repress zic gene expres-
sion in ectodermal explants, and Dlx1 was shown to repress zic3 expression in 
Xenopus embryos (Tribulo et al. 2003; Feledy et al. 1999; Yamamoto et al. 2000; 
Monsoro-Burq et  al. 2005). Thus, blocking BMP signaling creates a permissive 
environment for zic gene expression in the presumptive neural plate, while Dlx3 and 
Msx1 may prevent the expression of zic genes beyond the neural plate border region.

The TALE-family homeodomain proteins Pbx1 and Meis1 are important in early 
neural patterning, and their misexpression causes an increase in zic3 expression 
(Maeda et al. 2001, 2002; Kelly et al. 2006). Further analysis showed that Pbx1 and 
Meis1 synergistically interact with a 3.1 kb region directly upstream of the zic3 
transcription start site (Kelly et al. 2006). In the anterior portion of the neural plate, 
the Six1, Six3, and Xrx1 transcription factors may promote expression of zic genes, 
since these transcription factors increase the transcription of zic2 (Brugmann et al. 
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2004; Gestri et al. 2005; Andreazzoli et al. 2003). These transcription factors help 
refine zic gene expression patterns.

In summary, zic genes are expressed in the prospective neural ectoderm during 
gastrula stages and are among the first genes expressed in the early neural plate. 
Studies in Xenopus have greatly contributed to our understanding of the mechanisms 
that regulate zic gene expression. Inhibition of BMP, the resulting calcium tran-
sients, in conjunction with FGF and Wnt signaling are responsible for early zic gene 
expression. Nodal also counts among the upstream regulators of zic gene expression, 
which has mostly been explored in mouse (Houtmeyers et al. 2016). After initial 
induction of zic genes, their expression patterns are limited and refined by a number 
of other transcription factors and signaling mechanisms. Among these factors is 
expression of shh in the ventral neural tube, which represses zic gene transcription 
and therefore limits zic expression to the dorsal neural tube (Aruga et  al. 2002). 
Overall, the mechanisms that are responsible for regulating zic genes individually at 
different times during development remain to be explored in greater detail.

7.4  Direct Transcriptional Targets of Zic Proteins

The DNA-binding domain of Zic transcription factors consists of five C2H2 zinc 
fingers. While the three-dimensional structure of this domain has not been deter-
mined for any of the Zic proteins, the significant similarity between the zinc fingers 
in Zic and Gli proteins allows the assumption that zinc fingers 2–5 interact with the 
major groove of the target gene, while zinc finger 1 engages in protein-protein inter-
actions (Pavletich and Pabo 1993). Interestingly, Zic proteins have not been reported 
to act as homodimers (Brown et al. 2005).

7.4.1  Screens for Zic1 Direct Targets in Xenopus

Zic proteins are involved in the downstream regulation of a wide variety of genes. 
In Xenopus, two screens were conducted for direct target genes that are relevant 
during early neural development (Cornish et al. 2009) and during neural crest speci-
fication (Plouhinec et al. 2014). The unique ability to use ectodermal explants from 
Xenopus embryos makes the identification of direct targets more readily feasible 
than in other organisms. In these screens, an inducible zic construct (zic1GR) was 
used. Zic1GR is a fusion of Zic1 to the ligand-binding domain of the human gluco-
corticoid receptor, which renders Zic1GR inducible with dexamethasone (Kuo 
et al. 1998). In order to identify direct targets of Zic1, animal caps injected with 
zic1GR are aged to the desired stage and then first treated with cycloheximide to 
prevent protein synthesis, followed by treatment with dexamethasone to activate 
Zic1GR (Fig. 7.3). The animal caps are harvested and assayed for the transcription 
of new mRNAs, which are direct targets of Zic1. The Cornish et al. (2009) screen 
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aimed to identify early neural genes. Therefore, the animal caps were neuralized 
with a low dose of co-injected noggin mRNA. Plouhinec et al. (2014) set out to 
identify neural crest specifiers. Therefore, the animal caps were co-injected with 
hormone-inducible zic1 and pax3. Both screens identified a number of genes, which 
are summarized in Table 7.2. Although both screens used a zic1GR construct to 
induce transcription of direct targets of Zic1, it is likely that the identified genes 
include direct targets of other Zic proteins, since the zinc finger domains of the 
Zic1-3 proteins are highly similar (Fujimi et al. 2006).

7.4.2  Direct Targets of Zic1 During Early Neurula Stages

A large number of genes were identified in the screen for direct targets of Zic1 dur-
ing neural plate development (Cornish et al. 2009). The genes included in Table 7.2 
are limited to direct targets that were confirmed by RT-PCR, and many were addi-
tionally shown to be regulated by Zic1 in whole embryos by in situ hybridization 
(Fig. 7.4). The screen was conducted at the equivalent of early neurula stages, and 
most of these genes are expressed in parts of the neural plate or in the neural plate 
border, overlapping with the expression patterns of Zic1 (Fig. 7.2).

7.4.2.1  Xfeb (Glipr2)

Among the direct target genes of Zic1, the putative metalloprotease Xfeb (Glipr2) 
was identified in both screens (Cornish et al. 2009; Plouhinec et al. 2014) and in an 
earlier spotted array (Li et al. 2006). It is expressed in the hindbrain and represses the 
expression of both the hindbrain gene hoxB1 and the otx2 gene, which is expressed 

RT-PCR

Microarray 
Screen

or

Noggin
Zic1GR

Pax3GR
Zic1GR

RNA Injec�on

or
CHX

dex

Isola�on of animal 
caps

Culture to neurula
equivalent 

Fig. 7.3 Experimental design for microarray screens to identify direct transcriptional targets of 
Zic1. Embryos were injected at the two-cell stage into both cells with mRNAs for either zic1GR/
noggin to induce early neural genes or zic1GR/pax3GR to induce neural crest genes. Control 
embryos were injected with mRNAs for noggin only or pax3GR only, respectively (Cornish et al. 
2009; Plouhinec et al. 2014). Animal caps were dissected at stage 9. At the desired age, the isolated 
animal caps were treated first with cycloheximide (CHX) to prevent protein synthesis and later 
with dexamethasone (DEX) to induce the GR-conjugated transcription factors. The caps were then 
cultured to the correct stage and RNA isolated for microarray analysis and RT-PCR
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anterior to the midbrain-hindbrain boundary (Li et al. 2006). This suggests that Xfeb 
contributes to patterning the neural plate and may be part of the regulatory mecha-
nism that prevents expression of the otx2 gene posterior to the midbrain- hindbrain 
boundary (Fig. 7.4). The identification of Xefb (Glipr2) in the Plouhinec et al. (2014) 
screen suggests that it also plays a role during neural crest specification. Xfeb and 
gbx2 are both expressed in the hindbrain (Li et al. 2006; Rhinn and Brand 2001), and 
Gbx2 has neural crest specifier activity, which is dependent on the presence of Zic1 

Table 7.2 Direct targets of Zic1 were identified in two screens

Accession 
number Gene name

Confirmation by 
RT-qPCR Second confirmation

NM_001095072.1 Xfeb (glipr2)abc ✓ dnZic1/in situ
NM_001094477.1 aqp3ba ✓ dnZic1/in situ
NM_001085780.1 crabp2a ✓ dnZic1/in situ
NM_001088044.1 ptgds (cpl-1)a ✓ dnZic1/in situ
NM_001088263.1 ncoa3 (SRC-3)a ✓ ND

NM_001088688.1 prickle1a ✓ ND

XM_018265023.1 pkdcc2a ✓ dnZic1/in situ
NM_001088196.1 vegTa ✓ ND

NM_001088341.1 eomesodermina ✓ ND

NM_001085897.1 myoD1a ✓ dnZic1/in situ
NM_001085795.1 hesx1 (Xanf2)a ✓ ND

NM_001172199.1 sall1a ✓ ND

NM_001087226.1 celf3a ✓ dnZic1/in situ
XM_018244664.1 Sp7 (osterix)a ✓ dnZic1/in situ
NM_001088927.1 lgals4a ✓ ND

NM_001088044.1 dgat2a ✓ dnZic1/in situ
Xl.13309.1 snail1b ✓ ZicMO1/RT-qPCR

Xl.3818.1 snail2b ✓ ZicMO1/RT-qPCR

Xl.15393.1 ets1b ✓ ZicMO1/RT-qPCR

Xl.20029.1 pdgfrab ✓ ZicMO1/RT-qPCR

Xl.1946.1 cyp26c1b ✓ ZicMO1/RT-qPCR

Xl.5374.1 dusp5b ✓ ZicMO1/RT-qPCR

Xl.13925.1 axin2b ✓ Unconfirmed by ZicMO1/
RT-qPCR

Only direct targets that were verified by quantitative RT-qPCR are included. Several neural targets 
from the Cornish et al. (2009) screen (a) were additionally confirmed by injection of a dominant 
interfering zic1 construct (dnZic1) into whole embryos and showed decreased target gene expres-
sion by in situ hybridization (see Fig. 7.4). Neural crest-specific targets from the Plouhinec et al. 
(2014) screen (b) were additionally confirmed by injection of zic1MO and pax3MO, which resulted 
in decreased expression of the target genes, as assayed by RT-qPCR of whole embryos. Li et al. 
(2006) found Xfeb (glipr2) in an earlier screen for direct targets of Zic1 (c). Sp7 and dgat2 were 
originally identified only by their unigene numbers Xl.8933 and Xl.25952. pkdcc.2 corresponded 
to unigene number Xl.73297, which is updated here
ND not determined
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Fig. 7.4 Zic1 regulates the 
expression of direct target 
genes in neurula embryos 
(Cornish et al. 2009). Gene 
names are listed along the 
left with the original names 
or identifiers in 
parentheses. Shown are in 
situ hybridization 
expression patterns for 
neurula (stage 15–18) 
embryos that were 
uninjected (first column), 
injected with the dominant 
interfering construct 
zic1ΔN (dnzic1; second 
column), or injected with 
zic1 mRNA (third column). 
Interfering with zic1 
activity reduced the 
expression levels of all 
direct target genes shown, 
indicating that Zic1 is 
required for their 
expression. Misexpressing 
zic1 resulted in expansion 
of aqp-3b, ptgds, and 
CRABP-2 expression. 
Arrowheads mark the 
injected sides (Reproduced 
from Cornish et al. 2009 
with permission from 
publisher)
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activity in ectodermal explants (Li et al. 2009). Thus, the induction of Xfeb by Zic1 
may be required for the neural crest induction activity by Gbx2.

7.4.2.2  aqp3b

The aqp3b gene codes for an aquaporin, specifically an aquaglyceroporin. 
Aquaporins are channel proteins that allow passage of water and other small mole-
cules (like glycerol) across cell membranes along their concentration gradients 
(Verkman 2005). In Xenopus neurula embryos, aqp3b is expressed in cells at the 
tips of the rising neural folds during neural tube closure (Fig. 7.4; Cornish et al. 
2009). These cells, called “IS” cells (Schroeder 1970), separate the epidermal ecto-
derm and the neural ectoderm. During neurulation, the cells of the neural plate api-
cally constrict, which allows the neural folds to rise and the neural tube to close 
(reviewed in Wallingford 2005). Compromising aqp3b expression in Xenopus 
embryos results in loss of apical constriction in neural plate cells and defective neu-
ral tube closure (Forecki and Merzdorf unpublished). Neural tube closure defects 
have been observed with mutations in human or mouse zic2, zic3, and zic5 genes 
(Grinberg and Millen 2005). Thus, Aqp3b may be part of the mechanism that allows 
zic genes to control neural tube closure.

In gastrula embryos, aqp3b is expressed in the marginal zones and in the sensorial 
layer of the blastocoel roof (Forecki et al. 2018). Thus, aqp3b expression overlaps 
with zic1-3 expression, which are expressed in the epithelial and sensorial layers of 
the dorsal marginal zone (Nakata et al. 1998; Fig. 7.1). Disrupting aqp3b expression 
in the dorsal marginal zone of whole embryos results in compromised border integ-
rity between involuted mesendoderm and noninvoluted ectoderm and defective 
deposition of fibril fibronectin matrix at this boundary (Forecki et al. 2018). Further, 
inhibiting aqp3b expression in explants of the dorsal marginal zone region (Keller 
explants) interfered with their convergent extension, which was rescued with players 
in noncanonical Wnt signaling (See and Merzdorf unpublished). Although Zic pro-
teins have not yet been examined for their roles in maintaining border integrities in 
gastrula embryos between involuted and noninvoluted cells, their expression pat-
terns are consistent with this possibility. Further, involvement of Zic proteins in non-
canonical Wnt signaling has not been demonstrated to date. However, identification 
in this screen of several genes that are involved in noncanonical Wnt signaling path-
ways suggests that Zic proteins may play such a role.

7.4.2.3  pkdcc2 and Prickle Act in Noncanonical Wnt Signaling

The pkdcc2 gene encodes a protein kinase, which regulates JNK-dependent Wnt/
PCP signaling. It is important in both blastopore and neural tube closure (Vitorino 
et al. 2015). Prickle is a cytoplasmic protein that plays a key role in Wnt/PCP signal-
ing as one of the six core components of Wnt/PCP signaling (reviewed in, e.g., 
Davey and Moens 2017). Accordingly, it is important for cell movements during 
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Xenopus gastrulation and neural tube closure (Takeuchi et al. 2003). Thus, these 
direct targets strongly suggest a new role for Zic proteins as regulators of nonca-
nonical Wnt signaling.

7.4.2.4  crabp2, ptgds, ncoa3, and cyp26cl Are Genes Related to Retinoic 
Acid Signaling

The expression domains of the crabp2 and ptgds (also called cpl-1 or lpgds) genes 
overlap with the zic1 expression domain (Fig. 7.4; Cornish et al. 2009). Both pro-
teins function in regulating the cellular availability of retinoic acid during develop-
ment. CRABP2 (cellular retinoic acid-binding protein 2) binds retinoic acid 
intracellularly and delivers it to the nucleus (Dong et al. 1999; Lepperdinger 2000). 
PTGDS acts dually as prostaglandin D2 synthase and as a lipocalin carrier for reti-
noic acid (Urade and Hayaishi 2000). Mutation analysis demonstrated that Zic1 acts 
only through the lipocalin function of PTGDS (Jaurena et al. 2015). The transcrip-
tional coactivator Ncoa3 (also called SRC-3) activates the RAR/RXR nuclear recep-
tor in response to retinoid binding in Xenopus (Kim et al. 1998). The direct target 
gene cyp26cl codes for a retinoic acid metabolizing enzyme, which is involved in 
anterior/posterior patterning of Xenopus embryos (Tanibe et al. 2008). Interestingly, 
in the pre-placodal ectoderm, Zic1 upregulates both the cyp26cl gene and the raldh2 
gene, which codes for a retinoic acid-synthesizing enzyme, although raldh2 most 
likely is not a direct target of Zic1 (Jaurena et al. 2015). The authors hypothesize that 
retinoic acid synthesized by Raldh2 in zic1-expressing cells diffuses to and elicits 
signaling in surrounding cells, while the zic1-expressing cells themselves are not 
subject to signaling by the retinoic acid they produce due to the presence of Cyp26cl. 
Thus, a sharp boundary of retinoic acid-induced gene expression is created (Jaurena 
et al. 2015). Therefore, it appears that Zic1 regulates the expression of genes that 
control multiple aspects of retinoic acid signaling, which includes the synthesis and 
degradation of retinoic acid and aspects of its transport and availability.

7.4.2.5  VegT, Eomesodermin, and myoD Are Transcription Factors 
Important for Mesoderm Development

Eomesodermin acts very early in mesoderm development and regulates the expression 
of the t-box transcription factor VegT (Fukuda et al. 2010). VegT helps organize the 
paraxial mesoderm in Xenopus embryos (Fukuda et al. 2010). Experiments in chick 
embryos suggest that Zic1 may induce but not maintain myoD expression during 
somite development (Sun Rhodes and Merzdorf 2006). zic genes are known to play 
roles in mesoderm development, which have mostly been studied in other organisms.
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7.4.2.6 Other direct targets of Zic1

Additional direct targets of Zic1 include celf3, sall1, and hesx1, which are asso-
ciated with regulating gene expression in the developing nervous system. The celf3 
gene (also called brunol1) is broadly and strongly expressed in the neural plate 
border region. It codes for an RNA-binding protein with roles in regulating splicing 
events in the nucleus (Wu et al. 2010). The sall1 transcription factor is expressed in 
the midbrain and in posterior regions of the neural plate (Hollemann et al. 1996). 
Sall1 is required for neural tube closure in mice (Böhm et al. 2008). The homeobox 
transcription factor Hesx1 is expressed in the anterior neural plate, where it pro-
motes differentiation of the neural ectoderm and acts as a repressor of the xbf-1, 
otx2, and pax6 genes (Ermakova et al. 1999).

Interestingly, no genes were identified in this screen, which are directly related to 
cell cycle control, and the gene most related to cell proliferation or cell differentiation 
is the hesx1 gene, described above. Overall, the identified direct targets point to known 
and new activities for Zic transcription factors during early neural development.

7.4.3  Neural Crest-Specific Direct Targets of Zic1

The screen by Plouhinec et  al. (2014) was a multi-step screen designed to limit 
identification of direct targets to only genes that act during neural crest specifica-
tion. To this end, inducible zic1GR RNA was co-expressed with pax3GR RNA in 
animal caps (Fig.  7.3), and targets of Pax3GR alone were subtracted from the 
results. A variety of genes were identified, and those that were confirmed by an 
additional method are included in Table 7.2. Among these targets is the Xfeb gene 
(also called glipr2), which was identified in both screens and is discussed above.

The Plouhinec et al. (2014) screen identified the snail1 and snail2 (slug) genes as 
direct Zic1 targets, which are known to be expressed in the neural plate border 
region prior to neural crest migration. Snail1 has also been shown to induce snail2 
and other neural crest markers, including zic5 and ets1 (Aybar et al. 2003). Further, 
there has been indication that Zic1 induces snail2 acting as a repressor, indicating 
an indirect regulatory mechanism (a zic1-EnR construct activated snail2 expression; 
Merzdorf unpublished). Thus, there may be more than one way in which Zic pro-
teins can induce snail2 expression.

Additional genes identified by Plouhinec et al. (2014) include the ets1, dusp5, 
and pdgfra genes. The gene for the Ets1 transcription factor is expressed in Xenopus 
premigratory neural crest cells destined to become cardiac tissues and has functions 
similar to Snail proteins (Nie and Bronner 2015). Dusp5 is a MAP kinase phospha-
tase and an important regulator of MAPK signaling (Caunt and Keyse 2013). MAPK 
signaling is essential for neural crest induction (Stuhlmiller and Garcia-Castro 
2012a). Pdgfra is a receptor tyrosine kinase for PDGF. It is important for directed 
migration of cells in Xenopus gastrula embryos (Van Stry et al. 2005). During Wnt- 
induced cell proliferation of osteoblasts, Pdgfra is activated in a disheveled- 
dependent manner (Caverzaiso et al. 2013).
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The number of direct target genes for Zics identified in humans and mouse is 
relatively small. These targets include ApoE, Math1, αCaM kinase II, dopamine 
receptor 1, and Pax3 (Salero et al. 2001; Yang et al. 2000; Ebert et al. 2003; Sakurada 
et  al. 2005; Sanchez-Ferras et  al. 2014). A ChIP-seq screen for direct targets of 
zebrafish Zic3 has yielded a large number of regulatory regions that drive a variety 
of genes involved in early development (Winata et al. 2013).

7.4.4  Interaction with Other Proteins

Zic proteins are transcription factors that bind DNA using C2H2 zinc finger domains, 
as stated earlier. There is some evidence that, like most transcription factors, their 
activity is regulated by interacting proteins. Xenopus Gli proteins, which are also 
C2H2 zinc finger transcription factors, interact with Zic proteins. Zic1, Zic2, and 
Zic3 and the Gli1, Gli2, and Gli3 proteins interact physically (through zinc fingers 
3–5 of both Zic and Gli proteins) (Koyabu et al. 2001). In these Zic/Gli heterodi-
mers, zinc fingers 3–5 would be occupied by binding to each other, thus preventing 
DNA binding by either protein. Therefore, in cases of co-expression, Zic and Gli 
proteins may regulate each other’s activity as transcription factors. Indeed, in 
Xenopus embryos and in cell culture reporter assays, Zic and Gli proteins are able 
to reduce each others’ activities as transcriptional activators (Brewster et al. 1998; 
Koyabu et al. 2001; Mizugishi et al. 2001). Zic2 has also been shown to interact 
with TCF1 and, via its zinc fingers, with TCF4, thereby interfering with Wnt/β-
catenin signaling (Fujimi et al. 2012; Pourebrahim et al. 2011). In other organisms, 
there are not many proteins known to interact with Zic proteins. A yeast two-hybrid 
screen identified Imfa as a direct binding partner of Zic1, Zic2, and Zic3 in mouse 
(Mizugishi et al. 2004). In order to understand the activities of Zic factors, it will be 
important to learn more about proteins that modulate Zic activity by direct protein-
protein interactions.

7.5  Biological Roles of Zic Transcription Factors

The Xenopus model lends itself to functional studies of genes. Loss and gain of 
function experiments combine to illustrate the activities of Zic transcription factors 
during embryonic development, particularly during gastrulation and early neural 
development.

7.5.1  Role of Maternally Expressed Zic2

Among the Xenopus zic genes, only zic2 maternally expressed (Nakata et  al.  
1998). The role of maternally expressed zic2 was studied using the host transfer 
method, where maternal zic2 mRNA was depleted in oocytes that were then  
transferred back into Xenopus females for ovulation (Houston and Wylie 2005). 
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After fertilization and during development, this depletion resulted in exogastrula-
tion, anterior truncations, thickened notochord, and axial abnormalities due to an 
overall increase in Nodal signaling (Houston and Wylie 2005). Similarly, double 
zic2/zic3 morphants had a shortened body axis, smaller heads, and thicker, wider 
notochords (Fujimi et al. 2012). Thus, maternal expression of zic2 is essential for 
early patterning of the embryo.

7.5.2  Zic Genes During Gastrulation and Early Patterning 
of Xenopus Embryos

Zygotic expression of the zic1-4 genes begins shortly after midblastula transition, 
and all five zic genes are expressed during gastrulation, most strongly in the area of 
the presumptive neural plate (Fig. 7.1). As described above, the expression of zic 
genes appears to bias the ectoderm toward a neural fate in early embryos, since 
expression of zic1 in animal cap ectoderm (from late blastula embryos) amplifies 
the neural inducing effects of Noggin (Kuo et al. 1998). In addition, maternal zic2 
and early zygotically expressed zic2, which is induced by the organizer transcrip-
tion factors Siamois and Twin, also bias the presumptive ectoderm toward neural 
fate (Klein and Moody 2015; Gaur et al. 2016). The mechanism by which early zic 
gene expression is able to confer this predisposition for neural fate on the future 
neural ectoderm prior to gastrulation is currently not understood.

Zic3-null mice and Xenopus zic3 morphants exhibit left-right (L-R) asymmetry 
defects (Purandare et al. 2002; Ware et al. 2006a; Cast et al. 2012). Of the Xenopus 
zic genes, zic3 is most widely expressed in gastrula embryos (Fig. 7.2), and it is the 
only one among the zic genes that is involved in L-R asymmetry establishment. 
There are two prevailing models for the establishment of left-right (L-R) asymmetry 
in Xenopus. Evidence indicates asymmetry establishment either during early cleav-
age stages via ion flux or during gastrulation by cilia-driven flow (Blum et al. 2014). 
The result of breaking the symmetry by either mechanism is the asymmetric expres-
sion of the TGFβ-type growth factor nodal on the left side of the embryo. The zic3 
gene is a direct target of Nodal signaling, most likely via the activin response ele-
ment found in the first intron of zic3 (Weber and Sokol 2003). Zic3 then transmits 
this signal to downstream factors that determine left-sidedness (Kitaguchi et  al. 
2000). Zic3 has also been shown to regulate nodal expression in mice (Ware et al. 
2006b). Thus, Zic3 may act upstream and downstream of the Nodal signaling that is 
required for L-R asymmetry formation.
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7.5.3  Zic Proteins and Wnt Signaling

Zic proteins interact with canonical Wnt signaling, although the effects of these 
interactions appear to be dependent on Xenopus developmental stage. In late blas-
tula embryos (stage 9.5), misexpression of zic3 reduces the expression of the direct 
Wnt/β-catenin targets goosecoid and siamois, which are genes expressed in the 
organizer, resulting in impaired notochord development. Zic3 is hypothesized to act 
as an early tuner of Wnt/β-catenin signaling in organizer mesoderm, where it is 
expressed at moderate levels (Fig. 7.1). It is likely that several Zic family members 
are able to affect Wnt/β-catenin signaling, since all five zic genes are able to reduce 
Wnt/β-catenin transcriptional activity in a luciferase reporter assay in Xenopus gas-
trula embryos and Zic3 was shown to physically interact with TCF1 (Fuijmi et al. 
2012). Similarly, Zic2 binds directly to TCF4 and inhibits the ability of the β-catenin/
TCF4 complex to activate transcription, thereby reducing the ability of β-catenin to 
induce Wnt targets in Xenopus animal caps (Pourebrahim et al. 2011). Further, the 
direct Zic1 targets Sp7 (also called Osterix) and Hesx1 (Cornish et al. 2009), both 
transcription factors, repress Wnt/β-catenin activity, and Hesx1 is expressed during 
late gastrula stage in the neural ectoderm (Andoniadou et al. 2011; Ermakova et al. 
1999). These lines of evidence suggest that during gastrula stages and neural induc-
tion, Zic proteins inhibit canonical Wnt signaling. 

Later in development, as Zic proteins contribute to patterning the neural plate, 
the effect of Zic1 on Wnt activity shifts. In neurula embryos, Zic1 acts as an activa-
tor of wnt8b expression, and it is able to activate wnt1 and wnt4 expression in neu-
ralized animal caps. Further, Zic1 requires Wnt signaling to induce expression of 
the engrailed-2 gene in ectodermal explants (Merzdorf and Sive 2006), indicating a 
role for Zic1 in promoting canonical Wnt signaling. Finally, the direct Zic1 targets 
pkdcc2 and prickle (Cornish et al. 2009) suggest an unexplored role for Zic proteins 
in noncanonical Wnt signaling.

7.5.4  Zic Genes During Patterning of the Neural Plate

During Xenopus neurula stages, all five zic genes are expressed in overlapping yet 
distinct domains in the lateral neural plate and in the dorsal region of the closed 
neural tube (Fig. 7.2). Misexpression of each member of the Xenopus zic family 
expands the neural plate (zic1: Kuo et al. 1998; Mizuseki et al. 1998; Nakata et al. 
1998), (zic2: Brewster et al. 1998; Nakata et al. 1998), (zic3: Nakata et al. 1997), 
(zic4: Fujimi et al. 2006), (zic5: Nakata et al. 2000). zic genes are expressed in 
relatively broad domains, as are other factors that pattern the neural plate. 
Combinations of these transcription factors, together with secreted factors, acti-
vate the expression of genes that are expressed in more limited domains. These 
include the wnt genes mentioned above (Merzdorf and Sive 2006): wnt1, which is 
expressed at the midbrain-hindbrain boundary, and wnt4 and wnt8b, which are 
expressed at the forebrain/midbrain boundary and in the midbrain. Additional 
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genes induced by the expression of zic1 include the dorsal neural marker pax3, the 
hindbrain markers krox20, hoxD1 (Kuo et al. 1998), and Xfeb (glipr2) (Li et al. 
2006). All zic genes induce the midbrain-hindbrain boundary marker en-2 (Nakata 
et al. 1997, 1998, 2000; Kuo et al. 1998; Fujimi et al. 2006). zic1-3 induce the 
forebrain and midbrain marker otx2 and the cement gland markers XAG-1 or XCG, 
while zic4 and zic5 are not able to induce these anterior genes (Kuo et al. 1998; 
Fujimi et al. 2006; Nakata et al. 2000). None of the zic genes are able to induce the 
posterior gene hoxB9. Most of these results were obtained in animal cap explants, 
although the regulation of the pax3, en-2, wnt8b, and krox20 genes was confirmed 
in whole embryos (Kuo et  al. 1998; Merzdorf and Sive 2006; Gutkovich et  al. 
2010). Thus, Zic proteins regulate genes in the neural plate regions that give rise 
to the brain but so far do not appear to be involved in regulation of genes important 
for spinal cord development.

The zic1 gene is likely to play a role in the development of the midbrain- hindbrain 
boundary (MHB). Zic1 is required for expression of the MHB genes en-2 and wnt1. 
Since Wnt signaling is required for activation of en-2 expression by Zic1, Zic1 most 
likely induces wnt1 transcription, which in turn induces expression of the en-2 gene 
(Merzdorf and Sive 2006). Zic1 may also help maintain the MHB through its direct 
target gene Xfeb (glipr2). The Xfeb gene codes for a putative protease, which 
represses otx2 expression (Li et al. 2006). Xfeb is expressed in the hindbrain up to 
the MHB. The transcription factors Otx2 and Gbx2 maintain the MHB by mutual 
repression (Rhinn and Brand 2001). Xfeb activity may help maintain a posterior 
limit to otx2 expression during MHB formation. Thus, Zic1 may play a role in 
establishing and maintaining the midbrain-hindbrain boundary.

Zic family members appear to be essential for the formation of the hindbrain. 
Interfering with either zic1 or zic5 expression results in the loss of hindbrain cell 
fates (Gutkovich et al. 2010). Similar defects are observed when the transcription 
factor Xmeis is knocked down. In fact, defects in zic1 and zic5 morphants could be 
rescued with co-injection of xmeis RNA (Gutkovich et al. 2010). hoxD1, a gene that 
contributes to patterning the hindbrain, is a direct target of Xmeis and is known to 
be upregulated by zic1 (Kuo et al. 1998). This indicates that zic genes work upstream 
of xmeis and hoxD1 to promote formation of the hindbrain in Xenopus embryos. In 
addition, interfering with the expression of the Zic1 direct target gene Xfeb (glipr2) 
resulted in loss of hoxD1 expression (Li et al. 2006). While it is not known if Xfeb 
may lie upstream of xmeis1 or be part of a separate pathway, zic genes play an 
important upstream role during hindbrain development.

7.5.5  Zic Genes and the Neural Crest

zic genes act as neural crest specifiers, which has been shown in multiple organisms 
(reviewed in Merzdorf 2007; Houtmeyers et  al. 2013). Neural crest cells are a 
migratory population of cells that originate from the neural plate border region. 
Multiple signaling pathways work together to specify the neural crest in two phases. 
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During phase one, BMP, Wnt, and FGF signaling induces the expression of tran-
scription factors like pax, msx, and zic family members, which are neural border 
specifiers. During phase two, these neural border specifiers induce the expression of 
neural crest specifiers, including snail1, snail2, ets1, and FoxD3 (Stuhlmiller and 
García-Castro 2012b). Accordingly, mutations in the mouse Zic2 or Zic5 genes 
result in a reduction in neural crest cells and deformities in neural crest-derived 
structures (Inoue et al. 2004; Elms et al. 2003). In Xenopus, all zic family members 
are expressed in the neural plate border region (Fig. 7.2; Fujimi et al. 2006) and are 
important for the formation of neural crest cells. Misexpression of zic1, zic2, or zic3 
increases the extent of neural crest cell fate in whole embryos, and expression in 
animal cap explants results in the induction of neural crest markers (Nakata et al. 
1997, 1998; Kuo et al. 1998). Similarly, misexpression of zic4 in Xenopus embryos 
generates ectopic pigment cells, a neural crest-derived cell type (Fujimi et al. 2006). 
Misexpression of zic5 in whole embryos causes strong induction of neural crest 
genes, but, unlike other zic family members, zic5 is not as efficient at inducing neu-
ral genes (Nakata et al. 2000). Conversely, interfering with the expression of zic 
genes results in a reduction in the expression of neural crest genes (Hong and Saint- 
Jeannet 2007; Fujimi et al. 2006; Nakata et al. 2000; Gutkovich et al. 2010). Thus, 
while having slightly different roles, all members of the zic family contribute to 
induction of the neural crest.

The Zic1 and Pax3 transcription factors work jointly to induce neural crest cell 
fate in the developing embryo. The expression of zic1 and pax3 overlaps in the pre-
sumptive neural crest region (Sato et  al. 2005; Hong and Saint-Jeannet 2007). 
Misexpression of either zic1 or pax3 alone increases neural crest marker expression 
only in the ectoderm bordering the neural crest field, while overexpression of both 
genes together induces ectopic neural crest formation in the ventral ectoderm (Sato 
et al. 2005) in a Wnt-dependent manner (Monsoro-Burq et al. 2005). When ectopi-
cally induced neural crest cells (by activating zic1 and pax3 in animal cap explants) 
are transplanted into embryos, they are able to migrate correctly and form differenti-
ated cell types characteristic of neural crest cell fates. Interestingly, the cooperation 
between Zic1 and Pax3 is required for these fates, since transplanting cells in which 
zic1 alone is activated results in the formation of neural tissue only (Milet et al. 
2013). Thus, Zic1 and Pax3 can work together to induce a complete neural crest 
fate. While physical interaction between the Zic1 and Pax3 proteins was originally 
elusive (Sato et al. 2005), such an interaction was suggested by expressing these 
proteins in cultured cells (Himeda et al. 2013).

Since Zic1 and Pax3 together are able to induce a neural crest program in ecto-
dermal explants, this synergy was employed to identify downstream neural crest 
genes (Plouhinec et al. 2014; Bae et al. 2014). The Plouhinec et al. (2014) screen 
focused on the identification of direct targets of Zic1/Pax3 and is described above. 
Bae et al. (2014) used a similar approach but did not limit their screen to direct tar-
gets. Both screens identified the snail1 and snail2 (slug) genes. The latter screen 
identified a variety of additional neural crest genes that may or may not be direct 
targets. Overall, a variety of familiar and new genes were identified that are acti-
vated by Zic1 and Pax3 acting together. Among the neural crest specifiers, the 
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snail1, snail2 (slug), and ets1 genes were identified as direct target genes of the 
interaction between Zic1 and Pax3 (Plouhinec et al. 2014). Further, Zic1 is required 
for snail1, snail2, and foxD3 expression (Plouhinec et al. 2014; Sasai et al. 2001; 
Gutkovich et al. 2010). FoxD3, which is not known as a direct target of Zic1 at this 
time, restricts cells to a neural crest fate and also aids in the migration of neural crest 
cells (Sasai et al. 2001). The Snail family and Ets1 are among the transcription fac-
tors that facilitate the delamination and migration of neural crest cells (Nie and 
Bronner 2015; Aybar et  al. 2003). Both screens also identified the pdgfra gene, 
which codes for the alpha subunit of a platelet- derived growth factor (PDGF) recep-
tor. PDGF receptor is important for migration of neural crest cells in mouse embryos 
(Soriano 1997), and in Xenopus it has been implicated in cell migration during 
gastrulation (Nagel et  al. 2004; Van Stry et  al. 2005). Thus, Zic1 is required for 
stabilizing neural crest fate and for the expression of genes that prepare neural crest 
cells for delamination and migration. While zic1 is expressed in premigratory neural 
crest cells and is essential for the expression of genes required for the transition of 
neural crest cells to emigrate, studies in chick show that it ceases to be expressed as 
soon as neural crest cells become migratory (Sun Rhodes and Merzdorf 2006). 
Since zic genes can repress neural differentiation genes, their role may include 
keeping the premigratory neural crest population in an undifferentiated state until 
the time of cell migration. Overall, the two screens confirmed that the neural plate 
border specifier Zic1 acts to induce neural crest specifier genes, with some of these 
interactions identified as direct. This adds further detail to the role of the Zic tran-
scription factors in the gene regulatory landscape that governs neural crest 
specification.

7.5.6  Zic Genes and the Proliferation and Differentiation 
of Cells in the Nervous System

Xenopus embryos undergo primary neurogenesis, during which six discrete stripes 
of N-tubulin-positive primary neurons differentiate in the early neural plate, while 
the remainder of the neural plate remains as undifferentiated progenitors. zic2 is 
expressed in these undifferentiated progenitors between the stripes of primary neu-
rons (Brewster et al. 1998). Misexpression of zic2 in the regions of primary neuron 
differentiation resulted in a significant decrease in the number of N-tubulin-positive 
primary neurons, indicating a role for Zic2 in preventing the differentiation of pri-
mary neurons. Consistent with this finding, Zic2 has a repressive effect on transcrip-
tion of the bHLH gene neurogenin (ngnr-1), a gene that promotes neural 
differentiation (Brewster et al. 1998). Similarly, Sonic Hedgehog (Shh) signaling 
upregulates zic2 expression, and overexpression of Xenopus shh during primary 
neurogenesis causes expanded expression of zic2 and reduced N-tubulin-positive 
stripes (Franco et al. 1999). This indicates that zic2 acts in maintaining progenitors 
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and preventing neurogenesis in certain areas of the neural plate, possibly under the 
regulation of Shh.

While Zic2 represses transcription of the neural differentiation factor ngnr-1 
(Brewster et al. 1998), Zic1 and Zic3 have inductive effects on the expression of the 
proneural genes ngnr-1 and neuroD in animal cap explants (Nakata et  al. 1997; 
Mizuseki et  al. 1998). Further, hesx1, which promotes differentiation, is a direct 
target of Zic1 (Cornish et al. 2009). However, in mouse and chick embryos, Zic1 
represses proneural gene expression (Ebert et  al. 2003), misexpression of Zic1 
blocks neuronal differentiation, and mutations in zic genes cause a decrease in cell 
proliferation in the dorsal neural tube (Ebert et al. 2003; Aruga et al. 2002; Nyholm 
et al. 2007). In addition, Zic1 promotes proliferation in the cerebellum and Zic1 and 
Zic3 in retinal precursors (Blank et al. 2011; Watabe et al. 2011). Consistent with 
these results from other organisms, interfering with btg2 expression in Xenopus 
embryos (Btg2 reduces proliferation and promotes neuronal differentiation) results 
in increased zic3 expression (Sugimoto et al. 2007), indicating that Btg2 downregu-
lates zic3 gene expression to allow neurogenesis to begin. Thus, it appears that Zic2 
has a role in maintaining undifferentiated progenitors in the neural ectoderm, while 
the role of Zic1 and Zic3 in proliferation and differentiation is not completely clear 
and may be context dependent. Interestingly, the early neural transcription factor 
FoxD4 regulates these zic genes differently. It induces zic2 transcription directly 
while indirectly repressing zic1 and zic3 expression (Neilson et al. 2012; Yan et al. 
2009), which has been interpreted as FoxD4 keeping the neural ectoderm in a pro-
liferative state by promoting zic2 and repressing zic1 and zic3 expression. Since the 
expression domains of the zic1, zic2, and zic3 genes overlap in the neural plate, it 
will be interesting and important to sort out the potentially opposite and context-
dependent influences that these genes exert on neural differentiation.

7.6  Xenopus Studies Contribute to Our Understanding 
of Human Diseases

Xenopus embryos are increasingly employed as a model system in functional stud-
ies of human diseases (Kofent and Spagnoli 2016; Lienkamp 2016; Hardwick and 
Philpott 2015). With the near completion of the Xenopus genome and the advent of 
the TALEN and CRISPR-Cas9 systems of genome editing, such studies have 
become feasible (Tandon et al. 2016). With regard to diseases caused by mutations 
in human ZIC genes, Xenopus embryos were used to examine gene regulatory inter-
actions in human craniosynostosis caused by mutations in the ZIC1 gene. 
Craniosynostosis is the premature fusion of skull sutures that leads to abnormalities 
in brain development and brain function in human patients. Five independent fami-
lies with a history of coronal craniosynostosis showed four different mutations in 
the third exon of ZIC1, C-terminal to the zinc finger region (Twigg et al. 2015). 
These mutations include one point mutation and three nonsense mutations that 
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result in truncations of the ZIC1 protein. The ZIC1 and engrailed (EN1) gene 
expression domains overlap in the developing sutures (Twigg et al. 2015). Using the 
regulatory relationship between Zic1 and the engrailed (en-2) gene as a model, 
misexpression of wild- type Xenopus zic1 or human ZIC1 does not change the 
engrailed (en-2) expression domain at the midbrain-hindbrain boundary in Xenopus 
embryos (Merzdorf and Sive 2006; Twigg et  al. 2015). In contrast, the human 
mutant ZIC1 genes elicit increased and/or abnormal en-2 expression in Xenopus 
embryos, indicating that the mechanism by which these C-terminal ZIC1 mutations 
cause craniosynostosis may lie in dysregulation of the EN1 gene in the developing 
sutures (Twigg et al. 2015). En1 has been shown to regulate osteogenic differentia-
tion and induction of Osterix (Sp7) during the formation of mouse skull sutures 
(Deckelbaum et  al. 2006). Interestingly, Osterix (Sp7) is a direct target of zic1 
(Table 7.2). Thus, ZIC1 appears to participate in a gene regulatory network, which 
is disturbed by mutations in the C-terminal domain of ZIC1, resulting in abnormal 
bone development in the coronal sutures and craniosynostosis in human patients.

Xenopus embryos were used to study the mechanism by which a mutation in the 
first zinc finger of the human ZIC3 gene causes TGA (transposition of the great 
arteries), which is a complex heart defect (Chhin et al. 2007). Zic3 plays a role in 
left-right axis formation and induction of the neural crest (Cast et  al. 2012; 
Kitaguchi et  al. 2000; Nakata et  al. 1997, 1998), which are processes that may 
underlie the defects seen in the human patients. Injection of wild-type human ZIC3 
into Xenopus embryos induced misexpression of the left lateral plate mesoderm 
marker pitx2 and the neural crest marker snail2. This induction activity was dimin-
ished when Xenopus embryos were injected with the mutant ZIC3 gene (Chhin 
et al. 2007). Thus, it appears that the mutation in the first zinc finger (which does 
not bind to DNA but engages in protein-protein interactions) diminishes the overall 
activity of ZIC3 in both left-right axis formation and neural crest induction. Thus, 
Xenopus embryos have proven useful in studying the interactions of mutant forms 
of human ZIC genes with developmental mechanisms to identify a molecular basis 
for human disease.

7.7  Conclusion

Work with Xenopus embryos has greatly contributed to understanding the role of 
Zic transcription factors during development. While zic gene family members are 
important players in many developmental processes, much remains to be under-
stood about the molecular mechanisms that govern zic gene expression and Zic 
activities. The screens for direct and indirect targets of Zic transcription factors have 
yielded a variety of genes that are supporting ongoing and new research and are 
giving rise to new insights. Important are the advent of new genetic tools, such as 
new methods for genome editing, and the sequencing of the Xenopus laevis genome. 
Thus, previous studies can now be combined with genomic studies that have long 
been the strengths of other model organisms to form a more complete understanding 
of how Zic proteins drive development. Zic gene expression overlaps and their 
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activities are partially redundant. Thus, it will be important to discover how indi-
vidual zic genes are regulated and what distinguishes their functions. These studies 
will help with understanding the basis for human diseases. Indeed, Xenopus embryos 
have already been used to examine the molecular mechanisms underlying two 
human diseases caused by mutations in ZIC genes.
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